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The generalized graph matrixΓ(x,V) (Estrada, E.Chem. Phys. Lett. 2001, 336, 247) is shown to encompass
several of the applications of graph theory in physical chemistry in a more compact and effective way. It
defines severaln-Euclidean graph metrics, which simulate a graph defolding by changing the exponentV
from 0 to 0.5 in a continuous way. This matrix is included in the formalism of the Hu¨ckel molecular orbital
approach by considering that the resonance integrals between nonneighbor atoms are a function of the
topological distance in terms ofâ. In doing so, the isospectrality between graphs disappears by changing the
x parameter in this matrix as a consequence of considering the interactions between nonneighbor atoms. The
Γ(x,V) matrix permits several of the “classical” topological indices to be (re)defined using only one graph
invariant. These indices include the connectivity index, BalabanJ index, Zagreb indices, Wiener index, and
Harary indices, which are represented in an 8-dimensional space of parameters to show their similarities and
differences. The indices can be optimized to describe physicochemical properties by changing in a systematic
way the parameters of the generalized graph matrix and vectors. We show here how a dramatic improvement
is obtained by optimizing the Wiener index for describing octane boiling points (fromR ) 0.53 toR ) 0.94),
also providing a structural interpretation of the model found.

Introduction

There are several sources of connection between chemical
applications of graph theory and physical chemistry.1 For
instance, the Hu¨ckel molecular orbital (HMO) approach and
the eigenvalue problem of the adjacency matrix is a well-
documented chapter of these interconnections.2 The graphical
rules introduced by Sinanogˇlu on the basis of a quantum
chemical molecular orbital approach is another example of this
interrelation.3-5 On the other hand, there are several molecular
descriptors based on a graph theoretic formulation of the
molecular structure, the so-called topological indices, which
show great utility in describing physicochemical properties of
chemical compounds.6 However, because of the lack of a general
theory that accounts for the whole use of graph theory in
physical chemistry, all these applications of graph theory to
chemistry appear in disconnected ways. One of the undesired
effects of this disconnection is the proliferation of descriptors
and approaches using graphs to represent the molecular structure.
Randićtried to introduce a sort of rationality in the development
of topological indices (TIs) more than 10 years ago, giving some
attributes that the indices should have.7 However, up to now
attempts to introduce “new” TIs, which in most cases do not
fulfill these attributes, have not stopped.

At the moment some researchers have adopted another
direction for searching better quantitative structure-property
and -activity relationships (QSPR and QSAR). Instead of
producing new indices in an indiscriminate way, they prefer to
optimize the existing ones for developing better models than
with the original indices. The philosophy behind this strategy
could be resumed in the fact that all TIs described today in the

literature were introduced in an ad hoc way. That is to say,
they are not necessarily optimal for describing a particular
property. For instance, the connectivity index was introduced
by Randićas an attempt to account for molecular branching,
and it was shown that it correlated in a satisfactory way with
the boiling point of alkanes.8 However, several researchers have
produced better results for this and other properties simply by
optimizing the exponent in the Randic´ invariant.9-11 By this
means, Pogliani has introduced several series of semiempirical
connectivity indices that describe in a much more effective way
several physicochemical properties of chemical compounds.12-18

Randićhas also introduced variable molecular descriptors as a
way to optimize their capacity of describing properties.19-23 In
this line Estrada introduced the concept of generalized TIs, in
which a rational way to optimize these descriptors is pro-
vided.24-26

The main objective of the current work is to demonstrate that
there are several applications of graph theory to physical
chemistry which are interconnected and are not isolated islands
in the middle of the ocean. Thus, we show that it is possible to
build a general approach for the study of graph theoretic
invariants and for their optimization to describe physicochemical
properties. We also show that this approach gives an under-
standing of the failure of the HMO approach in describing
certain classes of molecules, such as the so-called isospectral
ones. Finally, but not least, we also demonstrate that under the
umbrella of this general approach a graph geometry exists. All
these new findings and generalizations can be useful ingredients
for the future building of a theory that connects graph theory
and physical chemistry with more basic and fundamental
principles.* E-mail: estrada66@yahoo.com.
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Theoretical Approach

In this section we introduce some of the concepts and
mathematical formalisms that we use in the other sections of
this work. We start by introducing a generalized graph matrix
and some of its mathematical properties.

