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State-to-state, state-specific, and cumulative reaction probabilities are presented for the bimolecular scattering
process Li+ HF — H + LiF in the ground electronic state. Calculations were performed for zero total
angular momentum at total energies from 0.26 to 0.50 eV (relative to HF at its classical equilibrium bond
distance and infinitely far from Li). The energy dependence of the state-to-state, initial-state-selected, and
cumulative reaction probabilities for LiFH in the low-energy regime displays a pronounced resonance structure
due to quasibound states associated with-afEH van der Waals well in the entrance valley of the potential
energy surface. The lifetimes of the long-lived resonances are obtained by fitting the calculated eigenphase
sum to the multichannel BreitWigner formula. The final rotational state distributions of the LiF product
fragment resulting from decay of the resonance state complexes are presented for two resonances. Quantum
numbers are assigned to the resonances using bound-state and quasibound-state calculations-kHthe Li

van der Waals well, and possible decay mechanisms are discussed. The lifetimes show a systematic dependence
on the translational vibrational quantum number.

1. Introduction of the HOCI system were identified in exact quantum mechan-
ical scattering calculations and characterized using quasibound-
state calculations. A similar analysis for the Fystem and its
deuterated isotopes has demonstrated the existence of van der
Waals well resonance§:48 In the present paper, we interpret
Zﬁbserved resonances in the +iHF reaction as due to meta-
Stable van der Waals complexes of the reactants, i.e-HH

van der Waals complexes.

This paper is organized as follows. Section 2 reviews the
basic features of the ground-state potential energy surface for
the reactive LiFH system. Section 3 contains a brief summary
of the theory and methods that are used in the scattering and
the bound- and quasibound-state calculations. In section 4, we
present state-to-state, initial-state-selected, and cumulative reac-
Cgion probabilities for total angular momentuth= 0. The

esonance energies and widths are obtained by fitting the energy

The reaction Li+ HF — H + LiF has become a prototype
for both theoretical and experimental investigations of the
dynamics of atomdiatom systems with three different atoms
and the heavyheavy-light mass combination. The ground-
state potential energy surface has been calculated, and sever
analytic fits have been presented in the literafufé.Various
aspects of the dynamics of LiFH have been studied, including
reactive collisiong®11.1832 stereodynamics and vector cor-
relations?629.30.3335 and photodissociation dynamit®36-3°
Experimentally observable quantities such as the differential and
integral cross sections have also been discu¥s@e?®.29.30

A striking feature of the previously reported studies is the
strong resonance structui®L119.2+25.28.32|t js well-known that
resonance structure in dynamical features may be associate

with quasibound (i.e., metastable) states of the system. However’dependence of the eigenphase sum to the multichannel-Breit

Irré;(iltig];“:ﬁelr(]jveesS;ig?E)OnnzfctﬁgI?:sgrl:;sgefiirgocrt:;s : HhFenom_Wigner formula. The product rotational state distributions
’ P P resulting from the decay of two resonances are also presented.

enological, and there is little quantitative characterization. In The resonance complexes are further characterized by assigning

addition, research has been primarily focused on the scattering, ., ~ . : .
features, and there is no study of the intermediate meta\stablg\”bratlomle guantum numbers corresponding to quasibound states

states of the L-FH complexes, which are of fundamental of the Li---FH van der Waals complex. Section 5 is a summary.
interest. One objective in the present study is to identify the
energies and lifetimes of the resonance states using fully
converged quantum mechanical scattering calculations. The
method employed is a time-independent, two-arrangement Details of the ground-state LiFH potential energy surface used
Green’'s-function-based scattering approach, namely the outgoinghere have been presented previodsBriefly, potential energies

scattering wave variational principle (OWV#.43 The results for the two lowest energy electronic surfaces were calculated
are limited by the accuracy of the fitted multidimensional at a high level of theory over a wide range of nuclear geometries.

2. Ground-State Potential Energy Surface of the LiFH
Complex

potential energy surface. These adiabatic energies were fitted to analytic functional forms
The present work is especially timely in light of the recent in the diabatic representation. The ground-state adiabatic
work of Bowman, Manolopoulos, and co-workéfs'>in which potential energy surface used in the present study is obtained

subthreshold resonances associated with the van der Waals well®y diagonalizing the fitted diabatic potential energy matrix. The
surface fit used here has been labeled surfacél fin later
T Part of the special issue “Donald J. Kouri Festschrift”. work 16
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TABLE 1: Geometries and Energies of the Stationary Points for the Ground-State Potential Energy Surface of the L+ HF —

H + LiF Reaction?
geometry enerdy

stationary point Rye® RurF Riin OLirnd \% ZPE V + ZPE
reactant (A 1.733 0.000 0.255 0.255
reactant well (B) 1.750 3.563 4.483 110 -0.211 0.281 0.070
first saddle point (C) 2.422 3.151 3.379 73.3 0.352 0.098 0.451
product well (D) 3.316 2.997 3.592 69.2 0.171 0.136 0.306
second saddle point (E) 4.506 2.957 5.294 87.8 0.227 0.062 0.290

2.953 0.213 0.056 0.270

product (F)
aDistances are in bohrs, angles are in degrees, and energies are in electronTatzero-point energies (ZPE) were calculated using the

Morse | approximatiotf4” with the POLYRATEsoftware packag® ©Rag is the internuclear distance between atoms A and B is the

Li—F—H bond angle® The letters A-F correspond to the features labeled in Figure 1.

