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A general strategy to reduce the size of the inactive space in extended Configuration Interaction calculations
is presented. The approach is based on the use of local orbitals, obtained from a recently reported iterative
method. Both occupied and virtual local orbitals are classified according to their topological nature. This
criterion permits the elimination of all the orbitals centered on ligands distant from the “interaction area”.
This truncation reduces the size of the inactive space considerably and makes feasible calculations otherwise
impractical. The procedure is illustrated by the determination of the magnetic coupling constant in two binuclear
Cu(II) compounds. The results show that it is possible to recover 95% of the magnetic coupling value with
only 10% of the total CI space, pointing to the potentiality of the method. Additionally the local nature of the
orbitals provides a way to control the physics of the coupling and to analyze the role of the external ligands
in the interaction.

I. Introduction

In the past few years an increasing interest in magnetic
systems has been observed, related to improvement of experi-
mental techniques and also to the synthesis and discovery of
compounds with interesting properties such as the colossal
magnetoresistance present in the manganites1 or the strong
antiferromagnetism observed in the high-Tc superconductor
related compounds.2 From a theoretical point of view, evaluation
of the magnetic coupling constants has also made important
progress, passing from the qualitative evaluation of the ampli-
tude ofJ in the 80’s3-6 to the accurate quantitative determination
of its value.7-18 At this stage, the challenge is not to reproduce
experimental data but to interpret and to predict the presence
of these kinds of properties. An additional stimulus is going
from the binuclear systems to polynuclear ones, which can show
both magnetic and electron-transfer properties, as is the case of
manganites, high-Tc superconductors, or polyoxometalates.

A general characteristic of these compounds is the presence
of several unpaired electrons, distributed in some active orbitals.
The ground state has a strong multireference character, and
single determinant descriptions such as those reported by density
functional theory based methods (DFT), although frequently
used, are not really adequate. Among the multireference
methods, the Difference Dedicated Configuration Interaction
(DDCI) approach19 has been extensively used recently to
determine magnetic coupling constants. This method also has
been employed to evaluate the electron-transfer integralt in
mixed valence compounds.11,20-22

Most of the reported studies deal with the determination of
J on binuclear systems. In this case,J can be extracted from
the energy difference of the two lowest states of the system. It
is also true for the determination of the electronic coupling
between twoequiValentcenters. For polynuclear systems (except
in the case of high symmetry23) and even in the case of the

electron transfer between two nonequivalent centers, the DDCI
approach must be combined with the effective Hamiltonian
theory to evaluateJ and t. Two recent examples of the use of
this strategy concern the determination of the magnetic coupling
and hopping integral between first, second, and third neighbors
in hole-doped high-Tc superconductors24 and the simultaneous
evaluation of all the magnetic interactions present in a plaquette
of different spin-ladder cuprates.25

The method has two limitations: (i) the number of active
electrons and/or orbitals and (ii) the size and number of the
external ligands. For instance, systems such as the iron-sulfur
proteins, containing two or more Fe centers, with five unpaired
electrons each (four in the case of mixed valence) are quite
difficult to study with this methodology and with CAS-based
methods such as CASPT226 or NOCI.27 Indeed, in this situation,
most of the references in the CAS carry little weight. Regarding
the case of the coupling between two Fe(II) (d5-d5) centers,
one would expect that all the configurations corresponding to
d10-d0, d9-d1, or d8-d2 are too high in energy, and then
practically would not participate in the description of the ground
state. Therefore, it seems more appropriate (and cheaper!) to
use a multireference space instead of a complete active space.
To select the references a set of local molecular orbitals is
necessary.

On the other hand, some approaches, such as the excitation
energy dedicated molecular orbitals, have been proposed
recently to reduce the number of inactive orbitals. This approach
was applied to the evaluation of magnetic and electronic
coupling constants.28-30 These orbitals are the eigenvectors of
the density matrix differences of the involved states, and their
eigenvalues are related to the degree of participation of the
orbital in the energy difference. The orbitals were selected in
order of their number of participation, but due to their
delocalized nature, it is quite difficult to analyze the physical
contributions governing the observable under study.

