
Conformational Similarities in Isomerization Dynamics of Clusters

Ersin Yurtsever*
College of Arts and Sciences, Koc¸ UniVersity Rumelifeneri yolu, Sarıyer Istanbul, Turkey 34450
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A method for characterization of the isomerization dynamics from classical trajectories is presented. A measure
function describing the topological distance between two clusters of atoms is first developed. Next, this measure
is used to identify the regions of the potential energy surface visited by the trajectories. Unlike the commonly
used techniques such as simulated annealing or quenching, the proposed method does not require repeated
treatment of the trajectory and can be safely used to study the isomerization dynamics of large systems,
especially those of monatomic clusters.

Introduction

The classical simulation methods provide a rich source of
information for the thermodynamics and dynamics of many-
body systems where the proper quantum mechanics is compu-
tationally prohibitive. In cluster research, especially for noble
gas clusters, classical approaches have been used heavily to
study various aspects of these interesting systems which form
a bridge between the gas and bulk phase molecules. The
topology of the potential energy surface (PES) in terms of the
number and location of the minima and the first-order saddle
points, the connectivity of these optimum points, the existence
and the characteristics of the phase transitions, and finally the
information on the reaction rates are some well-known examples
of such studies.1-8 Similarly, understanding the topology of the
PES forms the basis of the structure and kinetics of conforma-
tional transitions of peptides leading to the protein folding
problem. The characterization of the PES through its basins and
the connectivity charts among them should help finding the
reaction coordinate describing the folding pattern.9-11

Isomerization dynamics of clusters in principle can be
analyzed by molecular dynamics simulations. For a fully ergodic
trajectory, all of the regions of the phase space are sampled
provided that the integration time is long enough. On the other
hand, especially at low energy regimes, trajectories are not
ergodic, and they sample the phase space in a quasiergodic
manner.12-13 In all cases, understanding of the dynamics requires
information about the optimum points visited by the trajectory,
the frequency of such visits, and the time spent around these
regions. It is usually not so difficult to carry out this analysis
for the minima, whereas measuring the time spent around the
transition states (first-order saddle points) is more difficult as
the curvature around these structures is generally high. One
exception is the very shallow saddle of linear LJ3, where the
trajectories spend a considerable amount of time resulting in a
relatively high stability described by a small Lyapunov
exponent.14-15

The analysis of the frequency of visiting different minima as
well as the time spent in the vicinity of these regions has been
traditionally performed by two approaches: simulated annealing
(SA) and quenching. In SA, the momentum of each particle is
scaled such that the internal vibrational temperature is set almost
to zero and then the new trajectory is integrated again with
successive scaling until the particle is located in one of the
minima of the PES. By proper optimization of the frequency
of sampling and the scaling, the characterization can be
completed. A more accurate method belongs to the class of
optimization techniques such as steepest descent, conjugate
gradient, and Newton and quasi-Newton methods, resulting in
the so-called “quenching” approach.12,16

Both SA and quenching could provide reliable results in
understanding the isomerization dynamics. However, quenching
relies on the assumption that the local curvature of the PES
should drive the cluster to the correct minima. This is a strong
assumption especially for those cases where the trajectory is
far from a specific minimum or may be equally “distant” to
several minima at the same time. A more informative description
of the trajectory should include not only the optimum points
visited but also how close it gets to these points. Furthermore,
any proposed method should preferably not require repeated
computation of the trajectory as in optimization but rely on the
information captured in the current state of the trajectory.

In this work, we present a method that quantifies the
topological “distance” between various regions of the config-
uration-dependent part of the phase space. These distances can
be cast into a measure of similarity. By using the similarity
index, it becomes possible to quantify the distance from a single
trajectory or a bundle of trajectories to the optimum points of
the PES. This analysis should identify the visited regions of
the phase space to give (a) the ergodicity of the trajectory and
(b) the isomerizations taking place. The proposed method, unlike
quenching, does not distort the trajectory to find the basin that
it belongs to. Additionally, it is able to distinguish the time
segments where the trajectory lies in relation to different basins
contributing to the dynamics.
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Methodology

The goal is to find an efficient and a robust way of evaluating
the similarity (or dissimilarity) of the configurations expressed
by two clusters of atoms. One can view these configurations as
polyhedra whose vertexes correspond to the atoms. We propose
to quantify the similarity measure between two cluster configu-
rations by the distance between respective atoms. To calculate
this measure in a meaningful way, the coordinate positions of
the clusters need to be normalized, and the appropriate pairs
need to be selected for comparison. In the following, we will
introduce and discuss the steps of a normalization procedure
for comparing shapes and then establish a similarity index (S).