0.5 3. Theory
A 3.1. Quantum Mechanical Scattering Matrices.Quantum
04 r mechanical scattering matrix elements were obtained by solving
N the time-independent Scldimger equation by the outgoing
03 f e L wave variational principle (OWVP¥~42 In this method, the
—_ N — Schralinger equation is solved by expanding the outgoing
02 \ ‘ T T — scattering waves in terms of internal-state channel functions for
i — each asymptotic chemical arrangement. The solution to the

Schrainger equation can be written in integral form using the
Lippmann-Schwinger formalisni2435253The first term in the
solution is called the distorted wave and satisfies

Energy (eV)
o

00  —
! (Hp — Byer =0 ()

-01 F Y .
‘ WhereH',‘3 contains some of the channel-channel couplbgs
02 N the total energyk labels a chemical arrangemeht=t 1 for the
A B C D E F Li + HF arrangement arkl= 2 for the H+ LiF arrangement),
nis the collection of quantum numbers describing the asymptotic
Li+HF ——— S LiF+H state of the system (including the rotational, vibrational, and
electronic states, and the chemical arrangement) and may be

Figure 1. Relative energies of stationary points of tiHF — H +

LiF reaction on the electronic ground-state potential energy surface. called an asymptotic channek is the initial asymptotic channel,
The features labeled-AF are described in Table 1 and correspond to  and cp(+ is obtained by solving eq 1 numerically using finite
(A) reactants, (B) the reactant van der Waals well, i.e:;-EH, (C) differences’.54 The difference between the full Hamiltonian
the saddle point, (D) the product van der Waals well, i.e.,- 4, | for arrangemenk and the distorted wave Hamlltonlaﬂﬁ is

(E) the product saddle point, and (F) products. The Iower potentia
i the coupling potent|avk The contribution to the scattering

scheme is zero-point exclusive, and the upper potential scheme is zero
point inclusive. The zero-point energy that is included is from one mode matrix from VX is obtained variationally using a dynamically

at A and F, from two modes at C and E, and from three modes at B adapted baSIS S#t-43
Using this two-step scheme, the full scattering matrix is

and D.
The ground-state surface has two van der Waals wells: oneWritten as the sum of two terms
in the entrance valley with a well depth of 0.21 eV with respect K
wa = 6kk0$no + ‘[r;rb (2)

to the Li+ HF asymptote at its equilibrium geometry, and the
other in the product valley with a well depth of 0.043 eV with _ ) ) o
where the first term is the distorted wave Born approximation

respect to the LiF+ H asymptote at its equilibrium geometry.
The surface also has two saddle points. The first saddle pointfor the scattering matrix obtained using the distorted wave

is the transition state for the F transfer reaction and has afunctions®, (D “and the second term is the contribution from
nonlinear geometry and a potential barrier height of 0.35 eV the coupllng potentlavk Two kinds of basis functions are
with respect to the Li+ HF asymptote at its equilibrium  employed in the present study: half-integrated Green’s func-

geometry. The second saddle point is the transition state fortions®* (called typeg basis functions) and asymptotic eigenstate
basis functions (called typebasis functions). The typgbasis

dissociation of the LiF-H complex and has a very small height
i functions are used for energetically open channels, andeype-

of 0.014 eV with respect to the LiF- F asymptote at its
equilibrium geometry and is located in the product valley. The basis functions are used for energetically closed channels. See

overall reaction Li+ HF — LiF + H is endoergic by 0.21 eV refs 40-43 for more details regarding our implementation of
without including the zero-point energy of the reactants and the OWVP scattering algorithm.

products and by 0.015 eV when zero-point energy is included. After the scattering matrix is calculated, the transition
The characteristic features of the stationary points of the ground- probabilities and cumulative reaction probabilities may be
state LiFH surface are summarized in Table 1 and are shownobtained according to their usual definitions.

schematically in Figure 1. The zero-point energies in Table 1  3.2. Resonance Scatteringd resonance may be character-

are taken from ref 15 and were calculated using the Morse-I ized in terms of its resonance enerBy and total widthI'y,
where the indexxt labels the resonance. These observables may

approximatiof®0 available in the POLYRATE software
package. be correlated with the analytic properties of the scattering matrix
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such that the complex energies

z,=E - lra )
are the poles of the scattering matrix eleméass.

In the neighborhood of an isolated narrow resonance (INR),
the scattering matrix elemen(E) can be separated into
background (nonresonant) contributioﬁ%r(E) and contribu-
tions from the resonance. This yieté8®

yanyan’
E-z

whereyqn is the partial width amplitude for channeland is
related to the partial width by

Sii(E) = Sy(E) — i (4)

®)

Each partial width is related to the lifetime,, for the
unimolecular decay of resonance steténto a specific final
channeln:

— 2
Fan - |Van|

Ton = A/l (6)

The sum over all of the partial widths for a given resonamce
gives the total width of that resonance:

FO. = Zran
n

and the total width is related to the lifetime of the resonance:
7, = hIT, (8)

Using egs 3 and 4 and ignoring the background contribution,

)

Wei et al.

TABLE 2: Basis Set Parameters and Numerical Parameters
for the Outgoing Scattering Wave Calculation for the Total
Energy 0.4 e\?

