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State-to-state, state-specific, and cumulative reaction probabilities are presented for the bimolecular scattering
process Li+ HF f H + LiF in the ground electronic state. Calculations were performed for zero total
angular momentum at total energies from 0.26 to 0.50 eV (relative to HF at its classical equilibrium bond
distance and infinitely far from Li). The energy dependence of the state-to-state, initial-state-selected, and
cumulative reaction probabilities for LiFH in the low-energy regime displays a pronounced resonance structure
due to quasibound states associated with a Li‚‚‚FH van der Waals well in the entrance valley of the potential
energy surface. The lifetimes of the long-lived resonances are obtained by fitting the calculated eigenphase
sum to the multichannel Breit-Wigner formula. The final rotational state distributions of the LiF product
fragment resulting from decay of the resonance state complexes are presented for two resonances. Quantum
numbers are assigned to the resonances using bound-state and quasibound-state calculations in the Li‚‚‚FH
van der Waals well, and possible decay mechanisms are discussed. The lifetimes show a systematic dependence
on the translational vibrational quantum number.

1. Introduction

The reaction Li+ HF f H + LiF has become a prototype
for both theoretical and experimental investigations of the
dynamics of atom-diatom systems with three different atoms
and the heavy-heavy-light mass combination. The ground-
state potential energy surface has been calculated, and several
analytic fits have been presented in the literature.1-17 Various
aspects of the dynamics of LiFH have been studied, including
reactive collisions,10,11,18-32 stereodynamics and vector cor-
relations,26,29,30,33-35 and photodissociation dynamics.15,36-39

Experimentally observable quantities such as the differential and
integral cross sections have also been discussed.18,20,26,29,30

A striking feature of the previously reported studies is the
strong resonance structure.10,11,19,21-25,28,32It is well-known that
resonance structure in dynamical features may be associated
with quasibound (i.e., metastable) states of the system. However,
in all of the investigations carried out so far for the Li+ HF
reaction, the description of the resonance structure is phenom-
enological, and there is little quantitative characterization. In
addition, research has been primarily focused on the scattering
features, and there is no study of the intermediate metastable
states of the Li‚‚‚FH complexes, which are of fundamental
interest. One objective in the present study is to identify the
energies and lifetimes of the resonance states using fully
converged quantum mechanical scattering calculations. The
method employed is a time-independent, two-arrangement
Green’s-function-based scattering approach, namely the outgoing
scattering wave variational principle (OWVP).40-43 The results
are limited by the accuracy of the fitted multidimensional
potential energy surface.

The present work is especially timely in light of the recent
work of Bowman, Manolopoulos, and co-workers,44,45in which
subthreshold resonances associated with the van der Waals wells

of the HOCl system were identified in exact quantum mechan-
ical scattering calculations and characterized using quasibound-
state calculations. A similar analysis for the FH2 system and its
deuterated isotopes has demonstrated the existence of van der
Waals well resonances.46-48 In the present paper, we interpret
observed resonances in the Li+ HF reaction as due to meta-
stable van der Waals complexes of the reactants, i.e., Li‚‚‚FH
van der Waals complexes.

This paper is organized as follows. Section 2 reviews the
basic features of the ground-state potential energy surface for
the reactive LiFH system. Section 3 contains a brief summary
of the theory and methods that are used in the scattering and
the bound- and quasibound-state calculations. In section 4, we
present state-to-state, initial-state-selected, and cumulative reac-
tion probabilities for total angular momentumJ ) 0. The
resonance energies and widths are obtained by fitting the energy
dependence of the eigenphase sum to the multichannel Breit-
Wigner formula. The product rotational state distributions
resulting from the decay of two resonances are also presented.
The resonance complexes are further characterized by assigning
vibrational quantum numbers corresponding to quasibound states
of the Li‚‚‚FH van der Waals complex. Section 5 is a summary.

2. Ground-State Potential Energy Surface of the LiFH
Complex

Details of the ground-state LiFH potential energy surface used
here have been presented previously.15 Briefly, potential energies
for the two lowest energy electronic surfaces were calculated
at a high level of theory over a wide range of nuclear geometries.
These adiabatic energies were fitted to analytic functional forms
in the diabatic representation. The ground-state adiabatic
potential energy surface used in the present study is obtained
by diagonalizing the fitted diabatic potential energy matrix. The
surface fit used here has been labeled surface fitH in later
work.16† Part of the special issue “Donald J. Kouri Festschrift”.
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The ground-state surface has two van der Waals wells: one
in the entrance valley with a well depth of 0.21 eV with respect
to the Li + HF asymptote at its equilibrium geometry, and the
other in the product valley with a well depth of 0.043 eV with
respect to the LiF+ H asymptote at its equilibrium geometry.
The surface also has two saddle points. The first saddle point
is the transition state for the F transfer reaction and has a
nonlinear geometry and a potential barrier height of 0.35 eV
with respect to the Li+ HF asymptote at its equilibrium
geometry. The second saddle point is the transition state for
dissociation of the LiF‚‚‚H complex and has a very small height
of 0.014 eV with respect to the LiF+ F asymptote at its
equilibrium geometry and is located in the product valley. The
overall reaction Li+ HF f LiF + H is endoergic by 0.21 eV
without including the zero-point energy of the reactants and
products and by 0.015 eV when zero-point energy is included.
The characteristic features of the stationary points of the ground-
state LiFH surface are summarized in Table 1 and are shown
schematically in Figure 1. The zero-point energies in Table 1
are taken from ref 15 and were calculated using the Morse-I
approximation49,50 available in the POLYRATE51 software
package.

