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We present converged quantum scattering results for the Cl+ HCl f ClH + Cl reaction in which the three
electronic states that correlate asymptotically to the ground state of Cl(2P) + HCl(1Σ+) are included in the
dynamical calculations. The potential energy surfaces are taken from recent restricted open-shell coupled-
cluster singles doubles with perturbative triples and multireference configuration interaction ab initio
computations of A. J. Dobbyn, J. N. L. Connor, N. A. Besley, P. J. Knowles, and G. C. Schatz [Phys. Chem.
Chem. Phys. 1999, 1, 957], as refined by T. W. J. Whiteley, A. J. Dobbyn, J. N. L. Connor, and G. C. Schatz
[Phys. Chem. Chem. Phys. 2000, 2, 549]. The long-range van der Waals portions of the potential surfaces are
derived from multisurface empirical potentials due to M.-L. Dubernet and J. M. Hutson [J. Phys. Chem.
1994, 98, 5844]. Spin-orbit coupling has been included using a spin-orbit parameter that is assumed to be
independent of nuclear geometry, and Coriolis interactions are calculated accurately. Reactive scattering
calculations have been performed for total angular momentum quantum numberJ ) 1/2 using a hyperspherical-
coordinate coupled-channel method in full dimensionality. The scattering calculations are used to study the
influence of the spin-orbit coupling parameterλ on the fine-structure-resolved cumulative reaction probabilities
and transition-state resonance energies withλ varying from -150% to+150% of the true Cl value. The
results show the expected dominance of the2P3/2 state to overall reactivity forλ close to the true Cl value and
the dominance of the2P1/2 state forλ close to-1 times the true Cl value. Between these two limits, the
fine-structure-resolved cumulative reaction probabilities show oscillations asλ varies, statistical behavior
being recovered forλ ) 0. We present a two-state model that roughly matches these oscillations and which
suggests that the reactivity oscillations are due to coherent mixing of theΩj ) 1/2 components of the2Σ and
2Π states that are derived from the2P states in the van der Waals regions of the potential surfaces. This
mixing leads to inverted spin-orbit propensities (i.e., the upper spin-orbit state is more reactive than the
lower one) for certain values ofλ. Our analysis of resonance energies indicates significant variation in resonance
stability with the value ofλ, a general trend being that narrower resonances occur when|λ| is smaller than
about 50% of the absolute value of the true Cl value, suggesting that narrow resonances occur when there is
significant coherent mixing. In addition, we find evidence for Stueckelberg interference oscillations in the
total cumulative reaction probabilities due to a conical intersection between the 12A′ and 22A′ potential
surfaces.

I. Introduction

The role of spin-orbit interactions in hydrogen abstraction
reactions involving halogen atoms is a topic of both old and
new interest in the field of chemical reaction dynamics. It was
of interest 30 years ago in studies1,2 of reactions such as F(2P)
+ H2 f FH + H in the context of molecular beam and infrared
chemiluminescence experiments. But at that time, the only
tractable theory was trajectory surface hopping;1 in addition,
the potential energy surfaces and their couplings were of poor
quality. More recently, more sophisticated molecular beam and
other experiments3-5 have stimulated new interest in spin-orbit
problems. In addition, it is now possible to apply higher levels

of theory than in the past, including quantum scattering
calculations with multiple coupled electronic states6,7 that use
more realistic potential functions and couplings.

In the present paper, we will use this newer generation of
theory to study spin-orbit effects for the reaction

Our results also apply to other abstraction reactions that are
similar to Cl + HCl but have different spin-orbit parameters.
In particular, we examine quantum reaction probabilities
obtained from multisurface reactive scattering calculations with
the goal of understanding how reactivity depends on variations
in the spin-orbit coupling. Our interest is to understand, in a
general way, why there seems to be a large variation in the
behavior of spin-orbit effects for simple hydrogen abstraction
reactions.
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Of most recent interest in this respect has been an experiment
by Dong et al.3 for the Cl(2P)+ H2 f ClH + H reaction, where
they found that the excited state, Cl(2P1/2), had larger reactivity
than the ground state, Cl(2P3/2), in apparent contradiction to
conventional wisdom (and to recent high-level theory8) that the
excited state should have a higher energy barrier to reaction
than the ground state. There has also been renewed interest in
the influence of the2P1/2 state for the F(2P) + H2 reaction,4 for
which it has been found that collisions of F(2P1/2) provide a
unique signature on the product-state distributions for suf-
ficiently cold reagents. The experiments of ref 4 have stimulated
high-quality theoretical studies7 in which it has been found that,
except for cold reactants, the F(2P1/2) state plays a minor role
in determining reactivity. Although the role of atomic2P1/2 states
as reactants has only recently been studied in detailed experi-
ments, there is a long history of investigations of spin-orbit
branching in reactions that consume or produce halogen atoms,
and this has sometimes yielded surprising results in which the
excited2P1/2 state was found to be dominant.9

Cl + HCl is one of many reactions in which several potential
surfaces are asymptotically degenerate (i.e., degenerate in the
reagents or products or both) but for which the surfaces split
during reaction, providing reaction pathways with different
potential energy barriers. The lowest-energy barrier for collinear
ClHCl occurs on a surface with2Σ symmetry (2A′ for nonlinear
geometries), but the deepest van der Waals well for collinear
approach is associated with a surface of2Π symmetry (2A′ and
2A′′ for nonlinear geometries), which also correlates to the2P
state of Cl.10 This is shown schematically in Figure 1a, which
illustrates the variation of potential energy along the collinear
reaction path. The switch between short- and long-range
behavior leads to a crossing between the reactive (2Σ) and
nonreactive (2Π) potential curves about halfway to the top of
the 2Σ barrier, which provides an opportunity for significant
nonadiabatic coupling6 and Stueckelberg-like interference oscil-
lations (which, curiously, have never been observed for any
bimolecular reaction).

Complicating this picture is the presence of spin-orbit
coupling, which partially lifts the asymptotic degeneracy (giving
the 2P3/2 and 2P1/2 states of Cl) as shown in Figure 1b. Note
that these states are coupled by the electrostatic interaction
between Cl and HCl, and the interaction potential is proportional

to the difference potential between the2Π and2Σ states.11 This
difference is large and negative in the van der Waals region,
while it is large and positive close to the2Σ barrier, so both
regions could, in principle, be important for causing transitions
between the spin-orbit states while the reactants approach (or
the products depart). However the importance of this coupling
in controlling the reactivity of different spin-orbit states is not
known.

A related issue concerns the influence of the spin-orbit
interaction on the energy and stability of transition-state
resonances. Such resonances are known for the closely related
I + HI f IH + I reaction on the basis of photodetachment
measurements12 and reaction dynamics simulations (e.g., ref 13),
but there is still uncertainty about their appearance for Cl+
HCl, theory showing substantial evidence that they exist (e.g.,
ref 14) but experiment being less conclusive15 (see, in addition,
ref 16).

There are several levels of sophistication possible when
performing nonadiabatic quantum dynamics calculations for
reactions with asymptotically degenerate potential surfaces. Here
we have chosen a rigorous approach, which uses basis functions
in which the electronic orbital and spin angular momenta of
the separated reactants and products are explicitly included,
along with their coupling to the orbital and rotational angular
momenta of the nuclei. It is this approach that we have pursued
in our recent work on quantum scattering calculations with
multiple surfaces.6,11,17,18 It leads straightforwardly to the
incorporation of electrostatic nonadiabatic, spin-orbit, and
Coriolis coupling into the coupled-channel calculations.