The aim of this work is to present an alternative approach
based on the use of local orbitals and to explore its capability
as a tool to reduce the size of the CI expansion and also to
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analyze the physical nature of the magnetic interaction. In a
recent work, we presented an iterative method to produce local
orbitals in the presence of nondynamical correlation.31 In such
cases, a qualitatively correct description of the wave function
requires the use of a Complete Active Space (CAS). Our
algorithm is based on the repeated partial diagonalization of
the one-electron density matrix obtained from a Single-excitation
Configuration Interaction from a CAS space (CAS+S). In this
way, a set of natural orbitals very close to the CASSCF orbitals
is eventually obtained. The flexibility of the method rests on
the possibility of using as reference space a reduced number of
configurations instead of the complete active space, depending
on the physics of the problem under study. These orbitals can
be used for a subsequent CI treatment of the correlation, at both
a CAS or a multireference (MR) level.

The method, which is completely general, will be applied
here to the determination of the magnetic coupling constant in
two systems, both concerning binuclear Cu(II) magnetic systems.
Taking advantage of the local nature of the orbitals, it is possible
to select the orbitals involved in the CI expansions, using a
physical criterion, such as proximity to the active sites, or the
orientation with respect to the Cu 3d active orbitals. It is also
possible to isolate the most important contributions toJ. So,
local orbitals can be seen as a tool to analyze the physical factors
governing the magnetic coupling.

The method is presented in Section II. The application of
this methodology to the determination of the magnetic coupling
constant in two binuclear Cu(II) compounds is reported in
Section III. Finally, conclusions can be found in Section IV.

II. Theoretical Approaches

A. The Magnetic Coupling Constant and the DDCI
Procedure.Magnetic systems are characterized by the presence
of unpaired electrons, usually localized on the metal atoms. The
properties of the system are governed by the interaction between
these unpaired electrons on neighbor centers, which may
be viewed as an effective interaction between site-centered
spins, and mapped onto a Heisenberg-Dirac-Van Vleck
Hamiltonian:32

For two centers with spinSz ) 1/2, as the case under
consideration, the magnetic coupling constant is related to the
energy difference between the singlet and the triplet states:

whereJ has a negative value if the system is antiferromagnetic
(AF) and positive if the triplet is the ground state (ferromagnetic,
F). At this point, the Difference Dedicated Configuration
Interaction (DDCI) method19 has been successfully applied
recently to evaluate the magnetic coupling, both in molecular
systems and in solid-state magnetic materials.8-13 The key point
of the method is that the determinants in the CI expansion have
been selected by means of a perturbative criterion, over a
reduced number of determinants, corresponding to all the single
and double excitations contributing to the energy difference
between the states involved in the excitation. This avoids the
introduction of all the (ij ) f (rs) double excitation,i, j being
inactive occupied orbitals, andr, s being virtual orbitals,
reducing considerably the calculation cost.

As mentioned above, when the complexity of the system
increases, the spectrum is not sufficient to evaluate the magnetic

coupling constants, and also the wave functions are necessary.
In this case, the effective Hamiltonian theory enables us to
combine the information contained in both the eigenvalues and
the wave functions, and to extract the effective parameters.23

B. The Local Molecular Orbitals. Even when the DDCI
approach permits an important reduction with respect to the
CAS-SD expansion, it could be impracticable for systems
containing a large number of electrons and/or orbitals. The
object of the present work is to analyze the use of local orbitals
as a tool to rationally truncate the inactive space. An iterative
scheme to produce CASSCF or quasi-CASSCF orbitals that
conserve the physical nature of the original guess orbitals has
recently been proposed.31,33 This procedure is based on an
iterative partial diagonalization of the one-body reduced density
matrix obtained from a CAS+S wave function. The method
has been used to reduce the size of the Multi-Configuration
(MC) space,34 and to converge to a specific minimum among a
set of different minima.35 A brief description of the essential
lines of the algorithm is given below.

