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The generalized graph matXx,») (Estrada, EChem. Phys. LetR001, 336, 247) is shown to encompass
several of the applications of graph theory in physical chemistry in a more compact and effective way. It
defines severah-Euclidean graph metrics, which simulate a graph defolding by changing the exponent
from 0 to 0.5 in a continuous way. This matrix is included in the formalism of thekidumolecular orbital
approach by considering that the resonance integrals between nonneighbor atoms are a function of the
topological distance in terms @f In doing so, the isospectrality between graphs disappears by changing the

X parameter in this matrix as a consequence of considering the interactions between nonneighbor atoms. The
I'(x,v) matrix permits several of the “classical” topological indices to be (re)defined using only one graph
invariant. These indices include the connectivity index, Balabentlex, Zagreb indices, Wiener index, and
Harary indices, which are represented in an 8-dimensional space of parameters to show their similarities and
differences. The indices can be optimized to describe physicochemical properties by changing in a systematic
way the parameters of the generalized graph matrix and vectors. We show here how a dramatic improvement
is obtained by optimizing the Wiener index for describing octane boiling points (Ren.53 toR = 0.94),

also providing a structural interpretation of the model found.

Introduction literature were introduced in an ad hoc way. That is to say,

There are several sources of connection between chemicalthey are EOt _necessanl;r/] optimal f(_)r_ dgsgrlbmg a_ parglculacrj
applications of graph theory and physical chemiétrijor property. For instance, the connectivity index was introduce

instance, the Fickel molecular orbital (HMO) approach and by R.andicas an attempt to accountl for mo!ecular branchir!g,
the eigenvalue problem of the adjacency matrix is a well- @nd it was shown that it correlated in a satisfactory way with
documented chapter of these interconnectfofibe graphical the boiling point of alkane&However, several researchers have
rules introduced by Sinaribg on the basis of a quantum Produced better results for this and other properties simply by
chemical molecular orbital approach is another example of this Optimizing the exponent in the Randievariant?~** By this
interrelation~5 On the other hand, there are several molecular means, Pogliani has introduced several series of semiempirical
descriptors based on a graph theoretic formulation of the connectivity indices that describe in a much more effective way
molecular structure, the so-called topological indices, which several physicochemical properties of chemical compothids.
show great utility in describing physicochemical properties of Randichas also introduced variable molecular descriptors as a
chemical compoundsHowever, because of the lack of a general way to optimize their capacity of describing properfig=?3 In
theory that accounts for the whole use of graph theory in this line Estrada introduced the concept of generalized Tls, in
physical chemistry, all these applications of graph theory to which a rational way to optimize these descriptors is pro-
chemistry appear in disconnected ways. One of the undesiredvided?24-26

effects of this discgnnection is the proliferation of descriptors  te main objective of the current work is to demonstrate that
and app(oachgs using graphs to representthe molecular structurgh o e are several applications of graph theory to physical
Randlctrle_d to_mt_roduce a sort of rationality in the dev_e!opment chemistry which are interconnected and are not isolated islands
of topological indices (Tls) more than 10 years ago, giving some in the middle of the ocean. Thus, we show that it is possible to

attributes th‘.'ﬂ the |nd|Ses S,,hOUId hafvbhqwever, up to now build a general approach for the study of graph theoretic
attempts to introduce “new” TIs, which in most cases do not . . . o . . )
invariants and for their optimization to describe physicochemical

fulfill these attributes, have not stopped. rproperties We also show that this approach gives an under-
At the moment some researchers have adopted anothe standing of the failure of the HMO approach in describing

direction for searching better quantitative structupeoperty . i
and —activity relationships (QSPR and QSAR). Instead of certain _classes of molecules, such as the so-called isospectral
producing new indices in an indiscriminate way, they prefer to °N€s- Finally, but not least, we also demonstrate that under the

optimize the existing ones for developing better models than Umbrella of this general approach a graph geometry exists. All
with the original indices. The philosophy behind this strategy these new findings and generalizations can be useful ingredients

could be resumed in the fact that all Tls described today in the for the future building of a theory that connects graph theory
and physical chemistry with more basic and fundamental
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Figure 1. Molecular graphs representing 2-methylbutane and its
generalized graph and shortest path matrixes.

