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An extension of the concept of response reactions (RERs) is presented that allows the generation of
thermochemical data from group additivity (GA) and ab initio methods using precisely the same stoichiometric
and mathematical procedures. This goal is achieved by (i) reformulating the ordinary least squares (OLS)
analysis in terms of GA reactions, (ii) realizing that the modified OLS analysis is equally applied to both GA
and ab initio methods, and (iii) proving that the errors (residuals) may be uniquely partitioned into a sum of
contributions associated with GA RERs. These new findings provide a remarkable interpretation and direct
comparison of the accuracies and capabilities of the GA and ab initio methods.

1. Introduction

With the advance of experimental techniques and computa-
tional chemistry, substantial progress has been achieved over
the past 10-15 years in the development of a reliable
thermodynamic database for a large set of molecules.1 Yet, there
are numerous molecular species for which reliable thermody-
namic data are lacking or they are incorrect. Because experi-
mental measurements of thermochemical data are often difficult
to perform and are expensive, much emphasis is currently been
put on theoretical methods. The latter may be roughly divided
into two categories: empirical (group additivity (GA) and
molecular mechanics (MM3), etc.) and quantum chemical
(density functional theory and ab initio).2

Despite their empirical character, the GA methods3-7 continue
to remain a powerful and relatively accurate technique for the
estimation the thermodynamic properties of the chemical
species, even in the era of supercomputers. Apparently, the ab
initio methods2 are more accurate. A closer examination of the
problem, however, reveals that ab initio methods face essentially
the same problems as the GA methods. The point is that the
conversion of the accurate ab initio total energies into conven-
tional thermochemical data, e.g., enthalpy of formation of the
species, requires the adoption of certain reaction schemes
involving a set of reference species. For these purposes there
have been proposed several procedures for converting the total
ab initio energies into the enthalpy of formation of the species
based on formation,2 isodesmic,8 homodesmic,9 bond separa-
tion,10 and group equivalent11 reactions. The use of these reaction
schemes, however, requires accurate experimental data for the
reference species. In many cases these data are not available.
In addition, this approach introduces specific difficulties such
as the stoichiometric arbitrariness of various reaction schemes.12

Substantial improvements in the accuracy of ab initio methods
may be achieved using empirical corrections, e.g., atom, bond,
and group additivity corrections.13-16 Clearly, empirical methods
also require accurate experimental thermochemical data for the
reference species. In recent years, ab initio methods have been
used to extend the concept of GA to transition state structures.17-19

Because at this stage the GA and ab initio methods are the
most reliable theoretical methods for estimating the thermo-

chemical data, it is of certain interest to compare more closely
their accuracy and capabilities. Although the theoretical back-
ground of the GA may be deduced from quantum mechanical
considerations,20 a direct comparison between the GA and ab
initio methods is still problematic. Our reasoning in formulating
the problem in this way is the following. In our previous
publications we extended the conventional theory of response
reactions (RERs) to both GA21 and ab initio12 methods by
defining new types of RERs, namely, GA and isodesmic RERs.
It was shown that these new types of RERs are intimately related
to the calculation of the thermochemical properties of the species
from both GA and ab initio methods. More recently, the RERs
formalism has been shown to be productive in a more general
context, namely, in the analysis and interpretation of the
quantitative structure-property relationships.22

In this paper, we present several new developments along
this line according to which the GA and ab initio methods are
unexpectedly interrelated. More specifically, we prove that the
generation of thermochemical data from both methods may be
performed using precisely the same stoichiometric and optimi-
zation techniques.

2. Conventional GA Analysis

We consider a general chemical system comprising a set of
n species B1, B2, ..., Bn

Each of the species in this system is characterized by a certain
structure. By “structure” of the species it is meant a specified
type gj (j ) 1,2,...,p) and numbergij(i ) 1,2,...,n; j ) 1,2,...,p)
of groups in a chemical species Bi (i ) 1,2,...,n). Here the term
“group” is used in the same sense as in the conventional GA
methods.3 Thus, we can define the matrix

that may be referred to as thegroup matrix. It is assumed that
rankg ) q. If rankg ) p > q, then thep - q linearly dependent* Corresponding author: ifishtik@wpi.edu.

B ) (B1,B2,...,Bn)
T (1)

g ) [g11 g12 ... g1q

g21 g22 ... g2q

... ... ... ...
gn1 gn2 ... gnq

] (2)
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columns in the group matrix are arbitrarily disregarded. For
simplicity, we consider only one property, namely, the standard
ideal gas-phase enthalpy of formation of the species Bi (i )
1,2,...,n). Define the following vectors

where∆fHi
exp is the experimental standard enthalpy of forma-

tion of the species Bi, ∆fHi
GA is the standard enthalpy of

formation of the species Bi calculated via GA methods, and
Hj

GA is the enthalpy group value ofgj (j ) 1,2,...,q). Define
also a (n × 1) vector of residuals

As is well-known,3 the conventional GA method implies that

Normally, the vector of group valuesHGA is determined from

by minimizing the product (eGA)TeGA. This gives23

It is to be noted that according to the conventional ordinary
least squares (OLS) analysis, the vector of residualseGA may
be evaluated only after∆fHGA has been calculated.

