7278 J. Phys. Chem. R003,107,7278-7289

Influence of Spin—Orbit Effects on Chemical Reactions: Quantum Scattering Studies for
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We present converged quantum scattering results for the BCI — CIH + Cl reaction in which the three
electronic states that correlate asymptotically to the ground state #)GHHCI(*=") are included in the
dynamical calculations. The potential energy surfaces are taken from recent restricted open-shell coupled-
cluster singles doubles with perturbative triples and multireference configuration interaction ab initio
computations of A. J. Dobbyn, J. N. L. Connor, N. A. Besley, P. J. Knowles, and G. C. SEtgfz. [Chem.

Chem. Phys1999 1, 957], as refined by T. W. J. Whiteley, A. J. Dobbyn, J. N. L. Connor, and G. C. Schatz
[Phys. Chem. Chem. Phy&00Q 2, 549]. The long-range van der Waals portions of the potential surfaces are
derived from multisurface empirical potentials due to M.-L. Dubernet and J. M. HutkoRHhys. Chem

1994 98, 5844]. Spin-orbit coupling has been included using a spambit parameter that is assumed to be
independent of nuclear geometry, and Coriolis interactions are calculated accurately. Reactive scattering
calculations have been performed for total angular momentum quantum ndissldérusing a hyperspherical-
coordinate coupled-channel method in full dimensionality. The scattering calculations are used to study the
influence of the spirrorbit coupling parametélr on the fine-structure-resolved cumulative reaction probabilities

and transition-state resonance energies Witharying from —150% to+150% of the true Cl value. The
results show the expected dominance of#g state to overall reactivity fot close to the true Cl value and

the dominance of théP,,, state fori close to—1 times the true Cl value. Between these two limits, the
fine-structure-resolved cumulative reaction probabilities show oscillations \asies, statistical behavior

being recovered fok = 0. We present a two-state model that roughly matches these oscillations and which
suggests that the reactivity oscillations are due to coherent mixing &®;tke'/, components of théX and

21 states that are derived from tRE states in the van der Waals regions of the potential surfaces. This
mixing leads to inverted spinorbit propensities (i.e., the upper spiarbit state is more reactive than the

lower one) for certain values af Our analysis of resonance energies indicates significant variation in resonance
stability with the value ofl, a general trend being that narrower resonances occur héismaller than

about 50% of the absolute value of the true Cl value, suggesting that narrow resonances occur when there is
significant coherent mixing. In addition, we find evidence for Stueckelberg interference oscillations in the
total cumulative reaction probabilities due to a conical intersection between #Aédnd 22A’ potential
surfaces.

I. Introduction of theory than in the past, including quantum scattering
) o ] ) ) calculations with multiple coupled electronic st&téthat use
The role of spir-orbit interactions in hydrogen abstraction  ore realistic potential functions and couplings.
reactions involving halogen atoms is a topic of both old and |, the present paper, we will use this newer generation of
new interest in the field of chemical reaction dynamics. It was theory to study spirorbit effects for the reaction
of interest 30 years ago in studiéf reactions such as )

+ H, — FH + H in the context of molecular beam and infrared CI(P)+ HCIl— CIH + CI(?P)
chemiluminescence experiments. But at that time, the only ) )
tractable theory was trajectory surface hoppirig; addition, Our results also apply to other abstraction reactions that are

the potential energy surfaces and their couplings were of poor Similar to Cl+ HCI but have different spirorbit parameters.
quality. More recently, more sophisticated molecular beam and N Particular, we examine quantum reaction probabilities
other experiments® have stimulated new interest in spiarbit obtained from multisurface reactive scattering calculations with
problems. In addition, it is now possible to apply higher levels the goal of understanding how reactivity depends on variations
in the spir-orbit coupling. Our interest is to understand, in a
T Part of the special issue “Donald J. Kouri Festschrift”. general way, why there seems fo be a large variation in the

* Present address: Syrris Ltd., Jarman Way, Royston, Hertfordshire SG8 beha}/ior of spir-orbit effects for simple hydrogen abstraction
5HW, U.K. reactions.
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to the difference potential between tHé and2< states'! This
difference is large and negative in the van der Waals region,
while it is large and positive close to tH& barrier, so both
regions could, in principle, be important for causing transitions
between the spinorbit states while the reactants approach (or
the products depart). However the importance of this coupling
in controlling the reactivity of different spirorbit states is not
known.

A related issue concerns the influence of the smirbit
interaction on the energy and stability of transition-state
resonances. Such resonances are known for the closely related
| + HI — IH + | reaction on the basis of photodetachment
measurementdand reaction dynamics simulations (e.g., ref 13),
but there is still uncertainty about their appearance forCl
HCI, theory showing substantial evidence that they exist (e.g.,
ref 14) but experiment being less conclusfssee, in addition,
ref 16).

] ) ) ) ] There are several levels of sophistication possible when
(FZII?-iuch(Ie ;Ibnsgcrt]ﬁén ?élgcﬁgﬂllgztﬁfjgi]r?inngtreer:atcl:?LrS]tusrf:ﬁzsg?;di?;ltlge?;) performing nonadiabatic quantum dynamics calculations for
nonrelativistic profiles; (b) relativistic profiles, after inclusion of the reactions with asymptotlcally degenerate potentlal Surf{ices. nge
spin—orbit interaction. we have chosen a rigorous approach, which uses basis functions
in which the electronic orbital and spin angular momenta of

Of most recent interest in this respect has been an experimentN€ separated reactants and products are explicitly included,
by Dong et a8 for the CI@P)+ H, — CIH + H reaction, where along with their coupl_lng to the orbital and rotational angular
they found that the excited state, &), had larger reactivity momenta of the nuclei. It is this approachl that we ha\{e pursged
than the ground state, @Rsy), in apparent contradiction to N our recent work on quantum scattering calculations with
conventional wisdom (and to recent high-level théptiiat the ~ Multiple surface8:+1718 It leads straightforwardly to the
excited state should have a higher energy barrier to reactionincorporation of electrostatic nonadiabatic, spombit, and
than the ground state. There has also been renewed interest ifFOriolis coupling into the coupled-channel calculations.
the influence of théPy, state for the PP) + H, reaction? for The present calculations improve on our earlier stifdie¥
which it has been found that collisions of2P(;;) provide a in a number of ways, most notably in the use of larger basis
unique signature on the product-state distributions for suf- sets so that high-energy resonance effects should be more
ficiently cold reagents. The experiments of ref 4 have stimulated accurately described and in the use of high-quality ab initio
high-quality theoretical studié which it has been found that, ~ potential surfaces and couplingfsyhich have recently been
except for cold reactants, the2P(),) state plays a minor role  slightly modified to reproduce experimental kinetics déta.
in determining reactivity. Although the role of atonile,, states These surfaces also include long-range potenfigtovering
as reactants has only recently been studied in detailed experithe van der Waals wells) the reliability of which has recently
ments, there is a long history of investigations of spanbit been confirmed in ab initio calculatioA%2*We include spir-
branching in reactions that consume or produce halogen atomsprbit effects in the calculations by adding a phenomenological
and this has sometimes yielded surprising results in which the spin—orbit term to the Hamiltonian with a spitorbit parameter
excited?Py, state was found to be dominght. A that is independent of nuclear geometry. Justification for this

Cl + HCl is one of many reactions in which several potential assumption is provided by recent relativistic ab initio calcula-
surfaces are asymptotically degenerate (i.e., degenerate in thdions, which show a shift in th&X barrier height due to spin
reagents or products or both) but for which the surfaces split orbit effect8? similar to that from the phenomenological spin
during reaction, providing reaction pathways with different orbit term.
potential energy barriers. The lowest-energy barrier for collinear  In the present paper, we perform scattering calculations for
CIHCI occurs on a surface wiflt symmetry £A’ for nonlinear values of the spirorbit parameter ranging from150% to
geometries), but the deepest van der Waals well for collinear +150% of the true value for CI«{588 cnt?l). This lets us
approach is associated with a surfacéldfsymmetry A’ and investigate how the dynamics change withssuming that the
2A" for nonlinear geometries), which also correlates to#he  potential surfaces do not vary. In general, positive sfirbit
state of CIC This is shown schematically in Figure 1a, which coupling parameters arise from electrons in an incomplete
illustrates the variation of potential energy along the collinear subshell that is less than half full, whereas negative-spibit
reaction path. The switch between short- and long-range coupling parameters arise from equivalent electrons in a more
behavior leads to a crossing between the reactf® &nd than half-filled subshell. We already knéwhat the lowest-
nonreactive 1) potential curves about halfway to the top of energy collinear barrier height (that for tBe surface) increases
the 22 barrier, which provides an opportunity for significant asA becomes more negative, because the-spibit Hamilto-
nonadiabatic coupliffigand Stueckelberg-like interference oscil- nian (for negativel) preferentially stabilizes the asymptotis
lations (which, curiously, have never been observed for any state relative to théS barrier, where there is a partial quenching
bimolecular reaction). of the spin-orbit effect. Of course, the nature of the potential