Theoretical Approach
In this section we introduce some of the concepts and
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there is an infinite number of graph theoretic matrixes from
which the before-mentioned ones are only particular cases.

Generalized Matrix Metrics

A metric on a graph is defined as a function from the
Cartesian product x V to the nonnegative real numbers such
that for anyi, j, k € V&7

p(ij) =0=i=]
p(i) = p(.i) = 0
p(i.j) + p(.K) = p(i,K)

The last one is known as the triangle inequality. From the graph
metrics analyzed by Klein the shortest path metric and the
square-rooted shortest path metric are straightforwardly defined
under the current approaé#r.3! The shortest path metric is that
defined by the “classical” topological distance maffigd,1) =
D.32 This is a particular class of a more general metric existing
for graphs. If we consider the general cdBd,v), we can
investigate which of these matrixes represent metrics for
graphs®? Using the Blumenthal theorem for the construction
of metrics, we can obtain the following generalization.
Theorem (BlumenthaB? Given a metricp, the functionsp,
with p,(i,j) = [p(i,})]* aren-Euclidean metrics for alh > 0 if

mathematical formalisms that we use in the other sections of 0 < » < 0.5.

this work. We start by introducing a generalized graph matrix
and some of its mathematical properties.

Definition 1: LetI'(x,v) = [g;j(X,v)]nxn be the generalized
graph matrix, which is defined as a square symmetric matrix
with elementsg;:2425

1 if dij =1
g = (dijxd“ — 1y ifi=jandd; =1
0 otherwise

Definition 2: LetPy = [pj(K)]nxn be the shortest path matrix
of orderk whose elementg; are 1 if and only if there exists a
shortest path of ordéd between vertexesandj in the graph.
It is straightforward to realize that the adjacency ma#iof
the graph is equal te;.

Definition 3: The generalized graph matrlX(x,2) can be

We understand-Euclidean to mean a functigndefined on
pairs of distinct vertexes for which every subsetrof+ 1
elements of the vertex sdtis isometrically embeddable into
n-dimensional Euclidean spaeg The functionso are consid-
ered from the Cartesian produ¢t x V to the real numbers.
Thenp establishes an isometry on a subsen &f 1 vertexes if
and only if thesen + 1 vertexes can be embedded in
n-dimensional Euclidean spaeg, such that thep values for
pairs of vertexes of this subset are identical to the corresponding
Euclidean distances ig,.®

The square-rooted metric is a particular case of the following
metrics: I'(1,0.5) = Dy, as analyzed by Klein in several
works?8-381 In this matrix the elements are the square roots of
the topological distances between the vertexes in the graph.
However, all the generalized matrixBél,») with 0 < » < 0.5
involve n-Euclidean metrics for alh > 0.

expressed as a sum of shortest path matrixes of different orders Several graph geometric invariants were proposed by Zhu

in the following way:

L(xo) = (X )P

i=1

An example of the generalized graph matrix as well as the

shortest path matrixes for 2-methylbutane are given in Figure

1.
According to the definitions given it is straightforward to

and Klein for characterizing the metric properties of graghs.
We use here two of these invariants to illustrate the metric
properties of certain graphs as deduced from the generalized
matrix of graphsI'(1,») with 0 < » < 0.5. These two graph
geometric invariants are thi@ear curvatureand thecurzilinear
torsion

The net linear curvaturl is associated with each vertex of
the graph. It is the sum of the anglés formed by all
combinations of three successive vertexg¢sandk. The angle

realize that several of the main matrixes used in chemical graphg is obtained &

theory today are particular cases of the generalized matrix. For

instance, the adjacency matr the distance matri, and
the Harary matrixesl1l andH2 are obtained as particular cases
of I'(x,v). We recall that the Harary matrixes are the matrixes

cos@ — 0) = (pik2 - pij2 - ijz)/ZPiijk

in which i, j, andk are the vertexes of a 3-path in the graph.

with inverse and squared inverse distances between vertexes ifThe curvature sum is simply the sum of all net curvatures in

the graph.
ro,1)=A,
I'(1,—1)=H1,

I(1,1)=D
I(1,-2) = H2

One of the consequences of this generalization is the fact that

the graph.
The curvilinear torsion is defined for thgj, k, andl vertexes
in a 3-path in the following way?