3. GA Reactions

A common problem in chemical stoichiometry24 is to generate
a set ofm linearly independent reactionsFj (j ) 1,2,...,m) among
a given set of species Bi

where

and

whereν is normally referred to asstoichiometricmatrix.24 By
analogy with the conventional stoichiometry, we define a GA
reaction21 as one that satisfies the relation

or

Notice, to simplify the mathematical treatment, a GA reaction
is not explicitly required to satisfy the mass-balance conditions.
The latter, however, are always satisfied because the groups
may be partitioned into chemical elements. From the dimension
of eqs 14 it is clear that the number of linearly independent
GA reactions is equal tom ) n - rank g ) n - q. Let, for
instance

Then, a set ofm linearly independent GA reactionsFj (j )
1,2,...,m)

may be generated by solving the system of linear homogeneous
eqs 14. A particular solution is21

where

Using the properties of the determinants, the set ofm linearly
independent GA reactions obtained above may be presented in
a more compact form as

Let

where ∆Hj
exp (j ) 1,2,...,m) are the experimental enthalpy

∆fH
exp ) (∆fH1

exp,∆fH2
exp,...,∆fHn

exp)T (3)

∆fH
GA ) (∆fH1

GA,∆fH2
GA,...,∆fHn

GA)T (4)

HGA ) (H1
GA,H2

GA,...,Hq
GA)T (5)

eGA ) ∆fH
exp - ∆fH

GA (6)

∆fH
GA ) gHGA (7)

∆fH
exp ) gHGA + eGA (8)

HGA ) (gTg)-1gT∆fH
exp (9)

G ) νB ) 0 (10)

G ) (F1,F2,...,Fm)T (11)

ν ) [ν11 ν12 ... ν1n

ν21 ν22 ... ν2n

... ... ... ...
νm1 νm2 ... νmn

]; rank ν ) m (12)

νg ) 0 (13)

νj1g11 + νj2g21 + ... + νjngn1 ) 0
νj1g12 + νj2g22 + ... + νjngn2 ) 0
...
νj1g1q + νj2g2q + ... + νjngnq ) 0}; j ) 1,2,...,m (14)

g ) | g11 g12 ... g1q

g21 g22 ... g2q

... ... ... ...
gq1 gq2 ... gqq

| * 0 (15)

Fj ) νj1B1 + νj2B2 + ... + νjnBn ) 0; (j ) 1,2,...,m) (16)

νjk ) | g11 g12 ... g1q 0
g21 g22 ... g2q 0
... ... ... ... ...
gk-1,1 gk-1,2 ... gk-1,q 0
gk1 gk2 ... gkq 1
gk+1,1 gk+1,2 ... gk+1,q 0
... ... ... ... ...
gq1 gq2 ... gq 0
gq+j,1 gq+j,2 ... gq+j,q 0

|; k ) 1,2,...,q

νj,q+h ) δj,q+h| g11 g12 ... g1q 0
g21 g22 ... g2q 0
... ... ... ... ...
gq1 gq2 ... gqq 0
gq+h,1 gq+h,2 ... gq+h,q 1

|
) δj,q+h| g11 g12 ... g1q

g21 g22 ... g2q

... ... ... ...
gq1 gq2 ... gqq

| ) δj,q+hg; h ) 1,2,...,m

(17)

δj,q+h ) {1 if j ) h
0 if j * h

Fj ) | g11 g12 ... g1q B1

g21 g22 ... g2q B2

... ... ... ... ...
gq,1 gq,2 ... gq,q Bq

gq+j,1 gq+j,2 ... gq+j,q Bq+j

| ) 0; j ) 1,2,...,m (18)

∆HG
exp ) (∆H1

exp,∆H2
exp, ...,∆Hm

exp)T (19)

∆HG
GA ) (∆H1

GA,∆H2
GA, ...,∆Hm

GA)T (20)
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changes and∆Hj
GA(j ) 1,2,...,m) are the calculated via GA

enthalpy changes of the GA reactionsFj(j ) 1,2,...,m). These
vectors may be determined by employing the conventional
thermodynamic formalism

or

Inserting here the stoichiometric coefficients of the GA reac-
tions, eq 17, we obtain

The GA reactions defined above have a very important
property. Namely,

This result follows from the combination of eqs 7 and 13.
Alternatively, combining eqs 6, 21, and 27 gives

Similar stoichiometric relations are valid for ab initio methods.
Let

where∆Hj
AI(j ) 1,2,...,m) are the enthalpy changes of the GA

reactionsFj(j ) 1,2,...,m) evaluated via ab initio methods. These
quantities may be evaluated using either ab initio enthalpies of
formation of the species or ab initio total enthalpies of the
species. Define the following vectors:

where ∆fHi
AI is the standard enthalpy of formation of the

species Bi calculated via ab initio methods andHi
AI is the total

ab initio enthalpy of the species Bi. Clearly, the enthalpy changes
of the GA reactions calculated either via∆fHAI or HAI should

coincide independently of the method used to evaluate∆fHAI .
That is

or

or, using the stoichiometric coefficients of the GA reactions,
eq 17

Define further an additional characteristic of the GA reactions,
namely

and a vector of residuals

Subtracting eq 32 from eq 21 we finally obtain

As can be seen, eq 37 totally resembles eq 28.

4. An Alternative Approach to GA and Ab Initio
Methods

Next, we reformulate the GA OLS analysis in terms of GA
reactions. The idea is to calculate the vectors of residualseGA

without any preliminary evaluations of the vector of group
values HGA. Thus, we can evaluate directly the vector of
residualseGA by minimizing (eGA)TeGA subject to the linear
constraints given by eq 28. For this purpose we employ the
method of Lagrange’s undetermined multipliers and minimize
the Lagrangean function

with respect toeGA andλ. The procedure results in a system of
linear equations

It is seen that within this approach the residualseGA may be
directly evaluated without any need to evaluate the vector of
group values! The solution of eqs 39 and 40 is22

∆HG
exp ) ν∆fH

exp (21)

∆HG
GA ) ν∆fH

GA (22)

∆Hj
exp ) νj1∆fH1

exp + νj2∆fH2
exp + ... + νjn∆fHn

exp;
j ) 1,2,...,m (23)

∆Hj
GA ) νj1∆fH1

GA + νj2∆fH2
GA + ... + νjn∆fHn

GA;
j ) 1,2,...,m (24)

∆Hj
exp ) | g11 g12 ... g1q ∆fH1

exp

g21 g22 ... g2q ∆fH2
exp

... ... ... ... ...
gq,1 gq,2 ... gq,q ∆fHq

exp

gq+j,1 gq+j,2 ... gq+j,q ∆fHq+j
exp

|; j ) 1,2,...,m

(25)