Complicating this picture is the presence of spambit surfaces is also expected to vary as the spirbit constant
coupling, which partially lifts the asymptotic degeneracy (giving varies, but here we only consider the latter effect. While varying
the 2P3, and 2Py, states of Cl) as shown in Figure 1b. Note the spin-orbit parameter is a somewhat artificial procedure, it
that these states are coupled by the electrostatic interactiondoes allow us to separate the sparbit contribution from other
between Cl and HCI, and the interaction potential is proportional sources of nonadiabaticity in the reaction dynamics, thus

Potential energy

Potential energy

reaction path
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clarifying the importance of spinorbit coupling in determining features. The short-range potentials are based on restricted open-
the branching between the fine-structure states. In addition, weshell coupled-cluster singles doubles with perturbative triples
find that the role of Stueckelberg interference effects arising and multireference configuration interaction levels of theory with
from the presence of a conical intersection between the two a diabatic representation as used by Rebentrost and 2éster.

2A" symmetry surfaces associated with CIHCI is revealed by
this study. Many other atoms have spiorbit parameters that
are in the range that we consider [e.g-E65 cnTl), O(—80
cm 1), C(13 cnt?), Na(11.5 cm?), and K(38.5 cm?)], so the

The switch to long-range electrostatic potenfiatsccurs near
ruct = 4.3 &g, independent ofycr (note, however, that the
potential is invariant to interchanging the two CIs). This switch
point is close to the bottom of the barrier to reaction but is

present scattering calculations provide insight into fine-structure inside the van der Waals well. The conical intersection between

effects for other reactions.
Our paper is organized as follows. In section Il, we briefly
give details of the ab initio potential surfaces, while section Il

the “Z-like” and “II-like” potentials occurs somewhat inside
the switch point, atpyc) ~ 3.5, rucr ~ 2.5ay, for geometries
along the collinear minimum energy reaction path. The van der

discusses the quantum reactive scattering method. Our resultdVaals minimum occurs at larger distances, at approximately

(cumulative reaction probabilities,
presented in section IV, together with a simple two-state
dynamical model, which explains some key features in our
results. Section V contains our conclusions.

Il. Potential Surfaces and Couplings

As mentioned in the Introduction, the potential surfaces
employed in our calculations are illustrated qualitatively in
Figure 1a for the collinear configuration of the atoms. We use
the scaled surfaces of Whiteley et'&lcollectively denoted
sDCBKS, which comprise the followingHii, the “=-like”
diabatic surfaceH,,, the “TI-like” diabatic surfaceHi,, the
diabatic coupling surface, artdgs, the adiabatic energy of the
2A" surface-it is degenerate witliy, at collinearity. The =-
like” barrier height in the absence of spiorbit coupling is
0.37 eV, while the TI-like” barrier height is 0.77 eV. For
collinear geometries, thT van der Waals well depth is 0.05
eV, while the?= well depth is essentially zero. Note that there
is a 0.04 eV deepZ-like” well for highly bent geometries,
whereas theTT-like” well disappears for this configuration of
the atoms, so the relative importance of the two wells varies
with approach geometry.

Figure 1b shows how spirorbit coupling changes the
potential curves of Figure 1a. For the isolated Cl atom2fhg—
2P, splitting is 0.109 eV (or 882 cni), which is about/z of
the2X barrier height and twice th@T van der Waals well depth.
The phenomenological spirorbit Hamiltonian,

H,=A4L'S Q)
which reproduces this splitting, has a spwrbit coupling
parameteilc) equal to—0.073 eV. Becausgg is negative, the
asymptotic energy of the CRs,) state is lowered relative to
CI(3Py»), and because spitorbit has little effect on the>
potential near the barrier top in Figure 1b, the overall barrier
for theZ= curve is higher (by approximately 33% of the atomic
splitting) than it would be in the absence of the spambit
interaction. Note that the curves labef&,; and?[1s, in Figure
1b correlate t&Ps, while 2[14, correlates t&Py,. Because of
this, one might expect the reaction probability associated with
CI(?Pyp) to be much smaller than that for @#;). However,
additional complications arise when we include thg elec-
trostatic interaction between the-like” and the ‘TI-like”
diabats, which gives rise to adiabatic states having 2A’,
and A’ symmetries. In the presence of spiorbit coupling,

resonance energies) arerpyc =

5.0a, rucr = 2.4ao. For collinear geometries, the saddle
point occurs atyc) = rpcr = 2.799a on the?X surface and at
r'hcl = er = 2.870a on the?IT surface. Note that for bent
geometries a saddle point occurs on tH#8;1surface at an
internal angle of 137 4but for collinear geometries on tREl
surface. However th€& barrier for collinear geometries is only
0.062 eV above that for bent 38;) geometries, so the 1A
surface is relatively flat as a function of the bend angle.

The long-range parts of the SDCBKS potential surfaces use
the empirical potentials of Dubernet and Hut$®mhe reliability
of these long-range empirical potentials has recently been exam-
ined by Kios et af® and Zanska et af! using ab initio quantum
chemical methods. There is generally a good qualitative
agreement between the ab initio surfaces and the empirical ones,
although there are quantitative differences. Thus for thé 1A
adiabatic surface, the depth of the well for the collinear con-
figuration of the atoms is 383, 438, or 36870 cn1! according
to Dubernet and Hutso, Ktos et al. (their Table £} or
Zdanska et al. [their Figure 3}, respectively. For a T-shaped
configuration of the atoms, the well depth on the $Arface is
347, 600 (or 586), or 356360 cnT! according to Dubernet
and Hutsori? Kitos et al. (their Table 1 with p 3096 reporting
586 cn2),20 or Zdanska et al. [their Figure 3a&},respectively.
Note that the global minimum for the 1Aurface is for the
collinear configuration according to Dubernet and Hut8and
Zdanska et aP! but occurs in the T-shaped arrangement on the
surface of Kios et at®

[ll. Quantum Reactive Scattering Calculations

A. Method. We use the same quantum scattering method
that has been employed previously’ It is similar to an earlier
method described by one offis a preliminary study of Ch-

HCI using multiple surfaces. Here we just present sufficient
details so that we can introduce notation to indicate the
calculations we have done and for our discussion of the results.

We use the notation of Rebentrost and LeSttar the four
angular momenta involved in the reaction, which is assumed
to be of the type

A(°P)+ BC— AB + C(*P)
where BC and AB are closed-shelljj diatomics. We write

the following: L = electronic orbital angular momentum vector
of atom A (or C).L = corresponding quantum number, which

these states have no well-defined spatial or spin symmetry. Ashas the fixed valug = 1 for CI(3P). S = electronic spin angular
a result, the simple reactivity correlations discussed above canmomentum vector of atom A (or Ci= corresponding quantum
be misleading in some situations, as we will see later in section number, which has the fixed valug = Y/, for CI(?P). N =

V.

nuclear rotational angular momentum of BC (or ABY.=

The sDCBKS potential surfaces and couplings are describedcorresponding quantum number, which has the vaNies 0,

in detail in refs 18 and 19, so here we give just a few key

1, 2, ... = nuclear orbital angular momentum of A with respect
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to BC (or C relative to AB)I = corresponding quantum number,
which has the value$ = 0, 1, 2, .... We also define the
following: j =L + S = electronic total angular momentuin;
= corresponding quantum number with valjes 1/, or j =
3/, J =j + N + | = electronic plus nuclear total angular
momentum;y = corresponding quantum number with valdes
= 15, 305, 515, ... (or sometimes = 3/, 55, 75, ...).