A(ikj) Adljk) + 20, [AGiK]) — A(il})]
16A(ijk) AGjkl)

cosgp) =
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TABLE 1: Linear Curvature Sums Divided by 2z for Path
Graphs in the Generalized Matrix Approach at Different »
Values k = 1)

v L4 LS L6 L7 L8

0 0.3333 0.5000 0.6667 0.8333 1.0000
0.1 0.3601 0.5401 0.7201 0.9001 1.0802
0.2 0.3895 0.5843 0.7790 0.9738 1.1685
0.3 0.4222 0.6333 0.8443 1.0554 1.2665
0.4 0.4587 0.6880 0.9173 1.1467 1.3760
0.5 0.5000 0.7500 1.0000 1.2500 1.5000

v=0.0 v=0.1
TABLE 2: Net Torsion Sums Divided by 2z for Path

Graphs in the Generalized Matrix Approach at Different »
values &k = 1)
\ L4 L5 L6 L7 L8
0 0.1959 0.3918 0.5878 0.7837 0.9796
0.1 0.2093 0.4186 0.6279 0.8372 1.0465
0.2 0.2212 0.4423 0.6635 0.8847 1.1058
0.3 0.2318 0.4635 0.6953 0.9270 1.1588
0.4 0.2413 0.4826 0.7238 0.9651 1.2064

0.5 0.2500 0.5000 0.7500 1.0000 1.2500

v=0.2 r=0.3
where the “Pythagorean defed({abc) and the area of a triangle '

A(abg) are defined as
A@bQ = pay’ = pac’ ~ Poc
A@bg) = [S(S ~ pa)(S — Pud (S~ pea)]
wheres = (pap + pbec + pag)/2. The net torsion sum is the sum

of net torsions at each edge of the graph.
In Tables 1 and 2 we give the values of the net linear v=04 v=05
curvature and the curvilinear torsion sums, respectively. As can Figure 2. Embedding of the 3-path graph into a 3-Euclidean space
be seen in these tables the net linear curvature and the curvilineaand simulation of the graph expansion produced by the continuous
torsion sums increase their values as the value iotreases. change of they parameter.
In the particular case of the 3-path (L3) these metrics are
represented by embedding this graph in a 3-Euclidean space
as in Figure 2. This path was defined by Balaban aridkeu an
as a protochiron for the 3-dimensional coding of certain
structures’ In this way, the linear curvature represents the net 8
angles between the vertexes in the graph and the curvilinear o
torsion represents the total number of twisting as given by the
dihedral angles. As can be observed the net effect of increasings +s
the value ofv is the “defolding” of the chain from a more £
compact structure to one in which vertexes are more separatec< - 2
in space. This “graph expansion” follows a linear dependence
for the value ofv as illustrated in Figure 3.

agree:

]

&0 a
Generalized Matrix and Quantum Chemistry
The relationship between the adjacency matrix of graphs *oa 0.0 01 02 03 04 05 06
representing conjugated molecules and the HMO method is well- v
known and documented in the literatdrén the HMO ap- i L

proximation all overlap integrals are set equal to 0, all resonanceFigure 3. Linear relation between the exponent and the graph
integrals between nonneighbors are set equal to 0, and thefXPansion as measured by the “bond angle” and *torsion angle” in an
remaining resonance integrals are set equal.3b embedding of the 3-path in a 3-Euclidean space.

In the current approach, we consider again that all overlap introduced by Hoffman/® where the nondiagonal elements of
integrals are set equal to O but that the resonance integrals arehe Hamiltonian are refined to be an explicit function of the

a function of the topological distance separating atomusd]: molecular geometry through the dependence of the overlap
. matrix on the internuclear distanc&d4owever, the main value
Bi = (dijxd”)”ﬂ of the current approach is that it is defined under the umbrella