∆Hj
GA ) | g11 g12 ... g1q ∆fH1

GA

g21 g22 ... g2q ∆fH2
GA

... ... ... ... ...
gq,1 gq,2 ... gq,q ∆fHq

GA

gq+j,1 gq+j,2 ... gq+j,q ∆fHq+j
GA

|; j ) 1,2,...,m

(26)

ν∆fH
GA ) ∆HG

GA ) 0 (27)

νeGA ) ∆HG
exp (28)

∆HG
AI ) (∆H1

AI,∆H2
AI,...,∆Hm

AI)T (29)

∆fH
AI ) (∆fH1

AI,∆fH2
AI,...,∆fHn

AI)T (30)

HAI ) (H1
AI,H2

AI,...,Hn
AI)T (31)

∆HG
AI ) ν∆fH

AI ) νHAI (32)

∆Hj
AI ) νj1∆fH1

AI + νj2∆fH2
AI + ... + νjn∆fHn

AI ) νj1H1
AI +

νj2H2
AI + ... + νjnHn

AI j ) 1,2,...,m (33)

∆Hj
AI ) | g11 g12 ... g1q ∆fH1

AI

g21 g22 ... g2q ∆fH2
AI

... ... ... ... ...
gq,1 gq,2 ... gq,q ∆fHq

AI

gq+j,1 gq+j,2 ... gq+j,q ∆fHq+j
AI

|
) | g11 g12 ... g1q H1

AI

g21 g22 ... g2q H2
AI

... ... ... ... ...
gq,1 gq,2 ... gq,q Hq

AI

gq+j,1 gq+j,2 ... gq+j,q Hq+j
AI

|; j ) 1,2,...,m (34)

δ∆HG ) ∆HG
exp - ∆HG

AI (35)

eAI ) ∆fH
exp - ∆fH

AI (36)

νeAI ) δ∆HG (37)

F ) (eGA)TeGA + λT(νeGA - ∆HG
exp) (38)

2eGA + λTν ) 0 (39)

νeGA ) ∆HG
exp (40)
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whereπ is a square matrix of orderm defined as

Notice that the determinant of the matrixπ and denoted by∆

is necessarily a positive value and, therefore, the inverse ofπ
always exists.

Although the stoichiometric matrixν is generated arbitrarily,
the solution foreGA is unique. That is,eGA is independent of
the choice ofν. A proof of this statement is given below. We
also stress that there are no mathematical advantages in the
above modification of the GA OLS analysis. Moreover, it may
be shown that the vector of residualseGA given by eq 41 is
equiValent to the vector of residuals obtained by applying the
conventional OLS GA analysis, i.e., given by eqs 6-9. The
importance of this approach, as shown next, lies in its ability
to provide a remarkable interpretation of both GA and ab initio
methods.

Because the GA analysis can be performed without generating
the group values, a natural question that arises in this respect is
how to estimate the properties of the species from the test set,
say, species Bn+1? The enthalpy of formation of this species∆f

Hn+1
GA may be evaluated from any conceivable GA reaction

involving the species Bn+1. Let an arbitrary GA reaction
involving the species Bn+1 be

Because for any GA reaction, according to eq 27, we have

then

Of course, this procedure is valid provided eq 46 is
independent of the choice of the GA reaction involving the
species Bn+1. A proof of the independence of∆fHn+1

GA on the
choice of the GA reaction is presented in ref 22.

Because of the mathematical similarity between eqs 28 and
37, the procedure outlined above for GA methods may be
extended to ab initio methods. Thus, the vector of residualseAI

may be directly obtained by minimizing (eAI )TeAI subject to the
linear constraints given by eq 37, resulting in

The solution of this system of linear equations is

Similarly, the enthalpy of formation∆fHn+1
AI of the species

Bn+1 from a test set may be evaluated from a stoichiometrically
arbitrary GA reaction, eq 44, according to

and, hence

5. GA and Ab Initio Methods in Terms of GA RERs

According to our previous development, a GA RER21 is
defined asa reaction that is subject to group preserVing
conditions and inVolVes no more than rankg + 1 ) q + 1
species. Let Bi1,Bi2,...,Biq,Biq+1(1 e i1 < i2 < ... < iq < iq+1 e
n) be theq + 1 species involved in a GA RER. Such an RER
is denoted byg(Bi1,Bi2,...,Biq,Biq+1) and its general equation is

where

A complete set of GA RERs can be generated by considering
all of the possible choices ofq + 1 species from a total ofn.

The experimental enthalpy changes of the GA RERs denoted
as∆Hexp(g) ) ∆Hexp(Bi1,Bi2,...,Biq,Biq+1) are interrelated with the
standard enthalpies of formation∆fHik

exp of the species via

Similar relations hold for the enthalpy changes of the GA RERs
∆HAI(g) obtained from ab initio calculations:

eGA ) νTπ-1∆HG
exp (41)

π ) ν νT ) [πrs]

πrs ) πsr ) ∑
i)1

n

νriνsi

r,s ) 1,2,...,m (42)

∆ ) Det π ) | π11 π12 ... π1m

π21 π22 ... π2m

... ... ... ...
πm1 πm2 ... πmm

| (43)

F ) ∑
i)1

n

νiBi + νn+1Bn+1 ) 0 (44)

∑
i)1

n

νi∆fHi
GA + νn+1∆fHn+1

GA ) 0 (45)

∆fHn+1
GA ) -

1

νn+1
∑
i)1

n

νi∆fHi
GA (46)

2eAI + λTν ) 0 (47)

νeAI ) δ∆HG (48)

eAI ) νTπ-1δ∆HG (49)

∑
i)1

n

νi∆fHi
AI + νn+1∆fHn+1

AI ) ∆HF
AI (50)

∆fHn+1
AI ) ∆HF

AI -
1

νn+1
∑
i)1

n

νi∆fHi
AI (51)

g(Bi1
,Bi2

,...,Biq
,Biq+1

) ) ∑
k)1

q+1

νik
(g)Bik

) 0 (52)

νik
(g) ) | gi11

gi12 ... gi1q 0
gi21

gi22 ... gi2q 0
... ... ... ... ...
gik-11

gik-12 ... gik-1
q 0

gik1
gik2 ... gikq 1

gik+11
gik+12 ... gik+1q 0

... ... ... ... ...
giq1

giq2 ... giqq 0
giq+11

giq+12 ... giq+1q 0

| (53)

∆Hexp(g) ) | gi1,1
gi1,2 ... gi1

,q ∆fHi1

exp

gi2,1
gi2,2 ... gi2,q ∆fHi2

exp

... ... ... ... ...
giq,1

giq,2 ... giq,q ∆fHiq

exp

giq+1,1
giq+1,2 ... giq+1,q ∆fHiq+1

exp
| (54)
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We also introduce the quantity

We are now in a position to formulate the following results:

where

The proof of these results follows exactly the same lines as those
considered in ref 22, and therefore, is not given here.