The first step is to make the similarity measure invariant to
the center of mass of the cluster. This is accomplished by
defining all of the coordinates of particles in the center of mass
coordinate system. Consider the following matrix ofx,y,z-
coordinate positions for 5 atoms in a cluster:

This matrix represents the spatial position of the cluster and
uniquely defines its shape (configuration) centered on the point
(0, 0, 0).

Singular Value Decomposition.When evaluating the geo-
metrical similarity of two shapes, it is important to consider
the possibility that the two shapes may be identical but oriented
along different directions (rotated) or have different sizes
(contracted or expanded). This would complicate the estimation
of the similarity. To ensure that the similarity index is invariant
to rotation and such scalings, as a second step in our normaliza-
tion procedure, we perform singular value decomposition (SVD)
of the matrix of coordinate positions to computethe principal
directionsalong which the shape orients itself. In other words,
we intend to align the matrixZc along its natural coordinate
axes and not necessarily along the originalx, y, andz axes.

Assume thatZc is anlxm matrix (e.g., above,l ) 5 andm )
3). Then, SVD ofZc is performed as follows:

whereU andV are unitary matrixes of sizel × l andm × m,
respectively. The column vectors ofU, denoted byui, are called
the left singular vectors and correspond to the eigenvectors of
the matrixZcZc

T. On the other hand, the column vectors ofV,
denotedVi, are called the right singular vectors and correspond
to the eigenvectors of the matrixZc

TZc.17 The matrix∑ contains
the nonnegative singular values,σi, arranged in descending order
as in

or

where∑1 ) diag{σ1,σ2,....σk} with k ) min (l,m) andσ1 gσ2

g ... g σk. Equation 2 can also be expressed as follows:

wherer is the rank ofZc.
The first right singular vectorV1 represents the most dominant

direction (largest variation) in the data (as it corresponds to the
direction with the highest singular value). Therefore,V1 consti-
tutes the first principal direction. Subsequent right singular
vectors yield the other principal directions with decreasing
importance. After the principal directions of a cluster are found,
we need to compute how the clusters are distributed in each of
these directions. We obtain this information by projecting the
shape matrixZc on the principal directions (Vi). For example,
the ith projection is given by

when this projection is scaled by theith singular value, one
recovers the left singular vectorui, which represents the
contribution or “score” of the matrixZc to the ith principal
direction

Thus, the configuration matrixZc can be expressed in new
coordinates as follows:

where # denotes the pseudoinverse of a matrix (i.e.A# )
(ATA)-1AT). By consideringU (noting that only the first three
columns ofU are selected as the rank of∑ is three), each
configuration matrix is expressed in coordinates (principal
directions) that are natural to that configuration and thus
invariant to rotation. This ensures that the shape (configuration)
is preserved in its “canonic” pose.

This analysis is strongly analogous to the Aquilanti’s treat-
ment of the quantum dynamics of three- and four-body systems
in terms of the hyperspherical coordinates.18-20 The partitioning
of the phase space follows again a singular value decomposition
of the coordinate matrix in the center of mass coordinate system.
The singular values of∑ are called kinematic invariants, and
they are directly related to the moments of inertia of the system.
They can also be cast into the form of a hyperradius and two
deformations, which could be used to identify structural changes.
The partitioning of the kinetic energy within this frame is also
applied to the study of the dynamics of small clusters.21

Flipping. This step ensures proper comparison of objects that
are mirror images of each other, i.e., thechirality problem.22

The mirror images have equivalent intrinsic shape features but
cannot be superimposed by translation and rotation. Although
the previous step aligns the cluster configuration along the most
dominant direction, it needs to be realized that the mirror image
of the configuration along the principal axes is also an equally
valid projection (has the same normalized moment values).
Flipping is performed so that if two objects are mirror images
of each other then the similarity measure can be calculated
correctly. In the 3D object comparison literature, flipping entails
counting the number of triplets on each side of the body and
flipping the body such that the larger count is on the positive
side.23 In our application, we count the number of atoms on
each side of the cluster (with respect to each coordinate axis)
and flip the cluster so that the larger number of atoms appears
on the positive side. In principle, we place the “larger” part of
the cluster on the positive side.