of a graph theoretical approach that encompasses aspects of
The idea of not neglecting the off-diagonal overlaps and molecular geometry, quantum chemistry, and a description of
Hamiltonian matrix elements in the HMO secular determinant physicochemical properties through structupeoperty relation-
is very old and can be resumed in Streitweiser’s b¥&okhe ships.
current approach based on the generalized graph matrix also In the case of adjacent atoms the resonance integral is equal
has some resemblance to the extendédkdlutheory (EHT) to 5 as in the original HMO approach, and in the particular
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TABLE 3: Experimental lonization Energies (1™, eV) and / A
Eigenvalues of the Generalized Graph Matrix with Different
Values of thex Parameter (v = 1)
m x=0 x=0.05 x=0.1 x=0.15 x=0.2 \
1,4-Divinylbenzene ®)
8.11 0.539 0.384 0.218 0.042 -0.140
9.18 1.000 0.892 0.770 0.632 0.480
9.80 1.000 0.930 0.840 0.727 0.589
11.00 1.675 1.724 1.765 1.794 1.807
2.214 2.486 2.790 3.131 3.514 N
2-Phenylbutadiene
8.60 0.539 0.409 0.269 0.118 -—0.041
9.28 1.000 0.891 0.766 0.622 0.462
9.50 1.000 0.893 0.770 0.632 0.480 P
11.54 1.675 1.743 1.799 1.838 1.853
2.214 2.481 2.783 3.123 3.507
R 0.945 0.958 0.963 0.964 0.962
a Correlation coefficient between the experimental ionization energies
and the eigenvalues of the generalized matrix. The case 0 ©
corresponds to the simple HMO approach. Figure 4. Valence isomers of benzene showing the different topologi-

. . cally equivalent structures.
case ofx = 0 the secular determinant is exactly the same as for ¥ €a

HMO. To keep the physicality of the approach, we will think 3 significant improvement compared to the HMO resuilts in both
about only those values of (v will be kept equal to 1 forthe 5 gualitative and a quantitative walRy(= 0.945).
sake of simplicity) which make the interactions between  The interpretation of the results obtained by using the
nonbonded atoms weaker than those between bonded atomsyeneralized matrix is based on the fact that we are considering
This means that we select the valuesafi the range Q< x < not only the resonance integrals between the bonded atoms but
0.5. The upper limit is based on the fact that wher 0.5 the 450 those between nonneighbors. Consequently, if we consider
resonance integraf for the atoms separated a_tdlstance 2 take the simple case of thes@raph representing the molecule of
exactly the same value as for the atoms at distanceé 1. penzene, what we are analyzing in reality is a graph with
One interesting application of the current approach is «strong” connections between bonded atoms and some “weak”

concerned with the so-called isospectral grafih&: These connections between the nonbonded ones as illustrated below:
graphs are nonisomorphic graphs having exactly the same

spectra for their adjacency matrixes. A well-known example of
a pair of isospectral graphs is that for 1,4-divinylbenzene and
2-phenylbutadiene. These two molecules are conjugated hydro-
carbons, and it is possible to use the HMO approach for their
study. In 1978 Heilbronner and Jofitdetermined the ionization
energies of this pair of molecules using photoelectron spectra,
finding that they “differ at least as much as those of any other
‘nonisospectral’ pair havingr systems of comparable size”.
Heilbronner and Jones also showed that MO models at the ST
3G level were able to differentiate correctly the ionization

If x = 0.1, for instance, the strong connections take values
of 1 and the weak connections take values of 0.2 and 0.03 for
atoms at distances 2 and 3, respectively. In this particular case
o-of benzene we can think that the contributions for nonneighbor
atoms come from the contributions made by the valence isomers
energies of these two molecutéOn this basis they concluded of benzené>47 such as Dewar structures, benzvalene structures,

“that the graph theoretical statement that two molecules are 1d Prismane structures. For instance, there are three topologi-
isospectral’ is not of relevance for their physical and chemical cally equivalent Devx_/ar benzene structures in which connections
behavior’# However, the point here is the following: If the between atoms at distance 3 are considered. In benzvalene each

HMO reproduces reasonably well the electronic features of structure has a couple of connections between atoms separated

conjugated systems, why does it fail in explaining the differences &t distance 2, which makes six topologically equivalent benz-
between “isospectral” graphs? valene structures. Finally, there are three topologically equivalent