basis set basis set
parameters setl set2 parameters setl set2
jmax(k=1p=0) 26 28  jmax(k=2p=3) 56 62
jmx(k=1p=1) 22 24 jmax(k=2p=4) 50 56
jmax(k=1p=2) 17 19  jmax(k=2p=5) 43 50
jmax(k=1p=3) 10 12 jnx(k=2p=6) 35 43
jmax(k=1p=4) 4 jmax(k=2p=7) 24 35
N(HO) k=1) 80 80 jmax(k=2p=8) 14 24
mg(k= 1) 37 39 jmax(kZZ,Z/:g) 2
me(k=1) 37 39 N(HO) k=2) 80 80
Sek=1) 1.80 150 mf(k=2) 35 37
SCk=1) 720 7.58 mf(k=2) 35 37
AS(k=1) 0.15 0.16 SC¢k=2) 1.80 1.50
wS (k= 1) 0.75 0.80 SSk=2) 6.56 6.90
jmax(k=2p=0) 72 76 AS(k=2) 0.14 0.15
jmx(k=2p=1) 67 72 wSk=2) 0.75 0.80
jmax(k=2p=2) 62 67
numerical numerical
parameters setl set2 parameters setl set2
NQV (k= 1) 20 25 €rad 7 9
NeA (k= 1) 75 80 €8 10 12
NeA(k = 1) 0 0 €w 10 12
SRk=1) 15 1.3 Sk=1) 1.0 0.8
SJQR(k = l) 15 17 S\j(F)H_QV(k = 1) 20 22
NQCL (k= 1) 100 100 NP (k=1) 13 13
NOS (k= 1) 7 7 N(F) (k= 1) 730 733
NQV (k = 2) 20 25 NSP (k= 1) 30 33
NOA (k= 2) 75 80 P (k=1) 0.9 0.9
NeA(k = 2) 75 80 Sk=12) 1.0 0.8
SRk =2) 1.0 08 Sp+1V(k=2) 25 27
SRk=12) 15 17 NFP (k= 2) 11 11
NQCL (k = 2) 120 120 N(F) (k=2) 870 873
NQS (k = 2) 7 7 NSP (k = 2) 30 33
=N 10 12 P (k= 2) 0.9 0.9
€t 50 55

one can obtain the state-to-state or channel-to-channel transition  a ptomic units are used.

probability in the neighborhood of resonance

2

2 2 Pan®an
(E EC) I o /4

1Sw(E)I* =

where

Py =TTy (20)

is the branching ratio, i.e., the probability for entering the
resonance state from the initial channeh (or equivalently
the probability of leaving the resonance staténto the final
channeln).

factor of z, and for each value dE some integral multiple of
7 must be added to the eigenphase sum such that the eigenphase
sum is a continuous function & The observableg, andTI’y
may be extracted from\(E), by fitting the multichannel Breit
Wigner formula, eq 12, to the eigenphase sum data obtained
from scattering calculatiorf$-61

Not all resonances are isolated and narrow. Overlapping
resonances may occur and these resonance features involve
strong interference effects and statistical behavior in contrast
to the mode-specific behavior of the INR&The theoretical
analysis of overlapping and broad resonances is much more
complicated than the case of INRs and will not be considered

To extract the resonance energy and resonance width, it ishere.

convenient to use the expression for the eigenphase/gt)
which is defined by
exp[2IA(E)] = det[S(E)] (12)

As the total energ¥ passes close to a resonance enexgthe
eigenphase sum increases rapidly by approximatelyhis

behavior can be expressed analytically using the multichannel

Breit—Wigner formula36-58

e
2(E, — E)
m=..-2,-1,0,1,2,.. (12)

A(E) = A°E) + arctar[ + m(E)x,

whereAP(E) is the nonresonant or background contribution. The
termm(E)x indicates that eq 12 determind¢E) only within a

3.3. Bound and Quasibound States of the Reactant van
der Waals Well. The bound-state and quasibound-state energies
and wave functions of the kirFH van der Waals well were
computed using the computer code ABCSPECTRAhe
bound-state and quasibound-state wave functions were expanded
in the basid’s

v (Rr) = ;cuﬁrﬁ(R,r) (13)

where
1 1 IR
TR = 24o(R) 79,4(0) Yi(RF) (14)

R = RR is the mass-scaled translational Jacobi coordinate
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Figure 2. State-to-state reaction probabilities as a function of the total energy for the reactiolE{v = 0,j = 0) — H + LiF(¢' = 0,j'): (@)
i'=0,0)j =1 () =2 d)j =3, (e)j =4, and (f)j' =5.

describing the Li to center-of-mass of HF motions rf is the

mass-scaled internal Jacobi coordinate describing the HF
vibrational motion,a is a collection of quantum numbers and

labels the bound or quasibound statgs is an expansion
coefficient, t, is a Gaussian translational basis functig;

is an asymptotic eigenstate rovibrational function of HF, an

yii is an eigenfunction of the total angular momentars O,

the rotational state of HF, and the orbital angular momen-

tum of Li with respect to the center of mass of HFThe
basis function indexs is the collection of the indices, j,

I, and m, where v is the vibrational quantum number of
the isolated diatom, andn labels the translational basis

functions.

Hyp = B'HIBC= [TZHI; dR dr (15)

Syp=B'1B= [T,T4dR dr

g WhereH is the full Hamiltonian and solving the generalized
eigenvalue problem. Details of the bound-state calculations
including the computational implementation and the numerical
and basis set parameters are given in the Appendix.

(16)

4. Results and Discussion

4.1. State-to-State, State-Selected, and Cumulative Reac-
tion Probabilities. OWVP reactive scattering calculations were

The expansion coefficients in eq 13 may be obtained by carried out at total energies ranging from 0.26 to 0.50 eV relative
numerically computing the matrix elements

to the Li + HF asymptote at its equilibrium geometry using
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version 18.8 of the VP scattering cotfeTo resolve the 0.06 , , , I
resonance states, we used an energy grid of 0.0001 eV at low (@)
energies. Resonance widths usually increase with energy, and 0.05 | .
therefore we used a coarser grid of 0.000 25 eV at high energies.
Table 2 lists two sets of basis set and numerical parameters 0.04 | I .
used for the scattering calculations at a total energy of 0.4 eV. Z 58?; e TR
The definitions of the parameters are given elsewtheteAt B 0.03f(0,2) T 1
this energy, parameter set 1, for example, has a total of 511 £ (03) IR
asymptotic channels, of which 47 are open, and a total of 18 043 0.02 | [ 10 IR
basis functions. The larger parameter set, parameter set 2, was ’ '
used to check the convergence of the results with respect to 0.01 -
variations in both the numerical and basis parameters. The state- .
to-state transition probabilities and eigenphase sums computed 0.00 i =
with parameter sets 1 and 2 differ from each other by no more 025 030 035 040 045 050
than 1%. Energy (V)