Zc ) UΣVT ) Σ
i)1

r
σiuiVi

T (5)

ZcVi ) σiui (6)

ui ) ZcVi/σi (7)

U ) ZcVΣ# (8)

Zc ) [x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

] (1)

Zc ) UΣVT (2)

Σ ) [Σ1

0 ]; if l g m (our case) (3)

Σ ) [Σ1 0]; if l e m (4)
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The necessity of this operation can be understood when one
considers a similar projection by diagonalizing the moment of
inertia matrix. The eigenvalues give the length of each principal
axis, and the eigenvectors define their direction. These eigen-
vectors can also be used to align clusters. However, their
direction can be obtained in two equivalent ways, as the
diagonalization procedure will choose randomly from two
opposite directions. The singular value decomposition also
suffers from this ambiguity; hence, the flipping should be
performed. Although it is also possible to achieve this procedure
by trying out 8 possible orientations of three eigenvectors
(+ + +, + + -, + - +, - + +, - - +, - + -, + - -,
- - -), it is obvious that flipping is superior. Trying all possible
orientations requires completion of the algorithm to find the
similarity index whereas flipping is a single-step procedure and
independent of the steps described below.

Similarity Index. The measure of similarity used in this work
is based on the root-mean-square (RMS) distance calculated
between the atoms from each cluster. The coordinate positions
associated with each atom in each cluster are those that result
after the preceding centering, SVD, and flipping steps. Specif-
ically, if there areN atoms present in a cluster and ifxi

A,yi
A,zi

A

denote the position of an atomi in the cluster A andxj
B,yj

B,zj
B

denote the position of an atomj in the cluster B, then the
pairwise atomic distance can be expressed as

and the similarity index between cluster A and cluster B is
defined as

Thus,SAB represents the sum of distances betweenN pairs, and
a small value ofSAB indicates that the two clusters are
geometrically similar. For molecules with specific backbone
structures or clearly labeled positions, such measures are very
easy to define and have been in use for a long time. However,
because each atom is identical in a given monatomic cluster,
how to select the relevant pairs from two clusters to be compared
in eq 9 is not obvious. Next, we discuss an assignment technique
to remove this ambiguity.

Assignment. This step solves the assignment problem in
which the distance measure is calculated by optimal matching
of the relevant atoms. Our aim is to find the pairs that yield the
minimum similarity index (S) between two clusters. This turns
out to be the well-known assignment problem and the algorithm
to solve the problem is often referred as the “Hungarian
method”.24-25 This formulation solves a linear programming
problem to decide on the pairs of atoms that result in the
minimum S.

Here,aij are the binary variables (0/1) that define if two atoms
are matched (1) or not (0).dij defines the RMS distance between
the ith and thejth atoms of two configurations that are being
compared. The objective functionJ is the sum of distances
between all matched atom pairs, defining a total distance
measure between two configurations.S is then found by the
minimum value ofJ.

An illustration of this method applied to a four-atom cluster
is given in Appendix A.

Remark.Distance measures have been studied before in the
context of constructing the PES. The main concern in establish-
ing a distance measure has been the translation and rotation
dependence of the compared structures. Translation invariance
was simply achieved by translating the compared structures such
that their centroids lie at the origin. To achieve rotational
invariance, Thompson et al.26 suggested a closed-form solution
for this matrix, and Rhee27 proposed an algorithm that can
compute the rotational transform using an optimization proce-
dure. Curotto et al.28 generated a set of operations to help check
for similar structures in constructing the PES. These studies do
not tackle the problems of scaling, chirality, and the assignment
of pairs, which we have addressed in our formulation.

Isomerization Dynamics of LJ9

We have applied this analysis to the isomerization dynamics
of a nine-atomic cluster held together by Lennard-Jones (LJ)
interactions. In the following discussion, we use the reduced
units where the mass of the particle,σ (hard-sphere diameter),
andε (interaction strength) of the LJ function are taken as unity
and the other variables are scaled accordingly. The energy of
the global minimum of the cluster is-24.113361 withC2V
symmetry (Figure 1) and PES has 20 distinct local minima
(Table 1) excluding the permutational isomers. We have
constructed our similarity index such that it does not distinguish
these permutational isomers as it should not.