Definition 1: Let Γ(x,V) ) [gij(x,V)]nxn be the generalized
graph matrix, which is defined as a square symmetric matrix
with elementsgij:24,25

Definition 2: LetPk ) [pij(k)]nxn be the shortest path matrix
of orderk whose elementspij are 1 if and only if there exists a
shortest path of orderk between vertexesi and j in the graph.
It is straightforward to realize that the adjacency matrixA of
the graph is equal toP1.

Definition 3: The generalized graph matrixΓ(x,V) can be
expressed as a sum of shortest path matrixes of different orders
in the following way:

An example of the generalized graph matrix as well as the
shortest path matrixes for 2-methylbutane are given in Figure
1.

According to the definitions given it is straightforward to
realize that several of the main matrixes used in chemical graph
theory today are particular cases of the generalized matrix. For
instance, the adjacency matrixA, the distance matrixD, and
the Harary matrixesH1 andH2 are obtained as particular cases
of Γ(x,V). We recall that the Harary matrixes are the matrixes
with inverse and squared inverse distances between vertexes in
the graph.

One of the consequences of this generalization is the fact that

there is an infinite number of graph theoretic matrixes from
which the before-mentioned ones are only particular cases.

Generalized Matrix Metrics

A metric on a graph is defined as a function from the
Cartesian productV × V to the nonnegative real numbers such
that for anyi, j, k ∈ V27

The last one is known as the triangle inequality. From the graph
metrics analyzed by Klein the shortest path metric and the
square-rooted shortest path metric are straightforwardly defined
under the current approach.28-31 The shortest path metric is that
defined by the “classical” topological distance matrixΓ(1,1))
D.32 This is a particular class of a more general metric existing
for graphs. If we consider the general caseΓ(1,V), we can
investigate which of these matrixes represent metrics for
graphs.32 Using the Blumenthal theorem for the construction
of metrics, we can obtain the following generalization.

Theorem (Blumenthal):27 Given a metricF, the functionsFV
with FV(i,j) ≡ [F(i,j)]V aren-Euclidean metrics for alln g 0 if
0 e V e 0.5.

We understandn-Euclidean to mean a functionF defined on
pairs of distinct vertexes for which every subset ofn + 1
elements of the vertex setV is isometrically embeddable into
n-dimensional Euclidean spaceεn. The functionsF are consid-
ered from the Cartesian productV × V to the real numbers.
ThenF establishes an isometry on a subset ofn + 1 vertexes if
and only if thesen + 1 vertexes can be embedded in
n-dimensional Euclidean spaceεn, such that theF values for
pairs of vertexes of this subset are identical to the corresponding
Euclidean distances inεn.28

The square-rooted metric is a particular case of the following
metrics: Γ(1,0.5) ) D1/2, as analyzed by Klein in several
works.28-31 In this matrix the elements are the square roots of
the topological distances between the vertexes in the graph.
However, all the generalized matrixesΓ(1,V) with 0 e V e 0.5
involve n-Euclidean metrics for alln g 0.

Several graph geometric invariants were proposed by Zhu
and Klein for characterizing the metric properties of graphs.29

We use here two of these invariants to illustrate the metric
properties of certain graphs as deduced from the generalized
matrix of graphsΓ(1,V) with 0 e V e 0.5. These two graph
geometric invariants are thelinear curVatureand thecurVilinear
torsion.

The net linear curvatureki is associated with each vertex of
the graph. It is the sum of the anglesθ formed by all
combinations of three successive vertexesi, j, andk. The angle
θ is obtained as29

in which i, j, andk are the vertexes of a 3-path in the graph.
The curvature sum is simply the sum of all net curvatures in
the graph.

The curvilinear torsion is defined for thei, j, k, andl vertexes
in a 3-path in the following way:29

Figure 1. Molecular graphs representing 2-methylbutane and its
generalized graph and shortest path matrixes.

gij ) {1 if dij ) 1
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where the “Pythagorean defect”∆(abc) and the area of a triangle
A(abc) are defined as

wheres ) (Fab + Fbc + Fac)/2. The net torsion sum is the sum
of net torsions at each edge of the graph.