3. Theory

3.1. Quantum Mechanical Scattering Matrices.Quantum
mechanical scattering matrix elements were obtained by solving
the time-independent Schro¨dinger equation by the outgoing
wave variational principle (OWVP).40-43 In this method, the
Schrödinger equation is solved by expanding the outgoing
scattering waves in terms of internal-state channel functions for
each asymptotic chemical arrangement. The solution to the
Schrödinger equation can be written in integral form using the
Lippmann-Schwinger formalism.42,43,52,53The first term in the
solution is called the distorted wave and satisfies

whereHD
k contains some of the channel-channel coupling,E is

the total energy,k labels a chemical arrangement (k ) 1 for the
Li + HF arrangement andk ) 2 for the H+ LiF arrangement),
n is the collection of quantum numbers describing the asymptotic
state of the system (including the rotational, vibrational, and
electronic states, and the chemical arrangement) and may be
called an asymptotic channel,n0 is the initial asymptotic channel,
andΦn0

(+)k is obtained by solving eq 1 numerically using finite
differences.41,54 The difference between the full Hamiltonian
for arrangementk and the distorted wave HamiltonianHD

k is
the coupling potentialVC

k . The contribution to the scattering
matrix from VC

k is obtained variationally using a dynamically
adapted basis set.40-43

Using this two-step scheme, the full scattering matrix is
written as the sum of two terms:

where the first term is the distorted wave Born approximation
for the scattering matrix obtained using the distorted wave
functionsΦn0

(+)k, and the second term is the contribution from
the coupling potentialVC

k . Two kinds of basis functions are
employed in the present study: half-integrated Green’s func-
tions54 (called type-g basis functions) and asymptotic eigenstate
basis functions (called type-ebasis functions). The type-g basis
functions are used for energetically open channels, and type-e
basis functions are used for energetically closed channels. See
refs 40-43 for more details regarding our implementation of
the OWVP scattering algorithm.

After the scattering matrix is calculated, the transition
probabilities and cumulative reaction probabilities may be
obtained according to their usual definitions.

3.2. Resonance Scattering.A resonance may be character-
ized in terms of its resonance energyER and total widthΓR,
where the indexR labels the resonance. These observables may
be correlated with the analytic properties of the scattering matrix

TABLE 1: Geometries and Energies of the Stationary Points for the Ground-State Potential Energy Surface of the Li+ HF f
H + LiF Reactiona

geometry energyb

stationary point RHF
c RLiF RLiH θLiFH

d V ZPE V + ZPE

reactant (A)e 1.733 0.000 0.255 0.255
reactant well (B) 1.750 3.563 4.483 110 -0.211 0.281 0.070
first saddle point (C) 2.422 3.151 3.379 73.3 0.352 0.098 0.451
product well (D) 3.316 2.997 3.592 69.2 0.171 0.136 0.306
second saddle point (E) 4.506 2.957 5.294 87.8 0.227 0.062 0.290
product (F) 2.953 0.213 0.056 0.270

a Distances are in bohrs, angles are in degrees, and energies are in electron volts.b The zero-point energies (ZPE) were calculated using the
Morse I approximation46,47 with the POLYRATEsoftware package.48 c RAB is the internuclear distance between atoms A and B.d θLiFH is the
Li-F-H bond angle.e The letters A-F correspond to the features labeled in Figure 1.

Figure 1. Relative energies of stationary points of Li+ HF f H +
LiF reaction on the electronic ground-state potential energy surface.
The features labeled A-F are described in Table 1 and correspond to
(A) reactants, (B) the reactant van der Waals well, i.e., Li‚‚‚FH, (C)
the saddle point, (D) the product van der Waals well, i.e., LiF‚‚‚H,
(E) the product saddle point, and (F) products. The lower potential
scheme is zero-point exclusive, and the upper potential scheme is zero-
point inclusive. The zero-point energy that is included is from one mode
at A and F, from two modes at C and E, and from three modes at B
and D.

(HD
k - E)Φn0

(+)k ) 0 (1)

Snn0
) δkk0

Snn0

0k + Snn0
(2)
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such that the complex energies

are the poles of the scattering matrix elements.52,55

In the neighborhood of an isolated narrow resonance (INR),
the scattering matrix elementsSnn′(E) can be separated into
background (nonresonant) contributionsSnn′

b (E) and contribu-
tions from the resonance. This yields52,55

whereγRn is the partial width amplitude for channeln and is
related to the partial width by

Each partial width is related to the lifetimeτRn for the
unimolecular decay of resonance stateR into a specific final
channeln:

The sum over all of the partial widths for a given resonanceR
gives the total width of that resonance:

and the total width is related to the lifetime of the resonance:

Using eqs 3 and 4 and ignoring the background contribution,
one can obtain the state-to-state or channel-to-channel transition
probability in the neighborhood of resonance

where

is the branching ratio, i.e., the probability for entering the
resonance stateR from the initial channeln (or equivalently
the probability of leaving the resonance stateR into the final
channeln).

To extract the resonance energy and resonance width, it is
convenient to use the expression for the eigenphase sum∆(E),
which is defined by

As the total energyE passes close to a resonance energyzn, the
eigenphase sum increases rapidly by approximatelyπ. This
behavior can be expressed analytically using the multichannel
Breit-Wigner formula,56-58

where∆b(E) is the nonresonant or background contribution. The
termm(E)π indicates that eq 12 determines∆(E) only within a

factor of π, and for each value ofE some integral multiple of
π must be added to the eigenphase sum such that the eigenphase
sum is a continuous function ofE. The observablesER andΓR
may be extracted from∆(E), by fitting the multichannel Breit-
Wigner formula, eq 12, to the eigenphase sum data obtained
from scattering calculations.59-61

Not all resonances are isolated and narrow. Overlapping
resonances may occur and these resonance features involve
strong interference effects and statistical behavior in contrast
to the mode-specific behavior of the INRs.62 The theoretical
analysis of overlapping and broad resonances is much more
complicated than the case of INRs and will not be considered
here.

