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Two full dimensional (15 degrees-of-freedom) quantum calculations of vibrational energies of H5O2
+ are

reported using the global potential energy surface (OSS) of Ojama¨e et al. (J. Chem. Phys.1998, 109, 5547).
One set of calculations uses the diffusion Monte Carlo (DMC) method with a highly flexible initial trial
wave function. This method is limited to the ground vibrational state, but produces what we believe is a
highly accurate, benchmark energy and wave function for that state. The DMC wave function is analyzed to
identify coordinates that are strongly correlated in zero-point fluctuations. A simple harmonic model is
developed to elucidate the energetic consequences of these correlations. The other set of calculations is based
on the code MULTIMODE, which does configuration interaction (CI) calculations using a basis determined
from a vibrational self-consistent field (VSCF) Hamiltonian, but which uses a representation of the potential
with mode coupling limited to a maximum of four modes. Good agreement is obtained between the DMC
and the CI MULTIMODE energies for the ground vibrational state. When less sophisticated theoretical
treatments are applied, either variational Monte Carlo or vibrational self-consistent field, fairly large errors
are found. Vibrationally excited-state energies obtained with MULTIMODE are also reported.

I. Introduction

The protonated water dimer, H5O2
+, also known as the Zundel

cation, has been the subject of extensive experimental and
theoretical studies for over 30 years. This was motivated by its
important role in proton solvation and transfer processes in
aqueous solutions. For the ion formation reaction

experimental thermodynamics studies1-5 have reached excellent
agreement with theoretical predictions6-13 on binding energies,
≈33 kcal/mol. The temperature dependence of the equilibrium
constant and rate constant have also been estimated in kinetics
studies.2,4

In the 1960s, X-ray diffraction expriments14 determined
H5O2

+ as aC2 structure in the hydrate crystal. Later, high-level
ab initio calculations6,10,12,15-25 mainly confirmed that H5O2

+

has aC2 minimum geometry in its electronic ground state: two
strong H-bonds connect the two terminal-H2O equally, with
its O‚‚‚H+‚‚‚O backbone being slightly nonlinear (∠OHO ≈
174°, Re ≈ 1.20 Å).16 This differs from its isoelectronic ion,
N2H7

+, which is predicted26-29 to be more stable with an
asymmetric NH4+ ‚‚‚NH3 configuration. The earliest geometry
optimizations with modest basis sets found H5O2

+ to have a

staggeredD2d minimum,13,30,31 or Cs minimum in which the
proton is bonded more closely to one oxygen atom than to the
other; i.e., there is one covalent bond and one H-bond. Even in
high-level ab initio geometry optimizations, theCs transition
state (∠OHO ≈ 176°, Re1 ≈ 1.13 Å, Re2 ≈ 1.26 Å)16 is only
approximately 0.4 kcal/mol higher than theC2 minimum.6,10,16

This suggests that, underC2 symmetry, the competition between
covalent contributions and electrostatic ion-dipole forces results
in rather a flat minimum on the potential energy surface.6,10,25,32-34

A large number of H5O2
+ spectral studies35-42 have been done

in various condensed environments, such as zeolites, salts and
acid solutions. Because of the highly delocalized charge13,30,31,43

and extra high polarizability,25,44 the H5O2
+ ion has a

continuous40-42 and intense35 absorption spectrum between 1000
and 3400 cm-1. The gas-phase vibrational spectrum of H5O2

+

is still far from complete. In 1989, Yeh and Okumura et al.45,46

reported band origins for the symmetric and asymmetric OH-
stretch modes at 3608.8 and 3684.4 cm-1, respectively.

Numerous theoretical studies have been devoted to the
calculation of ab initio harmonic, normal-mode frequen-
cies.6,9,12,17,19,24,30,32,33,47However, as pointed out in these studies,
especially the recent ones of Valeev and Schaefer,16 the flat
minimum and strongly anharmonic proton-transfer motion make
these harmonic predictions of limited value.

There have been a number of attempts to investigate the
vibrational motion of H5O2

+ beyond the harmonic approxima-
tion.Mostof thesehavebeenmoleculardynamicscalculations.48-51

Two sets of approximate quantum calculations have been
reported previously. One was in reduced dimensionality (3 and
4 degrees of freedom) by Vener et al.32,33 and the other was a
vibrational self-consistent field calculation, with perturbation
theory corrections by Chaban et al.52 This calculation used a
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two-mode representation of the potential, the accuracy of which
was not tested. Both calculations reported significant red-shifted
deviations from corresponding harmonic normal mode energies.