As can be seen from eqs 57 and 58, the residuals of the
species obtained from both GA and ab initio methods may be
uniquely partitioned into a sum of contributions associated with
GA RERs. It may be remembered that a GA RER involves no
more thanq + 1 species whereq is the number of groups.
Consequently, the partition of the residuals into contributions
associated with GA RERs is in fact a partition into contributions
coming from all possible subsets ofq + 1 species from a total
of n. Each of these contributions has a very simple form. Thus,
the contribution of every GA RER is given by a product of
two terms. One of them is the stoichiometric coefficientνi(g)
of the species Bi while the other, is the change of the
experimental enthalpy change∆Hexp(g) or the difference
between the experimental and ab initio enthalpy changeδ∆H(g)
) ∆Hexp(g) - ∆HAI(g) in a particular GA RER. Notice that
the stoichiometric coefficients of the GA RERs are solely
functions of the number and type of groups, i.e., structure, while
the enthalpy changes of RERs are functions of both the structure
and thermochemistry. Because the GA RERs are stoichiomet-
rically unique, the independence of eqs 41 and 49 of the choice
of the stoichiometric matrixν becomes obvious.

Eqs 57 and 58 are also a powerful tool for the rationalization,
comprehension, and interpretation of the GA and ab initio
calculations. A complete list of GA RERs, i.e., their stoichio-
metric coefficientsνi(g), along with the changes in their
enthalpies∆Hexp(g) andδ∆H(g), provides detailed information
about the structure-thermochemistry relationships. For instance,
with a complete list of GA RERs, one can easily determine the
GA RERs that have the smallest or highest contributions to the
residuals, or, equivalently, a subset of species whose structure
is highly or poorly correlated with the thermochemistry. In
particular, the GA RERs approach may be of real use in
detecting the outliers.

6. Examples

We consider several applications of the described above
approach. To save space, we illustrate first the technical details

of the algorithm with the help of a simple example comprising
only five species. The capabilities of the algorithm are next
briefly illustrated by applying it to two more complex systems.

6.1. Chloromethanes.Consider the complete set of chlo-
romethanes CHxCl4-x wherex ) 0, 1, 2, 3, 4. The experimental
enthalpies of formation25 along with the total enthalpies obtained
at the G3 level26 are presented in Table 1. For this system there
are three possible GA approximations depending on how the
groups are defined. We consider all of them in an increasing
order of accuracy.

6.1.1. First Approximation.In a first approximation, we
consider only two types of groups, namely,g1 ) C-H andg2

) C-Cl. The group matrixg in this case is

First, we derive a set of linearly independent GA reactions. Since
rank g ) 2, the number of linearly independent GA reactions
is equal to 3. According to eqs 15-17 an appropriate set of
GA reactions may be generated as

or, dividing all of the reactions by 4,

∆HAI(g) ) | gi1,1
gi1,2 ... gi1,q Hi1

AI

gi2,1
gi2,2 ... gi2,q Hi2

AI

... ... ... ... ...
giq,1

giq,2 ... giq,q Hiq

AI

giq+1,1
giq+1,2 ... giq+1,q Hiq+1

AI
| (55)

δ∆H(g) ) ∆Hexp(g) - ∆HAI(g) (56)

ei
GA )

1

∆
∑

g

νi(g)∆Hexp(g); i ) 1,2,...,n (57)

ei
AI )

1

∆
∑

g

νi(g)δ∆H(g); i ) 1,2,...,n (58)

∆ )
1

m
∑

g

f(g) (59)

f(g) ) ∑
i)1

n

νi
2(g) (60)

TABLE 1: Experimental Enthalpies of Formation (kJ/mol)
and Total Enthalpies (hartree) at the G3 Level of Fluoro-
and Chloromethanes

∆fHi
expa Hi

G3 b

1 B1 CH4 -74.6 -40.453813
2 B2 CF4 -933.2 -437.302900
3 B3 CCl4 -96.0 -1,878.276568
4 B4 CH3F -234.3 -139.645784
5 B5 CH2F2 -450.7 -238.858175
6 B6 CH3Cl -83.7 -499.909048
7 B7 CH2Cl2 -95.5 -959.366688
8 B8 CF3Cl -709.2 -797.540914
9 B9 CF2Cl2 -491.6 -1,157.782200
10 B10 CHF3 -692.9 -338.082135
11 B11 CHCl3 -103.2 -1,418.823436
12 B12 CFCl3 -288.7 -1,518.027193
13 B13 CH2FCl -261.9 -599.109188
14 B14 CHF2Cl -481.6 -698.323412
15 B15 CHFCl2 -283.3 -1058.570575

a Reference 25.b Reference 26.