In addition, we denote b2y, Qj, and Q the body-fixed
projection quantum numbers associated wiMh j, and J,
respectively. The body-fixed-axis is chosen to lie along the
Jacobi vectoR from the center of mass of the diatom to the
atom; we also hav& = Qy + Q;.

J. Phys. Chem. A, Vol. 107, No. 37, 200”8281

changes the reaction dynamics in any way. In our studies, in
which 1 is allowed to vary from its experimental Cl value, it is
convenient to introduce a scale parametelefined by
s= Mg (5)
whereicy = —0.073 eV is the true value for CR,). Note that
s is positive whenl is negative and vice versa. Values of
between—1.5 and 1.5 have been considered in our calculations.
B. Coupled-Channel Scattering Calculations.The basis
functions used for the coupled-channel calculations are obtained
by first combining the electronic statgg£2;(in eq 2 with angular

In terms of these quantum numbers, the body-fixed electronic eigenstates describing the rotational and orbital motion of the

states|j,Q;0are related to the spin and orbital parts of the
electronic wave functions by

i, Q0= gu,/\mszmﬂ,/\,szu,gjm )

wherellh,my,lo,my|l3,melds a Clebsch-Gordan coefficient. The
labelsL = 1 andS= Y/, have been omitted frorj,2;Cand the
following equations because they have fixed values. In e 2,
= 0, £1 andX = £/, are the body fixed projection quantum
numbers associated withandS, respectively. We use the states

nuclei. To do this, we couple the vectgr&andN, to form a

resultant vectol whereF = j + N. Note that the resultant
z-projection quantum number &f alongR is Q (the same as
the projection ofJ). The resultant electremuclear wave
functions associated with and Q are given by

INj,F,Q= Z INQLQIN,Q,j,F.Q0  (6)
Qj N

where|N,Qn\Ois a ket for the rotational state.
Once we have the internal statés,)j,F,QC] the coupled-

1j,€jto represent the electronic Hamiltonian and as a starting channel expansion for the wave function associated with each

point for the coupled-channel expansion.
We assume thaR is mass-scaléd and definer to be the

mass-scaled diatom internuclear vector. The Hamiltonian is then

given by

H = P?/(2u) + 1°I(2uRe) + p’l(2u) +
N?/(2ur?) + Hg + Hg, (3)

whereu is the scaled reduced ma&8sP andp are the radial
momenta associated with the distanéeandr, respectively,
He is the nonrelativistic electronic Hamiltonian, akld, is the
spin—orbit Hamiltonian. Mass-polarization terms have been
neglected inHe because they should not be important at the
low energies that we considét.

In the following treatment, we replad¢dy J — j — N in the
centrifugal term in eq 3, which leads to

121(2uR?) = (3% + j? + NA)/(2uR?) —
(23+j + 23*N — 2N-j)/(2uR?) (4)

partial waveJ and space-fixed-projection quantum number
M is given by

M
IIJZ/NjFQ -

Z Dya(@.0,00®,(NIN'j' F Q'@ (R) (7)
o N .Q

whereD(g,0,0) is the rotation matrix that depends on the polar
anglesg and 0 associated wittR, the function®(r) is an
eigenfunction of the BC rovibrational Hamiltonian, ag(R) is
anR-dependent expansion coefficient that is determined numeri-
cally by solving a set of coupled Schiager equations. In the
present case, the Scliinger equation for the isolated BC
molecule is

2 N(N+ 1)h?
py (Zﬂ—r) o(0)| @) = @ n(?)

2u

where »(r) is the diatomic internuclear potentiad, is the
vibrational quantum number, and, is the rovibrational

(8)

The cross terms in eq 4 produce three types of Coriolis eigenvalue. Further details of the coupled-channel equations,

coupling: orbital-electronic, orbital-rotational, and rotational-

which are obtained upon substituting eq 7 into the Sdimger

electronic. All of these terms are evaluated accurately in the equation, are given in ref 11 along with the transformation of

coupled-channel calculations described below.

Explicit expressions foH, have been given previouslyso
we omit them here. The spirorbit Hamiltonian Hs,, is assumed
to be given by eq 1 in which the spitorbit coupling parameter,

these equations into hyperspherical coordinates so that reactive
collisions can be described.

The final result of the calculations is the scattering matrix
S’, which is labeled by the initial and final values of the quantum

4, is taken to be constant, independent of the internuclear numbersy, N, j, F, andQ and an arrangement channel index

distances. The matrix elements ldf, are easily evaluated in
the |j,;0basis set, giving

Eqdi) = AL + 1) — L(L + 1) — S(S+ 1)]

along the diagonals of the matrix and zero for all off-diagonal
matrix elements. In particulaEso(j=3/2) = /2 andEs(j=">)

= —A. It is convenient to add-4/2 to these energies so that

the asymptotic?Ps, state has zero energy. Other ways of

o. The partial wave cumulative reaction probabiIF?ium(E)
(which can be used to calculate rate coefficients) is given by

J _ J 2
Peun(BE) = Z g |Son,zz,N,j,F,QH(x’,u’,N’,j’,F’,Q’(E)|
oo NTFEQo v NTF .
()]

where the sums are over all open states at the total ertiergy
and the arrangement channel indiceanda’ are chosen to be

choosing the zero of the energy scale will be considered in appropriate for reaction. We also define partial-wave state-
section IV, but it should be noted that none of these choices selected cumulative probabilitie@ium(E;j J'), that are labeled
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by the initial and final values of the electronic quantum numbers 7

N
(j andj"), by restricting the sum in eq 9 appropriately. We then 3 . (3 s=10
have 2
5 F
2 5
J J G 3
Pcum(E) = zzpcum(EJ | ) § I
[ g total ~ot
o L S
S 4L /32312
C. Basis Set and Numerical ParameterdOur multisurface 8 |
calculations were done using a basis of 342 functions. This basis ¢ 2|-
consists of rotational statéé= 0—13 for vibrational state = s r 32 > 112
0,N=0-11 forv =1, andN = 0—4 for v = 2 in each of the § e

two arrangement channels that are needed for the- GiCl - j-;/:‘jz.:smfﬁ
reaction. The complete set &P electronic states appropriate 030 035 o040 045 050 085 060 065 070
for J = Y, was included in all calculations, although only one E/eV
of the two identical parity components was considered. In earlier
work,'® we examined convergence with respect to basis set size
and found that the above basis yields accurate results for the
cumulative reaction probabilities for the energy range consid-
ered.

Only theJ = Y/, partial wave has been included in this study.
In earlier work!® we converted = 1/, results into thermal rate
coefficients using d-shifting approximation and made a detailed

(b) $=0.0

3/2 »3/2

.

Cumulative reaction probability for J = 1/2

IS
L L B S N B B

comparison with experimental rate coefficient data. The validity 3 w7
of the J-shifting approximation for the Ct HCI reaction has ) — . ST
been studied in detail previouslyIn the present paper, we focus € L/ . ‘ d 32 » 12 -~
attention on theJ = 1/, partial wave cumulative reaction 1 P '_'_“:._ . _/—W"::;:,-
probabilities (both total anf j' resolved). We hope to study o A e BN, R
> 1/, in the future-it will be interesting to see how our 030 035 040 045 050 055 060 065 070
conclusions based on thk= 1/, results are modified when E/ev
higher partial waves are included in the computations. o 12
In earlier researck we have examined rovibrational state- 5 | © $=10

selected cumulative probabilities fer= 1.0. Their dependence 20 ‘
on s has been calculated as part of the present study; however,s, |
we find that P}, (E) and P}, (E;jj') provide most of the 3 s
important physical insight that we require. We performed & |
computations fos = —1.5,-1.0 to 1.0 (in steps of 0.1), and ¢ |- total 21 -
1.5forE=0.3-0.7 eV atintervals of 0.004 or 0.002 eVinthe 3 | o~
vicinity of resonances. The atomic masses used in the calcula-$ 4 |- /'
tions aremy = 1.008 u andng = 34.969 u. é i ,__,_—-/

g 2 - (o 32 —D’:I'I’Z.- -
IV. Results © + e

0 | sz T e — b T 32 932
A. Cumulative Reaction Probabilities: Dependence on 030 035 040 045 050 055 060 065 070

Total Energy. Figure 2 plots the cumulative probability, EleV

P2..(E), for 3 = %/, as a function of from our multisurface ~ Figure 2. Cumulative reaction probabilityPz,+%(E), and state-

calculations, together with the fine-structure state-selected Selected cumulative reaction probabilitié¥,*(E;j.j’), versus total

cumulative probabilitiesP? Y4E;j,j"), with the quantum num- fnergy,E, forj =3 =] =% =%~ =", andj =1, |’ =

bersj andj’ chosen to bg = 3, — |’ = ¥, j = Yo — j' = Y, T2 §7)i:., 1_-01?/('0)5 ;3'?/ (i)%igll-o- N.‘(’jte tha'ﬁcum (E?JI'J ) for

andj = 3, — j' =Y,. Note that microscopic reversibility requires 1~ 2 1 = 28dl =l =z Al entically equal.