The present calculations improve on our earlier studies6,11,17

in a number of ways, most notably in the use of larger basis
sets so that high-energy resonance effects should be more
accurately described and in the use of high-quality ab initio
potential surfaces and couplings,19 which have recently been
slightly modified to reproduce experimental kinetics data.18

These surfaces also include long-range potentials10 (covering
the van der Waals wells) the reliability of which has recently
been confirmed in ab initio calculations.20,21We include spin-
orbit effects in the calculations by adding a phenomenological
spin-orbit term to the Hamiltonian with a spin-orbit parameter
λ that is independent of nuclear geometry. Justification for this
assumption is provided by recent relativistic ab initio calcula-
tions, which show a shift in the2Σ barrier height due to spin-
orbit effects22 similar to that from the phenomenological spin-
orbit term.

In the present paper, we perform scattering calculations for
values of the spin-orbit parameter ranging from-150% to
+150% of the true value for Cl (-588 cm-1). This lets us
investigate how the dynamics change withλ assuming that the
potential surfaces do not vary. In general, positive spin-orbit
coupling parameters arise from electrons in an incomplete
subshell that is less than half full, whereas negative spin-orbit
coupling parameters arise from equivalent electrons in a more
than half-filled subshell. We already know5 that the lowest-
energy collinear barrier height (that for the2Σ surface) increases
asλ becomes more negative, because the spin-orbit Hamilto-
nian (for negativeλ) preferentially stabilizes the asymptotic2P3/2

state relative to the2Σ barrier, where there is a partial quenching
of the spin-orbit effect. Of course, the nature of the potential
surfaces is also expected to vary as the spin-orbit constant
varies, but here we only consider the latter effect. While varying
the spin-orbit parameter is a somewhat artificial procedure, it
does allow us to separate the spin-orbit contribution from other
sources of nonadiabaticity in the reaction dynamics, thus

Figure 1. Schematic profiles of the potential surfaces for collinear
ClHCl along the reaction path joining reactants and products: (a)
nonrelativistic profiles; (b) relativistic profiles, after inclusion of the
spin-orbit interaction.
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clarifying the importance of spin-orbit coupling in determining
the branching between the fine-structure states. In addition, we
find that the role of Stueckelberg interference effects arising
from the presence of a conical intersection between the two
2A′ symmetry surfaces associated with ClHCl is revealed by
this study. Many other atoms have spin-orbit parameters that
are in the range that we consider [e.g., F(-265 cm-1), O(-80
cm-1), C(13 cm-1), Na(11.5 cm-1), and K(38.5 cm-1)], so the
present scattering calculations provide insight into fine-structure
effects for other reactions.

Our paper is organized as follows. In section II, we briefly
give details of the ab initio potential surfaces, while section III
discusses the quantum reactive scattering method. Our results
(cumulative reaction probabilities, resonance energies) are
presented in section IV, together with a simple two-state
dynamical model, which explains some key features in our
results. Section V contains our conclusions.

II. Potential Surfaces and Couplings

As mentioned in the Introduction, the potential surfaces
employed in our calculations are illustrated qualitatively in
Figure 1a for the collinear configuration of the atoms. We use
the scaled surfaces of Whiteley et al.18 collectively denoted
sDCBKS, which comprise the following:H11, the “Σ-like”
diabatic surface;H22, the “Π-like” diabatic surface;H12, the
diabatic coupling surface, andH33, the adiabatic energy of the
2A′′ surfacesit is degenerate withH22 at collinearity. The “Σ-
like” barrier height in the absence of spin-orbit coupling is
0.37 eV, while the “Π-like” barrier height is 0.77 eV. For
collinear geometries, the2Π van der Waals well depth is 0.05
eV, while the2Σ well depth is essentially zero. Note that there
is a 0.04 eV deep “Σ-like” well for highly bent geometries,
whereas the “Π-like” well disappears for this configuration of
the atoms, so the relative importance of the two wells varies
with approach geometry.

Figure 1b shows how spin-orbit coupling changes the
potential curves of Figure 1a. For the isolated Cl atom, the2P1/2-
2P3/2 splitting is 0.109 eV (or 882 cm-1), which is about1/3 of
the2Σ barrier height and twice the2Π van der Waals well depth.
The phenomenological spin-orbit Hamiltonian,

which reproduces this splitting, has a spin-orbit coupling
parameterλCl equal to-0.073 eV. BecauseλCl is negative, the
asymptotic energy of the Cl(2P3/2) state is lowered relative to
Cl(2P1/2), and because spin-orbit has little effect on the2Σ
potential near the barrier top in Figure 1b, the overall barrier
for the2Σ curve is higher (by approximately 33% of the atomic
splitting) than it would be in the absence of the spin-orbit
interaction. Note that the curves labeled2Σ1/2 and2Π3/2 in Figure
1b correlate to2P3/2 while 2Π1/2 correlates to2P1/2. Because of
this, one might expect the reaction probability associated with
Cl(2P1/2) to be much smaller than that for Cl(2P3/2). However,
additional complications arise when we include theH12 elec-
trostatic interaction between the “Σ-like” and the “Π-like”
diabats, which gives rise to adiabatic states having 1A′, 2A′,
and A′′ symmetries. In the presence of spin-orbit coupling,
these states have no well-defined spatial or spin symmetry. As
a result, the simple reactivity correlations discussed above can
be misleading in some situations, as we will see later in section
IV.

The sDCBKS potential surfaces and couplings are described
in detail in refs 18 and 19, so here we give just a few key

features. The short-range potentials are based on restricted open-
shell coupled-cluster singles doubles with perturbative triples
and multireference configuration interaction levels of theory with
a diabatic representation as used by Rebentrost and Lester.23

The switch to long-range electrostatic potentials10 occurs near
rHCl ) 4.3 a0, independent ofrHCl′ (note, however, that the
potential is invariant to interchanging the two Cls). This switch
point is close to the bottom of the barrier to reaction but is
inside the van der Waals well. The conical intersection between
the “Σ-like” and “Π-like” potentials occurs somewhat inside
the switch point, atrHCl ≈ 3.5a0, rHCl′ ≈ 2.5a0, for geometries
along the collinear minimum energy reaction path. The van der
Waals minimum occurs at larger distances, at approximately
rHCl ) 5.0a0, rHCl′ ) 2.4a0. For collinear geometries, the saddle
point occurs atrHCl ) rHCl′ ) 2.799a0 on the2Σ surface and at
rHCl ) rHCl′ ) 2.870a0 on the2Π surface. Note that for bent
geometries a saddle point occurs on the 12B1 surface at an
internal angle of 137.4° but for collinear geometries on the2Π
surface. However the2Σ barrier for collinear geometries is only
0.062 eV above that for bent (12B1) geometries, so the 1A′
surface is relatively flat as a function of the bend angle.