In Tables 1 and 2 we give the values of the net linear
curvature and the curvilinear torsion sums, respectively. As can
be seen in these tables the net linear curvature and the curvilinear
torsion sums increase their values as the value ofV increases.

In the particular case of the 3-path (L3) these metrics are
represented by embedding this graph in a 3-Euclidean space,
as in Figure 2. This path was defined by Balaban and Ru¨cker
as a protochiron for the 3-dimensional coding of certain
structures.33 In this way, the linear curvature represents the net
angles between the vertexes in the graph and the curvilinear
torsion represents the total number of twisting as given by the
dihedral angles. As can be observed the net effect of increasing
the value ofV is the “defolding” of the chain from a more
compact structure to one in which vertexes are more separated
in space. This “graph expansion” follows a linear dependence
for the value ofV as illustrated in Figure 3.

Generalized Matrix and Quantum Chemistry

The relationship between the adjacency matrix of graphs
representing conjugated molecules and the HMO method is well-
known and documented in the literature.2 In the HMO ap-
proximation all overlap integrals are set equal to 0, all resonance
integrals between nonneighbors are set equal to 0, and the
remaining resonance integrals are set equal toâ.34

In the current approach, we consider again that all overlap
integrals are set equal to 0 but that the resonance integrals are
a function of the topological distance separating atomsi andj:

The idea of not neglecting the off-diagonal overlaps and
Hamiltonian matrix elements in the HMO secular determinant
is very old and can be resumed in Streitweiser’s book.35 The
current approach based on the generalized graph matrix also
has some resemblance to the extended Hu¨ckel theory (EHT)

introduced by Hoffmann,36 where the nondiagonal elements of
the Hamiltonian are refined to be an explicit function of the
molecular geometry through the dependence of the overlap
matrix on the internuclear distances.37 However, the main value
of the current approach is that it is defined under the umbrella
of a graph theoretical approach that encompasses aspects of
molecular geometry, quantum chemistry, and a description of
physicochemical properties through structure-property relation-
ships.

In the case of adjacent atoms the resonance integral is equal
to â as in the original HMO approach, and in the particular

TABLE 1: Linear Curvature Sums Divided by 2 π for Path
Graphs in the Generalized Matrix Approach at Different W
Values (x ) 1)

v L4 L5 L6 L7 L8

0 0.3333 0.5000 0.6667 0.8333 1.0000
0.1 0.3601 0.5401 0.7201 0.9001 1.0802
0.2 0.3895 0.5843 0.7790 0.9738 1.1685
0.3 0.4222 0.6333 0.8443 1.0554 1.2665
0.4 0.4587 0.6880 0.9173 1.1467 1.3760
0.5 0.5000 0.7500 1.0000 1.2500 1.5000

TABLE 2: Net Torsion Sums Divided by 2π for Path
Graphs in the Generalized Matrix Approach at Different W
values (x ) 1)

v L4 L5 L6 L7 L8

0 0.1959 0.3918 0.5878 0.7837 0.9796
0.1 0.2093 0.4186 0.6279 0.8372 1.0465
0.2 0.2212 0.4423 0.6635 0.8847 1.1058
0.3 0.2318 0.4635 0.6953 0.9270 1.1588
0.4 0.2413 0.4826 0.7238 0.9651 1.2064
0.5 0.2500 0.5000 0.7500 1.0000 1.2500

∆(abc) ) Fab
2 - Fac

2 - Fbc
2

A(abc) ) [s(s - Fab)(s - Fbc)(s - Fca.)]
1/2

âij ) (dijx
dij)Vâ

Figure 2. Embedding of the 3-path graph into a 3-Euclidean space
and simulation of the graph expansion produced by the continuous
change of theV parameter.

Figure 3. Linear relation between theV exponent and the graph
expansion as measured by the “bond angle” and “torsion angle” in an
embedding of the 3-path in a 3-Euclidean space.
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case ofx ) 0 the secular determinant is exactly the same as for
HMO. To keep the physicality of the approach, we will think
about only those values ofx (V will be kept equal to 1 for the
sake of simplicity) which make the interactions between
nonbonded atoms weaker than those between bonded atoms.
This means that we select the values ofx in the range 0e x <
0.5. The upper limit is based on the fact that whenx ) 0.5 the
resonance integralsâij for the atoms separated at distance 2 take
exactly the same value as for the atoms at distance 1.