As is usually done in CAS techniques, the orbitals were
partitioned into three classes, i.e., occupied, active, and virtual
orbitals. Starting from a CAS-CI wave function, the set CAS+S
of single excitations is produced. Single excitations can be
performed in two different ways, giving rise to two different
variants of the method: (1) uncontracted excitations (i.e.,
determinants or spin-adapted configurations), obtained by ap-
plying the excitation operatorai

+aj (or a spin-adapted combi-
nation of excitation operators) to each determinant of the CAS,
and (2) internally contracted excitations, obtained by acting with
the excitation operatorai

+aj onto the function|ΨCAS〉 as a
whole.

A new wave function in the CAS+S space is produced at
this point, either with a CI or a perturbational (PT) formalism.
The one-body reduced density matrixΓ1 associated with
|ΨCAS+S〉 is then computed. By diagonalizingΓ1, a new set of
orbitals is obtained that can be used to build a new CAS and a
new |ΨCAS〉 wave function. The procedure is then iterated until
convergence (i.e., orbital or wave function stability) is achieved.
If a contracted scheme is used, it can be shown that the final
wave function is a CASSCF solution, since the Generalized
Brillouin Theorem (GBT)36,37has been iteratively realized: the
iterated-diagonalization convergence scheme is equivalent to the
super-CI approach proposed by Ruedenberg and co-workers in
the seventies to perform CASSCF.38 Because of the GBT, the
|ΨCAS+S〉 wave function is identical, at convergence, with the
|ΨCAS〉 function, and the result is therefore not dependent on
the procedure (CI or PT) used to produce the correction vector.
On the other hand, if an uncontracted scheme is used, a set of
iterated (approximated) Natural Orbitals (NO) is obtained at
convergence, associated with the chosen CAS. It should be noted
that in this case, contrary to the previous one, the final orbitals
dependon the actual procedure used to produce|ΨCAS+S〉 (CI
or PT) and, in the case of PT, also on the particular form of PT
that is adopted.

The previous scheme produces orbitals that are usually highly
delocalized, and that do not have a strong similarity to the initial
orbitals. This is because the diagonalization step completely
mixes the orbitals within each class. However, one must
remember that the whole formalism is invariant under a unitary
transformation of the orbitals, which does not mix the orbitals
belonging to different classes among themselves. Therefore, it
is possible to perform only apartial diagonalizationof Γ1, in
such a way that this matrix is put into a block-diagonal form,
each block being defined by the occupied, active, and virtual

Ĥ ) - ∑
ij

JijŜiŜj (1)

J ) E(S) - E(T) (2)
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orbitals, as in standard CASSCF calculations. In this way, by
taking advantage of the unitary invariance of the CASSCF wave
function with respect to orbital rotations that are internal to each
orbital class, the mixing between the orbitals can be minimized
at each iteration. As a result, the orbitals at convergence maintain
as far as possible the same nature as the initial orbitals (Figure
1). So, there are two key points: (i) the partial diagonalization
that conserves the initial locality of the orbitals and (ii) the
definition of the guess of the local orbitals. Thisnonautomatic
step requieres a previous knowledge of the basic chemical
aspects of the system under study. More details can be found
in ref 31.

This formalism is particularly suited to obtain local orbitals
in a MR context, a fact that presents a particular interest in
reducing the computational effort in the treatment of quaside-
generate systems.39 At the moment two versions exist: an
uncontracted one, based on a CI approach,31 and a contracted
perturbative version.33 The two versions give extremely similar
results, the energy differences being of the order of a fraction
of a millihartree for all the systems studied so far.

C. Truncation of the Inactive Space.As mentioned above,
the goal of the present work is to take advantage of the local
nature of the orbitals to reduce the size of the inactive space.
The local orbital set is obtained from low-cost low-level
calculations (no more than 20% of the total cost), as discussed
in the previous section. The orbitals are then classified according
to a topological criterion. All the orbitals external to the
“interaction area” are frozen (both occupied and virtuals), and
a high-level calculation is now feasible, obtaining accurate
values of the observable under study. It is also possible to
analyze the role played by a certain ligand, by freezing only
those orbitals centered on it. The examples considered here refer

to the determination of the magnetic coupling constant in
binuclear Cu(II) compounds, but it is a completely general
strategy to deal with problems that are usually size-constrained.