An accurate, full-dimensional treatment of the vibrations of
H5O2

+ is quite challenging, even beyond the challenge of the
high dimensionality, owing to a large degree of “floppiness” .
A careful analysis of several possible internal low-energy
rearrangements has been reported recently by Wales.15 The
calculated barrier heights of these internal motions are low
enough (<1 kcal/mol) to possibly produce observable splittings
in the spectrum. (The existence of such low-energy pathways

was pointed out nearly 10 years ago; however, a search for
possible splittings in a high-resolution spectrum was inconclu-
sive.53)

In this paper we report two efforts to obtain vibrational
energies of H5O2

+ in full dimensionality. The first method we
apply is the diffusion quantum Monte Carlo (DMC) method.54-56

This method is applied only to the ground vibrational state,
where in principle, it can provide the exact energy (the zero-
point energy) and wave function. The second method is a
vibrational configuration interaction method using a basis
obtained from a vibrational self-consistent field (VSCF)

Figure 1. Local energy averagedHψtrial/ψtrial over 40000 walkers during a DMC calculation. Branching caused the number of walkers to fluctuate.
The total remained close to 40 000 during the run. The trial wave function used in the calculation of panel a was not as high-quality as that of panel
b, which, as depicted here, results in greater statistical errors in the estimation of the ground-state energy. (The trial wave function used to generate
the data of panel a lacked theV9 andV10 functions of eq 2 and also lacked the bottom three coupling terms in Table 2. Furthermore,V3 was taken
to be a function ofz, not z2 as in eq 2.)
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calculation.57-59 For this calculation we use MULTIMODE,
version 4.6,59-63 denoted MM4.6. This is a general code that
can be used to obtain vibrational energies of the ground and
excited states of polyatomic molecules. The results from this
code are not exact, due to an approximate treatment of the
potential. Thus, a comparison with the highly accurate DMC
results for the zero-point energy provides a rigorous test of the
accuracy of MM4.6, at least for the ground vibrational state.

The potential energy surface we use belongs to the OSS1-3
family of potentials.6,64 One of the version 3 surfaces, denoted
as OSS3(p), was chosen. These surfaces were first reported in
Ojamäe et al.6 in 1995, and they have been well developed for
simulations of water clusters with excess protons, H+(H2O)n.64,65

To calculate vibrational spectra and to simulate proton-transfer
reactions, the OSS analytical potential energy models were
constructed in such a way that they can describe both the
intramolecular interactions and the intermolecular interactions,
such as the interactions between H3O+ and H2O in H5O2

+. These
surfaces were assembled from a large number of MP266

calculations using Gaussian92,67 utilizing the cc-pVTZ68 basis
set with diffuse basis functions on oxygen (aug-cc-pVTZ).69

An analytical expression was fit by a nonlinear least-squares
minimization to these ab initio energies. The potential functional
form contains two-body interactions, three-body interactions,
and electrostatic contributions.64 It is one of the most extensive,
full-dimensional surfaces available for protonated cluster ions.

This paper is organized as follows: Section II describes the
DMC calculation details, analysis and results. The theoretical
background and variational scheme implemented in MM4.6 is
simply introduced in section III, along with results and
comparison with the DMC calculations. A summary and
discussion of the results are given in section IV.

II. Diffusion Monte Carlo Calculation

Computational Details. The efficiency of diffusion Monte
Carlo (DMC) calculations is usually enhanced by importance

sampling based on a trial wave function, or guiding function.70-72

In principle, DMC will provide the true ground state energy
for any choice of guiding function. In practice, especially for a
large and floppy system such as H5O2

+, a good quality guiding
function is needed to obtain highly accurate ground vibrational
properties. Figure 1 shows the local energy,Hψtrial/ψtrial,
averaged over the walkers at each step of a DMC calculation.
The number of walkers fluctuated near 40 000 during these runs.
Figure 1 illustrates the sensitivity of results to the quality of
the guiding function chosen. We employ guiding functions,
described in detail below, that have been optimized in prior
variational Monte Carlo (VMC) calculations. The trial function,
used to produce the plot in Figure 1a yields a VMC estimate of
the ground-state energy 1627 cm-1 above the exact value. Our
best trial function produces a variational energy expectation
value that is 553 cm-1 above the true ground state. It is apparent
that the guiding function makes an enormous difference in the
fluctuations of the local energy, as depicted in Figure 1, and
consequently in the statistical errors of our final result.

Although functions as simple as a multidimensional Gaussian
have been used for the trial wave function,73,74 we chose a
relatively complex and flexible form of the guiding function to
obtain a precise estimate of the zero-point energy of H5O2

+.
Other authors have noted that the choice of internal coordinates
and form of the trial wave function affects the quality of the
trial wave function.54 The trial wave function was optimized
for the OSS3 model,6,64 but we expect that this form can also
be applied to more accurate potential energy surfaces for H5O2

+

as they become available. A simpleansatzfor the trial wave
function, such as a Gaussian, simplifies the calculation of the
local energy. When the trial function is more flexible, calculation
of analytic expressions for the local energy and quantum force,
∇ln|ψtrial|2, becomes exceedingly complex. To handle this
difficulty, a symbolic algebra program75 is employed to
automatically generate FORTRAN code to calculate the local
energy and quantum force. The trial wave function used in

Figure 2. Schematic depiction of H5O2
+ in its equilibrium geometry, indicating the labeling of the atoms used in Table 1.