F1 ) | 4 0 CH4

3 1 CH3Cl
2 2 CH2Cl2

| ) 4CH4 - 8CH3Cl + 4CH2Cl2 ) 0

F2 ) | 4 0 CH4

3 1 CH3Cl
1 3 CHCl3

| ) -8CH4 + 12CH3Cl - 4CHCl3 ) 0

F3 ) | 4 0 CH4

3 1 CH3Cl
0 4 CCl4

| ) -12CH4 + 16CH3Cl - 4CCl4 ) 0

F1) -CH4 + 2CH3Cl - CH2Cl2 ) 0

F2) -2CH4 + 3CH3Cl - CHCl3 ) 0

F3 ) -3CH4 + 4CH3Cl - CCl4 ) 0
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Hence, the stoichiometric matrix is

Now, the matrixπ, eq 42, and its inverse can be evaluated

The experimental enthalpy changes of the above linearly
independent GA reactions are

Similarly, the ab initio enthalpy changes at the G3 level are

and

Thus, according to eq 41, the residuals for the GA method
are equal to

Similarly, according to eq 49, the residuals of the species at
G3 level are

As can be seen, within the first approximation the accuracy of
the G3 method is higher than the accuracy of GA method. For
instance, the mean absolute deviation of the residuals is equal
to 4.51 kJ/mol for GA method while the same quantity for G3
is equal to 2.73 kJ/mol.

6.1.2. Second Approximation.At a higher level of approxi-
mation we consider three types of groups, namely,g3 )
CH2, g4 ) CHCl, andg5 ) CCl2. The group matrix in this
case is

For illustration purposes we analyze this system using the GA
RERs approach. Sincerankg ) 3, a GA RER involves no more
than 3+ 1 ) 4 species. Hence, the total number of GA RERs
is equal to the number of ways four species may be selected
from a total of five, i.e., is equal to 5. For example, the first
four species define the following GA RER:

or, in a more conventional form

A complete list of GA RERs along with their experimental and
G3 enthalpy changes are given in Table 2. Based on these data,
the residuals of the species may be partitioned into a sum of
contributions associated with GA RERs according to eqs 57-
60 (Table 3). The overall residuals may be obtained by summing
over the GA RERs. Again, within the second approximation
the accuracy of the G3 method exceeds that of GA method.
For instance, the mean absolute deviation is 0.31 kJ/mol for
G3 vs 2.18 kJ/mol for GA method.

6.1.2. Third Approximation.The third and the highest possible
approximation in this system is the following selection of
groups: g6 ) CH3, g7 ) CH2Cl, g8 ) CHCl2, andg9 ) CCl3.
This selection results in the group matrix

eAI ) νTπ-1δ∆HG

) [-1 -2 -3
2 3 4

-1 0 0
0 -1 0
0 0 -1

][ 4/5 -1/5 -1/5
-1/5 7/10 -2/5
-1/5 -2/5 2/5][ -3.61

-8.99
-19.77]

) (3.23,-1.62,-2.86,-2.34, 3.59)T

g(CH4, CH3Cl, CH2Cl2, CHCl3)

) | 6 0 0 CH4

3 3 0 CH3Cl
1 4 1 CH2Cl2
0 3 3 CHCl3

|
) -18CH4 + 54CH3Cl - 54CH2Cl2 + 18CHCl3 ) 0

g(CH4, CH3Cl, CH2Cl2, CHCl3) )
-CH4 + 3CH3Cl - 3CH2Cl2 + CHCl3 ) 0

ν ) [
CH4 CH3Cl CH2Cl2 CHCl3 CCl4
-1 2 -1 0 0
-2 3 0 -1 0
-3 4 0 0 -1

]

π ) ν νT ) [6 8 11
8 14 18
11 18 26]

π-1 ) [4/5 -1/5 -1/5
-1/5 7/10 -2/5
-1/5 -2/5 2/5 ]

∆H1
exp ) 1

4| 4 0 -74.6
3 1 -83.7
2 2 -95.5| ) 2.7 kJ/mol

∆H2
exp ) 1

4| 4 0 -74.6
3 1 -83.7
1 3 -103.2| ) 1.3 kJ/mol

∆H3
exp ) 1

4| 4 0 -74.6
3 1 -83.7
0 4 -96.0| ) -15.0 kJ/mol

∆H1
G3 ) 2625.5

4 | 4 0 -40.453813
3 1 -499.909048
2 2 -959.366688| ) 6.31 kJ/mol

∆H2
G3 ) 2625.5

4 | 4 0 -40.453813
3 1 -499.909048
1 3 -1418.823436| ) 10.29 kJ/mol

∆H3
G3 ) 2625.5

4 | 4 0 -40.453813
3 1 -499.909048
0 4 -1878.276568| ) 4.77 kJ/mol

δ∆H1 ) ∆H1
exp - ∆H1

G3 ) 2.7- 6.31) -3.61 kJ/mol

δ∆H2 ) ∆H2
exp - ∆H2

G3 ) 2.3- 10.29) -8.99 kJ/mol

δ∆H3 ) ∆H3
exp - ∆H3

G3 ) -15.0- 4.77) -19.77 kJ/mol

eGA ) νTπ-1∆HG
exp

) [-1 -2 -3
2 3 4

-1 0 0
0 -1 0
0 0 -1

][ 4/5 -1/5 -1/5
-1/5 7/10 -2/5
-1/5 -2/5 2/5][ 2.7

1.3
-15.0]

) (3.54, 0.67,-4.90,-6.37, 7.06)T
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The rank of the group matrix is equal to 4 and, consequently,
the system is described only by one GA reaction. Obviously,
this reaction is also a GA RER and its equation is

or

The experimental and G3 enthalpy changes of this GA reaction
are∆Hexp ) 4.0 kJ/mol and∆HG3 ) -1.5 kJ/mol. Respectively,
δ∆H ) ∆Hexp - ∆HG3 ) 5.5 kJ/mol. From the above general
results it can be deduced that for systems with one GA reaction
the residuals are given by

From these equations it follows immediately that because the
differenceδ∆H ) ∆Hexp - ∆HG3 slightly exceeds∆Hexp, the
accuracy of the GA method within this approximation is
(slightly) higher than the accuracy of the G3 method. The
numerical values of the vector of residuals are

6.2. Fluoro- and Chloromethanes.The experimental en-
thalpies of formation25 along with the total enthalpies at the
G3 level26 for all of the 15 species in this system are presented
in Table 1. We have considered three levels of GA approxima-

tions that are summarized in Appendix A. The final results for
all three approximations are given in Table 4. It is seen that the
accuracy of the G3 method slowly increases as we move to
higher levels of GA approximations. At the same time, the accu-
racy of the GA method strongly depends on the GA approxima-
tion. As expected, an increase in the complexity of groups results
in a higher accuracy of the GA method. Interestingly, at the
highest possible level of approximation, the accuracy of the GA
methods exceeds the accuracy of the G3 method.