The long-range parts of the sDCBKS potential surfaces use
the empirical potentials of Dubernet and Hutson.10 The reliability
of these long-range empirical potentials has recently been exam-
ined by Kłos et al.20 and Žďánska et al.21 using ab initio quantum
chemical methods. There is generally a good qualitative
agreement between the ab initio surfaces and the empirical ones,
although there are quantitative differences. Thus for the 1A′
adiabatic surface, the depth of the well for the collinear con-
figuration of the atoms is 383, 438, or 360-370 cm-1 according
to Dubernet and Hutson,10 Kłos et al. (their Table 1)20 or
Žďánska et al. [their Figure 3a],21 respectively. For a T-shaped
configuration of the atoms, the well depth on the 1A′ surface is
347, 600 (or 586), or 350-360 cm-1 according to Dubernet
and Hutson,10 Kłos et al. (their Table 1 with p 3096 reporting
586 cm-1),20 or Žďánska et al. [their Figure 3a],21 respectively.
Note that the global minimum for the 1A′ surface is for the
collinear configuration according to Dubernet and Hutson10 and
Žďánska et al.21 but occurs in the T-shaped arrangement on the
surface of Kłos et al.20

III. Quantum Reactive Scattering Calculations

A. Method. We use the same quantum scattering method
that has been employed previously.11,17It is similar to an earlier
method described by one of us6 in a preliminary study of Cl+
HCl using multiple surfaces. Here we just present sufficient
details so that we can introduce notation to indicate the
calculations we have done and for our discussion of the results.

We use the notation of Rebentrost and Lester23 for the four
angular momenta involved in the reaction, which is assumed
to be of the type

where BC and AB are closed-shell (1Σ) diatomics. We write
the following: L ) electronic orbital angular momentum vector
of atom A (or C).L ) corresponding quantum number, which
has the fixed valueL ) 1 for Cl(2P).S) electronic spin angular
momentum vector of atom A (or C).S) corresponding quantum
number, which has the fixed valueS ) 1/2 for Cl(2P). N )
nuclear rotational angular momentum of BC (or AB).N )
corresponding quantum number, which has the valuesN ) 0,
1, 2, ....l ) nuclear orbital angular momentum of A with respect

Hso ) λL ‚S (1)

A(2P) + BC f AB + C(2P)
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to BC (or C relative to AB).l ) corresponding quantum number,
which has the valuesl ) 0, 1, 2, .... We also define the
following: j ) L + S ) electronic total angular momentum;j
) corresponding quantum number with valuesj ) 1/2 or j )
3/2. J ) j + N + l ) electronic plus nuclear total angular
momentum;J ) corresponding quantum number with valuesJ
) 1/2, 3/2, 5/2, ... (or sometimesJ ) 3/2, 5/2, 7/2, ...).

In addition, we denote byΩN, Ωj, and Ω the body-fixed
projection quantum numbers associated withN, j , and J,
respectively. The body-fixedz-axis is chosen to lie along the
Jacobi vectorR from the center of mass of the diatom to the
atom; we also haveΩ ) ΩN + Ωj.

In terms of these quantum numbers, the body-fixed electronic
states|j,Ωj〉 are related to the spin and orbital parts of the
electronic wave functions by

where〈l1,m1,l2,m2|l3,m3〉 is a Clebsch-Gordan coefficient. The
labelsL ) 1 andS) 1/2 have been omitted from|j,Ωj〉 and the
following equations because they have fixed values. In eq 2,Λ
) 0, (1 andΣ ) (1/2 are the body fixed projection quantum
numbers associated withL andS, respectively. We use the states
|j,Ωj〉 to represent the electronic Hamiltonian and as a starting
point for the coupled-channel expansion.

We assume thatR is mass-scaled24 and definer to be the
mass-scaled diatom internuclear vector. The Hamiltonian is then
given by

whereµ is the scaled reduced mass,24 P and p are the radial
momenta associated with the distancesR and r, respectively,
Hel is the nonrelativistic electronic Hamiltonian, andHso is the
spin-orbit Hamiltonian. Mass-polarization terms have been
neglected inHel because they should not be important at the
low energies that we consider.23

In the following treatment, we replacel by J - j - N in the
centrifugal term in eq 3, which leads to

The cross terms in eq 4 produce three types of Coriolis
coupling: orbital-electronic, orbital-rotational, and rotational-
electronic. All of these terms are evaluated accurately in the
coupled-channel calculations described below.

Explicit expressions forHel have been given previously,11 so
we omit them here. The spin-orbit Hamiltonian,Hso, is assumed
to be given by eq 1 in which the spin-orbit coupling parameter,
λ, is taken to be constant, independent of the internuclear
distances. The matrix elements ofHso are easily evaluated in
the |j,Ωj〉 basis set, giving

along the diagonals of the matrix and zero for all off-diagonal
matrix elements. In particular,Eso(j)3/2) ) λ/2 andEso(j)1/2)
) -λ. It is convenient to add-λ/2 to these energies so that
the asymptotic2P3/2 state has zero energy. Other ways of
choosing the zero of the energy scale will be considered in
section IV, but it should be noted that none of these choices

changes the reaction dynamics in any way. In our studies, in
which λ is allowed to vary from its experimental Cl value, it is
convenient to introduce a scale parameters defined by

whereλCl ) -0.073 eV is the true value for Cl(2Pj). Note that
s is positive whenλ is negative and vice versa. Values ofs
between-1.5 and 1.5 have been considered in our calculations.

B. Coupled-Channel Scattering Calculations.The basis
functions used for the coupled-channel calculations are obtained
by first combining the electronic states|j,Ωj〉 in eq 2 with angular
eigenstates describing the rotational and orbital motion of the
nuclei. To do this, we couple the vectorsj and N, to form a
resultant vectorF whereF ) j + N. Note that the resultant
z-projection quantum number ofF alongR is Ω (the same as
the projection ofJ). The resultant electron-nuclear wave
functions associated withF andΩ are given by

where|N,ΩN〉 is a ket for the rotational state.
Once we have the internal states|N,j,F,Ω〉, the coupled-

channel expansion for the wave function associated with each
partial waveJ and space-fixedz-projection quantum number
M is given by

whereD(æ,θ,0) is the rotation matrix that depends on the polar
anglesæ and θ associated withR, the functionΦ(r) is an
eigenfunction of the BC rovibrational Hamiltonian, andg(R) is
anR-dependent expansion coefficient that is determined numeri-
cally by solving a set of coupled Schro¨dinger equations. In the
present case, the Schro¨dinger equation for the isolated BC
molecule is

where V(r) is the diatomic internuclear potential,V is the
vibrational quantum number, andεvN is the rovibrational
eigenvalue. Further details of the coupled-channel equations,
which are obtained upon substituting eq 7 into the Schro¨dinger
equation, are given in ref 11 along with the transformation of
these equations into hyperspherical coordinates so that reactive
collisions can be described.

The final result of the calculations is the scattering matrix
SJ, which is labeled by the initial and final values of the quantum
numbersV, N, j, F, andΩ and an arrangement channel index
R. The partial wave cumulative reaction probabilityPcum

J (E)
(which can be used to calculate rate coefficients) is given by

where the sums are over all open states at the total energyE
and the arrangement channel indicesR andR′ are chosen to be
appropriate for reaction. We also define partial-wave state-
selected cumulative probabilities,Pcum

J (E;j,j′), that are labeled

|j,Ωj〉 ) ∑
Λ,Σ

|L,Λ〉|S,Σ〉〈L,Λ,S,Σ|j,Ωj〉 (2)

H ) P2/(2µ) + l2/(2µR2) + p2/(2µ) +
N2/(2µr2) + Hel + Hso (3)

l2/(2µR2) ) (J2 + j2 + N2)/(2µR2) -
(2J‚j + 2J‚N - 2N‚j )/(2µR2) (4)

Eso(j) ) 1/2λ[j(j + 1) - L(L + 1) - S(S+ 1)]

s ) λ/λCl (5)

|N,j,F,Ω〉 ) ∑
Ωj,ΩN

|N,ΩN〉|j,Ωj〉〈N,ΩN,j,Ωj|F,Ω〉 (6)