TABLE 1: Coordinates Used for H5O2
+ Guiding Function.

coordinate definition characterization

da |r 2 - r 3| inner proton to oxygen stretch
db |r 1 - r 3| inner proton to oxygen stretch
R |r 1 - r 2| oxygen-oxygen distance
z |r 3 - rA| deviation of inner proton from oxygen-oxygen axis
dOH1 |r 1 - r 4| outer oxygen-hydrogen stretch
dOH2 |r 1 - r 6| outer oxygen-hydrogen stretch
dOH3 |r 2 - r 5| outer oxygen-hydrogen stretch
dOH4 |r 2 - r 7| outer oxygen-hydrogen stretch
dHHa |r 4 - r 6| outer hydrogen-hydrogen distance, a water bend coordinate
dHHb |r 5 - r 7| outer hydrogen-hydrogen distance, a water bend coordinate
ωa (rB - r 1)‚(r 1 - r 2) water molecule wag
ωb (rC - r 2)‚(r 2 - r 1) water molecule wag
Θab [{(r 4 - r 6)‚(r 5 - r 7)}/{|r 4 - r 6||r 5 - r 7|}]2 torsional coordinate measuring alignment of outer waters
Θa [{(r 4 - r 6)‚(r 3 - rA)}/{|r 4 - r 6|}]2 torsional coordinate measuring alignment of waters with the direction by

which the central proton deviates from the oxygen-oxygen bond
Θb [{(r 5 - r 7)‚(r 3 - rA)}/{|r 5 - r 7|}]2 torsional coordinate measuring alignment of waters with the direction by

which the central proton deviates from the oxygen-oxygen bond

aThe definitions make use of several intermediate points: the midpoint of the oxygen-oxygen bond,rA ≡ (1/2)(r 1 + r 2) and the two midpoints
between outer hydrogen pairs,rB ≡ (1/2)(r 4 + r 6) and rC ≡ (1/2)(r 5 + r 7).
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Figure 1b required 7572 lines of code automatically generated
by the symbolic algebra program after input of the analytic form
of the guiding function.

Our labeling scheme for H5O2
+ in its C2 equilibrium geometry

is shown in Figure 2. The oxygens and central proton define
the yz plane. The outer hydrogens do not lie in theyz plane.
Although the OSS3 model permits interchange of the outer and
central hydrogen atoms, such rare events, which give rise to
small tunnel splittings, were not allowed by our trial wave
function. Wales15 has reported that the barrier to this motion is
4555 cm-1, an order of magnitude larger than the barriers for
other inversion and internal rotational motions, all of which are
allowed in our calculations. The trial wave function is expressed
in terms of the internal coordinates specified in Table 1. The
trial wave function is of the form

where f is a sum of effective potentials, or Jastrow factors,76

which depend on the coordinates defined in Table 1. The actual
form of the functionf used in our study is

where

and the coupling terms are specified in Table 2.
A trial wave function with 34 parameters was optimized by

minimizing the energy in VMC calculations. The VMC energy
estimate depends on a sample of configurations representative
of ψtrial. Optimization techniques, such as conjugate gradient,
which allow large changes in parameter values upon each
iteration proved to be unwieldy in this situation. When the

parameters ofψtrial change significantly, the representation of
|ψtrial|2 by the sample of configurations deteriorates, and the
VMC energy estimate, even with reweighting,72 is no longer
meaningful. The simulated annealing method,77 with frequent
updates of the sample from|ψtrial|2, emerged as an effective
procedure for variational optimization. Diffusion Monte Carlo
was performed using a series of different imaginary time steps,
with the optimized trial wave function of eq 1 as the guiding
function. The zero-point energy was obtained byτ f 0
extrapolation of the results as shown in Figure 3. Our estimate
of ZPE for the OSS3 potential model is 12 218.7 ((0.6) cm-1.
Statistical errors were estimated using the blocking method
described by Flyvbjerg and Petersen.78

Analysis of the DMC Wave Function. Configurations
generated by DMC sampling are representative of the probability
distribution,P ) ψtrialΦ, whereΦ is the exact ground-state wave
function, distinct from the desired average over the true wave
function weighted by|Φ|2. Methods to directly calculate
averages are available,79 but require significant overhead. A
convenient approximation to the desired averages, which is used
in this study, is to weight configurations by the distribution

which is the true probability function up to orderδ ≡ Φ -
ψtrial (i.e., with errors entering at orderδ2). This follows because

The validity of the approximation in eq 4 depends on the quality
of the trial wave function. The flexible form of ourψtrial yields
accurate averages, as evidenced by the fact that|ψtrial|2 itself is
already quite close to the approximation of eq 4, as confirmed
in Figure 4.