P AE;j,") for thej = Y, — j' = 3, transition to be equal to  structures in Figure 2a reflect contributions from interference

that forj = 3/, — j' =%, (and we have verified that this is the  and resonance effects that will be studied throughout this paper.

case to within plotting accuracy), so we only show the latter  The pgj#]/Z(E;j j) in Figure 2a forj = ¥, — j' = Y/, andj =

cumulative probability. Figure 2a displays our results o 3, — j' = 1/, are much smaller than the= 3%, — j' = 3,

1.0 (i.e.,4 = Ag), the true spir-orbit coupling parameter for  cumulative probability, the peaks and dips being less prominent

CI(*P)), while Figure 2b presents= 0.0, and Figure 2c shows  for E below 0.61 eV. The small value of the= ¥, — j' = 1/,

s= —1.0. Note that our results in Figure 2a agree with previous andj = 3/, — j' = 1/, probabilities relative t¢ = 3/, — j' = 3/

results generated with the same basis set and numericals the expected behavior if the electronic states evolve adiabati-

parameters? cally between the reagents and lowest saddle point, because only
The P Y4E) andj = 3/, — j' = 3/, cumulative probabilites  thej = 3, — j' = 3/, transition can react by a purely adiabatic

in Figure 2a show that the effective reaction threshold (where route, see Figure 1b.

the cumulative probability first equals 0.1) is ne&ar= 0.39 Our results fos= —1.0 in Figure 2c¢ exhibit three important

eV. At higherE, there is a gradual rise in the probabilities with  differences compared to Figure 2a. First, we note that the

a shoulder neaE = 0.45 eV, a dip aE = 0.52 eV, and peaks effective threshold energy is much lower at approximakety

atE = 0.54, 0.60, 0.63, 0.65, and 0.68 eV. The peaks and other0.31 eV rather thait = 0.39 eV. Second, we see that the peak
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Cumulative reaction
probability for J=1/2

12

10

0.7

J=1/2

Figure 3. Cumulative reaction probability?,, (E), versus total energy, for s= —1.5,—1.0 to 1.0 (in steps of 0.1), and 1.5.

and dip structure is different, the sharp features of Figure 2a TABLE 1. Energies (E/eV) of Some Prominent Features in

being considerably broader in Figure 2c. Third and perhaps mostP fon (E) for Seven Values ofs

notable, the dominant fine-structure cumulative probability is feature

for j = Y, — j' = Y, rather than folj = 3/, — |’ = %,.
The s = 0.0 cumulative probabilities in Figure 2b have the

same oscillatory character as those in Figure 2a,c with sharp 18 g'ig 8'2‘21 8'22 8'23 8'22 8'22 8'23 zg;g

peaks aE = 0.62 eV andE = 0.65 eV. A notable feature of 0:5 0:44 0:50 0:53 0:58 0:62 0:64 0:67 >0:7o

Figure 2b is that the cumulative probabilities are all proportional, 0.0 0.42 0.49 051 057 0.60 062 0.65 0.69

the ratio total:¥/2 — 3/2):(3/2 — 1,):(4> — 1>) being 1%g:%/9:Ygy -05 040 047 049 054 058 060 063 067

ot P -1.0 0.38 0.45 0.47 052 055 057 (58 0.64
to a good approximation. This is the expected result from s o036 043 044 056 053 054 058 0.6

shoulder dip peak peak peak peak peak peak

statistical theory, in which the 2:1 ratio éPs, to 2Py, states o 01 o 1 o0 o 1 0 1

for s= 0.0 in both reactants and products leads to the observedsaddie (0,0,2) (0,42) (0,2,2) (0,3.2)
relative weights for the cumulative probabilities. In particular, point

the statement in the previous sentence follows upon first noting ﬂﬂ;nggg

that the degeneracyj 2- 1, of thej = %/, and?/, states is 2 and o )

4, respectively. If the states are populated statisticallysfer ~ “Weak peak, only just visible t‘jﬁ,rfph'cal acc“raEZ{}zeQN values
0.0, then their population i&s and ¥ for j = Y, and 35, |nd|ca_te the main contributor tB,,,(E) from the Py, (E,.Qn,Qn)
respectively. The statistical reaction probability is tHénx plots in Figure 5.

4/6 = 16/36 fij = 3/2 - j' = 3/2, and4/5 X 2/5 = 8/35 fij = 3/2 3

— " =1, (and forj = Y, — j' = 3/,) and?s x 4 = /36 fOr

i =Y, — | = Y,, which gives rise to the ratios stated above.
Figure 3 display®., Y4E) versusE for 23 values ofin the

range—1.5 to 1.5. The plot shows that the peak structures evolve

gradually ass changes, which characterizes more completely

the relation between Figure 2, panels a, b, and c. Table 1

2

(E:3/2,3/2)
(E;3/2,3/2)

1=

12
cum

=1/2
cum

J
J;

P
P

°® = N w &

o°

summarizes the energies of the peaks (and some other structures§ S

for selected values af It shows that the energy of each feature & § g
generally increases linearly withwith an energy shift oAE g% o el
~ —l,shci = s x 0.0365 eV. This effect is easily rationalized, %3 50

as previously discusséd}in terms of the variation of the=- ot —

like” barrier height relative to the energy of tAig;, asymptote. v Elev V EleV
However, note that some of the features sharpen considerablyFigure 4. State-selected cumulative reaction probabifty,~(E;j '),

m

with s (such as the highest-energy peak fobetween—0.5 for j = %, — ' = 3/, versus energyE: (a)s= 0.5, 0.4, and 0.3; (b)

and 0.5), while other features do not. $=0.2,0.1,and 0.0; (= —0.1,-0.2, and—0.3; (d)s= —0.4 and
Figure 4 showsPl-YAE;jj) for thej = 3, — j =3, 0%
transition as a function d&, for s values in the range-0.5 to cally with s; instead, there are some spectacular oscillations (for

0.5 (in steps of 0.1). Here we see behavior somewhat analogousexample, Figure 4b shows that tre = 0.1 cumulative
to Figure 3; however, the fine-structure-resolved probabilities probability is much smaller than the = 0.0 ors = 0.2

show more complex structuresshanges than do@,~4(E). probabilities). We will study this finding in greater detail in

In particular, note that the probabilities do not evolve monotoni- the next section. The primary point to make for now is that
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EleV
Figure 5. State-selected cumulative reaction probability, physical origin for the lowE peaks in Figure 3 than for (at

PLYAEQNQW), for Qu = 0 andQy = 1 versus total energy, for
s=1.0, 0.0, and-1.0.

least some of) the higle peaks. Indeed, this observation
suggests that the lo® oscillations in Figure 3 are Stueckelberg-
like interference oscillations between thd-like” and “Z=-like”
amplitudes for reactive scattering, while (at least some of) the
L cum { . higher E oscillations are due to resonances. Thus the lack of
sented in Figure 3, and that present in the fine-structure-resolvedgy o e at lowE in Figure 6 would be interpreted as occurring
cumulative probabilities, which SJE?,‘;VS up in Figure 4. because only one surface has significant amplitude for reaction,
To study the oscillations irP,,;,(E) (in Figure 2), we that is, “=-like” surface.
present in Figure 5 plots of the cumulative reaction probability  \we also note that the interference oscillations at Buin
versusk for s = 1.0, 0.0, and-1.0 obtained from eq 9 but gy re 3 are approximately independensoThis makes sense
with ©y and Q, the initial and final rotational projection  pecaysev;, does not depend omand, as long as we confine
i(iuantum numbers, respectively, fixed at specified values, that . a+tention thﬂjé’z(E), any&dependent interference_effects_

' should be averaged out. One further point to note in Figure 6 is
that theVi, = 0 cumulative probability is uniformly larger than
that in Figure 2a folV;, = 0. This is consistent with the idea
that turning on the conical intersection (i.€1, = 0) suppresses
reactivity because some component of tielike” flux is
transferred to the nonreactiv@I-like” surface.