Figure 2 shows the state-to-state reaction probability plotted 0.25
as a function of energy for the process-+tiHF(v = 0,j = 0) ' ' ' ] r
— H + LiF(¢ = 0, "), wherej’ = 0—5. A strong resonance ®
structure dominates the energy profiles, especially in the energy 0.20 P
region associated with the-iFH van der Waals well in Figure
1. We note that, even at resonance energies, the probability of > 015L(08) —
reaction is small (less than 0.1), and therefore nonreactive 3 Eg:g; o
collisions are the dominant process. This is not surprising due 8 (0,6) -
to the 0.35 eV barrier and 0.23 eV endoergicity of the reaction, @ 010}
as shown in Figure 1.

Figure 3 presents the initial-state-selected reaction probability 0.05 -
for the process L+ HF(v = 0,j) — H + LiF, wherej = 0—9.
We see that the major resonances displayed in the state-to-state 0.00 ) N A
reaction probabilities persist after summing over final states. “0.25 0.30 0.35 0.40 0.45 0.50
Note the strong dependence of the state-to-state transition Energy (eV)

probabilities on the initial rotational stajeof the HF diatom.
Specifically, ag increases the background reaction probability ' f f T f f
increases and moves to higher energies. We also note that the ©
resonances at low energies are mainly due to the contribution

from the lowj channels, while for higher energy resonances, 0-20 1

the contributions are primarily from the highehannels even = (0,6) — |

though the low} channels are energetically accessible. 5 015 ggg; o e
Figure 4a shows the cumulative reaction probability for the 3 (0.9)

Li + HF — H + LiF reaction over the energy range 0-26.50 T 010 L

eV, where energy is given relative to the+iHF asymptote at
its classical equilibrium geometry. The threshold for nonquantal 0.05 |
passage over the barrier may be identified with the energy at

which the background contribution first equals 657 In M
Figure 4a we see that this occursEats 0.47—0.49 eV, which O 6 008 040 o042 o044 046 048 050

is in reasonable agreement with the zero-point inclusive barrier Energy (eV)

height (9‘45 eV)_ in Figure 1 and Table 1. Figure 4b shows Fhe Figure 3. Initial-state-selected reaction probability for the vibrational
cumulative reaction probability below the threshold. The reaction ground state,(= 0) and different rotational states, i.e., the probability
probability is almost zero except at several localized resonanceof the reaction Li+ HF(v = 0,j) — H + LiF(all ', all j"), as a function
energies, and even at resonance energies, the probability ofof the total energy: (&)= 0, 1, 2, 3, (b)) = 3, 4, 5, 6, and (c) = 6,
reaction is small (much less than 0.5). As the energy increases’: 8. 9.

above the effective threshold energy, the background reaction

probability (which measures direct reaction) rises gradually. The and eq 12 was fitted to the dense grid of eigenphase sums. To
transition probabilities, however, continue to exhibit sharp check the stabilization of the fitteH, andI's, we varied the
resonance features (see Figure 4c). The overall trend for bothorderN of the polynomial in eq 17 such that

the background and resonance reaction probabilities is an

il

increase with increasing energy. ) 1 Ne )
4.2. Resonance Energies and Total Width§.o characterize Of=———) A~ AE) (18)
the resonance features, we computed the eigenphaseAfum N=—N-—2=

on a dense grid of energiegj{j = 1—Ng) surrounding each
resonance. The background contribution was expanded as avas minimized with respect t&,, 'y, anda,.
polynomial function of the total energy Table 3 presents the resonance energy and width for each of
the resonances that was observed and characterized. Note that
N we observe both isolated narrow resonances and broad overlap-
Ab(E) = ZaiE' a7) ping resonances. We calculate lifetimes (using eq 8) that range
= over approximately 3 orders of magnitude from 0.20 to 87 ps.
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0.9 1
08} (@ oL* _
0.7} 1l i
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g2r ]
051} 3
& o3l :
O o4t 8
S 4L
03} 8
02} M-S i
01} 6 1
0.0 it : : 7t 1
0.25 0.30 0.35 0.40 0.45 0.50
Energy (eV) -8 : !
0.2728  0.2734 0.2740 0.2746
0.10 : I , Energy (eV)
) Figure 5. Eigenphase sum as a function of the total energy for the Li
+ HF — H + LiF reaction at energies near the resonance state energy
0.08 1 with E, = 0.274 eV. The asterisks are from the OWVP calculations
(smoothed by adding integral multiples @f. The solid line is from
the multichannel BreitWigner formula. The straight line is the fitted
N 0.06 | background contribution.
o
© 0.04 TABLE 3: Energies, Widths, and Lifetimes for Several
T i Observed Resonances
a E« (eV) I (eV) To (PS)
002¢ 1 1 0.274 7.81x 10°° 8.43
2 0.278 1.40x 10°3 0.470
0.00 N . 3 0.285 2.81x 10°® 0.234
026 028 030 032 034 036 4 0.287 1.48< 1073 0.445
Energy (eV) 5 0.294 1.68x 10°° 39.2
6 0.298 1.04x 10°3 0.633
0.9 [ 7 0.304 7.91x 104 0.832
! ' 8 0.313 3.25¢ 1078 0.203
0.8 9 0.319 7.68x 107 86.7
0.7 10 0.322 6.61x 1074 0.996
’ 11 0.327 9.63« 104 0.683
0.6 12 0.349 5.5 1074 1.18
13 0.354 2.34x 1074 2.81
g 09 14 0.381 6.83< 10°* 0.964
S o4 15 0.387 1.9% 1075 33.1
16 0.418 2.5% 10 2.56
0.3 17 0.439 3.05¢< 104 2.16
0.2 18 0.460 5.30« 1075 12.4
’ 19 0.485 3.92« 104 1.68
0.1
0.0 matrix 59-61 Specifically, the background contribution to each
0.34 0.36 0.38 0.40 0.42 0.44 0.46 048 0.50 of the scattering matrix elements in eq 4 is expressed as a

Energy (eV) polynomial of the total energy

Figure 4. Cumulative reaction probability, i.e., the probability of the
reaction Li+ HF(all v, all j) — H + LiF(all 2/, allj'), as a function of
the total energy for the energy range (a) 0:250 eV, (b) 0.25-0.36
eV, and (c) 0.340.50 eV.

