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The calculation of the XgHsO—H bond dissociation energy (BDE) in a setmsubstituted phenols using

the local hard and soft acids and basis principle (HSAB) is described. The expression for the interaction
energy QAEiy) in terms of the chemical potentials of the reagenis (1,0, un) and the atomic hardness fragments

(10, nu) provides good gas-phase BDE values.

I. Introduction (covalent interaction), and (ii) reshuffling of the electron density

The Lewis generalized acithase reaction A+ B — A:B (electrostatic interaction), X¢E1,0 + H — (XCeH,0 + H)*

has an important role in the study of chemical reactivity of — XC¢H,OH. The AE;, represents the energy involved in the
organic compounds. Several organic reactions begin with stepstwo steps AEie = AE, + AE,). AE, is a consequence of the
that involve the acietbase reactiohln 1963, Pearson proposed ~electronegativity equalization principté,and AE, is a mani-
the hard and soft acids and bases prinéi(#SAB), “hard acids ~ festation of the maximum hardness princiffeln a local
prefer to coordinate to hard bases”. The principle refers to the viewpoint, the free hydrogen atom will interact with the oxygen
bond dissociation energy (BDE) of the Lewis reaction. There- atom of thep-substituted phenoxyl radical. The energy involved
fore, the estimation of the BDE in terms of the chemical inthe bond formation process is represented in the local HSAB
hardness and chemical potentials should be a topic of a greatprinciple by
deal of attentiorf. However, the BDE in these terms has only )
been obtained for some diatomic and small polyatomic mol- (txcy0 — M) AMyno)
eculest AE, = 200+ 10 - 20+ 1) Q)
In this work, we have used the HSAB principle in its local h T 7o w7 7o
versior? and the density functional thedr¢DFT) to investigate ) .
the O—-H homolitic gas-phase BDE in a set pfsubstituted whereuy and uxcg4,0 are the chemical potentials of the free
oo hydrogen atom and thg substituted phenoxyl radical, respec-
phenols (XGH4OH). Phenols are of special interest because .. .
tively, and 7y and 5o are the atomic hardness of the free

their phenoxyl radicals are important intermediates in many hydrogen atom and the oxygen atom in thesubstituted
biological and industrial processédheir experimental BDE yarog : yger :
phenoxyl radical. The parameter is a constant related with an

\r/: sll;)iith'il\/: eti]eeergyuji?firteon(t:isst si%&?glgecggﬁgﬁji?{/\tﬂ: high_effective number of electrorts*-16 The chemical potenti&tan
! be obtained fromy = —(1/2)(1 + A), wherel is the ionization

level methods and corrections with the zero-point vibration and
the superposition base error (BSSE) should be used to obtalnpotent|al andA is the electron affinity. The condensed hardfss
is obtained bynx = (y/fk), wheren is the global hardness

good BDE valueg® The benefit of calculating the BDE via _ -
HSAB versus the traditional methods is that not such corrections obtained EWOUQW (1/2)( — A) andicis the condensed fukui
functiorf1” that measures the reactivity of the k atom toward

need be considered when using HSAB. The interaction energy R ok .
(AEin) of the reaction X@Hs0H — XCeH4O + H is determined an electrophilic {, ), nU£3|eOphI|I.C t,), or radical (Ck’) atFack.

in terms of the chemical potentidlsf the reagents and the For the free H atomf,, = 1 (it acts as a nucleophile and
atomic hardness&of the oxygen and hydrogen atoms involved decreases its charge in the bond-forming process); for the oxygen
in the O—H bond formation. In this study, we propose thEi atom (it acts as an electrophile and increases its chafge),

is equal to the negative of the BDE. The results highlight the €&n be obtained from its gross charge inpRehenoxyl neutral
importance of the electrostatic contribution in the reaction in and in the anion evaluated at the geometry of the neditgak

the determination of the BDE in the gas phase. (gd"°" — gF""™.17 In general, al value equal to one has been
used for the study of chemical reactivity in cycloadditions
Il. The Local HSAB Principle reactions'® and al value lower than one has been used for the
. ) study of weak interaction's.
According to the DFT, thé\E;; for the reaction X@H;O +
H — XCeH4OH is given by AEn = Elpxcrion] — (Elor] + lIl. The Bond Dissociation Energy of p-Substituted

E['OXC.GWO])’ wherepxcg,0 andpy are the ground-state electronic  ppenol

densities of the reagents angcg,.0n IS the ground-state o ) )

electronic density of thp-substituted phenol. The reaction can  The local HSAB principle, the chemical potential, and the

be divided into two successive stejsti) electron transfer ~ condensed hardness parameters yield the BDE values in
p-substituted phenols from eq 1. The DFT properties of

* To whom correspondence to be addressed. E-mail: fm@xanum.uam.mx; p-substituted phenolgy-substituted phenoxyl radicals, arid
phone: (52)55-58046417; fax: (52)55-58046415. values were taken from ref 18. For the hydrogen atom, the
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TABLE 1: Calculated and Experimental O—H Homolitic BDE Values for the Reaction XCegH4OH — XCegH4O + Hi

ABDE

X A2 AE,® AEP HSABP expg exp! exg exp cal¢
Ck 1.2 0.03 —89.19 —-35 —5.5 —-3.2 —2.6
CH,CH3 1.2 0.12 —84.35 15
CHs 1.2 0.12 —83.85 2.0 2.2 1.1 2.1 1.8
CHO 1.4 0.05 —102.60 —16.8
Cl 1.2 0.09 —86.25 —-0.5 -0.4 0.6 —-0.4 0.7
CN 1.3 0.05 —89.76 —-4.0 —4.4 —4.7 -5 —-2.3
COOCH 1.2 0.04 —87.58 —-1.8
COOH 1.3 0.04 —92.06 —6.3
F 1.2 0.12 —85.56 0.3
H 1.2 0.14 —85.84 0(85.7  0(88.3} 0 (89.8} 0(88.2} 0 (84.0% 0 (89.5)
i-Pr 1.2 0.10 —84.17 1.6
NH2 1.1 0.24 —=77.77 8.2 12.6 12.7 8.6
NO, 1.3 0.02 —92.05 —6.3 —-4.5 -6 —4.4
OCH; 1.1 0.17 —80.40 55 55 53 5.6 5.9 5.5
OH 1.1 0.18 —82.02 3.9 8.3 8 54
t-Bu 1.1 0.07 —83.77 2.0 3

a ) values obtained from ref 18.Calculated through eq £.Data from ref 20a¢ Data from ref 20b¢ Data from ref 20c! Data from ref 20d.
9 Data from ref 8al Phenol's BDE.! The ABDE, AE,, andAE, values are in kcal/mol.
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