3.3. Bound and Quasibound States of the Reactant van
der Waals Well. The bound-state and quasibound-state energies
and wave functions of the Li‚‚‚FH van der Waals well were
computed using the computer code ABCSPECTRA.63 The
bound-state and quasibound-state wave functions were expanded
in the basisΓâ

where

R ) RR̂ is the mass-scaled translational Jacobi coordinate

zR ) ER - i
2
ΓR (3)

Snn′(E) ) Snn′
b (E) - i

γRnγRn′

E - zR
(4)

ΓRn ) |γRn|2 (5)

τRn ) p/ΓRn (6)

ΓR ) ∑
n

ΓRn (7)

τR ) p/ΓR (8)

|Snn′(E)|2 )
ΓR

2

(E - ER)2 + ΓR
2/4

PRnPRn′ (9)

PRn ) ΓRn/ΓR (10)

exp[2i∆(E)] ) det[S(E)] (11)

∆(E) ) ∆b(E) + arctan[ ΓR

2(ER - E)] + m(E)π,

m ) ..., -2, -1, 0, 1, 2, ... (12)

TABLE 2: Basis Set Parameters and Numerical Parameters
for the Outgoing Scattering Wave Calculation for the Total
Energy 0.4 eVa

basis set
parameters set 1 set 2

basis set
parameters set 1 set 2

jmax (k ) 1,V ) 0) 26 28 jmax (k ) 2,V ) 3) 56 62
jmax (k ) 1,V ) 1) 22 24 jmax (k ) 2,V ) 4) 50 56
jmax (k ) 1,V ) 2) 17 19 jmax (k ) 2,V ) 5) 43 50
jmax (k ) 1,V ) 3) 10 12 jmax (k ) 2,V ) 6) 35 43
jmax (k ) 1,V ) 4) 4 jmax (k ) 2,V ) 7) 24 35
N(HO) (k ) 1) 80 80 jmax (k ) 2,V ) 8) 14 24
mg (k ) 1) 37 39 jmax (k ) 2,V ) 9) 2
me (k ) 1) 37 39 N(HO) (k ) 2) 80 80
Sl

G(k ) 1) 1.80 1.50 mg (k ) 2) 35 37
Su

G(k ) 1) 7.20 7.58 me (k ) 2) 35 37
∆S (k ) 1) 0.15 0.16 Sl

G(k ) 2) 1.80 1.50
wS (k ) 1) 0.75 0.80 Su

G(k ) 2) 6.56 6.90
jmax (k ) 2,V ) 0) 72 76 ∆S (k ) 2) 0.14 0.15
jmax (k ) 2,V ) 1) 67 72 wS (k ) 2) 0.75 0.80
jmax (k ) 2,V ) 2) 62 67

numerical
parameters set 1 set 2

numerical
parameters set 1 set 2

NQV (k ) 1) 20 25 εrad 7 9
NQA (k ) 1) 75 80 εB 10 12
Ne

QA(k ) 1) 0 0 εW 10 12
Sl

QR(k ) 1) 1.5 1.3 S0
F(k ) 1) 1.0 0.8

Su
QR(k ) 1) 15 17 SN(F)+1

QV(k ) 1) 20 22
NQGL (k ) 1) 100 100 NFD (k ) 1) 13 13
NQS (k ) 1) 7 7 N(F) (k ) 1) 730 733
NQV (k ) 2) 20 25 NSD (k ) 1) 30 33
NQA (k ) 2) 75 80 fSD (k ) 1) 0.9 0.9
Ne

QA(k ) 2) 75 80 S0
F(k ) 2) 1.0 0.8

Sl
QR(k ) 2) 1.0 0.8 SN(F)+1

QV(k ) 2) 25 27
Su

QR(k ) 2) 15 17 NFD (k ) 2) 11 11
NQGL (k ) 2) 120 120 N(F) (k ) 2) 870 873
NQS (k ) 2) 7 7 NSD (k ) 2) 30 33
ec 10 12 fSD (k ) 2) 0.9 0.9
εt 50 55

a Atomic units are used.

ΨR(R,r ) ) ∑
â

cRâΓâ(R,r ) (13)

Γâ(R,r ) ) 1
R

tm(R)
1
r
φVj(r) yjl(R̂,r̂ ) (14)
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describing the Li to center-of-mass of HF motion,r ) r r̂ is the
mass-scaled internal Jacobi coordinate describing the HF
vibrational motion,R is a collection of quantum numbers and
labels the bound or quasibound state,cRâ is an expansion
coefficient, tm is a Gaussian translational basis function,φVj

is an asymptotic eigenstate rovibrational function of HF, and
yjl is an eigenfunction of the total angular momentumJ ) 0,
the rotational state of HFj, and the orbital angular momen-
tum of Li with respect to the center of mass of HFl. The
basis function indexâ is the collection of the indicesV, j,
l, and m, where V is the vibrational quantum number of
the isolated diatom, andm labels the translational basis
functions.

The expansion coefficients in eq 13 may be obtained by
numerically computing the matrix elements

whereH is the full Hamiltonian and solving the generalized
eigenvalue problem. Details of the bound-state calculations
including the computational implementation and the numerical
and basis set parameters are given in the Appendix.

4. Results and Discussion

4.1. State-to-State, State-Selected, and Cumulative Reac-
tion Probabilities. OWVP reactive scattering calculations were
carried out at total energies ranging from 0.26 to 0.50 eV relative
to the Li + HF asymptote at its equilibrium geometry using

Figure 2. State-to-state reaction probabilities as a function of the total energy for the reaction Li+ HF(V ) 0, j ) 0) f H + LiF(V′ ) 0, j′): (a)
j′ ) 0, (b) j′ ) 1, (c) j′ ) 2, (d) j′ ) 3, (e) j′ ) 4, and (f) j′ ) 5.

Hâ′â ) 〈â′H|â〉 ≡ ∫Γâ′HΓâ dR dr (15)

Sâ′â ) 〈â′|â〉 ≡ ∫Γâ′Γâ dR dr (16)
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version 18.8 of the VP scattering code.64 To resolve the
resonance states, we used an energy grid of 0.0001 eV at low
energies. Resonance widths usually increase with energy, and
therefore we used a coarser grid of 0.000 25 eV at high energies.
Table 2 lists two sets of basis set and numerical parameters
used for the scattering calculations at a total energy of 0.4 eV.
The definitions of the parameters are given elsewhere.42,43 At
this energy, parameter set 1, for example, has a total of 511
asymptotic channels, of which 47 are open, and a total of 18 043
basis functions. The larger parameter set, parameter set 2, was
used to check the convergence of the results with respect to
variations in both the numerical and basis parameters. The state-
to-state transition probabilities and eigenphase sums computed
with parameter sets 1 and 2 differ from each other by no more
than 1%.