Ψ VNjFΩ
JM )

∑
V′,N′,j′,F′,Ω′

DMΩ′
J (æ,θ,0)ΦV′N′(r)|N′,j′,F′,Ω′〉gV′N′j′F′Ω′

JVNjFΩ (R) (7)

[p2

2µ
+

N(N + 1)p2

2µr2
+ V(r)]ΦVN(r) ) εVNΦVN(r) (8)

Pcum
J (E) ) ∑

R,V,N,j,F,Ω
∑

R′,V′,N′,j′,F′,Ω′
|SR,V,N,j,F,ΩfR′,V′,N′,j′,F′,Ω′

J (E)|2

(9)
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by the initial and final values of the electronic quantum numbers
(j andj′), by restricting the sum in eq 9 appropriately. We then
have

C. Basis Set and Numerical Parameters.Our multisurface
calculations were done using a basis of 342 functions. This basis
consists of rotational statesN ) 0-13 for vibrational stateV )
0, N ) 0-11 for V ) 1, andN ) 0-4 for V ) 2 in each of the
two arrangement channels that are needed for the Cl+ HCl
reaction. The complete set of2Pj electronic states appropriate
for J ) 1/2 was included in all calculations, although only one
of the two identical parity components was considered. In earlier
work,18 we examined convergence with respect to basis set size
and found that the above basis yields accurate results for the
cumulative reaction probabilities for the energy range consid-
ered.

Only theJ ) 1/2 partial wave has been included in this study.
In earlier work,18 we convertedJ ) 1/2 results into thermal rate
coefficients using aJ-shifting approximation and made a detailed
comparison with experimental rate coefficient data. The validity
of the J-shifting approximation for the Cl+ HCl reaction has
been studied in detail previously.25 In the present paper, we focus
attention on theJ ) 1/2 partial wave cumulative reaction
probabilities (both total andj, j′ resolved). We hope to studyJ
> 1/2 in the futuresit will be interesting to see how our
conclusions based on theJ ) 1/2 results are modified when
higher partial waves are included in the computations.

In earlier research,18 we have examined rovibrational state-
selected cumulative probabilities fors ) 1.0. Their dependence
on s has been calculated as part of the present study; however,
we find that Pcum

J (E) and Pcum
J (E;j,j′) provide most of the

important physical insight that we require. We performed
computations fors ) -1.5, -1.0 to 1.0 (in steps of 0.1), and
1.5 forE ) 0.3-0.7 eV at intervals of 0.004 or 0.002 eV in the
vicinity of resonances. The atomic masses used in the calcula-
tions aremH ) 1.008 u andmCl ) 34.969 u.

IV. Results

A. Cumulative Reaction Probabilities: Dependence on
Total Energy. Figure 2 plots the cumulative probability,
Pcum

J (E), for J ) 1/2 as a function ofE from our multisurface
calculations, together with the fine-structure state-selected
cumulative probabilities,Pcum

J)1/2(E;j,j′), with the quantum num-
bersj and j′ chosen to bej ) 3/2 f j′ ) 3/2, j ) 1/2 f j′ ) 1/2,
andj ) 3/2 f j′ )1/2. Note that microscopic reversibility requires
Pcum

J)1/2(E;j,j′) for the j ) 1/2 f j′ ) 3/2 transition to be equal to
that for j ) 3/2 f j′ )1/2 (and we have verified that this is the
case to within plotting accuracy), so we only show the latter
cumulative probability. Figure 2a displays our results fors )
1.0 (i.e.,λ ) λCl, the true spin-orbit coupling parameter for
Cl(2Pj)), while Figure 2b presentss ) 0.0, and Figure 2c shows
s) -1.0. Note that our results in Figure 2a agree with previous
results generated with the same basis set and numerical
parameters.18

ThePcum
J)1/2(E) andj ) 3/2 f j′ ) 3/2 cumulative probabilities

in Figure 2a show that the effective reaction threshold (where
the cumulative probability first equals 0.1) is nearE ) 0.39
eV. At higherE, there is a gradual rise in the probabilities with
a shoulder nearE ) 0.45 eV, a dip atE ) 0.52 eV, and peaks
atE ) 0.54, 0.60, 0.63, 0.65, and 0.68 eV. The peaks and other

structures in Figure 2a reflect contributions from interference
and resonance effects that will be studied throughout this paper.

ThePcum
J)1/2(E;j,j′) in Figure 2a forj ) 1/2 f j′ ) 1/2 and j )

3/2 f j′ ) 1/2 are much smaller than thej ) 3/2 f j′ ) 3/2
cumulative probability, the peaks and dips being less prominent
for E below 0.61 eV. The small value of thej ) 1/2 f j′ ) 1/2
andj ) 3/2 f j′ ) 1/2 probabilities relative toj ) 3/2 f j′ ) 3/2
is the expected behavior if the electronic states evolve adiabati-
cally between the reagents and lowest saddle point, because only
the j ) 3/2 f j′ ) 3/2 transition can react by a purely adiabatic
route, see Figure 1b.

Our results fors ) -1.0 in Figure 2c exhibit three important
differences compared to Figure 2a. First, we note that the
effective threshold energy is much lower at approximatelyE )
0.31 eV rather thanE ) 0.39 eV. Second, we see that the peak

Pcum
J (E) ) ∑

j
∑

j′
Pcum

J (E;j,j′).

Figure 2. Cumulative reaction probability,Pcum
J)1/2(E), and state-

selected cumulative reaction probabilities,Pcum
J)1/2(E; j, j′), versus total

energy,E, for j ) 3/2 f j′ ) 3/2, j ) 3/2 f j′ ) 1/2, andj ) 1/2 f j′ )
1/2: (a) s ) 1.0; (b)s ) 0.0; (c)s ) -1.0. Note thatPcum

J)1/2(E;j,j′) for
j ) 3/2 f j′ ) 1/2 and j ) 1/2 f j′ ) 3/2 are identically equal.
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and dip structure is different, the sharp features of Figure 2a
being considerably broader in Figure 2c. Third and perhaps most
notable, the dominant fine-structure cumulative probability is
for j ) 1/2 f j′ ) 1/2 rather than forj ) 3/2 f j′ ) 3/2.

The s ) 0.0 cumulative probabilities in Figure 2b have the
same oscillatory character as those in Figure 2a,c with sharp
peaks atE ) 0.62 eV andE ) 0.65 eV. A notable feature of
Figure 2b is that the cumulative probabilities are all proportional,
the ratio total:(3/2 f 3/2):(3/2 f 1/2):(1/2 f 1/2) being 1:4/9:2/9:1/9
to a good approximation. This is the expected result from
statistical theory, in which the 2:1 ratio of2P3/2 to 2P1/2 states
for s ) 0.0 in both reactants and products leads to the observed
relative weights for the cumulative probabilities. In particular,
the statement in the previous sentence follows upon first noting
that the degeneracy, 2j + 1, of thej ) 1/2 and3/2 states is 2 and
4, respectively. If the states are populated statistically fors )
0.0, then their population is2/6 and 4/6 for j ) 1/2 and 3/2,
respectively. The statistical reaction probability is then4/6 ×
4/6 ) 16/36 for j ) 3/2 f j′ ) 3/2, and4/6 × 2/6 ) 8/36 for j ) 3/2
f j′ ) 1/2 (and for j ) 1/2 f j′ ) 3/2) and2/6 × 2/6 ) 4/36 for
j ) 1/2 f j′ ) 1/2, which gives rise to the ratios stated above.