To investigate this question, we carried out calculations on prismane structures in - which connect.ions between atoms
the framework of the generalized graph matrix for these two separated at distances 2 and 3 are considered. These structures
molecules by changing the value os shown in Table 3. As are illustrated in Figure 4. Using these structures as well as the
can be seen in this table not only does the change okthe two Kekule structures of benzene, we can calculate the Pauling
parameter from O to 0.05 produce a differentiation of the spectrabond F’rﬁt‘ffs not only folrl the. bo?]ded Iatom? but for the
of both molecules but this change is in the correct direction. "°Nneighbor atoms as well, giving the values of 1.214, 0.214,
According to the experimental values shown as well in this table, _and 0.143 f_or_atoms at d|sta_nces 1,2 and3, respectlvely. This
2-phenylbutadiene has a higher HOMO energy than 1,4- is a result §|mllar tp that obtained here Wheﬁ 0, which means
divinylbenzene, which is well reproduced by the generalized that 'the' |nteract|o'ns' be.tween nqnne|ghbor atoms make a
matrix spectra withx > 0. We also provide in this table the contribution to the ionization energies of these two molecules.
correlation coefficient between the experimental values of the
ionization energies and the eigenvalues of the generalized
matrix. As can be seen when= 0.15 is used as a parameter As commented on in the Introduction, one of the current main
a correlation coefficient oR? = 0.964 is obtained. It is still problems in the research of topological indices is an indiscrimi-
not as good as that obtained by MO STO-3G calculations nate proliferation of such molecular descriptors. To avoid the
reported by Heilbronner and Joné® & 0.982f4but represents  continuation of this practice, we introduce a strategy that permits

Generalized Topological Indices
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optimization of several of the well-known topological indices. This result has three important consequences. The first is that
This optimization is carried out to predict in a more effective there are not so many graph theoretic invariants as we think,
way the physicochemical or biological properties of chemicals many being the same invariant with different weights. The

under study as well as to facilitate the interpretation of these second consequence is that from a practical point of view we

descriptors in a physicochemical context.

can optimize these topological indices, previously introduced

For the current purpose of generalizing TIs we introduce a in an ad hoc way, to describe the properties we are interested

change of variable iT'(x,») so thatx is substituted by or z
andv = 1. Thus, we obtain the following matrixe&:(y,1) and

in. Both consequences can be a guide for stopping the
indiscriminate generation of new topological indices. Instead

I'(z,1). Using these matrixes, two new graph theoretical vectors of trying to generate a new index, one can try to optimize the

used in the generalization of TIs are defined as folléfvs®
Definition 4: Lety(w,y,q) andz(s,zr) be two vectors of order
n whose elementy; andz are defined as follows:

Yy = (w + Zgij )Y z=(s+ zgij 1)y
J J

wherew; ands are weights to be assigned to the corresponding

vertex to differentiate heteroatoms or chiral centers.

The generalized vectors of the 2-methylbutane molecule,

which was previously illustrated in Figure 1, are

y(wy,a) = [(w; + 4y + 3y)? (w, + 3 + 2y)°
(ws + 2+ 4y)? (w, + 1+ 2y + 6y?)°
(Ws + 1+ 4y + 39

z2(s,z)=[(s,+42+32) (5,+3+22" (s;+2+42
(,+ 1422+ 62) (5+ 1+ 4z+32)

The following definition based on a vectematrix—vector
(VMV) multiplication procedure introduced by Estr&@é® is
used for the generalization of the Tls.

Definition 5: Let &/ be a generalized vectomatrix—vector
invariant defined &4

7 = C[y(y,w,q) T(x,v) z(zs[)]

By using this expression, we can obtain several adjacency-base
and distance-based Tls using only one graph theoretic invariant.
The mathematical expressions for these classical indices are

W= ",[y(1,0,0)I(1,1) z(1,0,0)]
J="1,[y(1,0-0.5)T(0,1)z(1,0,-0.5)]
H, = ,[y(1,0,0)T(1,—1) z(1,0,0)]
H, = ",[y(1,0,00T'(1,—2) 2(1,0,0)]
M; = [y(0,0,1)T(0,1)2(0,0,0)]

M, = Y,[y(0,0,1)T(0,1) z(0,0,1)]

x = '1,[y(0,0-0.5)I(0,1)z(0,0,—0.5)]

%" =",[y(ON,—0.5)T(0,1)z(N,0,—0.5)]

whereN in the last expression stands for the count of electrons

in - bonds and in lone-pair orbitals. Hek¥ is the Wiener
index?? J is the Balaban indeX H; andH, are the so-called
Harary indice$?°3 M; and M, are the Zagreb indicéd,y is
the connectivity indeg, and yV is the valence connectivity
index>55

existing ones. If you do not succeed with the optimization, then
you can try introducing a new one. But take into account that
by changing these eight parameters at the same time in a
continuous way you will generate an infinite number of choices
for describing the property. Finally, we can seek a physico-
chemical interpretation of the TIs in a global way. The
identification of some physicochemical basis for the connectivity
index® can give us some clues about the way in which this
interpretation can be carried out.