Figure 2 shows the state-to-state reaction probability plotted
as a function of energy for the process Li+ HF(V ) 0, j ) 0)
f H + LiF(V′ ) 0, j′), wherej′ ) 0-5. A strong resonance
structure dominates the energy profiles, especially in the energy
region associated with the Li‚‚‚FH van der Waals well in Figure
1. We note that, even at resonance energies, the probability of
reaction is small (less than 0.1), and therefore nonreactive
collisions are the dominant process. This is not surprising due
to the 0.35 eV barrier and 0.23 eV endoergicity of the reaction,
as shown in Figure 1.

Figure 3 presents the initial-state-selected reaction probability
for the process Li+ HF(V ) 0, j) f H + LiF, wherej ) 0-9.
We see that the major resonances displayed in the state-to-state
reaction probabilities persist after summing over final states.
Note the strong dependence of the state-to-state transition
probabilities on the initial rotational statej of the HF diatom.
Specifically, asj increases the background reaction probability
increases and moves to higher energies. We also note that the
resonances at low energies are mainly due to the contribution
from the low-j channels, while for higher energy resonances,
the contributions are primarily from the high-j channels even
though the low-j channels are energetically accessible.

Figure 4a shows the cumulative reaction probability for the
Li + HF f H + LiF reaction over the energy range 0.26-0.50
eV, where energy is given relative to the Li+ HF asymptote at
its classical equilibrium geometry. The threshold for nonquantal
passage over the barrier may be identified with the energy at
which the background contribution first equals 0.5.65-67 In
Figure 4a we see that this occurs atE ≈ 0.47-0.49 eV, which
is in reasonable agreement with the zero-point inclusive barrier
height (0.45 eV) in Figure 1 and Table 1. Figure 4b shows the
cumulative reaction probability below the threshold. The reaction
probability is almost zero except at several localized resonance
energies, and even at resonance energies, the probability of
reaction is small (much less than 0.5). As the energy increases
above the effective threshold energy, the background reaction
probability (which measures direct reaction) rises gradually. The
transition probabilities, however, continue to exhibit sharp
resonance features (see Figure 4c). The overall trend for both
the background and resonance reaction probabilities is an
increase with increasing energy.

4.2. Resonance Energies and Total Widths.To characterize
the resonance features, we computed the eigenphase sum∆j
on a dense grid of energies (Ej, j ) 1-NE) surrounding each
resonance. The background contribution was expanded as a
polynomial function of the total energy

and eq 12 was fitted to the dense grid of eigenphase sums. To
check the stabilization of the fittedER and ΓR, we varied the
orderN of the polynomial in eq 17 such that

was minimized with respect toER, ΓR, andal.
Table 3 presents the resonance energy and width for each of

the resonances that was observed and characterized. Note that
we observe both isolated narrow resonances and broad overlap-
ping resonances. We calculate lifetimes (using eq 8) that range
over approximately 3 orders of magnitude from 0.20 to 87 ps.

∆b(E) ) ∑
l)0

N

alE
l (17)

Figure 3. Initial-state-selected reaction probability for the vibrational
ground state (V ) 0) and different rotational states, i.e., the probability
of the reaction Li+ HF(V ) 0, j) f H + LiF(all V′, all j′), as a function
of the total energy: (a)j ) 0, 1, 2, 3, (b)j ) 3, 4, 5, 6, and (c)j ) 6,
7, 8, 9.

δ2 )
1

NE - N - 2
∑
j)1

NE

[∆j - ∆(Ej)]
2 (18)
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This is not surprising since the decay rate often depends
exponentially on the translational energy associated with the
dissociation coordinate.68-70 Even though not all of the reso-
nances are INRs, the fits to the eigenphase sum are still relatively
accurate. The root-mean-square error for each fit is smaller than
0.1%.

Figure 5 illustrates the energy dependence of the eigenphase
sum in the region of an isolated narrow resonance with an energy
of 0.274 eV, where the dots are the calculated results, the solid
line is the fitted curve, and the straight line is the background
contribution. As expected,56-58 there is a rapid increase byπ
in the eigenphase sum around the resonance.

4.3. Resonance Decay Product State Distributions.For an
isolated narrow resonance, the partial widthsΓRn (defined in
eq 5) may be obtained from any column of the scattering

matrix.59-61 Specifically, the background contribution to each
of the scattering matrix elements in eq 4 is expressed as a
polynomial of the total energy

Equation 4 may then be written

where

and

Figure 4. Cumulative reaction probability, i.e., the probability of the
reaction Li+ HF(all V, all j) f H + LiF(all V′, all j′), as a function of
the total energy for the energy range (a) 0.25-0.50 eV, (b) 0.25-0.36
eV, and (c) 0.34-0.50 eV.

Figure 5. Eigenphase sum as a function of the total energy for the Li
+ HF f H + LiF reaction at energies near the resonance state energy
with ER ) 0.274 eV. The asterisks are from the OWVP calculations
(smoothed by adding integral multiples ofπ). The solid line is from
the multichannel Breit-Wigner formula. The straight line is the fitted
background contribution.