Trajectories start at the global minimum, with random
momenta selected such that the total linear momentum, angular
momentum, and their components are zero. We achieve that
by randomly mixing the eigenvectors corresponding to normal
modes of the starting structure and using them as momentum
vectors. The magnitudes of the momentum vectors are scaled
to desired energy. For various energy values, the directions of
the atomic momentum vectors are the same so that similar
motion at different energy can be compared. The Hamilton’s
equations of motion are solved with Runge-Kutta integration,
which keeps the error in energy around 10-6. Trajectories are
integrated for 105 steps with each time step of 0.00125 time
units. At five different total energy values, the snapshots are
taken at every 50 steps and stored for assignments using
quenching and similarity analyses. The characterization of the
trajectory is done by using the database of minima given in
Table 1.

dij ) x(xi
A - xj

B)2 + (yi
A - yj

B)2 + (zi
A - zj

B)2 (9)

SAB ) ∑
i,j)1

N

dij (10)

S) min
aij

J ) ∑
i)1

N

∑
j)1

N

dijaij

∑
i)1

N

aij ) 1

∑
j)1

N

aij ) 1

aij > 0 (11)

Figure 1. Global minimum of LJ9.
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Similarity Statistics of Minima. In Figure 2a, we present
the distribution ofSbetween all pairs of minima. The smallest
values belong to the minima pairs of 14-15, 16-17, and 8-14
(Saround 0.95). The global minimum (structure 1) is the closest
(most similar) to the structure of minimum 11 with anSvalue
of 1.00. In Figure 2b, we present the histogram forS between
all minima. It is seen that the distribution affected by the

similarity index provides a reasonable range for distinguishing
various structures.

In Figure 3, the plot ofS vs ∆E for all pairs of minimum
structures is given. The value forSclearly does not depend on
whether two minima are energetically close along the PES. For
almost degenerate cases,Scan be as large as 2.3 and could be
as low as 0.9 for structures with large energy differences. Even
though this is somewhat expected, it is ensuring that the index
is not to be biased by energetics of the local minima.

Analysis of Bond Lengths. To follow the details of the
isomerization of LJ9, we have computed the bond lengths during
the simulation. An analysis of the changes in the bond angles,
as the simulation proceeds should give us additional insight into
the structural phenomena that may be taking place. In the energy
rangeE > -19.8, all of the bond distances fluctuate around
their respective mean values. However, as seen in Figure 4, at
this energy, sudden changes in the bond lengths are noticeable.
Figure 4 depicts a set of representative bond lengths as a time-
series to illustrate several different behaviors. One group of
bonds (there are 16 of them in this group) oscillates around the
mean similar to the low energy trajectories.R3-1 is given as an
example of this group. Moreover, there are six bonds, which
display sudden and large changes aroundt ) 25. Two examples
areR2-1 andR9-1, where the changes in bond lengths are almost
as large as the hard sphere diameter. The time period just short

Figure 2. a. Contour plot ofS for the minima of LJ9. b. Histogram of
S for the minima of LJ9.

TABLE 1: Minima for LJ 9

structure energy symmetry group

1 -24.113361 C2V
2 -23.269812 D3h

3 -23.235647 C2V
4 -23.196953 Cs

5 -23.173159 C1

6 -23.170759 C2

7 -23.149319 C2

8 -23.105019 Cs

9 -23.043510 Cs

10 -23.000683 D3h

11 -22.960888 Cs

12 -22.954098 Cs

13 -22.943932 C1

14 -22.927790 C2V
15 -22.843670 Cs

16 -22.474901 C3V
17 -22.186206 Cs

18 -22.180733 C2

19 -22.165974 C1

20 -22.081303 C1

21 -22.031475 C2

Figure 3. S vs ∆E for the minima of LJ9.

Figure 4. Bond order fluctuations atE/ε ) - 19.8. (R in units ofσ).

6028 J. Phys. Chem. A, Vol. 107, No. 31, 2003 Yurtsever et al.



of these “changes” reveals slightly different characteristics than
the initial period, which exhibits almost harmonic oscillations.
Finally, there is one more group of bonds that displays a great
deal of activity aroundt ) 15 (e.g.,R2-1 andR2-3) and then
settles either at the initial bond length or at a slightly different
one. All of these changes may imply strong isomerization taking
place at this energy; however, the nature of these changes
requires further analysis. We intend to provide a context for
these behaviors using the similarity index, next.