III. Application to Hydroxo-Bridged Cu(II) Binuclear
Complexes

To illustrate the procedure, two binuclear Cu(II) complexes
with large external ligands have been chosen. There is only one
unpaired electron per metallic center, and theJ constant can be
obtained from the energy difference of the singlet and the triplet
states, as shown in eq 2. The procedure is not constrained either
to systems withSz ) 1/2 per center or to binuclear complexes.
Dealing with binuclear systems with more than one unpaired
electron per center, the problem reduces to the calculation of
the energies of the corresponding spin functions. For instance,
the coupling between two Ni(II) ions in a binuclear complex
gives three states (singlet (S), triplet (T), and quintet (Q)).J
can be evaluated from the energy difference between two of
them: J ) E(S) - E(T) ) (E(T) - E(Q))/2. Some examples
using the DDCI methodology for the determination ofJ in this
kind of systems can be found in recent papers (see, for instance,
ref 13). For polynuclear systems, the strategy is still applicable.
The extraction of the magnetic coupling constants will be in
general more complicated, being necessary the use of the
effective Hamiltonian theory.24,25 It is expected that the trunca-
tion of the inactive space by means of the locality criterium
has a larger impact in this kind of compounds, which are, in
general, too large for a complete extended CI calculation.

A. System Description. Two µ-hydroxo-bridged Cu(II)
binuclear complexes have been considered: (i) system A, [Cu-
(tmeen)OH]2Br2, tmeen) tetramethylethylenediamine, which
presents an antiferromagnetic coupling of-509 cm-1,40 and
(ii) system B, [Cu(bipy)OH]2(NO3)2, bipy ) bipyridine, which
has a ferromagnetic coupling of+172 cm-1.41 Both of them
have been previously studied by means of density functional
theory based calculations by Ruiz and co-workers.16,42 Figure
2 shows a representation of these two compounds. The
experimental geometries have been used in both cases.40,41 In
system A, the Cu atoms present a square-planar coordination.
The Cu-N, Cu-OH, and Cu-Br distances are respectively
2.03, 1.90, and 4.79 Å, and the Cu-O-Cu angle is 104.1°. In
system B, the distance between the N atoms of the bidentate
bipyridine ligand and the Cu atom is 2.00 and 1.92 Å for the
Cu-OH distance. The Cu-O-Cu angle here is 95.6°. In

Figure 1. The iterative procedure for obtaining the local orbital set.

Figure 2. The two µ-hydroxo-bridged Cu(II) complexes under
consideration: (a) [Cu(tmeen)OH]2Br2, system A (bromide ions are
not included), and (b) [Cu(bipy)OH]2(NO3)2, system B.
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contrast to system B, the H atoms of the hydroxo bridges are
not in the same plane as the Cu-O-Cu fragment, the out-of-
plane H shift being 54°. The out-of-plane displacement of the
hydrogen atoms seems to favor the ferromagnetic character of
the interaction, as some recent magnetostructural studies have
shown.16,43,44 With regards to the counterion, the distance
between one of the oxygen atoms of the nitrate group and the
Cu center is 2.38 Å, and the counterion can be considered as
an axial ligand, resulting in a square-pyramidal coordination
around the Cu centers. For this reason the nitrate groups have
been explicitly included in all the calculations.

Different basis sets have been tried out. In all cases the 12
most internal electrons of the Cu atoms have been replaced by
the pseudopotentials proposed by Barandiara´n and Seijo.45 Basis
I consists of a double-ú basis set for the Cu atoms45 (contraction
(9s6p6d)/[2s2p2d]), and the ANO-type minimal basis sets for
the rest of the atoms46 (C, O, N: (2s1p), H:(1s)). Basis II is
equal to Basis I, except that the contraction employed for O
bridge atoms is (3s2p1d) instead of (2s1p). For Basis III, the
contraction for the Cu atoms is now (9s6p6d)/[3s3p3d], (3s2p1d)
for O and N atoms and (2s1p) for the H of the hydroxo group.
The MOLCAS 5.047 package has been used to generate the
guess orbitals and to evaluate the atomic integrals. SCHMU-
DORB48 and CASDI49 codes have been employed respectively
to produce the local set and to perform the diagonalization of
the CI matrices.