TABLE 3: Energies, Widths, and Lifetimes for Several
Observed Resonances

a ER (eV) ΓR (eV) τR (ps)

1 0.274 7.81× 10-5 8.43
2 0.278 1.40× 10-3 0.470
3 0.285 2.81× 10-3 0.234
4 0.287 1.48× 10-3 0.445
5 0.294 1.68× 10-5 39.2
6 0.298 1.04× 10-3 0.633
7 0.304 7.91× 10-4 0.832
8 0.313 3.25× 10-3 0.203
9 0.319 7.68× 10-6 86.7

10 0.322 6.61× 10-4 0.996
11 0.327 9.63× 10-4 0.683
12 0.349 5.59× 10-4 1.18
13 0.354 2.34× 10-4 2.81
14 0.381 6.83× 10-4 0.964
15 0.387 1.99× 10-5 33.1
16 0.418 2.57× 10-4 2.56
17 0.439 3.05× 10-4 2.16
18 0.460 5.30× 10-5 12.4
19 0.485 3.92× 10-4 1.68

Snn′
b(E) ) ∑

l)0

N

Al,nn′E
l (19)

(E - zR)Snn′(E) ) ∑
l)0

N+1

Bl,nn′E
l (20)

B0,nn′ ) - zRA0,nn′ - iCRnn′ (21)

Bl,nn′ ) Al-1,nn′ - zRAl,nn′ (l ) 1, 2, ...,N) (22)

BN+1,nn′ ) AN,nn′ (23)
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The partial width amplitudesγRn are related toCRnn′ by

andΓRn may be calculated using eq 5.
The quantities{Bl,nn′} may be obtained by fitting eq 20 to

the calculated OWVP scattering matrix elementsSnn′,j and
minimizing the quantity

whereNo is the number of open channels andNE is the number
of energies included in the fit. From{Bl,nn′}, we can calculate
{Al,nn′} andCRnn′ from eqs 21-23.

We present detailed results for two resonances, namely the
E ) 0.294 and 0.304 eV resonances, which have total reactive
decay probabilities (calculated by summing the partial widths
associated with reactive channels) of 0.03 and 0.53, respectively.
At these energies, LiF is in its ground vibrational state, and the
maximum rotational quantum numberj that is energetically
accessible is 18 and 20, respectively. From the partial widths
and eq 10, we computed the probability of decay into each
rotational state, and the results are plotted in Figure 6. The
rotational state profiles do not differ significantly from the
rotational state distributions resulting from direct scattering at
nearby nonresonant energies. Considering that these calculated
rotational state distributions are very sensitive to the anisotropy
of the potential energy surface, comparison of the calculated
product state distributions to experiment would be a stringent
test of theory, but no experimental result is currently available.

A more detailed study of the trends in the partial widths,
although potentially illuminating as to the resonance decay
mechanism, is not pursued in the present work.

4.4. Bound and Quasibound States.In addition to their
energies and widths, the resonance states of Li‚‚‚FH identified
in sections 4.1 and 4.2 can be approximately characterized by
a set of three quantum numbers (whenJ ) 0, as is the case
throughout this paper). We note that forJ > 0 a more
sophisticated analysis is required than the simple one presented
below.71,72

For resonances trapped in the reactant van der Waals well,
one choice for the quantum numbers is (V, n, j ) l), whereV
and j are the quantum numbers respectively describing the
vibrational and rotational states of the tightly bound diatom HF,
and n and l are quantum numbers describing the stretching
motion and angular momentum of Li with respect to the center
of mass of HF.71-73 These quantum numbers are useful for
interpreting the dynamics of the resonance when the Li atom is
far from HF, i.e., when the interaction energy between Li and
HF is small.

Alternatively, one may characterize the resonance states with
a set of quantum numbers (νr, νR, νø), where each quantum
number represents the vibrational state of one of the normal
modes of the system at its minimum energy geometry. The
vibrational quantum numbers are listed in the order of decreasing
frequencies, i.e., first the HF vibration modeνr, then the
nonreactive dissociation modeνR, and finally the van der Waals
bending modeνø. This set of quantum numbers is useful for

describing the dynamics of the resonance when Li is close to
HF (i.e., when Li and HF are strongly interacting) and the
system is in the deep reactant van der Waals well.

As the system dissociates nonreactively (i.e., to Li+ HF) at
a resonance energy, the more useful set of quantum numbers
changes from the (νr, νR, νø) set to the (V, n, j ) l) set, and the
two sets of quantum numbers may be correlated in this way.
For example,νr is approximately equivalent toV, and increased
excitation of the bending modeνø is likely to result in increased
excitation ofj and l. Although both sets of quantum numbers
represent idealized situations and are only zero-order ap-
proximations, the resonance states are localized over the deep
Li ‚‚‚FH van der Waals well, and we expect the (νr, νR, νø)
scheme to be more useful in the present work.

To characterize the quasibound states by the (νr, νR, νø)
scheme for the Li‚‚‚FH van der Waals complexes, we first
computed the bound states of Li‚‚‚FH. Details of the bound-
state calculations are given in section 3.3 and the Appendix.
The Li‚‚‚FH van der Waals well supports 25 bound states, as
shown in Table 4. Excitation of the HF vibration requires∼0.5
eV of energy and therefore all of the bound states haveνr ) 0.
The bound states were further characterized by computing the
radial wave functions and counting nodes to obtainνR. The
remaining quantum numberνø was assigned as required.
Assignment by this method was straightforward, and the energy
spacings of the bound states fit regular patterns; i.e., the
progression of (0, 0,νø) states is similar to the progression of
(0, 1, νø) states, etc. The assignments are shown on the left-
hand side of Table 4.

CRnn′ ) γRnγRn′ (24)

γRn′ )
CRnn′

xCRnn

(25)

εn
2 ) ∑

n′)1

No {∑
j)1

NE

|Snn′,j - Snn′(Ej)|2

NE - N }1/2

(26)

Figure 6. Product rotational state distributions of LiF for the decay
of the resonance state with the resonance energy: (a) 0.294 eV; (b)
0.304 eV.
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The bound-state energy levels of the Li‚‚‚FH van der Waals
well have been studied previously.14,17Reference 17 compares
the bound-state energies of potential surfaces obtained from fits
to high-level ab initio data calculated at various levels of theory.
The most accurate surface that was studied in ref 17 has a zero-
point energy of 0.272 eV (relative to the bottom of the well),
which agrees well with the value reported in the present work
of 0.273 eV. The reported17 values of the energies of the (0, 0,
1) and (0, 1, 0) states are 0.045 and 0.040 eV relative to the (0,
0, 0) state, respectively. We report values of 0.20 and 0.41 eV
for the (0, 0, 1) and (0, 1, 0) states, respectively. Based upon
our own bound-state calculations74 of a previously published
surface14 and the current work, we believe that the (0, 0, 1)
state is lower in energy than the (0, 1, 0) state; i.e., the (0, 0, 1)
and (0, 1, 0) states in ref 14 (and possibly ref 17) are assigned
incorrectly. We do not believe, however, that the surface used
in the present work is quantitatively accurate in the van der
Waals bend near the van der Waals well; i.e., the energy
spacings of the energy levels with varyingνø quantum numbers
are not quantitatively accurate. This defect has been corrected
in surface fitJ,16 which has energies of 0.34 and 0.48 for the
(0, 0, 1) and (0, 1, 0) states, respectively.74 All of the results in
the current paper were obtained using surface fitH,15,16 and
the results may therefore not provide quantitative comparison
with experiment.