6.3. Chloroethanes.The experimental enthalpies of forma-
tion,27 total enthalpies of the species at the G2 level,28 as well
as the definition of group and a brief summary of the analysis
using the algorithm discussed above are presented in Appendix
B and Tables 5 and 6. Again, it is seen that the accuracy of the
GA method significantly depends on the definition of groups.
That is, for structurally simple groups the accuracy is very low.
As we move to more complex groups, however, the accuracy
of the GA method rapidly increases. On the other hand, the
accuracy of G2 method is less dependent on the type of GA
reactions, although an increase in the complexity of groups also

TABLE 2: Complete List of GA RERs and Their Enthalpy Changes (kJ/mol) for Second Approximation in Example 1

∆Hexp(g) ∆HG3(g)

1. g(CH4,CH3Cl,CH2Cl2,CHCl3) ) -CH4+3CH3Cl-3CH2Cl2+CHCl3 ) 0 6.8 8.66
2. g(CH4,CH3Cl,CH2Cl2,CCl4) ) -3CH4+8CH3Cl-6CH2Cl2+CCl4 ) 0 31.2 33.12
3. g(CH4,CH3Cl,CHCl3,CCl4) ) -3CH4+6CH3Cl-6CHCl3+3CCl4 ) 0 52.8 47.42
4. g(CH4,CH3Cl2,CHCl3,CCl4) ) -CH4+6CH2Cl2-8CHCl3+3CCl4 ) 0 39.2 30.11
5. g(CH3Cl,CH3Cl2,CHCl3,CCl4) ) -CH3Cl+3CH2Cl2-3CHCl3+CCl4 ) 0 10.8 7.15

F ) g(CH4, CH3Cl, CH2Cl2, CHCl3)

) | 4 0 0 0 CH4

1 3 0 0 CH3Cl
0 2 2 0 CH2Cl2
0 0 3 1 CHCl3
0 0 0 4 CCl4

|
) 24CH4 - 96CH3Cl + 144CH2Cl2 -

96CHCl3 + 24CCl4 ) 0

F) CH4 - 4CH3Cl + 6CH2Cl2 - 4CHCl3 + CCl4 ) 0

ei
GA )

νi∆Hexp

∑
k)1

n

νk
2

; i ) 1,2,...,n

ei
G3 )

νiδ∆H

∑
k)1

n

νk
2

; i ) 1,2,...,n

eGA ) (0.06,-0.23, 0.34,-0.23, 0.06)T

eG3 ) (0.08,-0.31, 0.47,-0.31, 0.08)T

TABLE 3: Partition of the Residuals into Contributions
Coming from GA RERs (Second Approximation in
Example 1)

GA RERs e(CH4) e(CH3Cl) e(CH2Cl2) e(CHCl3) e(CCl4)

GA Method
1 -0.04 0.12 -0.12 0.04 0
2 -0.53 1.43 -1.07 0.00 0.18
3 -0.91 1.81 0.00 -1.81 0.91
4 -0.22 0.00 1.34 -1.79 0.67
5 0.00 -0.06 0.19 -0.19 0.06
overall -1.70 3.29 0.34 -3.75 1.82

G3 Method
1 0.01 -0.03 0.03 -0.01 0.00
2 0.03 -0.09 0.07 0.00 -0.01
3 -0.09 0.18 0.00 -0.18 0.09
4 -0.05 0.00 0.31 -0.42 0.16
5 0.00 -0.02 0.06 -0.06 0.02
overall -0.10 0.04 0.47 -0.67 0.26

TABLE 4: GA vs G3 for Fluoro- and Chloromethanes at
Different Levels of GA Approximations

1st 2nd 3rd

ei
GA ei

G3 ei
GA ei

G3 ei
GA ei

G3

B1 -19.86 2.46 -7.59 0.03 0.10 -0.08
B2 -30.72 -2.90 5.82 -0.10 0.03 -0.26
B3 4.40 2.52 1.19 0.41 0.25 0.34
B4 32.38 2.77 11.61 0.26 -0.02 0.78
B5 27.91 0.00 0.18 -1.67 -0.29 -1.57
B6 -17.54 -2.46 1.44 -0.17 -0.37 -0.48
B7 -17.93 -3.78 0.72 0.15 0.24 0.32
B8 -7.24 -1.03 0.73 -1.60 -0.55 -0.44
B9 9.84 3.03 1.66 1.11 1.18 1.27
B10 -2.35 1.80 -10.99 1.90 0.42 1.46
B11 -14.21 -3.33 -2.96 -0.87 -0.18 -0.36
B12 12.22 2.16 0.31 -0.46 -0.81 -0.99
B13 16.19 0.79 5.44 1.36 0.63 0.80
B14 8.43 -0.47 -6.00 -0.72 -0.70 -1.24
B15 6.21 -0.28 -1.60 0.26 0.07 0.43
MAD 15.16 1.99 3.88 0.74 0.39 0.72
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increases the accuracy of the G2 method. Finally, the accuracy
of the GA methods at high levels of approximation exceeds
that of the G2 method.

7. Discussion and Concluding Remarks

The key elements of this work can be summarized as follows.
The conventional formalism provided by the theory of RERs
can be naturally extended so as to include additional constraints.
Thus, one can define and generate a stoichiometrically unique
and finite set of RERs that additionally preserves the number
and types of groups. This new type of RERs, referred to as the
GA RERs, has several important properties. First, the thermo-
chemical characteristics of the GA RERs are related to the
accuracy of the GA and ab initio methods. In particular,
assuming that the main assumptions of the GA methods are
exactly valid should result in GA RERs that have the remarkable
property of being thermoneutral. Second, the GA RERs are
intimately related to the conventional OLS analysis. Thus, the
residuals of the thermochemical properties of the species
obtained from both GA and ab initio methods may be naturally
partitioned into a linear sum of contributions associated with
GA RERs. Third, the GA RERs provide an unusual inter-
relationship between the GA and ab initio methods. Namely,
the generation of thermochemical data in both methods may be
done using exactly the same mathematical and stoichiometric
procedures. As a result, the performance and accuracy of these
methods may be directly compared.