TABLE 2: Coupling Terms Used for H5O2
+ Guiding Function

term characterization

R1[(dOH1 - R2)(dHHa - R3) + (dOH2 - R2)(dHHa - R3) + (dOH3 - R2)(dHHb - R3) + OH-HH coupling
(dOH4 - R2)(dHHb - R3)]

R4(da - db)2(R - R5) R, central proton stretch coupling
R6(da - db)(dHHa + dHHb - 2R3) water HH, central proton stretch coupling
R7(da - db)(ωa + ωb - 2R8) wag, central proton stretch coupling
R9(R - R5)(dOH1 + dOH2 + dOH3 + dOH4 - 4R2) R, OH coupling
R10(R - R5)(ωa + ωb - 2R8) water wag,Rcoupling
R11[(d1 - R12)(d3 - R12) + (d2 - R12)(d4 - R12)] hydronium bending coupling
(dOH1 - R13)[R14(d1 - R12) + R15(d3 - R12)] + (dOH2 - R13)[R15(d1 - R12) + OH, hydronium bending coupling

a14(d3 - R12)] + (dOH3 - R13)[R14(d2 - R12) + R15(d4 - R12)] +
(dOH4 - R13)[R15(d2 - R12) + R14(d4 - R12)]

(da - R16)(d1 + d3 - 2R12) + (db - R16)(d2 + d4 - 2R12) central proton stretch, hydronium bending coupling

ψtrial ∝ e-f (1)

f ) V1(da) + V1(db) + V2(R) + V3(z
2) + ∑

i)1

4

V4(dOHi
) +

V5(dHHa
) + V5(dHHb

) + V6(ωa) + V6(ωb) + V7(Θab) +

V8(Θa) + V8(Θb) + ∑
i)1

4

V9(di) + V10(|rB - r3|) +

V10(|rC - r3|) + coupling terms (2)

di ) |r i+3 - r3|
(distances between central and outer hydrogens)

i )1, 2, 3, 4,

Vj(xµ) ) 1
2
Kj

2(xµ - xµj
0 )2 j e 2 (3)

Vj(xµ) ) 1
2
Kj(xµ - xµj

0 )2 + 1
3
Lj(xµ - xµj

0 )3 +

1
4
Mj

2(xµ - xµj
0 )4 j < 2

Figure 3. Extrapolation of the DMC ground-state energy to zero
imaginary time stepτ. We attempted to fit the data to bothτ1/2 andτ
and found that the linear fit gave the best representation of the data.

2P - |ψtrial|2 (4)

Φ2 ) (ψtrial + δ)2 ) 2P - ψ2
trial + δ2 (5)
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Probability distributions for the deviation of the central proton
from the midpoint of the two molecular oxygens (Figure 4)
clearly show the strength of zero-point fluctuations at 0 K. The
average deviation of the central proton in thez-direction,
perpendicular to the inter-oxygen axis, is 0.17 Å, in comparison
with a deviation of 0.073 Å at the equilibrium structure. The
estimated standard deviation is 0.09 Å, which is already more
than 50% of the average distance itself. The width of the
distribution in Figure 4 rather resembles that of path integral
simulations by Cheng et al.80 that explored the quantum
fluctuations of the H5O2

+ ion at 150 K on the somewhat different
potential surface given by their ab initio molecular dynamics
methodology. This indicates that most of the fluctuations they
observed stem from zero-point motion, and agrees with their
analysis of the path integral imaginary time correlation function
which pointed to ground state dominance. While Cheng et al.
found significant differences between classical and quantum
behavior at 150 K, Tuckerman et al., using similar path integral
methodology, found less striking difference between quantum
and classical distributions at 300 K.81

Figure 5 depicts the distribution of inner (dOH
+, solid line)

and outer (dOH, dashed line) oxygen-hydrogen bond lengths.
The standard deviation for fluctuations of the central proton
along the oxygen-oxygen axis is 0.13 Å, much greater than

bond length fluctuations of the outer OH bonds. The average
dOH is slightly larger than the equilibrium value by 0.03 Å.
Another noticeable feature of zero-point quantum effect is the
elongation of the distance between two water oxygens, as shown
in Figure 5. The arrow in Figure 5 designates the inter-oxygen
distance from the equilibrium structure.