B. Cumulative Reaction Probabilities: Dependence on
d Spin—Orbit Parameter. Next we turn our attention to the

variation with s of the PJ*(E). Figure 7 presents the
cumulative probabilities as a function st three fixed values
of E, Figure 7a referring t& = 0.4 eV, Figure 7b t&c = 0.5
eV, and Figure 7c t&e = 0.6 eV. Included in the plots is

there are two levels of oscillatory structure in the cumulative
probabilities: that seen in thE-Y%(E) results, as best pre-

PamAE) = ZZPiﬁf(E;QN.QNr)

We find that P, Y4(E;Qn,Qy) is almost diagonal irQy for
eachs, so only the dominant diagonal elements have been
plotted; in particular, results faRy = 0 and 1 are in Figure 5
(Qn = 0, +1, £2 are allowed). The plots show the expecte
dominance ofQy = 0, corresponding to reactivity on th&-
like” surface; however, th&y = 1 cumulative probability is
also significant, and moreover, ttf¢y = 1 plots have peaks
that alternate with peaks in they = O curves, at least foE Pl Pyt _
below 0.6 eV. Because the peaks of g = 0 andQy = 1 Peum (E), as well as thé>; ,,(E;j.J'). All three figures show
curves occur at different energies, it is possible to label the peakoscillations in the dependence Bf,/4(E;j.j') on s although
energies in Table 1 according to th&dy value. We can see  not, for the most part, i) (E) vs s. These results are
that the peaks (and other structures) have a complex orderingqualitatively similar to what was noticétifor an earlier, less
which suggests that more than one mechanism may be deteraccurate surface (denoted SMSGMCalthough here we have
mining their appearance. computed results on a finer grid B using a better basis set,
One further clue concerning the peaks and structures in Figureso that the behavior of the oscillations is better resolved, and at
3 comes in Figure 6, in which we have plotted, $or 1.0, the three energies. There are two adiabatic limits in Figure 7. The
same curves as those in Figure 2a but for a calculation in which first occurs fors = 0.75, at which th¢ = 3, — ' = 3, transition
the diabatic coupling matrix elemevit, (between Z-like” and dominates the reactivity. This can be understood from Figure
“II-like” states) has been set equal to zero. Note that the-spin  1b in terms of an adiabatic motion of the atoms from reactants
orbit states are still coupled by electrostatic interactions in theseto products. The second limit occurs e —0.6, where the
calculations, and indeed, we see that fhe 3/, — | = 1/, reactivity receives its dominant contribution from jhe 1/, —
cumulative probability is about the same as before. However, j' = Y/, transition. This can also be understood in terms of an
the primary effect of settingvai, = 0 is that the conical adiabatic pathway.
intersection disappears. Figure 7 displays remarkable oscillations in the plots of
Figure 6 shows that the main effect of this disappearance is P;’jnﬁ’z(E;j J') versuss, such that betwees = —0.5 and 0.5,
to remove the peaks and dips in the curves at B\{below there are approximately three full oscillations in both fhe
0.61 eV fors = 1.0) but not for higtE. This implies a different 3/, — " = 3/, andj = ¥, — j' = ¥, cumulative probabilities.
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Figure 7. Cumulative reaction probabilityP~E), and state-
selected cumulative reaction probabllltl@s’b‘”z(Ej,j) versus scal-
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—j' =Y (a)E=0.4eV; (b)E=0.5eV; (c)E = 0.6 eV. Note that
PLYAE;,j") forj =3, — ' = Y, andj = Y, — |’ = ¥, are identically
equal. The solid symbols indicate tBevalues at which the quantum

scattering calculations have been performed.

Thej = 3/, — j' = 1, probability is less sensitive te. In
addition, we see that thie= 3/, — |’ = 3/, cumulative probability
evolves from being the largest at largeo being smallest at
smalls with thes = 0.0 statistical result noted previously also
included. Thg = 1/, — j' = %, cumulative probability exhibits
the reverse behavior as a functionspfvhile j =3/, —j' =1/,

is intermediate. In addition, we see that for certain rangess of
the “wrong” cumulative probability is largest, especially at low
E. Thus atE = 0.4 eV, the?Py, state dominates for positive
values neas = 0.1 and 0.4, while théPs; state dominates for
negatives values neas = —0.1 and—0.4.

J. Phys. Chem. A, Vol. 107, No. 37, 2008285

the energy scale used f&,~4E). The choice of the asymp-
totic 2Ps, state for defining the energy zero is somewhat
arbitrary, and it is important to realize the consequences of this
choice. For clarity, in the remainder of this section, we will
use the more explicit notatioB=z/ rather tharE.

We have made two other choices for the zero of energy,
namely, (a)s = 0.0, that is, the weighted mean of tfey, and
2P, energies-we will denote the total energy measured on this
scale byE—o—and (b) the lower of théPs, and?Py/; energies-
we will use the notatiorkower for the total energy in this case.
The relations between the three energy scales are

s> 0, A=<0 (lower energy state #,, becausé, < 0)

Elower E =312

Eco=Ei—spt l/2/1 =

s<0, A>0 (lowerenergy state i’sPl,2 becausd < 0)

Ei—ant Y 2Shey

E—spt 3/2}L =

Elower= j
Eso= + U =

Thus a fixed value foEwer OF Es=o for different values ofs
can be achieved by varyirffj—3/, in accordance with the above
equation (fors= —1.0, the valudgpyer = 0.4 €V would require
Eji=2»=0.29 eV, which is outside the range of our computations,
Ej:g/z € [0.3, 0.7 eV]).

Figure 8a shows plots o Y4Eso) and P, Y4Esoij,j’)
versus s for E—p = 0.4 eV, while Figure 8b displays
P Eower) andP L (Ejowerj,j) versuss for Eigwer = 0.4 V.

The choice oEower leads to a sudden switch in energy scale at
s = 0.0, as is apparent in Figure 8b, tke= 0.0 cumulative
probability being the largest (because the effective barrier is
lowest when there is no spitorbit coupling). In contrast, the
choice ofEs—q results in a smoother result in Figure 8a in which
the cumulative probability is approximately constant. This can
be understood becaudg-o-(energy of height of effective
barrier) is also constant. Of course, our original choice for
the zero of the total energy scale is such that the largest
PEY2(E _3) are associated with large negatisesee Figure

7, panels a, b, and c, foE=3> = 0.4, 0.5, and 0.6 eV,
respectively. However, although’,~%(E_s)) varies substan-
tially with s for this choice of energy zero, the oscillations in
the fine-structure-resolved probabilities are less affected.

C. Simple Two-State Model for Spin-Orbit Transitions.

We discussed the origin of oscillations similar to those in Figure
7 inref 11, in which we examined the behavior of the Massey
parameter governing spirorbit transitions between the ap-
propriate fine-structure diabats. Here we extend our earlier
discussion by presenting a dynamical two-state model for the
reaction dynamics, which lets us calculate reaction probabilities
that can be compared to our full dimensional results.