One interesting application of the current approach is
concerned with the so-called isospectral graphs.38-43 These
graphs are nonisomorphic graphs having exactly the same
spectra for their adjacency matrixes. A well-known example of
a pair of isospectral graphs is that for 1,4-divinylbenzene and
2-phenylbutadiene. These two molecules are conjugated hydro-
carbons, and it is possible to use the HMO approach for their
study. In 1978 Heilbronner and Jones44 determined the ionization
energies of this pair of molecules using photoelectron spectra,
finding that they “differ at least as much as those of any other
‘nonisospectral’ pair havingπ systems of comparable size”.
Heilbronner and Jones also showed that MO models at the STO-
3G level were able to differentiate correctly the ionization
energies of these two molecules.44 On this basis they concluded
“that the graph theoretical statement that two molecules are
‘isospectral’ is not of relevance for their physical and chemical
behavior”.44 However, the point here is the following: If the
HMO reproduces reasonably well the electronic features of
conjugated systems, why does it fail in explaining the differences
between “isospectral” graphs?

To investigate this question, we carried out calculations on
the framework of the generalized graph matrix for these two
molecules by changing the value ofx as shown in Table 3. As
can be seen in this table not only does the change of thex
parameter from 0 to 0.05 produce a differentiation of the spectra
of both molecules but this change is in the correct direction.
According to the experimental values shown as well in this table,
2-phenylbutadiene has a higher HOMO energy than 1,4-
divinylbenzene, which is well reproduced by the generalized
matrix spectra withx > 0. We also provide in this table the
correlation coefficient between the experimental values of the
ionization energies and the eigenvalues of the generalized
matrix. As can be seen whenx ) 0.15 is used as a parameter
a correlation coefficient ofR2 ) 0.964 is obtained. It is still
not as good as that obtained by MO STO-3G calculations
reported by Heilbronner and Jones (R2 ) 0.982)44 but represents

a significant improvement compared to the HMO results in both
a qualitative and a quantitative way (R2 ) 0.945).

The interpretation of the results obtained by using the
generalized matrix is based on the fact that we are considering
not only the resonance integrals between the bonded atoms but
also those between nonneighbors. Consequently, if we consider
the simple case of the C6 graph representing the molecule of
benzene, what we are analyzing in reality is a graph with
“strong” connections between bonded atoms and some “weak”
connections between the nonbonded ones as illustrated below:

If x ) 0.1, for instance, the strong connections take values
of 1 and the weak connections take values of 0.2 and 0.03 for
atoms at distances 2 and 3, respectively. In this particular case
of benzene we can think that the contributions for nonneighbor
atoms come from the contributions made by the valence isomers
of benzene,45-47 such as Dewar structures, benzvalene structures,
and prismane structures. For instance, there are three topologi-
cally equivalent Dewar benzene structures in which connections
between atoms at distance 3 are considered. In benzvalene each
structure has a couple of connections between atoms separated
at distance 2, which makes six topologically equivalent benz-
valene structures. Finally, there are three topologically equivalent
prismane structures in which connections between atoms
separated at distances 2 and 3 are considered. These structures
are illustrated in Figure 4. Using these structures as well as the
two Kekule structures of benzene, we can calculate the Pauling
bond orders not only for the bonded atoms but for the
nonneighbor atoms as well, giving the values of 1.214, 0.214,
and 0.143 for atoms at distances 1, 2, and 3, respectively. This
is a result similar to that obtained here whenx * 0, which means
that the interactions between nonneighbor atoms make a
contribution to the ionization energies of these two molecules.