Representation of Topological Indices

As we can see, the first consequence of the generalized
vector-matrix—vector multiplication procedure is that all Tls
studied here are points in an 8-dimensional space. This is a
completely new picture in the study of Tls, because most of
these descriptors have appeared as disconnected from each other,
eluding generalizations and interpretations in a united way and
complicating the computer programs to calculate them by using
several different algorithms. Now, we have only one algorithm
depending on eight different parameters and can generate a series
of the most important TIs described in the literature. This fact
also will permit a better interpretation of these descriptors than
if we attempt to make this interpretation of the indices one by
one.

A graphical representation of the Tls studied here with radial
graphics is given in Figure 5. These graphics are built by using
eight axes, which correspond to the eight parameters in the

urrent approachy, w, q, X, v, z, s, andr, and an octagonal
igure, formed by joining these points representing the topologi-
cal indices.

The main utility of these graphics is to orient the optimization
process of the Tls in a rational way. Suppose one knows a priori
that the Balaban indeX describes propert in a better way
than the WieneW index. Then, by analyzing the differences
between the diagrams for these two indices, one can select as
a first choice the optimization af, x, andr, which make the
differences between both indices, instead of optimizing the eight
parameters.

Optimization of Topological Indices

The optimization of an index according to our approach of
the generalized vectemmatrix—vector multiplication procedure
consists simply in changing systematically the values of the eight
parameters on which any of the studied indices depend. This
procedure permits the definition of an infinite number of Tls,
the known ones of which are particular cases. However, if we
consider changing systematically all eight parameters of the
VMV multiplication procedure, we can generate a huge number
of descriptors, creating a big problem for their computation,
storage, and manipulation. For instance, if we consider simul-
taneous variations of the eight parameters from 0 to 0.9 with a
step of 0.1, we generate 100000000 indices.

As a working example we investigate the optimization of the
WienerW index for describing the boiling points of octanes.
For the sake of simplicity we optimize only the parameters
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Figure 5. Representation of the topological indices in 8-dimensional spaces of parameters arising from the generalized graph matrix and vectors.

The axes start at the value of2.

and v, reducing the problem to the generation of the optimal
index of the form

W= ",[y(1,0,0)T'(x,2) z(1,0,0)]

The optimization procedure consists of the following steps:

(a) select a range for the and v parametersXqin < X <
Xmax Umin = ¥V = Umax).

(b) select steps for the change of thkeand v parameters,
e.g., step 1 and step 2, respectively,

(c) calculate the indiced/(x,v) for the data set of compounds
(e.g., octanes) according to the VMV multiplication procedure,

(d) find linear regression models for each of Yhx,v) indices
and the property to be studied (e.qg., boiling point),

(e) select the values of theand v parameters of the best
model,

(f) select a new range forandv closer to the values obtained
in (e) as well as new steps,

(g) turn to (c) until the optimal values afandv are obtained.

We first explored the region around the original Wiener index
using the followingx andv values: 1< x<5and1l<v =<5
with step 1= step 2= 1. The correlation coefficients in this
region were not significantly better than that obtained for the
Wiener index as illustrated in Figure 6A. Then, we moved to
the following parameter regions:5 < x< —land—-5=< » <
—1 with step 1= step 2= 1. The results of this second
optimization are given in a graphical form in Figure 6B.

The originalW index has a correlation coefficient of oniR
= 0.539 with the boiling point of octanes. It is shown at the
extreme right corner of Figure 6A, i.ex,=1 andv = 1. The
best result obtained with the current gross optimization is for
the casex = —2 andv = —1 for whichR = 0.901. This index,
W(—2,—1) explains more than 81% of the variance in the boiling
points of octanes, which represents an improvement of 52%
over the original WienekV index.
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A “finer” optimization of this index was then conducted by
changing systematically the value ®ffrom —3 to —1 and
keeping constant the value of= —1. The results obtained in
this optimization step are illustrated in Figure 7, where we plot
the correlation coefficient versus the valuexof