In this simple two-state model, we consider the potential along
the reaction coordinate for collinear geometries. In this situation,
the Q; = 3/, state is uncoupled from th@; = Y/, state except
via Coriolis coupling (details of the argument are given in ref
11), and because the Coriolis coupling mechanism is weak for
J = 1,, we ignore it. This means that the only important reactive
states (for the parity we choose) at low energy jare />, Q;
=1, andj = 1, Q; = Y, or what in the context of Figure 1
are called?Sy, (correlating to?Ps;) and 2I1y, (correlating to

E'=3/2 + 3/ZS'ICI

1
J =3/2 3/2+ /ZSACI

Before we discuss the oscillations in more detail in the next 2Py,), respectively. The coupling between these two states arises
section, there is one point in need of clarification concerning from the “difference potential” for the potential energies of the
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P Y Epwer '), versuss at Eower = 0.4 eV. Note thatPl YHE; -

o) forj = 3%, — j' = 4, andj = Y, — ' = ¥, are identically equal
and similarly for P2 Y(Eerj'). The solid symbols indicate the
values at which the quantum scattering calculations have been

performed.

2Ty, and the?Xy), diabats, Vi — Vs, which we also calculate
along the reaction path. Spiorbit interaction is also included

Schatz et al.
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We have solved the Schdimger equation for this two-state
model to determine the fine-structure and total reaction prob-
abilities as a function of the total enerdy and the scaling
parametess. As before,E is always measured with respect to
the asymptoti@=;,; energy (energy of théPs, state).

Figure 10 shows, fors = 0.0, the spir-orbit reaction
probabilities plotted versug. This figure is to be compared

via eq 1, so the asymptotic energies are the same as in the fulliw, Figure 2b for the full dynamics, and indeed, there is much

dimensional calculation, but vibrational and rotational motions
are not included.
The two-state Hamiltonian is defined by the matrix

Ifi/211/2|Hel + Hso|3/2’1/2D= 22ll2 Ifi/211/2|Hel + Hsc>|1/211/2D
EI/211/2|Hel + Hso|3/211/2|:| |:]VZI:lelHel + Hso|1/21l/2D: ZH1/2

where thel]l,Qj|He + Hsdj,Qj0matrix elements are given in
Table 1 of ref 11, using the quantum numbgss 3/, Q; = Y5
andj =Y,, Q; = Y. In Figure 9, we plot théZ;, and 2[1y,,
diabats (including the spinorbit interaction fors = 1.0 in the
diabats), as well as the coupling potential arising from this
model, as a function of the reaction path. It is important to
realize that the curves in Figure 9 are functions of a single

similarity. The simple model does not incorporate vibrational
zero-point energy, so the reactive threshold is lower. Note that
there are weak shoulders in the total reaction probability in
Figure 10 atE = 0.4 and 0.5 eV. This is similar to the broad
peaks seen in the middle panel of Figure 5, which we indicated
could be due to interference oscillations. Of course in the single-
coordinate model, the intersection of t%8,, and?I1,, curves

is not conical, and we do not expect exact agreement.

Figure 11 shows fine-structure and total reaction probabilities
versuss at fixed E (choosingg = 0.35 eV). This energy yields
graphs that are similar to Figure 7a, both for the total reaction
probability and for the fine-structure-resolved probabilities. In
particular, there are oscillations fer0.5 < s < 0.5 that are

coordinate in our simple two-state model and are approximations similar to what we see in Figure 7a, with the= 3, — | = 3/,

to the full J,Qy|Hel + Hsdj,Qj0matrix elements, which are
functions of two independent coordinates for the collinear
configuration of the atoms. Note that tAd;,, curve in Figure

andj = Y, —j' = Y, transitions influenced much more strongly
than thej = %, — j' = 1/, transition. However, there is only
one distinct oscillation in Figure 11, whereas there are three in

9 has the deeper van der Waals well and higher barrier, so itFigure 7a. This suggests that our simple two-state model

would cross théX; curve if the energy shift arising from the
spin—orbit interaction was omitted.

captures the essence of the phenomenon responsible for the
oscillations, although the agreement is only qualitative.
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two state model |j:3/2,9j:l/2|:'= \/;3|0,1/2|:H‘ (1/\/§)|1._1/2|:|
E=0.35eV

o
©
T

= 0.820,",[+ 0.581,—%,0

o
o

for 2Ps;,. From these equations, we can see the relative
participation of the?Zy,, that is,|0,1/,[] and?l1y,, that is,|1,—

1,0 states in the correct asymptotic states. This then suggests
a sudden approximation, in which we imagine that the dynamics
is either completely 2=;-like” or completely “ITy,-like”,
reaction associated with tH®1,, and?P;, states being deter-
mined only by the state mixings just given. In other words, we
assume there is a scattering matrix element foij the?/, — j'

= 3/, transition that is given by

Reaction probability

o
'S

0.2

0.0

Figure 11. Two-state model reaction probabilities versifer j = 3/, 3 .3
—j =3, j=3%—| =Yy andj = Y, — j' = ¥, atE = 0.35 eV. 0="1,1S)'="1,0=

Note that the reaction probabilities fpe= 3, —j' = ¥, andj = Y/, — 1 1 1 _1
i’ = %, are identically equal. [0.820,7,| + 0.581,—7,/]190.820,7/,H 0.581,—7/,00

— 1 1 1 _1
If we now reexamine the potential curves in Figure 9, we = 0.670, 7,150,751 0.341,— /,|S1,~ /0
see that the coupling between the diabats is large in magnitude ~ 0.67S,
in three regions: (1) in the reactant region, wheretiig, curve

has its van der Waals well, (2) in the corresponding product \yhere in the last line we have assumed that reaction only occurs
region, and (3) close to the barrier maxima. Figure 9 issfer on the23,,, surface.

1.0, but the cou_pling potential remains the same for smmﬂer_ We can apply this argument again to calculate all of the
although the d!abats are t_hen closer t_oge_ther and there_ IS &eaction probabilities, obtaining

greater probability of hopping. The oscillations as a function

of s can then be understood in terms of the amount of cycling i3 i3y _

of populations between the two diabats that occurs during the PI=11=T>) 0'672P2 0.4%;
reaction. For largés|, the hopping probability is small and the
results are largely adiabatic. F{sf < 0.5, there is sufficient
hopping that the populations cycle between the two diabats, and
the populations then oscillate as a functionsofThis effect P(=Y,~j'=",) = 0.3#Py= 0.11Py

shows up primarily in th¢ =3, —j =3, andj =1, —j =

1/, reaction probabilities. The total reaction probability is the wherePs = |S;|? is the?X;; reaction probability. This argument
sum over different final outcomes and thus is less sensitive to predicts that the three probabilities for 0.0 should be in the

the amount of cycling that occurs. order 0.45, 0.23, 0.11, which is indeed the order that we find

This explanation confirms an earlier analysis in ref 11, in in Figure 10 forE = 0.4 eV at which the exact two-state reaction
which we demonstrated that the variation of the Massey probabilities are 0.39, 0.20, and 0.10, respectively. However
parameter was consistent with a strong cycling of populations the sudden approximation is evidently a drastic oversimplifica-
for |s| < 0.5. Now we have shown that a two-state reaction tion whens ~ 1.0, and we find that it exaggerates the smaller
path model leads to oscillations in the reaction probabilities as reaction probabilities (the calculated two-state reaction prob-
a function ofs. Of course, there will also be oscillations as a abilities atE = 0.4 eV fors = 1.0 are 0.56, 0.02, and 0.01).
function of E, and this is one reason the fine-structure-resolved Note that the sudden approximation does not predict oscillations
cumulative probabilities in Figure 4 show more structure as a as a function ofs. However oscillations could occur if we
function of E than do the total cumulative probabilities in Figure included both théX,, and?1;; scattering amplitudes, resulting
3. in interference between the two reactive pathways.