Generalized Topological Indices

As commented on in the Introduction, one of the current main
problems in the research of topological indices is an indiscrimi-
nate proliferation of such molecular descriptors. To avoid the
continuation of this practice, we introduce a strategy that permits

TABLE 3: Experimental Ionization Energies (I j
m, eV) and

Eigenvalues of the Generalized Graph Matrix with Different
Values of thex Parameter (W ) 1)

Ij
m x ) 0 x ) 0.05 x ) 0.1 x ) 0.15 x ) 0.2

1,4-Divinylbenzene
8.11 0.539 0.384 0.218 0.042 -0.140
9.18 1.000 0.892 0.770 0.632 0.480
9.80 1.000 0.930 0.840 0.727 0.589

11.00 1.675 1.724 1.765 1.794 1.807
2.214 2.486 2.790 3.131 3.514

2-Phenylbutadiene
8.60 0.539 0.409 0.269 0.118 -0.041
9.28 1.000 0.891 0.766 0.622 0.462
9.50 1.000 0.893 0.770 0.632 0.480

11.54 1.675 1.743 1.799 1.838 1.853
2.214 2.481 2.783 3.123 3.507

R2a 0.945 0.958 0.963 0.964 0.962

a Correlation coefficient between the experimental ionization energies
and the eigenvalues of the generalized matrix. The casex ) 0
corresponds to the simple HMO approach. Figure 4. Valence isomers of benzene showing the different topologi-

cally equivalent structures.
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optimization of several of the well-known topological indices.
This optimization is carried out to predict in a more effective
way the physicochemical or biological properties of chemicals
under study as well as to facilitate the interpretation of these
descriptors in a physicochemical context.

For the current purpose of generalizing TIs we introduce a
change of variable inΓ(x,V) so thatx is substituted byy or z
andV ) 1. Thus, we obtain the following matrixes:Γ(y,1) and
Γ(z,1). Using these matrixes, two new graph theoretical vectors
used in the generalization of TIs are defined as follows.24-26

Definition 4: Lety(w,y,q) andz(s,z,r) be two vectors of order
n whose elementsyi andzi are defined as follows:

wherewi andsi are weights to be assigned to the corresponding
vertex to differentiate heteroatoms or chiral centers.

The generalized vectors of the 2-methylbutane molecule,
which was previously illustrated in Figure 1, are

The following definition based on a vector-matrix-vector
(VMV) multiplication procedure introduced by Estrada48,49 is
used for the generalization of the TIs.

Definition 5: Letu be a generalized vector-matrix-vector
invariant defined as24

By using this expression, we can obtain several adjacency-based
and distance-based TIs using only one graph theoretic invariant.
The mathematical expressions for these classical indices are

whereN in the last expression stands for the count of electrons
in π bonds and in lone-pair orbitals. HereW is the Wiener
index,50 J is the Balaban index,51 H1 andH2 are the so-called
Harary indices,52,53 M1 and M2 are the Zagreb indices,54 ø is
the connectivity index,8 and øV is the valence connectivity
index.55

This result has three important consequences. The first is that
there are not so many graph theoretic invariants as we think,
many being the same invariant with different weights. The
second consequence is that from a practical point of view we
can optimize these topological indices, previously introduced
in an ad hoc way, to describe the properties we are interested
in. Both consequences can be a guide for stopping the
indiscriminate generation of new topological indices. Instead
of trying to generate a new index, one can try to optimize the
existing ones. If you do not succeed with the optimization, then
you can try introducing a new one. But take into account that
by changing these eight parameters at the same time in a
continuous way you will generate an infinite number of choices
for describing the property. Finally, we can seek a physico-
chemical interpretation of the TIs in a global way. The
identification of some physicochemical basis for the connectivity
index56 can give us some clues about the way in which this
interpretation can be carried out.

Representation of Topological Indices

As we can see, the first consequence of the generalized
vector-matrix-vector multiplication procedure is that all TIs
studied here are points in an 8-dimensional space. This is a
completely new picture in the study of TIs, because most of
these descriptors have appeared as disconnected from each other,
eluding generalizations and interpretations in a united way and
complicating the computer programs to calculate them by using
several different algorithms. Now, we have only one algorithm
depending on eight different parameters and can generate a series
of the most important TIs described in the literature. This fact
also will permit a better interpretation of these descriptors than
if we attempt to make this interpretation of the indices one by
one.

A graphical representation of the TIs studied here with radial
graphics is given in Figure 5. These graphics are built by using
eight axes, which correspond to the eight parameters in the
current approach,y, w, q, x, V, z, s, and r, and an octagonal
figure, formed by joining these points representing the topologi-
cal indices.