Figure 3 displaysPcum
J)1/2(E) versusE for 23 values ofs in the

range-1.5 to 1.5. The plot shows that the peak structures evolve
gradually ass changes, which characterizes more completely
the relation between Figure 2, panels a, b, and c. Table 1
summarizes the energies of the peaks (and some other structures)
for selected values ofs. It shows that the energy of each feature
generally increases linearly withs with an energy shift of∆E
≈ -1/2sλCl ) s × 0.0365 eV. This effect is easily rationalized,
as previously discussed,6,11 in terms of the variation of the “Σ-
like” barrier height relative to the energy of the2P3/2 asymptote.
However, note that some of the features sharpen considerably
with s (such as the highest-energy peak fors between-0.5
and 0.5), while other features do not.

Figure 4 showsPcum
J)1/2(E;j,j′) for the j ) 3/2 f j′ ) 3/2

transition as a function ofE, for s values in the range-0.5 to
0.5 (in steps of 0.1). Here we see behavior somewhat analogous
to Figure 3; however, the fine-structure-resolved probabilities
show more complex structures asEchanges than doesPcum

J)1/2(E).
In particular, note that the probabilities do not evolve monotoni-

cally with s; instead, there are some spectacular oscillations (for
example, Figure 4b shows that thes ) 0.1 cumulative
probability is much smaller than thes ) 0.0 or s ) 0.2
probabilities). We will study this finding in greater detail in
the next section. The primary point to make for now is that

Figure 3. Cumulative reaction probability,Pcum
J)1/2(E), versus total energy,E, for s ) -1.5, -1.0 to 1.0 (in steps of 0.1), and 1.5.

TABLE 1: Energies (E/eV) of Some Prominent Features in
Pcum

J)1/2(E) for Seven Values ofs

feature

s shoulder dip peak peak peak peak peak peak

1.5 0.47 0.54 0.56 0.61 0.63 0.66 0.68 >0.70
1.0 0.45 0.52 0.54 0.59 0.63 0.65 0.68 >0.70
0.5 0.44 0.50 0.53 0.58 0.62 0.64 0.67 >0.70
0.0 0.42 0.49 0.51 0.57 0.60 0.62 0.65 0.69
-0.5 0.40 0.47 0.49 0.54 0.58 0.60 0.63 0.67
-1.0 0.38 0.45 0.47 0.52 0.55 0.57 0.58a 0.64
-1.5 0.36 0.42 0.44 0.50 0.53a 0.54 0.56a 0.62a

ΩN
b 0, 1 0 1 0 0 1 0 1

saddle
point
quantum
numbers

(0,0,2) (0,11,2) (0,20,2) (0,31,2)

a Weak peak, only just visible to graphical accuracy.b TheΩN values
indicate the main contributor toPcum

J)1/2(E) from the Pcum
J)1/2(E,ΩN,ΩN)

plots in Figure 5.

Figure 4. State-selected cumulative reaction probability,Pcum
J)1/2(E;j,j′),

for j ) 3/2 f j′ ) 3/2 versus energy,E: (a) s ) 0.5, 0.4, and 0.3; (b)
s ) 0.2, 0.1, and 0.0; (c)s ) -0.1,-0.2, and-0.3; (d)s ) -0.4 and
-0.5.
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there are two levels of oscillatory structure in the cumulative
probabilities: that seen in thePcum

J)1/2(E) results, as best pre-
sented in Figure 3, and that present in the fine-structure-resolved
cumulative probabilities, which shows up in Figure 4.

To study the oscillations inPcum
J)1/2(E) (in Figure 2), we

present in Figure 5 plots of the cumulative reaction probability
versusE for s ) 1.0, 0.0, and-1.0 obtained from eq 9 but
with ΩN and ΩN′, the initial and final rotational projection
quantum numbers, respectively, fixed at specified values, that
is,

We find that Pcum
J)1/2(E;ΩN,ΩN′) is almost diagonal inΩN for

each s, so only the dominant diagonal elements have been
plotted; in particular, results forΩN ) 0 and 1 are in Figure 5
(ΩN ) 0, (1, (2 are allowed). The plots show the expected
dominance ofΩN ) 0, corresponding to reactivity on the “Σ-
like” surface; however, theΩN ) 1 cumulative probability is
also significant, and moreover, theΩN ) 1 plots have peaks
that alternate with peaks in theΩN ) 0 curves, at least forE
below 0.6 eV. Because the peaks of theΩN ) 0 andΩN ) 1
curves occur at different energies, it is possible to label the peak
energies in Table 1 according to theirΩN value. We can see
that the peaks (and other structures) have a complex ordering,
which suggests that more than one mechanism may be deter-
mining their appearance.

One further clue concerning the peaks and structures in Figure
3 comes in Figure 6, in which we have plotted, fors ) 1.0, the
same curves as those in Figure 2a but for a calculation in which
the diabatic coupling matrix elementV12 (between “Σ-like” and
“Π-like” states) has been set equal to zero. Note that the spin-
orbit states are still coupled by electrostatic interactions in these
calculations, and indeed, we see that thej ) 3/2 f j′ ) 1/2
cumulative probability is about the same as before. However,
the primary effect of settingV12 ) 0 is that the conical
intersection disappears.

Figure 6 shows that the main effect of this disappearance is
to remove the peaks and dips in the curves at lowE (below
0.61 eV fors ) 1.0) but not for highE. This implies a different

physical origin for the lowE peaks in Figure 3 than for (at
least some of) the highE peaks. Indeed, this observation
suggests that the lowE oscillations in Figure 3 are Stueckelberg-
like interference oscillations between the “Π-like” and “Σ-like”
amplitudes for reactive scattering, while (at least some of) the
higher E oscillations are due to resonances. Thus the lack of
structure at lowE in Figure 6 would be interpreted as occurring
because only one surface has significant amplitude for reaction,
that is, “Σ-like” surface.

We also note that the interference oscillations at lowE in
Figure 3 are approximately independent ofs. This makes sense
becauseV12 does not depend ons and, as long as we confine
our attention toPcum

J)1/2(E), anys-dependent interference effects
should be averaged out. One further point to note in Figure 6 is
that theV12 ) 0 cumulative probability is uniformly larger than
that in Figure 2a forV12 * 0. This is consistent with the idea
that turning on the conical intersection (i.e.,V12 * 0) suppresses
reactivity because some component of the “Σ-like” flux is
transferred to the nonreactive “Π-like” surface.

B. Cumulative Reaction Probabilities: Dependence on
Spin-Orbit Parameter. Next we turn our attention to the
variation with s of the Pcum

J)1/2(E). Figure 7 presents the
cumulative probabilities as a function ofs at three fixed values
of E, Figure 7a referring toE ) 0.4 eV, Figure 7b toE ) 0.5
eV, and Figure 7c toE ) 0.6 eV. Included in the plots is
Pcum

J)1/2(E), as well as thePcum
J)1/2(E;,j,j′). All three figures show

oscillations in the dependence ofPcum
J)1/2(E;j,j′) on s although

not, for the most part, inPcum
J)1/2(E) vs s. These results are

qualitatively similar to what was noticed11 for an earlier, less
accurate surface (denoted sMSGMC17), although here we have
computed results on a finer grid ins, using a better basis set,
so that the behavior of the oscillations is better resolved, and at
three energies. There are two adiabatic limits in Figure 7. The
first occurs forsg 0.75, at which thej ) 3/2 f j′ ) 3/2 transition
dominates the reactivity. This can be understood from Figure
1b in terms of an adiabatic motion of the atoms from reactants
to products. The second limit occurs fors e -0.6, where the
reactivity receives its dominant contribution from thej ) 1/2 f
j′ ) 1/2 transition. This can also be understood in terms of an
adiabatic pathway.