In Figure 6, we plot the distribution of torsion angles of the
two outer water molecules. The torsion angles are defined from
the molecular bisector of the waters to thez-axis established
by the deviation of the central proton from the midpoint of the
oxygen-oxygen bond, thez-axis indicated in Figure 2. The two
maxima of Figure 6 locate two local minima ofC2 symmetry
on the potential surface that are mirror images of each other.
Lines of slope+1 in Figure 6 are lines of constantω2 - ω1,
the torsion angle difference between the two waters. There is a
relatively strong tendency for the waters to be separated by
∼(110°. Lines of slope-1 are lines of constantω2 + ω1, which
describes the average torsion angle of the waters relative to the
central hydrogen. This coupling is weak, but still evident in
Figure 6.

In their reduced dimensionality calculations, Vener et al.
chose the oxygen-oxygen distance and the three coordinates
for the central hydrogen for explicit calculation.32 Working in
an adiabatic approximation, their effective potential surface for
these four active coordinates is the full potential minimized over
all other coordinates except for the torsion angles, which are
constrained to have a fixed value ofω1 - ω2. This approxima-
tion will be accurate in the opposing limits of either highly
restricted motion in this coordinate, or nearly free, motion. From
Figure 6, it is evident that the behavior of the H5O2

+ ion in our
calculations lies somewhere between these two limits.

Figure 4. Probability distribution for deviation of the central proton
from the midpoint of the oxygen-oxygen bond. The solid lines are
the probability, 2P - |ψtrial|2, estimated using the importance sampling
function P ) ψtrialΦ and the trial wave function. (See the discussion
following eq 4.) The dashed lines are the probabilities from the
variational wave function,|ψtrial|2. The closeness of the two probability
estimates confirms the accuracy of our trial wave function and
expression 4 for the probability.

Figure 5. Distribution of inner (dOH
+, solid line) and outer (dOH, dashed

line) oxygen-hydrogen bond lengths and the oxygen-oxygen distance
(R) in the H5O2

+ ion as it undergoes zero-point fluctuations.

Figure 6. Joint probability distribution of the water-water torsion
angles. The angleω1 andω2 are defined in terms of molecular bisectors,
the average of two oxygen-hydrogen vectors for outer hydrogens bound
to the same oxygen. Then,ω1 andω2 are the dihedral angles between
planes containing a molecular bisector and the oxygen-oxygen vector,
and a second plane containing the two oxygens and the middle
hydrogen. The maximum contours [small ellipsoids at roughly (-50,
50) and (50,-50)] are drawn where the probability has the value 2.7
× 10-5. Succeeding contours are drawn at values lowered by increments
of 3 × 10-6.
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Assessing the degree of coupling between internal coordinates
gives important information needed to benchmark more ap-
proximate treatments of the system and indicates which
couplings must be included. The full zero-point probability
distribution from DMC calculations allows identification of
coordinates whose zero-point fluctuations are strongly correlated.
We accumulated normalized correlation coefficients among pairs
of internal coordinates, defined as

between two coordinatesxi andxj. Some of the larger correlation
coefficients are depicted in Figure 7.

To qualitatively interpret the importance of those correlations
on the estimation of vibrational frequencies in possible reduced
dimensionality calculations, we studied the analogous situation
in a simplified model. We examine the correlation introduced
by the force constantkij between two harmonic coordinates in
the Hamiltonian,

It is an elementary exercise to express the frequencies and
ground state wave function in terms of the parameters introduced
in eq 7. The correlation coefficient introduced in eq 6 are
extracted from the square of the wave function. We expand the
frequencies and moments to leading order inkij, and then use
the momentsσii, σjj andσij to eliminatekij and the masses from
the frequency. Finally, we can express the fractional shift in
the frequencies in terms of the correlation coefficient and the

zero-order frequenciesωn
0 ≡ xknn

mn
, n ) i,j.

In the above equation, the total shift of the two levels from

their zero-order values,∆ωij, is given by

whereωi andωj are the frequencies that reduce toωi
0 andωj

0,
respectively, askij f 0.

Since the fractional shift in frequencies depends on the square
of the correlation coefficient, it may seem that the correlations
identified in Figure 7 may have small effect. However,cij

2 in
eq 8 is multiplied by a factor which tends to be rather large.
For example, if the splitting between the zero-order frequencies
is as small as 40% of their average, then a correlation coefficient
of magnitude 0.2 indicates that inclusion of the couplingkij will
increase the frequency splitting by 50%. If the zero-order levels
are even closer, then the shift will be even more dramatic.
Hence, the correlation coefficients reported in Figure 7 indicate
significant couplings among internal coordinates.