The optimal Wiener index obtained by this process is
W(—1.4-1), which gives a correlation coefficient of 0.946. The
linear regression model obtained with this index is given below
together with the statistical parameters of the model:

bp (°C) = 48.0023+ 13.527IM(—1.4-1)
n=18, R=0.9464, s=2.04, F=1375

This model represents an improvement of 14.3% in the standard
deviation over the previous best model with a Wiener-like index
obtained by Ivanciuc et & with odd/even Wiener indices. It
also represents an improvement of 7.7% with respect to the long-
range connectivity index developed by Est®dhat was the
best previous model to describe boiling points of octanes with
one topological index. In fact, the correlation obtained here is
the best QSPR model for describing boiling points of octanes
with one TI. However, we have to say that this index is not
necessarily the best of all Wiener indic@4x,v) that can be
obtained for describing the boiling points of octanes because
we have explored only a small portion of the parameter space
for optimizing theW index.

In terms of the interpretation of the model developed using
the generalized Wiener index for the boiling point of octane,
we have to consider first the expressionVigfx,») in terms of
the number of vertexes separated at the same distance. This
expression is given below for the general values ahdv in
terms of the numben; of vertexes separated at distarice

Wixo) =y (ix )7,
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Figure 6. Optimization of the Wiener index by changing the parameters
xandv in the ranges & x < 5and 1< v < 5 (A) as well as—5 =<

x < —1and-5 =< v < —1 (B) for improving the correlation coefficient
for the boiling points of octanes.
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Figure 7. “Finest” optimization of the Wiener index by changing the
values of the parameter

This means that the particular caseV#f—1.4,—1) is given
by the following expression:

W(—1.4~1) =5, — 0.35%, + 0.170;, —
0.09%, + ...+ [i(—1.4) Y *

By substituting this expression into the QSPR model for the
boiling point of octanes, we obtain an additive contribution of
the paths of different lengths in the octanes to their boiling
points:

Estrada

bp (°C) = 48.00+ 13.527%, — 4.829, +
2.347, — 1.23), + ...

This means that the main contribution is carried out by the
number of bondsy; (13.527°C). Then, a negative contribution
comes from fragments formed by two bonds. These fragments
increase dramatically with branching in the molecule. For
instance, in a path of order 4-putyl group) we have three
fragments of this type, but in the star of five vertexedd@d-
butyl group) it is increased to 6. It is well-known that branching
decreases the boiling point due to a smaller number of
intermolecular contacts in the liquid as predicted by our model
that assigns a negative coefficient to these fragments. With the
increase of the size of the fragments their contributions diminish,
representing only minor corrections to the boiling point of
octanes in the current approach. The idea of assigning decreasing
contributions according to increasing distance in TIs appears
to have been first introduced by Diudea and Balaban 10 years
ago>%80Other similar long-range contributions to connectivity
indices were also reviewed recently by Estrafda.

Conclusions

The conclusions of this work are the following:

(1) The generalized graph matrix encompasses in a more
compact way the structural information contained in several
traditional graph theoretic matrixes.

(2) The generalized graph matrix fer=1 and 0< v < 0.5
defines several graph metrics, which ar&uclidean for alln
> 0. The net effect of changing the exponeritom 0 to 0.5 in
a continuous way represents a graph expansion or defolding
from a more compact “conformation” to a more expanded one.

(3) The generalized graph matrix can be included in the
formalism of the HMO approach by considering that the
resonance integrals between nonneighbor atoms are a function
of the topological distance in terms gf

(4) The isospectrality between graphs is produced by the
neglect of interactions between nonneighbor atoms in the HMO
approach, and it disappears as soon as we change the parameter
x in the generalized graph matrix.

(5) There are several Tls that can be obtained using the same
graph invariant with the generalized graph matrix. They include
the connectivity index, Balabahindex, Zagreb indices, Wiener
index, and Harary indices.

(6) The TIs can be represented in an 8-dimensional space
based on the parameters of the generalized graph matrix and
vectors. This representation can help in orienting a rational
optimization of these indices.

(7) TlIs can be optimized to describe physicochemical
properties by systematically changing the parameters of the
generalized graph matrix and vectors. The optimized indices
can be interpreted structurally, giving physical interpretability
to the models developed.

(8) An interconnection among several apparently isolated
applications of graph theory in physical chemistry has been
found by using the generalized graph matrix approach.
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