N
Snn'b(E) = ;Ai,nrfEl

This is not surprising since the decay rate often depends Equation 4 may then be written

exponentially on the translational energy associated with the
dissociation coordinat®-7° Even though not all of the reso-
nances are INRs, the fits to the eigenphase sum are still relatively
accurate. The root-mean-square error for each fit is smaller than
0.1%.

Figure 5 illustrates the energy dependence of the eigenphasevhere
sum in the region of an isolated narrow resonance with an energy
of 0.274 eV, where the dots are the calculated results, the solid
line is the fitted curve, and the straight line is the background

N+1

(19)

(E — 2)S,(E) = ZOB.,ME' (20)

BO,mT = - Z(xAO,nrf - icanr{

(21)

contribution. As expecte®f,; 58 there is a rapid increase by B =A—ion — 2Am (1=1,2,..,N) (22)

in the eigenphase sum around the resonance.
4.3. Resonance Decay Product State Distributiong.or an
isolated narrow resonance, the partial widihg (defined in
eq 5) may be obtained from any column of the scattering and

Burinn = A

(23)
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Co.nrf = Yan’an (24) 0.020 I I I I
o018} @ ;
The partial width amplitudeg,, are related ta&Cyny by 0016
Con 0.014
Vo = Vo (25) c 0012 ]
onn 2
S 0010 ]
andT,, may be calculated using eq 5. § 0.008 |
The quantitieg By} may be obtained by fitting eq 20 to '
the calculated OWVP scattering matrix eleme&s; and 0.006 1
minimizing the quantity 0.004 _
Ne 112 0.002
2 , :
, N, J; |Sﬂr’{,j SnrY(EJ)| 0.000 8 10 12
€, = 26 J
=3 T (26)
|
whereN, is the number of open channels axglis the number i
of energies included in the fit. FrofB, .1}, we can calculate
{An} andCyny from eqs 21-23. |
We present detailed results for two resonances, namely the :
E = 0.294 and 0.304 eV resonances, which have total reactive 5 |
decay probabilities (calculated by summing the partial widths §
associated with reactive channels) of 0.03 and 0.53, respectively. § 1
At these energies, LiF is in its ground vibrational state, and the
maximum rotational quantum numbegrthat is energetically
accessible is 18 and 20, respectively. From the partial widths
and eq 10, we computed the probability of decay into each 1
rotational state, and the results are plotted in Figure 6. The )
rotational state profiles do not differ significantly from the "0 2 4 6 8 10 12 14
rotational state distributions resulting from direct scattering at j

nearby nonreson_am energies. Cons'de”n_g_ that these C,alcmategigure 6. Product rotational state distributions of LiF for the decay

rotational state distributions are very sensitive to the anisotropy of the resonance state with the resonance energy: (a) 0.294 eV; (b)

of the potential energy surface, comparison of the calculated 0.304 eV.

product state distributions to experiment would be a stringent

test of theory, but no experimental result is currently available. describing the dynamics of the resonance when Li is close to
A more detailed study of the trends in the partial widths, HF (i.e., when Li and HF are strongly interacting) and the

although potentially illuminating as to the resonance decay system is in the deep reactant van der Waals well.

mechanism, is not pursued in the present work. As the system dissociates nonreactively (i.e., terLHF) at
4.4, Bound and Quasibound StatesIn addition to their a resonance energy, the more useful set of quantum numbers
energies and widths, the resonance states -offHl identified changes from they(, vg, v;) set to the ¢, n, j = 1) set, and the

in sections 4.1 and 4.2 can be approximately characterized bytwo sets of quantum numbers may be correlated in this way.
a set of three quantum numbers (wh&re O, as is the case  For exampley, is approximately equivalent tg and increased
throughout this paper). We note that for > 0 a more excitation of the bending modg is likely to result in increased
sophisticated analysis is required than the simple one presenteaxcitation ofj andl. Although both sets of quantum numbers

below?1.72 represent idealized situations and are only zero-order ap-
For resonances trapped in the reactant van der Waals well,proximations, the resonance states are localized over the deep
one choice for the quantum numbersis i, j = I), wherewv Li---FH van der Waals well, and we expect thg, (vg, v,)