Several of the examples in Figure 7 have a clear physical
interpretation. The first example of correlation in Figure 7,
positive correlation between|da - db| and R, captures the
tendency for H5O2

+ to behave like an asymmetric hydronium-
water pair (large|da - db|) when the two oxygens fluctuate
beyond their equilibrium separation (largeR). Moving down
the first column of Figure 7, the negative correlation between
the bend angleφ andda reflects a related effect: As the central
hydrogen deviates from the midpoint of the oxygen-oxygen
bond, the unit furthest from the central hydrogen behaves like
a water molecule, while the rest of the molecule behaves like
H3O+. This is reflected in a negative correlation betweenφ and
da since, for large values ofda, the bond angle approaches that
of water, which is smaller than the bond angle in hydronium.
Strong zero-point fluctuations toward asymmetric H3O+- H2O
character also explain the overlap of thedOH

+ anddOH oxygen-
hydrogen distances in Figure 5. When the H5O2

+ ion is in an
asymmetric configuration, one of thedOH

+ distances is expected
to be comparable todOH. The last four examples in Figure 7
indicate that strong correlations exist among the various
wagging, torsion and bending angles in H5O2

+.

III. MULTIMODE Calculations

MULTIMODE is a general code which performs quantum
rovibrational energy calculations of polyatomic molecules. The

Figure 7. Correlation coefficients, as defined in eq 6, with figures illustrating the nature of the coordinates involved.

cij ≡ σij
2

σiiσjj
)

〈(xi - 〈xi〉)(xj - 〈xj〉)〉

x〈(xi - 〈xi〉)
2〉〈(xj - 〈xj〉)

2〉
(6)

- p2

2mi

d2

dxi
2

- p2

2mj

d2

dxj
2

+ 1
2
kiixi

2 + 1
2
kjjxj

2 + kijxixj (7)

∆ωij

ωi
0 - ωj

0
) 1

2(ωi
0 + ωj

0

ωi
0 - ωj

0)2

cij
2 + ... (8)

∆ωij ) (ωi - ωi
0) - (ωj - ωj

0) (9)
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code is based on the full Watson Hamiltonian, which is an exact
Hamiltonian for rovibrational motion, given in terms of mass-
scaled normal modes,Qi.82,83The code has been described and
tested previously.60-63 In recent applications to tunneling
splittings in NH3 and H3O+, modifications of the methodology
were made to accurately describe the delocalized motion in a
multidimensional double well.84-87 These modifications, which
are briefly described below, were used in the present calcula-
tions. A key feature of MULTIMODE that makes calculations
of fairly large molecules feasible is the representation of the
full N-mode potential by an exact hierarchical series of mode-
coupling terms:

where theone-mode representationof the potential contains only
Vi

(1)(Qi) terms, i.e., the potential along cuts of the normal
coordinates; thetwo-mode representationof the potential
contains these terms plus theVij

(2)(Qi,Qj) terms where any pair
of normal modes vary, etc. In the present calculations, for which
there are 15 modes, the series is truncated at the four-mode
representation. This representation of the potential makes the
dimensionality of integrals involving V at most four, for any
number of normal coordinates.

Eigenvalues and eigenfunctions of the Watson Hamiltonian
are obtained using the “VCI” approach. All of these begin with
a vibrational self-consistent field (VSCF) Hamiltonian for the
ground vibrational state. The CI method, denoted VCI, uses the
“virtual” orthonormal basis of eigenfunctions of the single VSCF
Hamiltonian for the ground state. The size of the VCI Hamil-
tonian matrix grows nonlinearly with the size of the molecule,
and the numerical evaluation of the matrix elements can become
very time-consuming. Thus, numerical quadratures are done
using a reduced set of “potential optimized” quadratures, as
described in detail elsewhere.61

To use MULTIMODE, a reference stationary geometry, at
which a normal-mode analysis is done, must be specified. For
H5O2

+, where large amplitude motion can occur, we chose for
the reference geometry a second-order saddle point with the
proton midway between the two O atoms and in a linear
arrangement. During geometry optimization for the reference
point, all other degrees of freedom are allowed to vary freely
except the central proton which is fixed at the midpoint of O‚
‚‚O. This choice permits a description of the large amplitude
motion of the proton between the equivalent two minima of
H5O2

+, which correspond to the two maxima of the probability
distribution observed in Figure 6.