B. Strategy to Reduce the Space.The procedure starts by
establishing the reference value of the magnetic coupling in both
systems. We consider that the value provided by the DDCI
calculations on the basis of the symmetry-adapted delocalized
molecular orbitals is the best available benchmark. In all the
calculations the active space is composed of the symmetric (g)
and antisymmetric (u) combinations of thedxy Cu orbitals, with
a minor contribution coming from the OH bridging groups
(Figure 3). The CAS space contains four determinants:|ggj〉,
|uuj〉, |guj〉, and|ugj〉. The singlet and triplet wave functions and
energies have been obtained from extended CI calculations on
the top of this CAS space,J being the energy difference between
these two states. Table 1 presents the results concerning system
A with a minimal basis set. Two sets of symmetry-adapted
delocalized orbitals have been considered: those coming from
the triplet state and those obtained from the average of the
density matrices of the singlet and triplet states. Regarding the

CI expansion, two types of calculations have been performed:
(i) CAS+S, with the CI expansion only including all the single-
excitations on the top of the determinants of the CAS, and (ii)
CAS+DDCI, with all the single and double excitations, except
those involving twoholes(two inactive occupied orbitals) and
two particles (two inactive virtual orbitals). As has also been
reported for other Cu(II) binuclear systems50 the values obtained
for the magnetic coupling are independent of the set of
delocalized orbitals, at any level of calculation. With regard to
the local orbitals, three sets have been generated, in all cases
by means of the uncontracted variational CI version of the
localization code: local orbitals (i) from the singlet state, (ii)
from the triplet state, and (iii) from the average of the density
matrices of the singlet and triplet states. The results are in good
agreement with those obtained from delocalized orbitals,
independently of the type of local orbitals used and the
calculation level.

Now the local orbitals are classified according to their nature.
For system A (Figure 4), we can distinguish, for instance, the
C-H bonds of the CH3 groups, the C-H bonds of the CH2
fragments, and the N-C bonds, where C belongs to the CH3

groups or C is part of the N-C-C-N skeleton. Figure 5 shows
some of the local orbitals for system B: theπ-type orbitals,
the C-H bond orbitals, the C-C in the bipyridine groups, and
the orbitals located at the NO3 groups. One may notice that,
due to the fact that localization does not forbid the use of the
symmetry, what we call local orbitals actually appear on the
various equivalent bonds (two or four bonds), and are therefore
not really local. Two comments must be made: (i) The relevant
locality in our problem is the nature and distance of the local
orbitals to the active part of the system. The fact that these
orbitals (to be frozen) appear in several places has no conse-
quence. (ii) By symmetric and antisymmetric combinations of

Figure 3. Magnetic active orbitals for system A (on the top) and system B (on the bottom).

TABLE 1: Comparison between the Local Set and
Delocalized Set for [Cu(tmeen)OH]2Br2, System A, with
Minimal Basis Sets (Basis I)a

CAS+S CAS+DDCI

delocalized, T -88 -339
delocalized, average S+ T -94 -334
local, T -88 -324
local, S -98 -332
local, average S+ T -94 -330

a All values in cm-1.
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these “symmetrical local orbitals”, one would perfectly recover
local orbitals, i.e., appearing only at one place in the molecule.
Therefore, even if the calculations were done by using the
symmetry of the molecule, no information concerning the shape
of the local orbitals has been lost.

In the next step, we perform several CAS+DDCI calculations,
hereafter referred to as DDCI, freezing in each case a different
type of local orbital. Only the values obtained from the average
local set are reported. The results (Table 2 and Figure 6 for
system A (Basis I), and Table 3 and Figure 6 for system B
(Basis II)) show that it is possible to deal with a small fraction

of the CI space, recovering at least 90% of the total value ofJ.
For instance, in system A, by freezing all the occupied C-H
bonding orbitals 98.5% of theJ value is obtained, with only
51% of the original CI space. If the virtual orbitals centered on
these bonds are also eliminated, the size of the matrices
diagonalized in the CI procedure is only 20% of the original,
but the value ofJ is practically not affected (95% of the total
value). By using this topological criterion it is possible to neglect
all the orbitals (occupied and virtuals) centered on the N-C
and C-H bonds, reducing the CI space to 8% of the complete
space, obtaining aJ value of-288 cm-1, 87% of the total value.