Similarity Analysis of Dynamic Trajectories. The coordinate-
dependent portion of the trajectory is described as a time series
in 3N - 6 dimensional phase space. A meaningful visualization
of the minima visited by this time series is difficult and not
unique, but we used a representation, which could be helpful
for such purposes. In Figure 5, each minimum is represented
by a point on a 2D grid. At each time step, the similarity index
to a specific minimum (k) is defined by a random point on a
circle with radiusSk. When the trajectory is integrated for a
sufficiently long time, the distribution of the points should
describe the “closeness” of the trajectory to the minimum (k).
In this plot, a doughnut-shaped disk denotes a minimum that is
avoided by the trajectory and an almost filled circle implies
that the trajectory spends a considerable time in the vicinity of
this minimum. In Figure 5, the minima are numbered starting
from the lower left corner corresponding to the global minimum,
and the numbering proceeds from left to right and to the higher
rows. The energy isE ) -19.8, and the starting conformation
is the global minimum. It can be clearly seen that the trajectory
spends most of its time around the global minimum. We also
note that the minima 13 and 14 are highly visited as well as
minimum 11. It is also notable that the trajectory does not stray
away from 11; however, it could be very distant to 13 and 14.
Moreover, most of the high-lying minima (e.g., minima 16, 17,
19, 20, and 21) are almost never visited.

To provide a comparison, we proceeded to quench structures
obtained by sampling the history files. For this purpose, we used
the program package OPTIM.2.3. The snapshots from trajec-
tories are used as initial guesses, and they are optimized by the
conjugated gradient method and the minima found in this
manner are stored. The same initial structures of the quenching
process are also subjected to our similarity analysis. Each of
these structures is projected on all 21 minima by properly
rotating, scaling, and assigning the corresponding pair of atoms,
and then, the similarity index measuring the conformational
distance to minima are calculated. The conformation with the
minimum similarity index is chosen to characterize the trajectory
at that time step.

In Figure 6, the results from a single trajectory atE ) -19.8
are presented for comparison with those from quenching. The

x axis is the time or, alternatively, is the snapshots from time
series, and they axis is the label of the minima found from
both methods defined as referenced in Table 1. For the method
based on similarity analysis, we select the minimum that is the
closest (most similar configuration) to that snapshot.

In Figure 6, there are three regions of interest,t < 15, 15<
t < 25, andt > 25. During the initial stages of the simulation
until t ) 15, the trajectory seems to be staying in the vicinity
of the global minimum, which can also be deduced from the
bond lengths, the results of quenching as well as similarity
analysis. The trajectory is also close to the global minimum
after t ) 25, but structural changes are suggested around 15<
t < 25. This seems to be in contrast with Figure 4 where the
drastic shifts in bond lengths occur in the third region (t > 25).
A possible explanation for this discrepancy is that a permuta-
tional isomer of the global minimum is reached. That is, fort
> 25, the cluster has a very similar shape to the global minimum
as indicated by the similarity index; however, the assignments
of the apex atoms have been changed as reflected in the bond
lengths. [Actually, the detection of the permutational isomers
is very easy in our approach; the similarity index without the
assignment part should give a nonzero measure whereupon
solving the assignment problem a zero measure should be
obtained.] On the other hand, the geometrical isomerization takes
place in the second region where a careful look also reveals
more subtle changes in the last six plots of bond lengths. These
changes are picked up by both quenching and the similarity
analysis. However, it is notable that they characterize these
structures as belonging to different minima. In quenching, the
change is mainly to the structure 5, whereas the similarity index
identifies a mixture of structures located around 13 (there are
also few instances where 5 is found by similarity and 13 by
quenching).

To test the reliability of our method, we compared the
topological distances of the trajectory to those minima located
by quenching and similarity analysis. As we selected the single
minimum structure with the smallest similarity index (most
similar configuration), one may argue that there might be more
than one structure with slightly differentSvalues, meaning that
the configuration for that snapshot might be almost equidistant
(equally similar) to the configurations of more than one
minimum. In those cases, identification of the basin cannot be
made with certainty. However, we note that the errors associated
with such close-lyingS values could easily be handled by

Figure 5. Visualization of the visits to minima by a single trajectory
at E/ε ) -19.8.