The normal coordinates were obtained for this stationary point
as well as for one of the minima. The harmonic frequencies
andC2 symmetries are given in Table 3. These results are in
very good agreement with those of Valeev and Schaefer.16 As
depicted in Figure 8a, the imaginary modeQ1 describes the
central proton transfer between two oxygens, which is coupled
with the vibrations of the two H2O fragments in H3O+‚‚‚H2O
formation, as is clear from Figure 8a. The other imaginary mode
Q2, see Figure 8b, represents the proton oscillating along a
direction perpendicular to the O‚‚‚H‚‚‚O line and C2 axis,
accompanied by anticlockwise-OH2 rotations. Cuts of the
potential surface along each of the two imaginary modes reveal
a pair of minima on either side of the reference point. Minima
along these one-dimensional cuts are not true local minima of
the potential surface, and, in particular, not the two equivalent

global minima discussed above. Along the 1-D potential cut of
Q1, the barrier connecting the two local minima is quite small,
only 0.99 cm-1. The bottom of the potential curve along the
Q2 1-D cut is even flatter, and the barrier height is only 0.16
cm-1. Figure 9 plots theQ1-Q2 potential contour spanned
around the reference geometry, while all the other 13 modes
are held fixed at zero. It clearly demonstrates the boxlike
character of the potential in these two modes.

The potential at our reference geometry is 97.236 cm-1,
relative to the global minima. This small value is another
indication that the proton motion, even in the ground vibrational
state, will be delocalized over the two equivalent global minima.

V(Q1, Q2, ..., QN) ) ∑
i

Vi
(1)(Qi) + ∑

ij

Vij
(2)ij (Qi,Qj) +

∑
ijk

Vijk
(3)(Qi,Qj,Qk) + ∑

ijkl

Vijkl
(4)(Qi, Qj, Qk, Ql) + ...

TABLE 3: C2 Symmetries and Harmonic Frequencies of 15
Normal Modes at the Global Minimum and the
Second-Order Saddle Point Used in MM4.6 Calculations (in
cm-1)

refa global minimum 2nd-order saddle point

mode C2 sym freq mode C2 sym freq mode C2 sym freq

ω8 A 241 1 A 178 1 B 198i
ω15 B 296 2 B 182 2 B 82i
ω7 A 481 3 A 552 3 B 538
ω6 A 561 4 B 552 4 A 548
ω14 B 577 5 A 584 5 A 571
ω5 A 650 6 A 688 6 A 674
ω13 B 794 7 B 857 7 B 877
ω12 B 1505 8 B 1486 8 B 1471
ω4 A 1596 9 A 1505 9 A 1512
ω3 A 1746 10 A 1716 10 A 1701
ω11 B 1787 11 B 1871 11 B 1881
ω10 B 3766 12 B 3700 12 B 3716
ω2 A 3806 13 A 3796 13 A 3813
ω9 B 3854 14 B 3883 14 B 3900
ω1 A 3868 15 A 3894 15 A 3912

a B-CCD(T)/TZ2P results, at the minimum, from ref 16.

Figure 8. Two imaginary vibrational modes at the second-order saddle
point, in which the O‚‚‚H‚‚‚O fragment is linear. (a) ModeQ1, the
proton-transfer mode. (b) ModeQ2, the central proton slightly oscillating
perpendicular to the O‚‚‚H‚‚‚O fragment, coupled with terminal-OH2

rotations.
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There would be no vibrational state splittings caused by the
central proton transfers.

In the MM4.6 calculations, new features specially designed
for the problems involving saddle points,84-87 have been utilized.
These new features have been described previously,84,85 e.g.,
the numerical bases consist of symmetric or asymmetric
functions (with respect toQ1 ) Q2 ) 0) that span both minima.
Instead of taking direct cuts of the potential along each mode
with other modes held fixed at zero, the one-dimensional
potentials of modesQ3, Q4, andQ5 were optimized with respect
to Q2, for each value ofQj, j ) 3-5, the potential was
minimized with respect toQ2. For strongly coupled modes, such
minimizations ensure better descriptions of the contracted basis
functions over large displacements. Accordingly, large bases
of primitive functions and large number of quadratures points
are required. The numerical basis for the three modes was
obtained using a relatively large primitive harmonic-oscillator
basis defined by the harmonic frequencies given in Table 3.

For modesQ3, Q4 andQ5, seven numerical basis functions
were contracted from a primitive basis of 23 harmonic-oscillator
functions. For other modes, seven numerical basis functions
were contracted from 13 primitive harmonic-oscillator functions.
Techniques used to determine optimized quadratures points have
been described elsewhere.61 Since there are 15 degrees of
freedom, an excitation-unlimited VCI is still far beyond our
computational capabilities, Hamiltonian matrices of different
sizes have been constructed and diagonalized so that the trend
between CI matrix size and vibrational state convergences could
be established. Six VCI calculations are reported in the next
section, using the same 1-D bases as mentioned above. Four of
them use a four-mode representation of the potential, denoted
as 4MR-I through 4MR-IV. However, the other two VCI
calculations used a 3-mode representation, denoted as 3MR-I,

3MR-II. The largest calculation, 4MR-IV, used number of basis
functions of order 38540 (for A symmetry) and 37776 (for B
symmetry).