The GA RERs approach is also a powerful interpretative
concept. That is, the partitioning of the residuals into contribu-
tions coming from GA RERs provides detailed “insider”
information that is unavailable within the conventional OLS GA
analysis. Clearly, this information may be used to get a deeper
understanding of the mathematically complex and, often, musky
interrelations between the structure and thermodynamic proper-
ties of the species and, ultimately, to improve the accuracy of
the GA and ab initio methods. One of the outputs of the GA
RERs analysis is a subset of dominant GA RERs. Thus, one
may determine a small subset of species that are mutually poorly
correlated and, hence, are responsible for a low performance
of the GA and ab initio methods. These species are not always
outliers and, hence, their deletion may not improve the accuracy.
Rather, one should concentrate on these species in order to
determine the particularities of their structure that caused the
poor correlation and/or make an effort to find other reference
species or groups that may improve their mutual correlation.

It may be noted also that the newly defined GA RERs may
be fruitfully applied to solve a wide range of other problems in
physical organic chemistry. Examples include the stabilization/
destabilization effects in cyclic molecules and aromaticity. Work
along this line is in progress.

Acknowledgment. We are grateful to Prof. G. Bacskay for
providing the total G3 enthalpies of fluoro- and chloromethanes.

Appendix A. GA Approximations for Fluoro- and
Chloromethanes

1st Approximation. For groupsg1 ) CH, g2 ) CF, andg3

) CCl, the group matrix (rank g ) 3) is

The linearly independent GA reactions are as follows:

2nd Approximation. For groupsg4 ) CH2, g5 ) CHF, g6

) CHCl, g7 ) CF2, g8 ) CFCl, andg9 ) CCl2, the group matrix
(rank g ) 6) is

TABLE 5: Experimental Enthalpies of Formation (kJ/mol)
and Total Enthalpies (hartree) at G2 Level of Substituted
Chloroethanes

∆fHi
exp a Hi

G2 b

B1 CH3CH3 -84.0( 0.4 -79.626396
B2 CH3CH2Cl -112.1( 0.7 -538.777329
B3 CH3CHCl2 -132.5( 3.5 -997.927129
B4 CH3CCl3 -144.6( 2.0 -1457.073227
B5 CH2ClCH2Cl -132.0( 3.5 -997.926212
B6 CH2ClCHCl2 -148.0( 4.0 -1457.073162
B7 CH2ClCCl3 -152.3( 2.4 -1916.217376
B8 CHCl2CHCl2 -156.7( 3.5 -1916.217902
B9 CHCl2CCl3 -155.9( 4.3 -2375.360623
B10 CCl3CCl3 -148.2( 5.7 -2834.501485

a Reference 27.b Reference 28.

kJ/mol

∆HF
exp ∆HF

G3

F1 ) -3B1-B2+0B3+4B4 ) 0 219.8 213.20
F2 ) -2B1-2B2+0B3+4B5 ) 0 212.8 211.95
F3 ) -3B1+0B2-B3+4B6 ) 0 -15.0 4.77
F4 ) -2B1+0B2-2B3+4B7 ) 0 -40.8 -15.73
F5 ) 0B1-3B2-B3+4B8 ) 0 58.8 56.74
F6 ) 0B1-2B2-2B3+4B9 ) 0 92.0 79.12
F7 ) -B1-3B2+0B3+4B10 ) 0 102.6 89.20
F8 ) -B1+0B2-3B3+4B11 ) 0 -50.2 -26.85
F9 ) 0B1-B2-3B3+4B12 ) 0 66.4 62.57
F10) -2B1-B2-B3+4B13 ) 0 130.8 132.17
F11) -B1-2B2-B3+4B14 ) 0 110.6 111.67
F12 ) -B1-B2-2B3+4B15 ) 0 66.6 72.33
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The linearly independent GA reactions are as follows:

3rd Approximation. For groupsg10 ) CH3, g11 ) CH2F,
g12 ) CH2Cl, g13 ) CHF2, g14 ) CHFCl, g15 ) CHCl2, g16 )
CF3, g17 ) CF2Cl, g18 ) CFCl2, and g19 ) CCl3, the group
matrix (rank g ) 10) is

The linearly independent GA reactions are as follows:

Appendix B. GA Approximations for Chloroethanes

1st Approximation. For groupsg1 ) CH andg2 ) CCl, the
group matrix (rank g ) 2) is

The linearly independent GA reactions are as follows:

2nd Approximation. For groupsg3 ) CH2, g4 ) CHCl, and
g5 ) CCl2, the group matrix (rank g ) 3) is

TABLE 6: GA vs G3 for Chloroethanes at Different Levels of GA Approximations

1st 2nd 3rd 4th 5th

ei
GA ei

G2 ei
GA ei

G2 ei
GA ei

G2 ei
GA ei

G2 ei
G Aei

G2

B1 20.16 3.96 10.18 0.69 10.65 0.91 0.09 0.19 0.03 0.04
B2 2.88 -0.19 2.88 -0.19 2.41 -0.41 -0.40 -0.84 -0.21 -0.23
B3 -6.69 0.76 -6.69 0.76 -5.75 1.21 0.28 0.55 0.21 0.23
B4 -7.97 0.28 -17.95 -2.62 -17.95 -2.63 -0.06 -0.08 -0.07 -0.08
B5 -6.19 -1.15 3.79 1.76 2.38 1.08 0.45 0.80 0.31 0.34
B6 -11.37 -3.29 -1.39 -0.38 -1.39 -0.38 -0.61 -0.69 -0.62 -0.68
B7 -4.85 -0.91 -4.85 -0.92 -5.79 -1.36 0.10 -0.08 0.21 0.23
B8 -9.25 -3.93 0.74 -1.02 2.15 -0.34 0.18 -0.13 0.31 0.34
B9 2.38 -0.37 2.38 -0.37 2.85 -0.15 -0.04 0.40 -0.21 -0.23
B10 20.90 5.21 10.92 2.30 10.45 2.07 0.00 -0.12 0.03 0.04
MAD 9.26 2.01 6.18 1.10 6.18 1.05 0.22 0.39 0.22 0.24