Figure 6. Minima visited by the trajectory as captured by (a) quenching
and (b) similarity analysis.
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averaging over a bundle of trajectories, thus reducing the
statistical errors.

In Figure 7, the similarity indices of the minima found by
quenching are compared to those from our analysis. In other
words, the plot shows the distance of the minima at a given
point along the trajectory and compares it with the distance of
the minima identified by quenching. When both methods find
the same structure, the points should align themselves along
the diagonal. On the other hand, if our method locates different
structures with slightly differentSvalues as we suspected, again
the almost diagonal character of the plot should prevail. Indeed,
for the trajectories studied atE ) -19.8 and at a higher energy
regime, many of these points are along the diagonal but there
are also a large number of cases where the distance (similarity)
to the minima found by quenching is very large (highly
dissimilar). Both methods seem to characterize the sampled
regions of the phase space differently. It is notable that when
the trajectory is close to local minima both methods appear to
agree reasonably well except at isolated points (e.g., whenS<
0.6). Yet, when the trajectory strays away from the minima (as
indicated by higherSvalues), the disagreement between the two
methods is striking. Indeed, when the two methods disagree,
the scatter of points is above the diagonal, indicating that
quenching locates minima, which may be significantly farther
(dissimilar) than the configuration of the cluster at that time
step.

Conclusions

We have presented a robust method of identifying the
sampling of the phase space in classical dynamical simulations.
The method combines scaling, rotating, and finding similarity
of structures in terms of distances in the conformational space.
It can be used to study the quality of results by comparing
structures of clusters obtained by different methods. It can
provide a measure of the ergodicity of the simulation. However,
most of all, it provides an efficient way to detect structural
changes, isomerizations, during the simulations even for those
cases where the bond lengths may not show significant activity.
The basic advantage over quenching is that one does not have
to choose a path among the many with negative eigenvalues to
find a minimum; transitions and isomerizations can be followed
in an automated manner.
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Appendix A

The computation of the similarity index is illustrated for a
planar test configuration, which represents a rhombus, given
below:

This configuration will be compared with two basic shapes, a
diamond (D) and a rectangle (R)

Figure 8 depicts these configurations,Zc, Dc, andRc. Note that
each configuration is in the center of mass reference frame.

The next step involves the computation of the SVD for each
of these configurations to determine their natural alignment
directions. For the test configuration, note that the matrixZc

TZc

is given as

Figure 7. Comparison of minima captured by quenching and similarity
analysis.

Figure 8. Starting shapes for comparison.

Figure 9. Shapes after normalization.

Zc ) [ 2 2
- 2 2
- 6 - 2

6 - 2
] (A1)

Dc ) [ 3 0
0 1

- 3 0
0 - 1

]; Rc ) [ 2 3
- 2 3
- 2 - 3

2 - 3
] (A2)

Zc
TZc ) [80 0

0 16] (A3)

6030 J. Phys. Chem. A, Vol. 107, No. 31, 2003 Yurtsever et al.



We can calculate that the singular values ofZc areσ1 ) 8.94
and σ2 ) 4.0 and the eigenvectors forZc

TZc are V1 ) (-1 0)
andV2 ) (0 -1). In the next step, each configuration is projected
onto the directions indicated by their eigenvectors. The coor-
dinates for each configuration are given as

Finally, the score matrices are obtained after scaling by the
singular vectors. These are final coordinates to be compared.
Figure 9 displays these configurations whose coordinates are
given below:

The similarity index is then calculated between the test
configuration and the basic configurations as follows:

This shows that the given rhombus is actually more similar to
the rectangular than the diamond configuration.
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ZcVZc ) [ - 2 - 2
2 - 2
6 2

- 6 2
]; DcVDc ) [ - 3 - 2

- 3 - 2
3 2
3 - 2

];
RcVRc ) [ - 3 0

0 - 1
3 0
0 1

] (A4)

UZc ) [ - 0.2236 - 0.5
0.2236 - 0.5
0.6708 0.5

- 0.6708 0.5
];

UDc ) [ - 0.7071 0
0 - 0.7071
0.7071 0
0 0.7071

];
URc ) [ - 0.5 - 0.5

- 0.5 0.5
0.5 0.5
0.5 - 0.5

] (A5)

SZ-R ) 0.8944; SZ-D ) 2.2037
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