Figure 7 displays remarkable oscillations in the plots of
Pcum

J)1/2(E;j,j′) versuss, such that betweens ) -0.5 and 0.5,
there are approximately three full oscillations in both thej )
3/2 f j′ ) 3/2 and j ) 1/2 f j′ ) 1/2 cumulative probabilities.

Figure 5. State-selected cumulative reaction probability,
Pcum

J)1/2(E;ΩN,ΩN), for ΩN ) 0 andΩN ) 1 versus total energy,E, for
s ) 1.0, 0.0, and-1.0.

Pcum
J)1/2(E) ) ∑

ΩN

∑
ΩN′

Pcum
J)12(E;ΩN,ΩN′)

Figure 6. Cumulative reaction probability,Pcum
J)1/2(E), and state-

selected cumulative reaction probabilities,Pcum
J)1/2(E;j,j′), versus total

energy,E, for j ) 3/2 f j′ ) 3/2, j ) 3/2 f j′ ) 1/2, andj ) 1/2 f j′ )
1/2 for s ) 1.0 with the electrostatic coupling omitted,V12 ) 0. Note
that Pcum

J)1/2(E;j,j′) for j ) 3/2 f j′ ) 1/2 and j ) 1/2 f j′ ) 3/2 are
identically equal.

7284 J. Phys. Chem. A, Vol. 107, No. 37, 2003 Schatz et al.



The j ) 3/2 f j′ ) 1/2 probability is less sensitive tos. In
addition, we see that thej ) 3/2 f j′ ) 3/2 cumulative probability
evolves from being the largest at larges to being smallest at
smalls with thes ) 0.0 statistical result noted previously also
included. Thej ) 1/2 f j′ ) 1/2 cumulative probability exhibits
the reverse behavior as a function ofs, while j ) 3/2 f j′ ) 1/2
is intermediate. In addition, we see that for certain ranges ofs,
the “wrong” cumulative probability is largest, especially at low
E. Thus atE ) 0.4 eV, the2P1/2 state dominates for positives
values nears ) 0.1 and 0.4, while the2P3/2 state dominates for
negatives values nears ) -0.1 and-0.4.

Before we discuss the oscillations in more detail in the next
section, there is one point in need of clarification concerning

the energy scale used forPcum
J)1/2(E). The choice of the asymp-

totic 2P3/2 state for defining the energy zero is somewhat
arbitrary, and it is important to realize the consequences of this
choice. For clarity, in the remainder of this section, we will
use the more explicit notationEj)3/2 rather thanE.

We have made two other choices for the zero of energy,
namely, (a)s ) 0.0, that is, the weighted mean of the2P3/2 and
2P1/2 energiesswe will denote the total energy measured on this
scale byEs)0sand (b) the lower of the2P3/2 and2P1/2 energiess
we will use the notationElower for the total energy in this case.
The relations between the three energy scales are

Thus a fixed value forElower or Es)0 for different values ofs
can be achieved by varyingEj)3/2 in accordance with the above
equation (fors) -1.0, the valueElower ) 0.4 eV would require
Ej)3/2 ) 0.29 eV, which is outside the range of our computations,
Ej)3/2 ∈ [0.3, 0.7 eV]).

Figure 8a shows plots ofPcum
J)1/2(Es)0) and Pcum

J)1/2(Es)0;j,j′)
versus s for Es)0 ) 0.4 eV, while Figure 8b displays
Pcum

J)1/2(Elower) andPcum
J)1/2(Elower;j,j′) versuss for Elower ) 0.4 eV.

The choice ofElower leads to a sudden switch in energy scale at
s ) 0.0, as is apparent in Figure 8b, thes ) 0.0 cumulative
probability being the largest (because the effective barrier is
lowest when there is no spin-orbit coupling). In contrast, the
choice ofEs)0 results in a smoother result in Figure 8a in which
the cumulative probability is approximately constant. This can
be understood becauseEs)0-(energy of height of effective
barrier) is also constant. Of course, our original choice for
the zero of the total energy scale is such that the largest
Pcum

J)1/2(Ej)3/2) are associated with large negatives, see Figure
7, panels a, b, and c, forEj)3/2 ) 0.4, 0.5, and 0.6 eV,
respectively. However, althoughPcum

J)1/2(Ej)3/2) varies substan-
tially with s for this choice of energy zero, the oscillations in
the fine-structure-resolved probabilities are less affected.

C. Simple Two-State Model for Spin-Orbit Transitions.
We discussed the origin of oscillations similar to those in Figure
7 in ref 11, in which we examined the behavior of the Massey
parameter governing spin-orbit transitions between the ap-
propriate fine-structure diabats. Here we extend our earlier
discussion by presenting a dynamical two-state model for the
reaction dynamics, which lets us calculate reaction probabilities
that can be compared to our full dimensional results.

In this simple two-state model, we consider the potential along
the reaction coordinate for collinear geometries. In this situation,
the Ωj ) 3/2 state is uncoupled from theΩj ) 1/2 state except
via Coriolis coupling (details of the argument are given in ref
11), and because the Coriolis coupling mechanism is weak for
J ) 1/2, we ignore it. This means that the only important reactive
states (for the parity we choose) at low energy arej ) 3/2, Ωj

) 1/2 and j ) 1/2, Ωj ) 1/2 or what in the context of Figure 1
are called2Σ1/2 (correlating to2P3/2) and 2Π1/2 (correlating to
2P1/2), respectively. The coupling between these two states arises
from the “difference potential” for the potential energies of the

Figure 7. Cumulative reaction probability,Pcum
J)1/2(E), and state-

selected cumulative reaction probabilities,Pcum
J)1/2(E;j,j′), versus scal-

ing parameter,s, for j ) 3/2 f j′ ) 3/2, j ) 3/2 f j′ ) 1/2, and j ) 1/2
f j′ ) 1/2: (a) E ) 0.4 eV; (b)E ) 0.5 eV; (c)E ) 0.6 eV. Note that
Pcum

J)1/2(E;j,j′) for j ) 3/2 f j′ ) 1/2 andj ) 1/2 f j′ ) 3/2 are identically
equal. The solid symbols indicate thes values at which the quantum
scattering calculations have been performed.

s g 0, λ e 0 (lower energy state is2P3/2 becauseλCl < 0)

Elower) Ej)3/2

Es)0 ) Ej)3/2+ 1/2λ ) Ej)3/2+ 1/2sλCl

s < 0, λ > 0 (lower energy state is2P1/2 becauseλCl < 0)

Elower) Ej)3/2+ 3/2λ ) Ej)3/2+ 3/2sλCl

Es)0 ) Ej)3/2+ 1/2λ ) Ej)3/2+ 1/2sλCl
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2Π1/2 and the2Σ1/2 diabats,VΠ - VΣ, which we also calculate
along the reaction path. Spin-orbit interaction is also included
via eq 1, so the asymptotic energies are the same as in the full
dimensional calculation, but vibrational and rotational motions
are not included.