The main utility of these graphics is to orient the optimization
process of the TIs in a rational way. Suppose one knows a priori
that the Balaban indexJ describes propertyP in a better way
than the WienerW index. Then, by analyzing the differences
between the diagrams for these two indices, one can select as
a first choice the optimization ofq, x, andr, which make the
differences between both indices, instead of optimizing the eight
parameters.

Optimization of Topological Indices

The optimization of an index according to our approach of
the generalized vector-matrix-vector multiplication procedure
consists simply in changing systematically the values of the eight
parameters on which any of the studied indices depend. This
procedure permits the definition of an infinite number of TIs,
the known ones of which are particular cases. However, if we
consider changing systematically all eight parameters of the
VMV multiplication procedure, we can generate a huge number
of descriptors, creating a big problem for their computation,
storage, and manipulation. For instance, if we consider simul-
taneous variations of the eight parameters from 0 to 0.9 with a
step of 0.1, we generate 100000000 indices.

As a working example we investigate the optimization of the
Wiener W index for describing the boiling points of octanes.
For the sake of simplicity we optimize only the parametersx

yi ) (wi + ∑
j

gij(y,1))q zi ) (si + ∑
j

gij(z,1))r

y(w,y,q) ) [(w1 + 4y + 3y2)q (w2 + 3 + 2y)q

(w3 + 2 + 4y)q (w4 + 1 + 2y + 6y2)q

(w5 + 1 + 4y + 3y2)q]

z(s,z,r) ) [(s1 + 4z + 3z2)r (s2 + 3 + 2z)r (s3 + 2 + 4z)r

(s4 + 1 + 2z + 6z2)r (s5 + 1 + 4z + 3z2)r]

u ) C[y(y,w,q) Γ(x,V) z(z,s,r)]

W ) 1/2[y(1,0,0)Γ(1,1)z(1,0,0)]

J ) 1/2[y(1,0,-0.5)Γ(0,1)z(1,0,-0.5)]

H1 ) 1/2[y(1,0,0)Γ(1,-1) z(1,0,0)]

H2 ) 1/2[y(1,0,0)Γ(1,-2) z(1,0,0)]

M1 ) [y(0,0,1)Γ(0,1)z(0,0,0)]

M2 ) 1/2[y(0,0,1)Γ(0,1)z(0,0,1)]

ø ) 1/2[y(0,0,-0.5)Γ(0,1)z(0,0,-0.5)]

øV ) 1/2[y(0,N,-0.5)Γ(0,1)z(N,0,-0.5)]
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and V, reducing the problem to the generation of the optimal
index of the form

The optimization procedure consists of the following steps:
(a) select a range for thex and V parameters (xmin e x e

xmax; Vmin e V e Vmax ),
(b) select steps for the change of thex and V parameters,

e.g., step 1 and step 2, respectively,
(c) calculate the indicesW(x,V) for the data set of compounds

(e.g., octanes) according to the VMV multiplication procedure,
(d) find linear regression models for each of theW(x,V) indices

and the property to be studied (e.g., boiling point),
(e) select the values of thex and V parameters of the best

model,
(f) select a new range forx andV closer to the values obtained

in (e) as well as new steps,
(g) turn to (c) until the optimal values ofx andV are obtained.
We first explored the region around the original Wiener index

using the followingx andV values: 1e x e 5 and 1e V e 5
with step 1) step 2) 1. The correlation coefficients in this
region were not significantly better than that obtained for the
Wiener index as illustrated in Figure 6A. Then, we moved to
the following parameter regions:-5 e x e -1 and-5 e V e
-1 with step 1) step 2 ) 1. The results of this second
optimization are given in a graphical form in Figure 6B.

The originalW index has a correlation coefficient of onlyR
) 0.539 with the boiling point of octanes. It is shown at the
extreme right corner of Figure 6A, i.e.,x )1 andV ) 1. The
best result obtained with the current gross optimization is for
the casex ) -2 andV ) -1 for whichR ) 0.901. This index,
W(-2,-1) explains more than 81% of the variance in the boiling
points of octanes, which represents an improvement of 52%
over the original WienerW index.

A “finer” optimization of this index was then conducted by
changing systematically the value ofx from -3 to -1 and
keeping constant the value ofV ) -1. The results obtained in
this optimization step are illustrated in Figure 7, where we plot
the correlation coefficient versus the value ofx.