To conclude this section, we mention that there is a second D. Transition-State Resonances\ext we consider the sharp
simple two-state model that may be used to understand thestructures in Figures 2 and 3. Past (single-surface) stifdiés
branching between th#;, and?P;, states fors ~ 0.0. It is a CIHCI based on the BCMR surfafehave observed one
unitary transformation of the one we have just analyzed. In this resonance feature over the energy range considered, namely, a
second model, we use tha 0= |L,ASZ0basis functions peak neakE = 0.642 eV with a full width at half-maximum of
of eq 2 withL = 1, S= Y, rather than thej,Q;Ofunctions. about 0.004 eV. This resonance was assigned the saddle-point
Thus forQ = /5, the two basis functions até,—/,Cfor A = quantum numbers/(,v,,v3) = (Ssymmetric stretch, bend, asym-
1,2 = -, and|0,%,for A = 0,2 = Y/,. In this basis set, the = metric stretch)= (0,0,2) on the basis of the appearance of the
electrostatic Hamiltonian is diagonal asymptotically, and the scattering wave function close to the saddle point. A similar
spin—orbit interaction causes the states to be coupled. We find resonance is se€tin exact quantum computations for collinear
from eq 2 that the two asymptotic states are CIHCI; there are also resonances at higher energies that

correspond to higher excitations of thhe mode, but lower-

P(=",—j'=",) = 0.48Py = 0.2y

energy resonances, such as those for the state (0,0,0), are not
|j=1/2,§2]-=1/2|]= —(1V/3)|0,1,H \/;3|1,—1/2D sufficiently stable to show narrow structure.
Figure 3 exhibits eight structures that might be interpreted
= —0.580,",+ 0.821,—"/,00 as being resonances, which we have tabulated in Table 1 for

seven values of = —1.5 to 1.5 (steps of 0.5). However, our
for 2Py, and analysis in sections IV.A and IV.B, particularly the effect of
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setting the diabatic coupling between ti®%ltke” and “T1-like” We also found evidence for the existence of Stueckelberg-
surfacesVi, = 0, in Figure 6, lets us identify three of these type interference oscillations in plots B, %(E) versusE that
structures as arising from interference effects rather than beingarise from a conical intersection between the potential surfaces
single-surface resonances (the lowest-energy structure is aabout halfway to the top of th&,, potential barrier. Finally
shoulder). Of course, resonances could appear as a result of theye examined the properties of transition-state resonances
conical intersection (so-called funnel resonances); however, theassociated with CIHCI. We found that spiorbit coupling
shape of the conical intersection in € HCl is not expected  between the surfaces broadens the resonances in the adiabatic
to be favorable for such resonances. regime but sharpens them in the coherent coupling regime.
The higher-energy peaks (aboke= 0.60 eV fors = 1.0) The connection between the present results and experiment
show up consistently in calculations both with and without the will be an important task for future research. The small spin
electrostatic couplingVi,, included, so it is easier to assign orbit effects that we find when the true value offor Cl is
these peaks. In Table 1, we assigned saddle-point quantumused (i.e.1 = A¢|) have often been obsenfeth reactions of
numbers, giving the lowest-energy resonance the same quantun!(?P), but it will be of more interest to find reactions that
numbers as previously inferred from single-surface calculdfions exhibit the more dramatic spirorbit effects that we have
(with corrections for the spinorbit induced shift of the effective  predicted. Our results indicate that the magnitude of the-spin
barrier height). Thus fos = 1.0, the (0,0,2) resonance isk&t orbit interaction relative to the van der Waals well depth is an
= 0.63 eV. important parameter for determining whether interesting-spin
We also find a resonance only 0.02 eV higher in energy than Orbit propensities are possible. A useful aspect of our simple
the (0,0,2) one fos = 1.0. Using theQy = Qy assignments in  two-state model is that it is easily applied to a variety of
Figure 5, we find that it corresponds to the first excited bend réactions, which should make it possible to identify candidates
state built out of (0,0,2), namely, (G,2) becaus&y = Qy = for further study.
1 corresponds to one quantum of vibrational angular momentum

at the saddle point for the first excited bend state. Appropriately, ~Acknowledgment. This research was supported by the U.S.
this resonance is missing in the= 0 single-surface results National Science Foundation (Grant No. CHE-0131998) and

that were reported in ref 18 (which should only shé = the U.K. Engineering and Physical Sciences Research Council.

Qn = 0 resonances). The next peakeat 0.68 eV fors= 1.0 ;
can then be assigned as a second excited bend resonanc&eferences and Notes

presumably with the quantum numbers {22 because we see (1) Tully, J. C.J. Chem. Phys1974 60, 3042.
it in the Qy = Qn = 0 results in Figure 5, and a peakkat= (2) Jaffe, R. L.; Morokuma, K.; George, T. B. Chem. Physl1975
0.71 eV fors= 1.0 can be identified as (0,2) on the basis of 63, 3417.

. ) . . (3) Dong, F.; Lee, S.-H.; Liu, KJ. Chem. Phy2001, 115 1197. Lee,
its appearance in th@y = Qy = 1 results in Figure 5. S.-H.; Liu, K.J. Chem. Phys1999 111, 6253. Lee, S.-H.: Lai, L.-H.; Liu,

By allowing sto vary away froms = 1.0, we can then assign K.; Chang, H.J Chem. Phys1999 110, 8229. Liu, K.Annu. Re. Phys.

. A Chem 2001, 52, 139. Liu, K. Int. Re. Phys. Chem2001, 20, 189.
the other resonances in Table 1 wiees 1.0. Figure 3 shows (4) Harper. W. W.: Nizkorokov, S. A.. Nesbitt, D. J. Chem. Phys

the evolution of these resonances as a functios) ahd we see 2002, 116, 5622. Nizkorodov, S. A.; Harper, W. W.; Nesbitt, D Rhraday

that for|s| < 0.5 they are sharper than those $or |0.5|. This glscBulss l3999 1%3 V%/O?NlebkorcIJDdoX, %hA.: HngeriggéV\l/-l; fgigTan, W.
H H H : .B.; blackmon, b. .; Nesbitt, D. J. em. YsS. .

may be due. tothe Imerference eﬁeCtS d.lscussed m. secthn N'C’ (5) Ausfelder, F.; Kelso, H.; McKendrick, K. @2hys. Chem. Chem.

however, this tentative explanation requires further investigation. pnys 2002 4, 473. Ausfelder, F.; McKendrick, K. G2rog. React. Kinet.

Mech.200Q 25, 299. Sweeney, G. M.; McKendrick, K. @. Chem. Phys
1997 106 9182. Sweeney, G. M.; Watson, A.; McKendrick, K..I5Chem.

V. Conclusions Phys 1997 106, 9172. Brouard, M.; O’'Keeffe, P.; Vallance, G. Phys.
. . . . . Chem A 2002 106, 3629. Brouard, M.; Vallance, ®hys. Chem. Chem.
This paper has examined the influence of sgrbit coupling Phys 2001, 3, 3602. Matsumi, Y.; Izumi, K.; Skorokhodov, V.; Kawasaki,
on reactions of open-shell atoms with closed-shell diatomic M.; Tanaka, NJ. Phys. Chem. A997 101, 1216. Tyndall, G. S.; Orlando,

molecules, which we have modeled by the#€HCI — CIH + J. 4, Kegley-Owen, C. SI. Chem. Soc., Faraday Tran995 91, 3055.

- . h . Chichinin, A. I. Khim. Fiz 2000 19 (3), 127. Chichinin, A. I.J. Chem
Cl reaction. We find that electrostatic coupling between the pnys200q 112 3772. Chichinin, A. IKhim. Fiz 1997, 16 (4), 57 [English

spin—orbit states leads to a variety of interference phenomena translation.Chem. Phys. Re[1997, 16, 635]. Chichinin, A. I.Khim. Fiz
that modify the reaction dynamics compared with reaction on 199(56)155(63' t49C[;Erg]"sgh”a”gﬁ“%ggrgépyg;z F\I’ep.9926 f15*f£‘§’]:,,