The two-state Hamiltonian is defined by the matrix

where the〈j′,Ωj′|Hel + Hso|j,Ωj〉 matrix elements are given in
Table 1 of ref 11, using the quantum numbersj ) 3/2, Ωj ) 1/2
and j )1/2, Ωj ) 1/2. In Figure 9, we plot the2Σ1/2 and 2Π1/2

diabats (including the spin-orbit interaction fors ) 1.0 in the
diabats), as well as the coupling potential arising from this
model, as a function of the reaction path. It is important to
realize that the curves in Figure 9 are functions of a single
coordinate in our simple two-state model and are approximations
to the full 〈j′,Ωj′|Hel + Hso|j,Ωj〉 matrix elements, which are
functions of two independent coordinates for the collinear
configuration of the atoms. Note that the2Π1/2 curve in Figure
9 has the deeper van der Waals well and higher barrier, so it
would cross the2Σ1/2 curve if the energy shift arising from the
spin-orbit interaction was omitted.

We have solved the Schro¨dinger equation for this two-state
model to determine the fine-structure and total reaction prob-
abilities as a function of the total energyE and the scaling
parameters. As before,E is always measured with respect to
the asymptotic2Σ1/2 energy (energy of the2P3/2 state).

Figure 10 shows, fors ) 0.0, the spin-orbit reaction
probabilities plotted versusE. This figure is to be compared
with Figure 2b for the full dynamics, and indeed, there is much
similarity. The simple model does not incorporate vibrational
zero-point energy, so the reactive threshold is lower. Note that
there are weak shoulders in the total reaction probability in
Figure 10 atE ) 0.4 and 0.5 eV. This is similar to the broad
peaks seen in the middle panel of Figure 5, which we indicated
could be due to interference oscillations. Of course in the single-
coordinate model, the intersection of the2Σ1/2 and2Π1/2 curves
is not conical, and we do not expect exact agreement.

Figure 11 shows fine-structure and total reaction probabilities
versuss at fixedE (choosingE ) 0.35 eV). This energy yields
graphs that are similar to Figure 7a, both for the total reaction
probability and for the fine-structure-resolved probabilities. In
particular, there are oscillations for-0.5 < s < 0.5 that are
similar to what we see in Figure 7a, with thej ) 3/2 f j′ ) 3/2
andj ) 1/2 f j′ ) 1/2 transitions influenced much more strongly
than thej ) 3/2 f j′ ) 1/2 transition. However, there is only
one distinct oscillation in Figure 11, whereas there are three in
Figure 7a. This suggests that our simple two-state model
captures the essence of the phenomenon responsible for the
oscillations, although the agreement is only qualitative.

Figure 8. (a) Cumulative reaction probability,Pcum
J)1/2(Es)0), and state-

selected cumulative reaction probabilities,Pcum
J)1/2(Es)0;j,j′) versus

scaling parameter,s, for j ) 3/2 f j′ ) 3/2, j ) 3/2 f j′ ) 1/2, andj )
1/2 f j′ ) 1/2, at Es)0 ) 0.4 eV; (b) Cumulative reaction probability,
Pcum

J)1/2(Elower), and state-selected cumulative reaction probabilities,
Pcum

J)1/2(Elower;j,j′), versuss at Elower ) 0.4 eV. Note thatPcum
J)1/2(Es )

0;j,j′) for j ) 3/2 f j′ ) 1/2 and j ) 1/2 f j′ ) 3/2 are identically equal
and similarly forPcum

J)1/2(Elower;j,j′). The solid symbols indicate thes
values at which the quantum scattering calculations have been
performed.

(〈3/2,
1/2|Hel + Hso|3/2,1/2〉 ) 2Σ1/2 〈3/2,

1/2|Hel + Hso|1/2,1/2〉
〈1/2,

1/2|Hel + Hso|3/2,1/2〉 〈1/2,
1/2|Hel + Hso|1/2,1/2〉 ) 2Π1/2

)

Figure 9. Two-state model potential energies and coupling. The diabats
2Σ1/2 and 2Π1/2 - 3/2λ include the spin-orbit interaction fors ) 1.0.

Figure 10. Two-state model reaction probabilities versus total energy,
E, for j ) 3/2 f j′ ) 3/2, j ) 3/2 f j′ ) 1/2, andj ) 1/2 f j′ ) 1/2 at s
) 0.0. Note that the reaction probabilities forj ) 3/2 f j′ ) 1/2 and j
) 1/2 f j′ ) 3/2 are identically equal.
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If we now reexamine the potential curves in Figure 9, we
see that the coupling between the diabats is large in magnitude
in three regions: (1) in the reactant region, where the2Π1/2 curve
has its van der Waals well, (2) in the corresponding product
region, and (3) close to the barrier maxima. Figure 9 is fors )
1.0, but the coupling potential remains the same for smaller|s|,
although the diabats are then closer together and there is a
greater probability of hopping. The oscillations as a function
of s can then be understood in terms of the amount of cycling
of populations between the two diabats that occurs during the
reaction. For large|s|, the hopping probability is small and the
results are largely adiabatic. For|s| < 0.5, there is sufficient
hopping that the populations cycle between the two diabats, and
the populations then oscillate as a function ofs. This effect
shows up primarily in thej ) 3/2 f j′ ) 3/2 andj ) 1/2 f j′ )
1/2 reaction probabilities. The total reaction probability is the
sum over different final outcomes and thus is less sensitive to
the amount of cycling that occurs.

This explanation confirms an earlier analysis in ref 11, in
which we demonstrated that the variation of the Massey
parameter was consistent with a strong cycling of populations
for |s| < 0.5. Now we have shown that a two-state reaction
path model leads to oscillations in the reaction probabilities as
a function ofs. Of course, there will also be oscillations as a
function ofE, and this is one reason the fine-structure-resolved
cumulative probabilities in Figure 4 show more structure as a
function ofE than do the total cumulative probabilities in Figure
3.

To conclude this section, we mention that there is a second
simple two-state model that may be used to understand the
branching between the2P1/2 and2P3/2 states fors ≈ 0.0. It is a
unitary transformation of the one we have just analyzed. In this
second model, we use the|Λ,Σ〉 ≡ |L,Λ〉|S,Σ〉 basis functions
of eq 2 with L ) 1, S ) 1/2 rather than the|j,Ωj〉 functions.
Thus forΩ ) 1/2, the two basis functions are|1,-1/2〉 for Λ )
1, Σ ) -1/2 and|0,1/2〉 for Λ ) 0, Σ ) 1/2. In this basis set, the
electrostatic Hamiltonian is diagonal asymptotically, and the
spin-orbit interaction causes the states to be coupled. We find
from eq 2 that the two asymptotic states are

for 2P1/2 and

for 2P3/2. From these equations, we can see the relative
participation of the2Σ1/2, that is,|0,1/2〉, and2Π1/2, that is,|1,-
1/2〉, states in the correct asymptotic states. This then suggests
a sudden approximation, in which we imagine that the dynamics
is either completely “2Σ1/2-like” or completely “2Π1/2-like”,
reaction associated with the2P1/2 and 2P3/2 states being deter-
mined only by the state mixings just given. In other words, we
assume there is a scattering matrix element for thej ) 3/2 f j′
) 3/2 transition that is given by

where in the last line we have assumed that reaction only occurs
on the2Σ1/2 surface.