Zero-Point Energy. The zero-point energies of H5O2
+,

calculated by MM4.6, are presented in Table 4 for various VCI
bases. We also give the VSCF energies in that table. As seen,
the VSCF results are roughly 500 cm-1 above the accurate DMC
result. (Recall, also that the best variational trial wave function
has a similar error.) The VCI ZPE appears to be converging to
a value of 12310 cm-1, about 92 cm-1 above the DMC value.
Since the reference geometry in the MULTIMODE calculations
is not at the global minimum, it is important to determine
whether that minimum is contained in the NMR grids. We did
investigate this and determined that the global minimum is
contained in the three- and (therefore) the four-mode grids, but
not in the two-mode grids. Thus, this possible shortcoming of
the choice of reference geometry does not appear to be of
concern for three- and four-mode calculations.

We also investigated using a minimum as the reference
geometry. Large 4MR VCI were done with this choice, and
the resulting ZPE is 12346 cm-1. This result is slightly higher
than the one obtained using the second-order saddle point as
the reference geometry.

The MM zero-point energy appears to be fairly well
converged with the respect to the level of mode-coupling;

Figure 9. Equipotential contour plot of the H5O2
+ OSS3 potential (cm-1) in the normal modesQ1(proton-transfer mode) andQ2(proton oscillating

mode) with all other modes held fixed at zero.

TABLE 4: Zero-Point Energies (in cm-1) Relative to the
Global Minimum for the Indicated VCI Basis

3MR-I 3MR-II 4MR-I 4MR-II 4MR-III 4MR-IV

size of CI 408 7304 6261 15 593 25 587 38 540
matrices 408 7142 6240 15 648 25 894 37 776

VSCF ZPE 12775.0 12778.1 12769.4 12768.9 12768.9 12753.4
VCI ZPE 12403.3 12313.4 12342.5 12320.6 12312.7 12309.9

a The DMC zero-point energy is 12218.7 ((0.6) cm-1. One of the
two CI matrices refers to A symmetry, and the other is for B symmetry.

Vibrational Energies of H5O2
+ J. Phys. Chem. A, Vol. 107, No. 37, 20037149



however, the 4MR ZPE is 90 cm-1 above the DMC result. This
raises the possibility that either a higher level of mode coupling
is needed or that the grid used in the MM calculations is not
sufficiently large. We plan to investigate both of these pos-
sibilities in the future, by doing 5MR calculations and also doing
MM calculations with a “Reaction Path Hamiltonian” (RPH)
as described elsewhere.86,88The RPH approach can in principle
describe vibrational motions on a potential with multiple
minima.

Vibrational Fundamentals. For each symmetry of Hamil-
tonian matrices, the eigenvectors for the 500 lowest vibrational
states were obtained along with their corresponding eigenvalues.
The leading CI coefficients and corresponding bases of VSCF
eigenfunctions that are contained in each final VCI state are
also found and used to assign states. The assignment based on
these coefficients can be problematic due to large mixing in
the basis. This mixing is due to the floppy motions in H5O2

+.
The vibrational fundamentals calculated from the largest 3MR-
II and 4MR-IV are given in Table 5. The 4MR-IV results are
taken as closer to converged fundamental energies. In contrast
to the ZPE, there are significant differences between the 3MR
and 4MR fundamentals.

The four OH-stretch fundamentals are of special interest since
two have been determined experimentally.45,46 Note the large
differences with the harmonic frequencies at either the saddle
point or the minimum reference geometry. The calculations
show a large red-shift in the OH-stretch fundamentals relative
to the harmonic frequencies in qualitative agreement with
experiment. However, acceptable quantitative agreement with
experiment is lacking. We have done preliminary five-mode
calculations of the fundamentals and it appears that the 4MR
results are converged to within roughly 10 cm-1. This suggests
that the potential is the major source of disagreement with
experiment for the two experimentally reported fundamentals.
We plan to investigate this in the future by reexamining the fit
to the original ab initio energies6,64 and also doing new, higher
level ab initio calculations. We also plan to redo the vibrational
calculations with the “Reaction Path” version of MULTI-
MODE86,88to check the accuracy of the present MULTIMODE
calculations.

IV. Summary

Two full-dimensional quantum calculations of the vibrational
energies of H5O2

+ are presented here, using the OSS3(p)
potential. A highly accurate zero-point energy is computed in
a diffusion Monte Carlo study. A detailed analysis of the DMC

wave function, including population profiles and correlations,
has been discussed. MULTIMODE vibrational self-consistent
field and configuration interaction calculations have been carried
out with a consistent set of increasing Hamiltonian bases for
three and four-mode coupling. The agreement between the DMC
ZPE and MM4.6 CI ZPEs is good, especially considering the
difficulties posed by this weakly bonded cation. Fundamental
vibrational frequencies obtained from MULTIMODE have been
reported as several levels of approximation, and convergence
trends have been discussed.
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