Figure 4. Localized orbitals for system A, minimal basis sets: (a) C-H bonding orbital for CH3 groups, (b) C-H bonding orbital for CH2 groups,
(c) N-C bonding orbital for N-CH3 bonds, and (d) N-C bonding orbital for the N-C-C-N skeleton.

Figure 5. Localized orbitals for system B, minimal basis sets: (a) C-H bonding orbital in bipyridine ligands, (b) C-C bonding orbitals, (c) nitrate
group local orbitals, and (d)π-type orbitals in the bipyridine ligands.
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These results can be improved also by freezing the 1score
orbitals. A similar trend is observed for system B (Table 3 and
Figure 6). The elimination of all the orbitals with aπ-type nature
centered on the bipyridine ligand, together with the C-H
bonding orbitals and the 1score orbitals, produces a CI space
with only 37% of the size of the complete space, but giving
95% of theJ value. If the orbitals centered on the nitrate groups
and the C-C orbitals are also eliminated, the space is just 5%
of the total, but theJ value is still 92% of the total value.

C. Extended Basis Sets.The method at this point seems quite
promising, but the results are just qualitative. A quantitative

agreement with the experimental values can be obtained by
extending the basis sets of the atoms, especially those in the
interaction region, that is, Cu, OH, and N atoms. Table 4 and
Figure 7 correspond to the results obtained after the truncation
of the triplet local set for system A with use of Basis III. The
improvement of the basis produces a good agreement with the
experimental value of the magnetic coupling constant (-509
cm-1) for this system. The size of the complete CI space with
use of the extended basis sets is of 4 783 286 determinants.
Using the locality of the orbitals as freezing criterion it is
possible to recover 93% of theJ value with only 12% of the
total space. As can be seen, elimination of only the methyl
groups produces a reduction of 50% in the size of the space
without affecting the magnetic coupling constant value. The
same behavior is found for system B, as shown in Table 5 and
Figure 7. When the basis sets are improved, a quantitative
agreement with the experimental data is obtained. In this case,
the use of the local orbitals permits the reduction of the CI space
up to 7.5% of the initial space, recovering 96.5% of the total
value ofJ.

D. Analysis of the Physical Factors.Another potential of
the method is the analysis of the factor governing the coupling.
In a recent work it was shown that most of the contributions to
J come from those orbitals placed in the bridging ligands and
in the nearest neighborhood of theinteraction region.51 Among
the excitations included in the DDCI space, those contributing
the most to the coupling are those involving a ligand (l) to metal

TABLE 2: Effect of the Truncation of the Average
Singlet-Triplet Local Orbital Set on the J Value (in cm-1)
for [Cu(tmeen)OH]2Br2 (System A), Using the Nature of
These Orbitals as Criteriona

% space J % J

complete set
DDCI space: 1 463 134 det

100 -330 100

frozen occ
-CH3 62 -332 100
-CH3 and-CH2 51.5 -325 98.5
-CH3, -CH2, and-N-CH3 42 -315 95.4
-CH3, -CH2, -N-CH3, and N-CC-N 37 -311 94.2

frozen occ+ vir
-CH3 33 -321 97.3
-CH3 and-CH2 20 -313 94.8
-CH3, -CH2, and-N-CH3 11 -297 90
-CH3, -CH2, -N-CH3, and N-CC-N 8 -288 87.3
a Calculations performed at the DDCI level with minimal basis sets

(basis I). See also Figure 6.

Figure 6. Effect of the truncation of the space on theJ value for (a)
[Cu(tmeen)OH]2Br2, system A (dots), and (b) [Cu(bipy)OH]2(NO3)2,
system B (square), both with minimal basis sets.