In principle, quasibound states may also be obtained from
the energy spectrum obtained by diagonalizing the Hamiltonian
in a finite basis. In practice, however, the energies of these states
are strongly dependent on the accidental closeness in energy to
nearby continuum states. Furthermore, the nodal structure can
become obscured as quasibound-state wave functions mix with
nearby continuum or quasibound states. By inspection of the
radial parts of the unbound wave functions, we were able to
definitively determine the energy of and assign quantum
numbers for all quasibound states withνR ) 0, 1, and 2, as
well as one state withνR ) 3 in the energy range of the
scattering calculations presented in section 4.1. The quasibound
states that we identified and assigned are given on the right-
hand side of Table 4.

To obtain the full spectrum of quasibound states, we fit the
bound-state and quasibound-state energies in Table 4 to the same
kind of quantum number series75 as used in conventional
spectroscopy, taking the series to second order in the quantum
numbers, i.e.

The root-mean-square (rms) error

was minimized with respect toωR, ωø, xR, xø, fRø, andE0, where
EνR,νø are the calculated bound-state and quasibound-state
energies in Table 3, and the sum in eq 28 runs over all observed
states. The best-fit parameters for eq 27 are given in Table 5,
and the resulting fit has a rms error of 0.006 eV. Using the
fitted parameters, the full spectrum of quasibound states can
be obtained, and the calculatedEνR,νø (from Table 4) and fitted
Efit(νR,νø) quasibound-state energies are given in Table 6 for
the energy range in Figures 2-4.

4.5. Characterization of the Observed Resonances and
Decay Mechanisms.The quantized energy of the saddle point
for reaction is 0.45 eV including zero-point energy in the modes
orthogonal to the reaction coordinate,65 and this energy is within
the energy range of total energies considered in the present study
(0.26-0.50 eV). It is possible that we may observe a “barrier
passage” resonance corresponding to the decrease in the kinetic
energy of the system as it passes over the transition state
barrier.58 Barrier passage resonances have short lifetimes (and
therefore large widths), and we may associate such a resonance
with a broad increase in the cumulative reaction probability
between 0.45 and 0.50 eV; we will not analyze this further.
The product van der Waals complex LiF‚‚‚H is not bound when
zero-point energy is included as shown in Figure 1. We therefore
consider all of the resonances in Table 3 to correspond to
trapped-state resonances localized over the reactant van der
Waals well.

The resonance energy widths vary over several orders of
magnitude (from 8× 10-6 to 3 × 10-3 eV), and trends in the
widths may be explained by assigning (νr, νR, νø) quantum
numbers to the resonances. Assignments were made using the
estimated quasibound-state energies in Table 6 as follows:
Below the threshold energy (∼0.35 eV) there is a one-to-one
correspondence between the scattering resonance energies and
the fitted quasibound-state energies for the quasibound states
when the νR ) 0 and 1 are excluded. We conclude that
quasibound states withνR ) 0 and 1 have widths too small
(smaller than 10-6 eV) to observe in the scattering calculations
presented here.

TABLE 4: Bound and Quasibound States of the Li‚‚‚FH
van der Waals Well

bound states quasibound states

νR νø EνR,νø (eV) νR νø EνR,νø (eV)

0 0 0.062 0 5 0.266
0 1 0.082 2 4 0.279
1 0 0.103 1 5 0.301
0 2 0.112 0 6 0.330
1 1 0.123 2 5 0.334
2 0 0.139 3 5 0.355
1 2 0.148 1 6 0.363
0 3 0.156 2 6 0.389
2 1 0.162 0 7 0.401
3 0 0.170 1 7 0.430
2 2 0.181 2 7 0.450
3 1 0.190 0 8 0.475
4 0 0.197 1 8 0.499
1 3 0.200
0 4 0.209
4 1 0.210
3 2 0.218
5 0 0.222
2 3 0.232
5 1 0.233
6 0 0.238
4 2 0.245
1 4 0.247
7 0 0.248
6 1 0.253

TABLE 5: Li ‚‚‚FH van der Waals Well Bound-State and
Quasibound-State Fitted Energy Parameters

parameter value

ωR 4.506× 10-2 eV
ωø 1.100× 10-2 eV
xR -2.378× 10-2

xø 4.539× 10-3

fRø -5.311× 10-4 eV
E0 3.794× 10-2 eV

Efit(νR,νø) ) ωR(νR + 1
2) + ωø(νø + 1

2) + xRωR(νR + 1
2)2

+

xøωø(νø + 1
2)2

+ fRø(νR + 1
2)(νø + 1

2) + E0 (27)

∆ ≡ x∑
νR,νø

(Efit(νR,νø) - EνR,νø
)2 (28)
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Above threshold, the nonresonant reaction probability in-
creases, and the cumulative reaction probability (CRP) energy
profile becomes more complicated and contains several broad
and overlapping features that are not characterized in Table 3.
We assign the observed scattering resonances by again excluding
the νR ) 0 and 1 quasibound states and based on closeness in
energy to the computed quasibound states. There are several
missing states, which may be explained as due to the compli-
cated CRP structure above threshold. The missing states have
radial dissociation quantum numbers withνR e 1 or νR g 5.
We interpret this finding to indicate that the small-νR quasibound
states have energy widths too small to observe and the high-νR

quasibound states resemble continuum states, have short life-
times, and have broad, overlapping resonance features that are
lost in the nonresonant reactive background probability.

The rms error of the observed and fitted resonance energies
is approximately equal to the rms error of the bound-state
energies (0.005 eV).