The optimal Wiener index obtained by this process is
W(-1.4,-1), which gives a correlation coefficient of 0.946. The
linear regression model obtained with this index is given below
together with the statistical parameters of the model:

This model represents an improvement of 14.3% in the standard
deviation over the previous best model with a Wiener-like index
obtained by Ivanciuc et al.57 with odd/even Wiener indices. It
also represents an improvement of 7.7% with respect to the long-
range connectivity index developed by Estrada58 that was the
best previous model to describe boiling points of octanes with
one topological index. In fact, the correlation obtained here is
the best QSPR model for describing boiling points of octanes
with one TI. However, we have to say that this index is not
necessarily the best of all Wiener indicesW(x,V) that can be
obtained for describing the boiling points of octanes because
we have explored only a small portion of the parameter space
for optimizing theW index.

In terms of the interpretation of the model developed using
the generalized Wiener index for the boiling point of octane,
we have to consider first the expression ofW(x,V) in terms of
the number of vertexes separated at the same distance. This
expression is given below for the general values ofx andV in
terms of the numberηi of vertexes separated at distancei:

Figure 5. Representation of the topological indices in 8-dimensional spaces of parameters arising from the generalized graph matrix and vectors.
The axes start at the value of-2.

W ) 1/2[y(1,0,0)Γ(x,V) z(1,0,0)]

bp (°C) ) 48.0023+ 13.5271W(-1.4,-1)

n ) 18, R ) 0.9464, s ) 2.04, F ) 137.5

W(x,V) ) ∑
i)1

(ixi-1)Vηi
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This means that the particular case ofW(-1.4,-1) is given
by the following expression:

By substituting this expression into the QSPR model for the
boiling point of octanes, we obtain an additive contribution of
the paths of different lengths in the octanes to their boiling
points:

This means that the main contribution is carried out by the
number of bonds,η1 (13.527°C). Then, a negative contribution
comes from fragments formed by two bonds. These fragments
increase dramatically with branching in the molecule. For
instance, in a path of order 4 (n-butyl group) we have three
fragments of this type, but in the star of five vertexes (atert-
butyl group) it is increased to 6. It is well-known that branching
decreases the boiling point due to a smaller number of
intermolecular contacts in the liquid as predicted by our model
that assigns a negative coefficient to these fragments. With the
increase of the size of the fragments their contributions diminish,
representing only minor corrections to the boiling point of
octanes in the current approach. The idea of assigning decreasing
contributions according to increasing distance in TIs appears
to have been first introduced by Diudea and Balaban 10 years
ago.59,60Other similar long-range contributions to connectivity
indices were also reviewed recently by Estrada.61

Conclusions

The conclusions of this work are the following:
(1) The generalized graph matrix encompasses in a more

compact way the structural information contained in several
traditional graph theoretic matrixes.

(2) The generalized graph matrix forx ) 1 and 0e V e 0.5
defines several graph metrics, which aren-Euclidean for alln
g 0. The net effect of changing the exponentV from 0 to 0.5 in
a continuous way represents a graph expansion or defolding
from a more compact “conformation” to a more expanded one.

(3) The generalized graph matrix can be included in the
formalism of the HMO approach by considering that the
resonance integrals between nonneighbor atoms are a function
of the topological distance in terms ofâ.

(4) The isospectrality between graphs is produced by the
neglect of interactions between nonneighbor atoms in the HMO
approach, and it disappears as soon as we change the parameter
x in the generalized graph matrix.

(5) There are several TIs that can be obtained using the same
graph invariant with the generalized graph matrix. They include
the connectivity index, BalabanJ index, Zagreb indices, Wiener
index, and Harary indices.

(6) The TIs can be represented in an 8-dimensional space
based on the parameters of the generalized graph matrix and
vectors. This representation can help in orienting a rational
optimization of these indices.

(7) TIs can be optimized to describe physicochemical
properties by systematically changing the parameters of the
generalized graph matrix and vectors. The optimized indices
can be interpreted structurally, giving physical interpretability
to the models developed.

(8) An interconnection among several apparently isolated
applications of graph theory in physical chemistry has been
found by using the generalized graph matrix approach.
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