kJ/mol

∆HF
exp ∆HF

G3

F1 ) 3B1-B2+0B3-8B4+0B6+0B8+6B5 ) 0 -20.4 -108.48
F2) 3B1+0B2-B3+0B4-8B6+0B8+6B7 ) 0 -31.2 -33.12
F3 ) 0B1+3B2-B3+0B4+0B6-8B8+6B9 ) 0 20.4 5.20
F4) 3B1-3B2+0B3-6B4+0B6+0B8+6B10 ) 0 -175.8 -186.00
F5) 3B1+0B2-3B3+0B4-6B6+0B8+6B11 ) 0 -52.8 -47.42
F6) 0B1+3B2-3B3+0B4+0B6-6B8+6B12 ) 0 11.4 8.74
F7) 3B1+B2+0B3-4B4-4B6-2B8+6B13 ) 0 -38.0 -48.08
F8) 3B1+B2+0B3-4B4-2B6-4B8+6B14 ) 0 -105.2 -104.82
F9) 3B1+2B2-B3-2B4-4B6-4B8+6B15 ) 0 -53.8 -59.61

kJ/mol

∆HF
exp ∆HF

G3

F1 ) -3B1-3B2+0B3+12B4-18B5+0B6+
0B7+0B8+0B9+0B13+12B10 ) 0

9.6 -46.57

F2 ) -3B1+0B2-3B3+0B4+0B5+12B6-
18B7+0B8+0B9+0B13+12B11 ) 0

-12.0 4.51

F3 ) 0B1-3B2-3B3+0B4+0B5+0B6+
0B7+12B8-18B9+0B13+12B12 ) 0

-38.4 1.89

F4)-3B1+B2+0B3+8B4-6B5+4B6+
0B7-4B8+0B9-12B13+12B14 ) 0

-14.0 -5.01

F5 ) -3B1-B2+0B3+4B4+0B5+8B6-
6B7+4B8-6B9-12B13+12B15 ) 0

-20.8 -4.85

kJ/mol

∆HF
exp ∆HF

G2

F1) B1-2B2+B3 ) 0 7.7 2.97
F2 ) 2B1-3B2+B4 ) 0 23.7 15.67
F3 ) B1-2B2+B5 ) 0 8.2 5.38
F4 ) 2B1-3B2+B6 ) 0 20.3 15.84
F5 ) 3B1-4B2+B7 ) 0 44.1 33.48
F6 ) 3B1-4B2+B8 ) 0 39.7 32.10
F7 ) 4B1-5B2+B9 ) 0 68.6 53.66
F8 ) 5B1-6B2+B10 ) 0 104.4 80.10
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The linearly independent GA RERs are as follows:

3rd Approximation. For groupsg6 ) CH3, g7 ) CH2Cl, g8

) CHCl2, andg9 ) CCl3, the group matrix (rank g ) 4) is

The linearly independent GA RERs are as follows:

4th Approximation. For groupsg10 ) HCCH3, g11 )
ClCCH3, g12 ) HCCH2Cl, g13 ) ClCCH2Cl, g14 ) HCCHCl2,
g15 ) ClCCHCl2, g16 ) HCCCl3, g17 ) ClCCCl3, the group
matrix (rank g ) 7) is

The linearly independent GA reactions are as follows:

5th Approximation. For groupsg18 ) H2CCH3, g19 )
HClCCH3, g20 ) Cl2CCH3, g21 ) H2CCH2Cl, g22 ) HClCCH2-
Cl, g23 ) Cl2CCH2Cl, g24 ) H2CCHCl2, g25 ) HClCCHCl2,
g26 ) Cl2CCHCl2, g27 ) H2CCCl3, g28 ) HClCCCl3, andg29

) Cl2CCCl3, the group matrix (rank g ) 9) is

The linearly independent GA RERs are as follows:
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kJ/mol

∆HF
exp ∆HF

G2

F1 ) -B1+3B2-3B3+B4 ) 0 0.6 6.74
F2 ) B1-2B2+0B3+B5 ) 0 8.2 5.38
F3 ) B1-B2-B3+B6 ) 0 12.6 12.87
F4 ) 0B1+2B2-3B3+B7 ) 0 21.0 24.56
F5 ) B1+0B2-2B3+B8 ) 0 24.3 26.15
F6 ) 0B1+3B2-4B3+B9 ) 0 37.8 41.76
F7 ) -B1+6B2-6B3+B10 ) 0 58.2 62.25

kJ/mol

∆HF
exp ∆HF

G2

F1 ) B1-2B2+0B3+0B4+B5 ) 0 8.2 5.38
F2 ) B1-B2-B3+0B4+B6 ) 0 12.6 12.87
F3 ) B1-B2+0B3-B4+B7 ) 0 20.4 17.81
F4 ) B1+0B2-2B3+0B4+B8 ) 0 24.3 26.15
F5 ) B1+0B2-B3-B4+B9 ) 0 37.2 35.02
F6 ) B1+0B2+0B3-2B4+B10 ) 0 57.0 48.76

kJ/mol

∆HF
exp ∆HF

G2

F1 ) B1-4B2+2B3+0B4+4B5-4B6+0B7+B8 ) 0 6.7 -3.78
F2 ) 2B1-7B2+2B3+B4+6B5-3B6-2B7+B9 ) 0 7.8 -6.91
F3 ) 4B1-12B2+0B3+4B4+9B5+0B6-6B7+B10 ) 0 8.4 -9.66

kJ/mol

∆HF
exp ∆HF

G2

F1 ) B1-6B2+6B3-2B4+9B5-
18B6+6B7+9B8-6B9+B10 ) 0

21.9 -2.24
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