Figure 7 shows the energy width of the scattering resonance
as a function of its assigned radial quantum numberνR. There
is a strong exponential dependence of the resonance width on
the dissociation energy as observed previously.69 The trend
persists over several orders of magnitude in the energy widths,
and this strengthens our confidence in the accuracy of the qua-
sibound-state quantum number assignments in Table 6. Although
the trends in Table 6 are systematic, some irregularity persists,
probably due to the precise but accidental positioning of each
resonance energy with respect to asymptotic quantum states.

The scattering resonances undergo the following decay
mechanism: At a quasibound-state resonance energy, the system

is delayed (i.e., there in an increase in probability density) in
the van der Waals well before the transition state barrier,
resulting in enhanced tunneling to form the LiF product. The
lifetime of the trapped state is determined by the overlap of the
quasibound-state radial function with unbound continuum
functions of the same translational energy. This overlap depends
exponentially on the translational energy and therefore on the
radial quantum number.

5. Summary

The Li + HF f H + LiF reaction has been investigated in
detail using the OWVP full-dimensional time-independent
quantum scattering approach to calculate scattering matrix
elements, from which we calculated state-to-state, initial-state-
specific, and cumulative reaction probabilities. The reaction
probabilities are very well converged so that the resonance
structure is not lost in the noise, indicating the robustness of
the methods being used. All the dynamical features have been
recovered, thereby permitting a precise description of resonance
states. The scattering resonances were identified in terms of their
complex resonance energies.

The Li + HF f H + LiF reaction exhibits a threshold near
0.35 eV, and below the threshold energy the reaction takes place
via a mechanism of resonance tunneling, which results in several
resonance spikes in the cumulative reaction probability. When
the energy is above the threshold, the reaction is governed by
both direct and resonance mechanisms. The resonance com-
plexes populated by the collisions can decay nonreactively either
by resonance tunneling through the centrifugal barrier in the
entrance valley or by energy transfer from the bending mode
to the nonreactive dissociation mode. The sum of the reactive
and nonreactive rates of decay have been calculated from the
fitted resonance widths, with lifetimes ranging from 0.20 to
87 ps.

For two resonances, the product LiF rotational state distribu-
tions that result from decay of the resonance complex have been
calculated.

We have determined the resonance state energies by both
scattering and bound-state calculations, and quasibound-state
vibrational quantum numbers have been assigned. Below
threshold there is excellent agreement between the resonance
and quasibound-state energies. Resonances corresponding to
quasibound states withνR < 2 are not observed in the scattering

TABLE 6: Fitted and Calculated Li ‚‚‚FH Quasibound-State
Energies and Assigned Resonance Energies and Widths

νR νø Efit(νR,νø) (eV) EνR,νø (eV) ER (eV) ΓR (eV)

4 3 0.278 0.274 7.81× 10-5

6 2 0.278 0.278 1.40× 10-3

7 2 0.288 0.285 2.81× 10-3

1 5 0.294 0.301
8 2 0.294 0.287 1.48× 10-3

5 3 0.298 0.298 1.04× 10-3

3 4 0.300 0.294 1.68× 10-5

6 3 0.312 0.304 7.91× 10-4

0 6 0.321 0.330
7 3 0.322 0.313 3.25× 10-3

4 4 0.323 0.327 9.63× 10-4

2 5 0.326 0.334 0.319 7.68× 10-6

8 3 0.327 0.322 6.61× 10-4

5 4 0.342 0.354 2.34× 10-4

3 5 0.354 0.355 0.349 5.59× 10-4

6 4 0.356
1 6 0.358 0.363
7 4 0.366
8 4 0.370
4 5 0.377 0.381 6.83× 10-4

2 6 0.390 0.389 0.387 1.99× 10-5

5 5 0.396
0 7 0.396 0.401
6 5 0.409
3 6 0.418 0.418 2.57× 10-4

7 5 0.418
8 5 0.422
1 7 0.432 0.430
4 6 0.440 0.439 3.05× 10-4

5 6 0.458
2 7 0.464 0.450 0.460 5.30× 10-5

6 6 0.471
0 8 0.479 0.475
7 6 0.479
8 6 0.483
3 7 0.490 0.485 3.92× 10-4

Figure 7. Resonance widths as a function of the translational quantum
number. Note that the ordinate scale is logarithmic.
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calculations. Above threshold, several resonances are observed
that correspond to quasibound states with 2e νR e 4. In both
regimes, there is good exponential correlation between the
energy width of the resonance and the radial quantum num-
ber νR.

The present study is particularly intriguing in the context of
identifying intrinsically quantum mechanical behavior in chemi-
cal reactions. Resonances that lead to sharp quantum mechanical
spikes in the reaction probability at energies beneath the classical
threshold are one of the most dramatic quantum effects that
one can postulate.45,66,76The observation of long sequences of
such resonances, both in the O+ HCl reaction45 and in the
present study of Li+ HF, provides a serious reminder of the
necessity of checking classical models against quantum me-
chanical reality when interpreting chemical reactivity, especially
subthreshold energies.

In general, bimolecular chemical reactions feature van der
Waals attractions on both sides of the transition state barrier,
and these wells are often deep enough to support bound states.
The dramatically enhanced reactivity (i.e., the resonance in the
reaction profile), at energies associated with van der Waals
quasibound states, that results from the localization of the wave
function at the base of the barrier depends on several factors
including the depth and shape of the well, the height and width
of the barrier, the mass of the tunneling particles, etc. Recent
experimental work on van der Waals complexes has included
several examples of radical-molecule systems,77-80 and it is
not clear which of these might potentially show such behavior.
The possibility of state-selected coherent reactivity at isolated
narrow resonances raises new possibilities for exploiting
quantum mechanical phenomena for control and technological
advantage.
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Appendix: Bound-State and Quasibound-State
Calculations

The basis functions defined by eq 14 and the matrix element
evaluation strategies used to obtain the Hamiltonian matrix
elements defined by eq 15 have been presented in detail
previously in the context of scattering calculations.43 The
application of these strategies to bound-state calculations (as
implemented in the computer code ABCSPECTRA63) is straight-
forward. In this appendix, we briefly present some of the details
of the bound-state calculations.