andj are the quantum numbers respectively describing the scheme to be more useful in the present work.
vibrational and rotational states of the tightly bound diatom HF,  To characterize the quasibound states by the g, v,)
andn and | are quantum numbers describing the stretching scheme for the Li-FH van der Waals complexes, we first
motion and angular momentum of Li with respect to the center computed the bound states of-1:FH. Details of the bound-
of mass of HFX73 These quantum numbers are useful for state calculations are given in section 3.3 and the Appendix.
interpreting the dynamics of the resonance when the Li atom is The Li---FH van der Waals well supports 25 bound states, as
far from HF, i.e., when the interaction energy between Li and shown in Table 4. Excitation of the HF vibration require8.5
HF is small. eV of energy and therefore all of the bound states hawve 0.
Alternatively, one may characterize the resonance states withThe bound states were further characterized by computing the
a set of quantum numbers,( vg, v,), Where each quantum radial wave functions and counting nodes to obtai The
number represents the vibrational state of one of the normal remaining quantum number, was assigned as required.
modes of the system at its minimum energy geometry. The Assignment by this method was straightforward, and the energy
vibrational quantum numbers are listed in the order of decreasingspacings of the bound states fit regular patterns; i.e., the
frequencies, i.e., first the HF vibration mode, then the progression of (0, Oy,) states is similar to the progression of
nonreactive dissociation modag, and finally the van der Waals (0, 1, v,) states, etc. The assignments are shown on the left-
bending mode,. This set of quantum numbers is useful for hand side of Table 4.
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TABLE 4: Bound and Quasibound States of the Li--FH TABLE 5: Li ---FH van der Waals Well Bound-State and
van der Waals Well Quasibound-State Fitted Energy Parameters
bound states guasibound states parameter value
VR vy Evry, (€V) VR vy Evrr, (€V) WR 4.506x 102eV
0 0 0.062 0 5 0.266 @y _%éggx }gi ev
0 1 0.082 2 4 0.279 xR 4-539X 103
1 0 0.103 1 5 0.301 X 239X
fr —5.311x 10 eV
0 2 0.112 0 6 0.330 % )
1 1 0.123 2 5 0.334 Eo 3.794x 102 eV
2 0 0.139 3 5 0.355
1 2 0.148 1 6 0.363 To obtain the full spectrum of quasibound states, we fit the
‘2) f 8-%22 g (73 8-38519 bound-state and quasibound-state energies in Table 4 to the same
3 0 0.170 1 7 0.430 kind of quantum number seri®sas used in conventional
2 2 0.181 2 7 0.450 spectroscopy, taking the series to second order in the quantum
3 1 0.190 0 8 0.475 numbers, i.e.
4 0 0.197 1 8 0.499
1 3 0.200 1 1 12
R BuCrnn) onfrct g oo, 3] ot 3] +
3 2 0.218 1\2 1 1
5 0 0.222 Xxwx(v% + E) + fo(VR + E)(VX + 5) + EO (27)
2 3 0.232
5 1 0.233
6 0 0.238 The root-mean-square (rms) error
4 2 0.245
1 4 0.247
7 0 0.248 _ 2
6 1 0.253 A= > Eulev)—E,) (28)

VRVy
The bound-state energy levels of the-tFH van der Waals

well have been studied previousty!’ Reference 17 compares was minimized with respect @, w,, Xz, X, fr,, andEo, where

the bound-state energies of potential surfaces obtained from fitsE,,, are the calculated bound-state and quasibound-state

to high-level ab initio data calculated at various levels of theory. energies in Table 3, and the sum in eq 28 runs over all observed

The most accurate surface that was studied in ref 17 has a zerostates. The best-fit parameters for eq 27 are given in Table 5,

point energy of 0.272 eV (relative to the bottom of the well), and the resulting fit has a rms error of 0.006 eV. Using the

which agrees well with the value reported in the present work fitted parameters, the full spectrum of quasibound states can

of 0.273 eV. The reportédvalues of the energies of the (0, 0, be obtained, and the calculatgg,,, (from Table 4) and fitted

1) and (0, 1, 0) states are 0.045 and 0.040 eV relative to the (0,Es(vrv,) quasibound-state energies are given in Table 6 for

0, 0) state, respectively. We report values of 0.20 and 0.41 eV the energy range in Figures-2.

for the (0, O, 1) and (0, 1, O) states, respectively. Based upon 4.5. Characterization of the Observed Resonances and

our own bound-state calculatiofioof a previously published  Decay MechanismsThe quantized energy of the saddle point

surfacé* and the current work, we believe that the (0, 0, 1) for reaction is 0.45 eV including zero-point energy in the modes

state is lower in energy than the (0, 1, 0) state; i.e., the (0, 0, 1) orthogonal to the reaction coordin&fand this energy is within

and (0, 1, 0) states in ref 14 (and possibly ref 17) are assignedthe energy range of total energies considered in the present study

incorrectly. We do not believe, however, that the surface used (0.26-0.50 eV). It is possible that we may observe a “barrier

in the present work is quantitatively accurate in the van der passage” resonance corresponding to the decrease in the kinetic

Waals bend near the van der Waals well; i.e., the energy energy of the system as it passes over the transition state

spacings of the energy levels with varyingquantum numbers ~ barrier>® Barrier passage resonances have short lifetimes (and

are not quantitatively accurate. This defect has been correctedtherefore large widths), and we may associate such a resonance

in surface fitJ,16 which has energies of 0.34 and 0.48 for the with a broad increase in the cumulative reaction probability

(0, 0, 1) and (0, 1, 0) states, respectivElll of the results in between 0.45 and 0.50 eV; we will not analyze this further.

the current paper were obtained using surfacéd{i#®16 and The product van der Waals complex kiFH is not bound when
the results may therefore not provide quantitative comparison zero-point energy is included as shown in Figure 1. We therefore
with experiment. consider all of the resonances in Table 3 to correspond to