We can apply this argument again to calculate all of the
reaction probabilities, obtaining

wherePΣ ) |SΣ|2 is the2Σ1/2 reaction probability. This argument
predicts that the three probabilities fors ≈ 0.0 should be in the
order 0.45, 0.23, 0.11, which is indeed the order that we find
in Figure 10 forE ) 0.4 eV at which the exact two-state reaction
probabilities are 0.39, 0.20, and 0.10, respectively. However
the sudden approximation is evidently a drastic oversimplifica-
tion whens ≈ 1.0, and we find that it exaggerates the smaller
reaction probabilities (the calculated two-state reaction prob-
abilities atE ) 0.4 eV for s ) 1.0 are 0.56, 0.02, and 0.01).
Note that the sudden approximation does not predict oscillations
as a function ofs. However oscillations could occur if we
included both the2Σ1/2 and2Π1/2 scattering amplitudes, resulting
in interference between the two reactive pathways.

D. Transition-State Resonances.Next we consider the sharp
structures in Figures 2 and 3. Past (single-surface) studies26 of
ClHCl based on the BCMR surface27 have observed one
resonance feature over the energy range considered, namely, a
peak nearE ) 0.642 eV with a full width at half-maximum of
about 0.004 eV. This resonance was assigned the saddle-point
quantum numbers (ν1,ν2,ν3) ) (symmetric stretch, bend, asym-
metric stretch)) (0,0,2) on the basis of the appearance of the
scattering wave function close to the saddle point. A similar
resonance is seen27 in exact quantum computations for collinear
ClHCl; there are also resonances at higher energies that
correspond to higher excitations of theν3 mode, but lower-
energy resonances, such as those for the state (0,0,0), are not
sufficiently stable to show narrow structure.

Figure 3 exhibits eight structures that might be interpreted
as being resonances, which we have tabulated in Table 1 for
seven values ofs ) -1.5 to 1.5 (steps of 0.5). However, our
analysis in sections IV.A and IV.B, particularly the effect of

Figure 11. Two-state model reaction probabilities versuss for j ) 3/2
f j′ ) 3/2, j ) 3/2 f j′ ) 1/2, and j ) 1/2 f j′ ) 1/2 at E ) 0.35 eV.
Note that the reaction probabilities forj ) 3/2 f j′ ) 1/2 andj ) 1/2 f
j′ ) 3/2 are identically equal.

|j)1/2,Ωj)
1/2〉 ) -(1/x3)|0,1/2〉 + x2/3|1,-1/2〉

) -0.58|0,1/2〉 + 0.82|1,-1/2〉

|j)3/2,Ωj)
1/2〉 ) x2/3|0,1/2〉 + (1/x3)|1,-1/2〉

) 0.82|0,1/2〉 + 0.58|1,-1/2〉

〈j)3/2|S|j′)3/2〉 )

[0.82〈0,1/2| + 0.58〈1,-1/2|]S[0.82|0,1/2〉 + 0.58|1,-1/2〉]

) 0.67〈0,1/2|S|0,1/2〉 + 0.34〈1,-1/2|S|1,-1/2〉

≈ 0.67SΣ

P(j)3/2fj)3/2) ) 0.672PΣ ) 0.45PΣ

P(j)3/2fj′)1/2) ) 0.482PΣ ) 0.23PΣ

P(j)1/2fj′)1/2) ) 0.342PΣ ) 0.11PΣ
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setting the diabatic coupling between the “Σ-like” and “Π-like”
surfaces,V12 ) 0, in Figure 6, lets us identify three of these
structures as arising from interference effects rather than being
single-surface resonances (the lowest-energy structure is a
shoulder). Of course, resonances could appear as a result of the
conical intersection (so-called funnel resonances); however, the
shape of the conical intersection in Cl+ HCl is not expected
to be favorable for such resonances.

The higher-energy peaks (aboveE ) 0.60 eV fors ) 1.0)
show up consistently in calculations both with and without the
electrostatic coupling,V12, included, so it is easier to assign
these peaks. In Table 1, we assigned saddle-point quantum
numbers, giving the lowest-energy resonance the same quantum
numbers as previously inferred from single-surface calculations18

(with corrections for the spin-orbit induced shift of the effective
barrier height). Thus fors ) 1.0, the (0,0,2) resonance is atE
) 0.63 eV.

We also find a resonance only 0.02 eV higher in energy than
the (0,0,2) one fors ) 1.0. Using theΩN ) ΩN′ assignments in
Figure 5, we find that it corresponds to the first excited bend
state built out of (0,0,2), namely, (0,11,2) becauseΩN ) ΩN′ )
1 corresponds to one quantum of vibrational angular momentum
at the saddle point for the first excited bend state. Appropriately,
this resonance is missing in theJ ) 0 single-surface results
that were reported in ref 18 (which should only showΩN )
ΩN′ ) 0 resonances). The next peak atE ) 0.68 eV fors ) 1.0
can then be assigned as a second excited bend resonance,
presumably with the quantum numbers (0,20,2) because we see
it in the ΩN ) ΩN′ ) 0 results in Figure 5, and a peak atE )
0.71 eV fors ) 1.0 can be identified as (0,31,2) on the basis of
its appearance in theΩN ) ΩN′ ) 1 results in Figure 5.

By allowings to vary away froms ) 1.0, we can then assign
the other resonances in Table 1 whens * 1.0. Figure 3 shows
the evolution of these resonances as a function ofs, and we see
that for |s| < 0.5 they are sharper than those fors > |0.5|. This
may be due to the interference effects discussed in section IV.C;
however, this tentative explanation requires further investigation.

V. Conclusions

This paper has examined the influence of spin-orbit coupling
on reactions of open-shell atoms with closed-shell diatomic
molecules, which we have modeled by the Cl+ HCl f ClH +
Cl reaction. We find that electrostatic coupling between the
spin-orbit states leads to a variety of interference phenomena
that modify the reaction dynamics compared with reaction on
a single potential surface.

Our primary tool for this study has been quantum reactive
scattering calculations forJ ) 1/2 in which we varied the spin-
orbit parameter over the range-150% to+150% of its correct
value. In this way, we demonstrated that thePcum

J)1/2(E;j,j′)
values undergo a change from adiabatic character for large
positive and large negative values ofλ to statistical behavior
for λ ) 0 with coherent oscillations between the adiabatic and
statistical limits. This leads to a range ofλ values for which
“inverted” behavior is observed in the cumulative reaction
probabilities, which means that the excited spin-orbit state has
larger reactivity than the ground state.

We introduced a simple two-state model for the reaction
dynamics that mimics some features of the full dynamics quite
well. It demonstrated that the coupling between the2Σ1/2 and
2Π1/2 states along the collinear reaction path in the van der Waals
well region noticeably influences thej f j′ resolved reaction
propensities.

We also found evidence for the existence of Stueckelberg-
type interference oscillations in plots ofPcum

J)1/2(E) versusE that
arise from a conical intersection between the potential surfaces
about halfway to the top of the2Σ1/2 potential barrier. Finally
we examined the properties of transition-state resonances
associated with ClHCl. We found that spin-orbit coupling
between the surfaces broadens the resonances in the adiabatic
regime but sharpens them in the coherent coupling regime.

The connection between the present results and experiment
will be an important task for future research. The small spin-
orbit effects that we find when the true value ofλ for Cl is
used (i.e.,λ ) λCl) have often been observed9 in reactions of
Cl(2Pj), but it will be of more interest to find reactions that
exhibit the more dramatic spin-orbit effects that we have
predicted. Our results indicate that the magnitude of the spin-
orbit interaction relative to the van der Waals well depth is an
important parameter for determining whether interesting spin-
orbit propensities are possible. A useful aspect of our simple
two-state model is that it is easily applied to a variety of
reactions, which should make it possible to identify candidates
for further study.
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