We restrict our attention to the case of zero total angular
momentum (J ) 0), and thereforel ) j, in which case the
elements of the overlap matrix in eq 16 can be written

where throughout this appendixâ ) (V, j, l, m) andâ′ ) (V′, j′,
l′, m′). The translational basis functionstm are distributed
Gaussian functions with evenly spaced centers (Rm

T, wherem
) 1, ..., ntrans). The width parameter of the translational basis
functions is determined by setting the overlap parameterc of
Hamilton and Light.81

The Hamiltonian operator in eq 15 can be written

where

mA is the mass of atom A,l̂ is the orbital (Li to center of mass
of HF) angular momentum operator, andĵ is the internal (for
the HF diatom) angular momentum operator.

The matrix elements of the first term in eq A2 can be written

and can be evaluated analytically. The matrix elements of the
second term in eq A2 are

wheren ) (V, j, l), n′ ) (V′, j′, l′)

Pλ(cosγ) are the Legendre polynomials, andfn′n
λ are theJ ) 0

Percival-Seaton coefficients.82,83 The radial integral in eq A9
is handled byNrep repetitions ofNGL-point Gauss-Legendre
quadrature. Optimized vibrational quadrature with the Gauss
ground-state option84 is used to obtain the weightswnn′

iand nodes
ri in eq A10. The angular integral in eq A11 is carried out using
NQA-point Gauss-Legendre quadrature. Matrix elements of the
third term in eq A2 may be simplified because the functions
φVj are eigenfunctions ofτ̂, i.e.

whereεVj is the diatomic energy of the stateφVj.
The HF diatomic problem is solved in a harmonic oscil-

lator basis|h〉, where h ) 0, ..., NHO - 1. The resulting

Sâ′â ) δV′Vδj′j∫tm′(R) tm(R) dR (A1)

H(R,r ) ) - p2

2µ
1
R

∂
2

∂R2
R + Ueff(R,r ) + τ̂(r ) (A2)

µ ) ( mLimHmF

mLi + mH + mF
)1/2

(A3)

Ueff(R,r ) ) p2

2µ
l̂2

R2
+ Vint(R,r ) (A4)

τ̂(r ) ) - p2

2µ
1
r

∂
2

∂r2
r + p2

2µ
ĵ2

r2
+ Vdiat(r) (A5)

V(R,r ) ) Vint(R,r ) + Vdiat(r) (A6)

Vdiat(r) ) lim
Rf∞

V(R,r ) (A7)

〈â′| - p2

2µ
1
R

∂
2

∂R2
R|â〉 ) - p2

2µ
δV′Vδj′j∫tm′(R)

∂
2

∂R2
tm(R) dR

(A8)

〈â′|Ueff(R,r )|â〉 ) ∫Rmin

Rmax tm′(R)[p2

2µ
l(l + 1)

R2
δV′Vδl′l +

Vn′n
int(R)]tm(R) dR (A9)

Vn′n
int(R) ) ∫φV′j′(r) yj′l′(R̂,r̂ ) Vint(R,r ) φVj(r) yjl(R̂,r̂ ) dR̂ dr

) ∑
i)1

NQV

wn′n
i ∑

λ)0

λmax

Vλ
int(R,ri)fn′n

λ (A10)

Vλ
int(R,r) ) 2λ + 1

2 ∫d(cosγ) Pλ(cosγ) Vint(R,r,cosγ)
(A11)

cosγ ) R̂‚r̂ (A12)

〈â′|τ̂|â〉 ) Sâ′âεVj (A13)
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matrix elements are evaluated by writing

and using (NHO + 14)-point Gauss-Hermite quadrature. The
harmonic frequencyω is obtained from the second derivative
of the HF asymptotic potential at its minimum-energy bond
distance. This frequency is also used to determine the expo-
nential parameter of the HO basis functions and the harmonic
potential termVHO. The resulting matrices (there is one matrix
for each value ofj) are diagonalized to obtain the required
eigenenergiesεVj and eigenfunctionsφVj. All asymptotic eigen-
functionsφVj with energiesεVj less thanEasym (relative to the
bottom of the asymptotic HF potential curve) are included as
basis functions, whereEasymis a parameter with respect to which
the results are converged. The number of such asymptotic basis
functions isnasym.

Once the matrix elements for the Hamiltonian and overlap
matrices were calculated, version 2.0 of the LAPACK linear
algebra package85 was used to solve the generalized eigenvalue
equation

where the underline and the double underline indicate vectors
and matrices in the vibrational state space, respectively.

Two sets of numerical and basis set parameters are given in
Table 7. The mass-scaled parametersRmin andRmax (of eq A9)
andRm

T are related to the distancesSmin, Smax, andSm
T by

where

The total number of basis functions isnbas ) nasymntrans. The
energies of the bound states computed using the two basis sets
differ by less than 0.1%.
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TABLE 7: LiFH Bound-State and Quasibound-State Basis
Set and Numerical Parameters

parametera set 1 set 2

NHO 20 25
NQV 20 25
NQA 50 60
Nrep 40 55
NGL 7 7
Smin (a0) 0.5 0.2
Smax (a0) 12 14
Easym(eV) 2.8 3.0
S1

T (a0) 2.73 2.23
Sntrans

T (a0) 9.77 10.33
∆ (a0) 0.11 0.10
c 0.9 0.8
nasym 132 161
ntrans 64 81
nbas 8448 13041

a See the Appendix for definitions of the parameters.

〈h′|Hdiat
j |h〉 ) δh′hpω(h + 1

2) + 〈h′|p2

2µ
j(j + 1)

r2
+

Vdiat(r) - VHO(r)|h〉 (A14)

Hc ) ESc (A15)

Smin ) Rmin/M (A16)

Smax ) Rmax/M (A17)

Sm
T ) Rm

T/M (A18a)

) S1
T + (m - 1)∆ (A18b)

M ) ( mLi(mH + mF)
2

mHmF(mLi + mH + mF))
1/4

(A19)
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