In principle, quasibound states may also be obtained from trapped-state resonances localized over the reactant van der
the energy spectrum obtained by diagonalizing the Hamiltonian Waals well.
in a finite basis. In practice, however, the energies of these states The resonance energy widths vary over several orders of
are strongly dependent on the accidental closeness in energy tanagnitude (from 8< 107%to 3 x 1073 eV), and trends in the
nearby continuum states. Furthermore, the nodal structure carwidths may be explained by assigning.,(vr, v,) quantum
become obscured as quasibound-state wave functions mix withnumbers to the resonances. Assignments were made using the
nearby continuum or quasibound states. By inspection of the estimated quasibound-state energies in Table 6 as follows:
radial parts of the unbound wave functions, we were able to Below the threshold energy~0.35 eV) there is a one-to-one
definitively determine the energy of and assign quantum correspondence between the scattering resonance energies and
numbers for all quasibound states with = 0, 1, and 2, as the fitted quasibound-state energies for the quasibound states
well as one state witvg = 3 in the energy range of the when thevg = 0 and 1 are excluded. We conclude that
scattering calculations presented in section 4.1. The quasiboundjuasibound states withg = 0 and 1 have widths too small
states that we identified and assigned are given on the right-(smaller than 10° eV) to observe in the scattering calculations
hand side of Table 4. presented here.
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TABLE 6: Fitted and Calculated Li ---FH Quasibound-State 1072 ——
Energies and Assigned Resonance Energies and Widths
VR v, En(ry) (V) En. (V) E.(eV)  Tu(eV) §
4 3 0.278 0274 7.8%10° 10°F o . .
6 2 0.278 0.278 1.4 10°3 ° o °
7 2 0.288 0.285 2.8% 103 o e
1 5 0.294 0.301 = °
8 2 0.294 0.287  1.4& 1073 2 ol 1
5 3 0.298 0.298 1.04 1073 [ o
3 4 0.300 0.294 1.6& 10°°
6 3 0.312 0.304 7.9% 104 3
0 6 0.321 0.330 105} 4
7 3 0.322 0.313 3.25% 1073 °
4 4 0.323 0.327 9.6% 1074
2 5 0.326 0.334 0.319 7.6810°
8 3 0.327 0.322 6.6 10 10-6 e
5 4 0.342 0.354  2.3410°* 1 2 3 4 5 6 7 8 9
3 5 0.354 0.355 0.349 55010
6 4 0.356 Vr
% 2 8222 0.363 Figure 7. Resonance widths as a function of the translational quantum
8 4 0:370 number. Note that the ordinate scale is logarithmic.
4 5 0.377 0.381 6.8% 104
2 6 0.390 0.389 0.387 1.9910° is delayed (i.e., there in an increase in probability density) in
5 5 0.396 the van der Waals well before the transition state barrier,
g ; g'igg 0.401 resulting in enhanced tunneling to form the LiF product. The
3 6 0.418 0418 2.5% 10 lifetime of the trapped state is determined by the overlap of the
7 5 0.418 guasibound-state radial function with unbound continuum
8 5 0.422 functions of the same translational energy. This overlap depends
411 Z 8-2% 0.430 0430 305 104 exponentially on the translational energy and therefore on the
= & 0.458 : . radial quantum number.
2 7 0.464 0.450 0.460 5.3010°°
6 6 0.471 5. Summary
0 8 0.479 0.475
7 6 0.479 The Li + HF — H + LiF reaction has been investigated in
g S 8:288 0485  3.9% 104 detail using the OWVP full-dimensional time-independent

guantum scattering approach to calculate scattering matrix
elements, from which we calculated state-to-state, initial-state-
specific, and cumulative reaction probabilities. The reaction
probabilities are very well converged so that the resonance

Above threshold, the nonresonant reaction probability in-
creases, and the cumulative reaction probability (CRP) energy
profile beco”!es more complicated and contains sev_eral broadstructure is not lost in the noise, indicating the robustness of
and overlapping features that are not characterized in Table 3.

W N the observed scattering resonances b in excl d.nthe methods being used. All the dynamical features have been
€ assign the observed scatlering resonances by again exclu '.gecovered,thereby permitting a precise description of resonance

the ve :to frl]nd 1 quastlbdound §'§1tes§n? ?ase_?_hon closeness i tates. The scattering resonances were identified in terms of their
energy to the computed quasibound states. There are sever omplex resonance energies.

missing states, which may be explained as due to the compli- he Li R . . hibi hreshold
cated CRP structure above threshold. The missing states have "€ Li + HF = H + LiF reaction exhibits a threshold near

radial dissociation quantum numbers with < 1 or vg > 5. 0_.35 eV, and _below the threshold energy the_reaction ta_kes place
We interpret this finding to indicate that the smellquasibound viaa mecham_sm OT resonance tur_mellng, Wh'Ch result_s_ in several
states have energy widths too small to observe and theshigh- resonance splkes in the cumulative reacnon'pro_bablllty. When

quasibound states resemble continuum states, have short lifelNe €nergy is above the threshold, the reaction is governed by

times, and have broad, overlapping resonance features that argoth direct and resonance mechamsms. The resonance com-
lost in the nonresonant reactive background probability. plexes populated by the collisions can decay nonreactively either

The rms error of the observed and fitted resonance energiesby resonance tunneling through the centrifugal barrier in the

is approximately equal to the rms error of the bound-state entrance vaIIey_ or b_y energy transfer from the bending mo_de
energies (0.005 eV). to the nonreactive dissociation mode. The sum of the reactive

Figure 7 shows the energy width of the scattering resonancea”d nonreactive rates of decay have been calculated from the

as a function of its assigned radial quantum numbefThere fitted resonance widths, with lifetimes ranging from 0.20 to

is a strong exponential dependence of the resonance width orB? Ps.

the dissociation energy as observed previof$iyhe trend For two resonances, the product LiF rotational state distribu-

persists over several orders of magnitude in the energy WidthS,tiOﬂS that result from decay of the resonance complex have been

and this strengthens our confidence in the accuracy of the qua-calculated.

sibound-state quantum number assignments in Table 6. Although We have determined the resonance state energies by both

the trends in Table 6 are systematic, some irregularity persists,scattering and bound-state calculations, and quasibound-state

probably due to the precise but accidental positioning of each vibrational quantum numbers have been assigned. Below

resonance energy with respect to asymptotic quantum statesthreshold there is excellent agreement between the resonance
The scattering resonances undergo the following decay and quasibound-state energies. Resonances corresponding to

mechanism: At a quasibound-state resonance energy, the systemuasibound states withk < 2 are not observed in the scattering
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calculations. Above threshold, several resonances are observed The Hamiltonian operator in eq 15 can be written
that correspond to quasibound states with 2g < 4. In both

regimes, there is good exponential correlation between the _ h_zla_z eff -
energy width of the resonance and the radial quantum num- H(R) 2u RaRzR+ VTR +2)  (A2)
ber vg.