TABLE 3: Effect of the Truncation of the Average
Singlet-Triplet Local Orbital Set on the J Value (in cm-1)
for [Cu(bipy)OH] 2(NO3)2 (System B), Using the Nature of
These Orbitals as Criteriona

% space J % J

complete set delocalized +138
complete set local 100 +113 100

DDCI space: 6 037 994 det

frozen occ+ vir
-π, -CH, and 1s 37 +107 95
-π, -CH, -NO3, and 1s 17 +105 93
-π, -CH, -NO3, C-C, and 1s 5 +104 92

a Calculations performed at the DDCI level with minimal basis sets
(basis II). See also Figure 6.

TABLE 4: Effect of the Truncation of the Triplet Local
Orbital Set on the J Value (in cm-1) for [Cu(tmeen)OH]2Br2
(System A), with Extended Basis Sets (Basis III) at the
DDCI Level (See Figure 7)a

% space J % J

exptl value -509
complete set delocalized -500
complete set local 100 -508 100

DDCI space: 4 783 286 det

occ+ vir
-CH3 49 -504 99
-CH3 and-CH2 37 -494 97
-CH3, -CH2, and-N-CH3 27 -480 94
-CH3, -CH2, -N-CH3, and-N-C1 23 -471 93
-CH3, -CH2, -N-CH3, -N-C1, and C1-C1 21 -472 93
-CH3, -CH2, -N-CH3, -N-C1, C1-C1, and 1s 12 -473 93
a Carbon atom C1 belongs to the N-C-C-N skeleton.

Figure 7. Effect of the truncation of the space on theJ value for (a)
[Cu(tmeen)OH]2Br2, system A (dots), and (b) [Cu(bipy)OH]2(NO3)2,
system B (square), both with extended basis sets.
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(a or b, the magnetic centers) excitation coupled with a
polarization of the electrons of the environment (h(hole,
occupied)f p(particle, virtual)). Also the excitations where a
metal-to-ligand excitation is coupled with the polarization of
the environment are important. In both cases, to obtain large
contributions, the three inactive orbitals,l, h, and p must be
centered on the bridging ligands or in atoms not distant from
the magnetic centers.

Taking advantage of the localizing procedure, we eliminated
all the inactive orbitals placed on the OH bridging ligands.
(Notice that the active orbitals present a certain mixing with
the OH groups.) For system A, the resulting CI space contains
3 984 498 determinants (83% of the complete space), but the
value of J is just -176 cm-1. That shows the different role
played by the external and the bridging ligands (the freezing of
the CH3 groups, for instance, produces a space smaller than
this one, but the effect onJ is negligible). If the inactive
occupied orbitals centered on the N atoms oriented toward the
Cu centers are also eliminated, the magnetic coupling diminishes
again up to a value of-130 cm-1. A similar behavior is found
for system B, where the elimination of all the orbitals placed
in the OH ligands and the orbitals centered on the N atoms
oriented toward the Cu centers (the size of the CI space is 81%
of the complete space) gives a value ofJ of +30 cm-1, to be
compared to the value of+173 cm-1 obtained with the complete
space.

Finally, we conclude that due to the local character of the
interaction, the external ligands play no role in the process, the
most important contributions coming from the bridging ligands
and the nearest atoms to the magnetic centers. However, some
studies based on the density functional theory have found an
important effect on theJ value depending on the external
ligands.52,53 Probably, these effects can be considered as an
artifact due to the highly delocalized nature of the magnetic
orbitals in the DFT calculations, completely spread over the
whole system.50

IV. Conclusions

Two µ-hydroxo bridged Cu(II) binuclear complexes were
considered to illustrate the use of the local orbitals as a tool to
rationally truncate the inactive space in extended CI calculations.
The procedure can be considered as an alternative to the energy
excitation dedicated molecular orbitals. The strategy, here
employed to reduce the computational cost in the determination
of the magnetic coupling constants, is completely general and
can be a powerful instrument in those cases where a complete
high-level calculation is not practical. It could be useful, for
instance, in large systems where only a small fraction of them
are directly involved in the process under study. In this case, it
is possible to design a strategy where a set of local orbitals is
obtained from low-level calculations (available even for large

systems), the orbitals located at the inactive regions will be
frozen, and only those regions involved in the process will be
treated in high-level calculations. In this sense, the procedure
could permit one to deal with systems usually reserved to the
density functional theory-based methods.
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