: - chatz, G. CJ. Phys. Chern , .Ineq 2, for °j
a single potentlal surface.. ~ read ““2N-j". In eq 7, for P’ read ‘p?". In Table 1, for “w, Vo' read
Our primary tool for this study has been quantum reactive “Voo, Voo'. In section 1V, for “A” read “/4|”. In the caption to Figure 3, for

scattering calculations far= Y/, in which we varied the spin ref é‘;‘ﬁgﬁg;&g 2’3' u‘_r\e,{/éiefronglj 5‘,‘\72;6 Irgg‘gu?g's 28135 Chem
orbit parameter over the rangel50% to+150% of its correct Phys 1998 109, 5710. Alexander, M. H.- Manobpomosj D. E.: Werner,

value. In this way, we demonstrated that tR& “4E;j,j’) H.-J.J. Chem. Phys200Q 113 11084. Aoiz, F. J.; Baares, L.; Castillo,

m

values undergo a change from adiabatic character for large?: F-J: Chem. Physl999 111, 4013. Aquilanti, V.; Cavalli, S.; De Fazio,
positive and large negative values oto statistical behavior Bﬁy\éozlgbzAg,’?oul'llaﬁOpr‘]'\’,g'mE,’Jfﬁﬁjh;;??i}\é'hgﬁfﬁéhi@{ﬂ%ggm'
for 2 = 0 with coherent oscillations between the adiabatic and 303 657. Aquilanti, V.; Cavalli, S.; De Fazio, D.; Volpi, Ant. J. Quantum
statistical limits. This leads to a range bfvalues for which ghem I?Ot?lcf? SSB- Pghuilamjéo\(/)-i fggaz"éiiof-: Pirani, F.; Volpi, A;;
“mverte.Q’t behaylor is observed in th.e cumulqtlve reaction ap(pS? ilé’xander, r)\//ISH Eg]becchi,G.;Werne}, H.Skience2002 296,
probabilities, which means that the excited spimbit state has 715.

larger reactivity than the ground state. (9) Husain, D.; Donovan, R. Adv. Photochem1970Q 8, 1. Donovan,

. : _ - R. J.; Husain, DChem. Re. 197Q 70, 489. Dagdigian, P. J.; Campbell,
We introduced a simple two-state model for the reaction \; | ~on Re. 1987, 87, 1. Dagdigian, P. J. ISelectiity in Chemical

dynamics that mimics some features of the full dynamics quite Reactions Proceedings of the NATO Advanced Research Workshop,
well. It demonstrated that the coupling between kg, and Bowness-on-Windermere, U.K.;-1L1 September 1987; Whitehead, J. C.,

2 i i i Ed.; Kluwer: Dordrecht, Netherlands, 1988; pp 4777. Gonzkez-Ureta,
1,1, states along the collinear reaction path in the van der Waals A.: Vetter, R.J. Chem. Soc., Faraday Trank095 91, 389. Alagia, M.-

well regi.o.n noticeably influences thje— | resolved reaction  ggjycani, N.; Casavecchia, P.; Stranges, D.; Volpi, GJGChem. Soc.,
propensities. Faraday Trans1995 91, 575.



Influence of Spin-Orbit Effects on Reactions J. Phys. Chem. A, Vol. 107, No. 37, 200889

(10) Dubernet, M.-L.; Hutson, J. Ml. Phys. Chem1994 98, 5844. in eq 6, for “+-2N-j” read “—2N-j”; in eq 11, for “P*’ read “p?’; below eq

(11) Schatz, G. C.; McCabe, P.; Connor, J. NFaraday Discuss1998 11, for “Substitution of eq 1” read “Substitution of eq 10”; in Figure 6, for
110, 139. _ _ _ “PLEnl/2,1/2)" read P}, (E;1/2,1/2)".

(12) Weaver, A.; Metz, R. B.; Bradforth, S. E.; Neumark, D.MPhys. (20) Kios, J. A.; Chatasiki, G.; Szczéniak, M. M.; Werner, H.-JJ.

Chem 1988 92, 5558. Waller, I. M.; Kitsopoulos, T. N.; Neumark, D. M.
3. Phys. Chem199Q 94, 2240. Liu, Z.; Ganez, H.; Neumark, D. M, C1'eM- Phys2001, 115 3085, . _ .

; (21) zdanska, P.; NachtigalloyaD.; Nachtigall, P.; Jungwirth, PJ.
Faraday Discuss2001, 118 221.

(13) Manz, J.; Rmelt, J.Chem. Phys. Lett1981, 81, 179. Schatz, G. ~ Chem. Phys2001 115 5974.

C.J. Chem. Physl989 90, 4847. Schatz, G. Cl. Phys. Cheml99Q 94, (22) Visscher, L.; Dyall, K. GChem. Phys. Letfl995 239, 181.
6157. Schatz, G. C.; Sokolovski, D.; Connor, J. N.Aaraday Discuss. (23) Rebentrost, F.; Lester, W. A., Ir. Chem. Physl975 63, 3737;
Chem. Soc1991, 91, 17. Noli, C.; Connor, J. N. L.; Rougeau, N.; Kubach, 1976 64, 3879; 1976 64, 4223; 1977, 67, 3367. Rebentrost, F. In
C. Phys. Chem. Chem. Phy2001, 3, 3946. Noli, C.; Connor, J. N. L. Theoretical Chemistry Advances and Perspeetis Theory of Scattering

Russ. J. Phys. Chera001, 76 (Suppl. 1), S77; physics/0301054. Papers in Honor of Henry EyringHenderson, D., Ed.; Academic: New
(14) Schatz, G. CJ. Phys. Chem199Q 94, 6157. York, 1981; Vol. 6B, pp +77.
(15) Metz, R. B.; Weaver, A.; Bradforth, S. E.; KItSOpC_)uIOS, T. N (24) Schatz, G. C.; Kuppermann, A. Chem. Phys1976 65, 4642.
Neumark, D. M.J. Phys. Cheml99Q 94, 1377. Metz, R. B.; Kitsopoulos, Schatz, G. C.; Hubbard, L. M.; Dardi, P. S.; Miller, W. Bl.Chem. Phys
T. N.; Weaver, A.; Neumark, D. MJ. Chem. Phys1988 88, 1463. 1984 81, 231.

(16) Liu, K.; Kolessov, A.; Partin, J. W.; Bezel, |.; Wittig, ©€hem. . . . .
Phys. Lett 1999 299 374. Imura, K.; Ohoyama, H.; Naaman, R.; Che, L SZSC):hSun, gh B%v&)ag,zJiI(\s/IﬁS?a}:z, GMC.,CS.hgrr;], ‘1 RéCé)}?tn(f]r, J-N.
D.-C.; Hashinokuchi, M.; Kasai, TJ. Mol. Struct 200Q 552, 137. Che, Cher Ke_m.tl%ys 18 961 - Lolton, M. €., >chatz, &. @nt. J.
D.-C.; Hashinokuchi, M.; Shimizu, Y.; Ohoyama, H.; KasaiPhys. Chem. em. Kine 618, ’

Chem. Phys2001, 3, 4979. (26) Schatz, G. CChem. Phys. Lett1988 151, 409. Schatz, G. C;
(17) Maie”e’ C.S.; SchatZ, G.C.; Gordon’ M. S.; Mc(:abe, P.: Connor, SOkOIOVSki, D, Connor, J. N. L1. Chem. Phyﬂggl 94, 4311. Jakubetz,

J. N. L.J. Chem. Soc., Faraday Trank997, 93, 709. W.; Sokolovski, D.; Connor, J. N. L.; Schatz, G. £.Chem. Phys1992
(18) Whiteley, T. W. J.; Dobbyn, A. J.; Connor, J. N. L.; Schatz, G. C. 97, 6451. Connor, J. N. L.; McCabe, P.; Sokolovski, D.; Schatz, G. C.

Phys. Chem. Chem. Phy200Q 2, 549. On p 549, for “G’ read “Co,”; Chem. Phys. Letil993 206, 119. Sokolovski, D.; Connor, J. N. L.; Schatz,

on p 551, for 1" read “1”; on p 553, for “V,; = 0" read “Vi2 = 0”; in G. C.Chem. Phys. Letl995 238 127;J. Chem. Phy51995 103 5979;

Table 3, for “151%" read “10-1% and for “9.8" read “9.48"; on p 554, for Chem. Phys1996 207, 461. Schatz, G. C.; Sokolovski, D.; Connor, J. N.

“QnY2 read “Qn”; in ref 44, for “Zang” read “Zhang”. L. In Advances in Molecular Vibrations and Collision Dynami@owman,
(19) Dobbyn, A. J.; Connor, J. N. L.; Besley, N. A.; Knowles, P. J.; J- M., Ed.; JAI Press: Greenwich, CT, 1994; Vol 2B, ppZb.

Schatz, G. CPhys. Chem. Chem. Phyi999 1, 957. On p 712, fory = (27) Bondi, D. K.; Connor, J. N. L.; Manz, J.;"Relt, J.Mol. Phys

152" read "6 = 152°”; in Figures 4c and 4(d), for “CICHI” read “CIHCI"; 1983 50, 467.