The present study is particularly intriguing in the context of Where
identifying intrinsically quantum mechanical behavior in chemi- _ U2
cal reactions. Resonances that lead to sharp quantum mechanical U= (&) (A3)
spikes in the reaction probability at energies beneath the classical m; +my +me

threshold are one of the most dramatic quantum effects that )
one can postulatt:%6.76The observation of long sequences of US(Rr) = A1 + VR (A4)

such resonances, both in the-©OHCI reactiorf> and in the 2uR?
present study of L+ HF, provides a serious reminder of the
necessity of checking classical models against quantum me- . h%1 &2 h2 12 A
chanical reality when interpreting chemical reactivity, especially o(r)=— 2ur 8_2r + u J_2 + Vi) (A5)
subthreshold energies. r r
In general, bimolecular chemical reactions feature van der V(R,r) = V™(Rr) + V¥a(r) (A6)
Waals attractions on both sides of the transition state barrier,
and these wells are often deep enough to support bound states. \/dial(r) = lim V(R,r) (A7)
R—

The dramatically enhanced reactivity (i.e., the resonance in the
react_ion profile), at energies associated Wi'.[h van der Waals ma is the mass of atom Ais the orbital (Li to center of mass
quas!bound states, that results fr_om the localization of the wave ¢ HF) angular momentum operator, ahi the internal (for
functlc_)n at the base of the barrier depends on _several fa(_:torsthe HF diatom) angular momentum operator.

including the depth and shape of the well, the height and width
of the barrier, the mass of the tunneling particles, etc. Recent
experimental work on van der Waals complexes has included A1 & K2 52
several examples of radicamolecule system&,#° and it is @‘ - ———R‘ﬂD: T 0,051, tw(R) fthm(R) drR

not clear which of these might potentially show such behavior. 9 (A8)

The possibility of state-selected coherent reactivity at isolated

narrow resonances raises new possibilities for exploiting and can be evaluated analytically. The matrix elements of the
quantum mechanical phenomena for control and technologicalsecond term in eq A2 are

advantage.

The matrix elements of the first term in eq A2 can be written

w210+ 1)
u R

TUR,NIBC= [ (R 0,,0n +
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Appendix: Bound-State and Quasibound-State Nov max
Calculations = Z Wy, Zo U/llm(eri)fn’ni (A10)
= =

The basis functions defined by eq 14 and the matrix element
evaluation strategies used to obtain the Hamiltonian matrix : 2, +1 :
elements defined by eq 15 have been presented in detalil ”llm(R’r) =de(c:03y) P;(cosy) \/'m(R,r,cos;/)
previously in the context of scattering calculatidsThe (A11)
application of these strategies to bound-state calculations (as — R A12
implemented in the computer code ABCSPECPRAs straight- cosy =R (A12)
forward. In this appendix, we briefly present some of the details p,(cosy) are the Legendre polynomials, afagl* are thel = 0
of the bound-state calculations. Percival-Seaton coefficient®83 The radial integral in eq A9
We restrict our attention to the case of zero total angular is handled byNe, repetitions ofNg_-point Gauss-Legendre
momentum J = 0), and thereford = j, in which case the quadrature. Optimized vibrational quadrature with the Gauss

elements of the overlap matrix in eq 16 can be written ground-state optidfis used to obtain the weights,'and nodes
riin eq A10. The angular integral in eq A1l is carried out using
_ Noa-point Gauss Legendre quadrature. Matrix elements of the
s 6”'”61'thmf(R) tn(R) dR (A1) third term in eq A2 may be simplified because the functions

,j are eigenfunctions df, i.e.
where throughout this appendi= (v, j, I, m) andg’ = (v, J', P g

I m). The translational basis functiorts, are distributed [B'1210= Sype,, (A13)
. . . vj
Gaussian functions with evenly spaced cent&g ,(wherem
=1, ...,Ngang. The width parameter of the translational basis wheree, is the diatomic energy of the statg;.
functions is determined by setting the overlap parametefr The HF diatomic problem is solved in a harmonic oscil-
Hamilton and Ligh#! lator basis|h[] whereh = 0, ..., Nuo — 1. The resulting
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TABLE 7: LiFH Bound-State and Quasibound-State Basis
Set and Numerical Parameters

parametey setl set2
NHo 20 25
Nov 20 25
Noa 50 60

rep 40 55
NoL 7 7
Shin (20) 05 0.2
Snax (20) 12 14
Easym(eV) 2.8 3.0
S" (a0) 2.73 2.23
Shyane’ (a0) 9.77 10.33
A (a0) 0.11 0.10
c 0.9 0.8
Nasym 132 161
Ntrans 64 81
Nbas 8448 13041

a See the Appendix for definitions of the parameters.

matrix elements are evaluated by writing

g 1 ,
(B |Higiad NC= 6h,hhw(h + é) + H

and using Nno + 14)-point GaussHermite quadrature. The
harmonic frequencw is obtained from the second derivative

[
2u y?

6+1),

Vigad) — vHo(r)\thm)

Wei et al.

The total number of basis functions fMas = Nasyrftrans The
energies of the bound states computed using the two basis sets
differ by less than 0.1%.
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