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The classification/categorization of oscillatory chemical reactions and the determination of the connectivity
of species in a reaction mechanism can be deduced from several experiments. In this article we show the
same for bifurcation diagrams. We construct such diagrams for skeletal models of each of the known categories;
these are distinct and can be used for the classification of species essential for oscillations and for the
categorization of oscillatory reactions. The bifurcation diagrams are closely related to the concentration shift
matrix. Prototypes of categories 1B and 1C are extended by adding nonessential species. By assuming that
in a flow-through stirred reactor bifurcation diagrams for each pair of constraints (the inflow concentrations
and the flow rate) can be measured, we are able to determine the category of the examined oscillator and also
deduce the connectivity of the corresponding reaction network. Bifurcation diagrams possess a cusp region
with specific tilt. This information together with the knowledge of a concentration shift across the saddle-
node bifurcation provide the clues for categorization as well as for the reconstruction of the network’s
connectivity. As an example, we present an analysis of the Belousov-Zhabotinsky reaction represented by
the Field-Körös-Noyes mechanism and discuss the feasibility of reconstruction of the mechanism from
experiments.

1. Introduction

Mechanisms of reaction systems with oscillatory dynamics
or multiple stationary states can be categorized according to
basic features in their reaction networks,1 such as autocatalytic
loops, exit reactions, and negative feedback loops. This cat-
egorization is based in part on stoichiometric network analysis
(SNA),2 which provides a convenient tool of decomposing the
entire network operating at a stationary state into subnetworks
and indicates those which can cause the network’s stationary
state to become unstable. Definingcategories for oscillatory
mechanismsalso implies aclassification of speciestaking part
in those mechanisms. In Eiswirth et al.1 and in subsequent
work,3-9 several experiments for classifying species and deter-
mining the reaction categories were proposed and tested on the
chlorite-iodide reaction and horseradish peroxidase reaction.
Moreover, these experiments help to deduce rather than guess
the connectivity of the reaction network and other features that
are useful for identification of the reaction mechanism. Among
those experiments are the following:4 (I) amplitude and phase
relation of oscillations of chemical species, (II) concentration
shift regulation and destabilization, (III) pulsed species response,
(IV) phase response, (V) Jacobian matrix elements, (VI)
quenching, and (VII) bifurcation analysis.

For these and yet other experiments the relation of the
experimental results to information about the reaction mecha-
nism has been worked out fully except for items IV, V, and
VII.

Hence we focus here on using bifurcation diagrams deter-
mined from experiments for the categorization and deduction

of the connectivity of the network. The use of bifurcation
diagrams for categorization has been initiated in ref 1; here we
follow those studies to establish complete relations, particularly
to concentration shift experiments, and hence to categorization.
There have been several attempts to use bifurcation diagrams
to decide between proposed alternative mechanisms. Noszticius
et al.10 studied the Belousov-Zhabotinsky (BZ) reaction in a
flow-through reactor with various chemical reagents being fed
in and concluded that the bifurcation diagrams can be used as
fingerprints of the perturbing reagent. Olsen and Epstein11

examined the effect of alternative proposed pathways on
calculated bifurcation diagrams, compared them with available
experiments, and suggested further experiments for the mixed
Landolt and chlorite-iodide reactions. Ringland12 showed how
certain codimension 2 points in a bifurcation diagram for a
seven-variable model of the BZ reaction can be used to accept/
exclude the model when compared with experimental data.

By means of several examples we show how the task of
mechanism determination may be systematically approached
using the bifurcation diagrams (and closely related concentration
shift matrices) constructed from experiments in a flow-through
reactor, where the flow rate and inflow concentration of each
species is systematically varied to provide two-parameter
bifurcation diagrams. These diagrams typically contain a cusp-
shaped region of multiple stationary states and essentially
delineate regions of oscillatory and nonoscillatory behavior, as
well as regions of bistability between stationary states. A
predominantly occurring structure called thecross-shaped
diagram13 involves the cusp-shaped region bounded by a curve
corresponding to a saddle-node bifurcation, and a curve corre-
sponding to a Hopf bifurcation that makes anR-shaped loop
surrounding the cusp point, intersects itself within the cusp-
shaped region, and touches the saddle-node curve in two points
of codimension 2 (Bogdanov-Takens points). Thus the oscil-
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latory region extends beyond the tip of the cusp; bistability is
confined to the interior of the cusp and excitability occurs in
between. This highly symmetric structure may not always be
present; in many cases the self-intersection is missing or there
are two separate branches of the Hopf bifurcation.

Nevertheless, the primary feature is the tilt of the cusp-shaped
region; the actual arrangement of the oscillatory region is
secondary in the mechanism determination. Along with the
bifurcation diagrams, one-parameter diagrams of stationary state
concentrations near the cusp are useful in providing information
about the mechanism. We discuss how these two types of
diagrams can be used to determine the category, to classify the
species, and how to tie the essential and nonessential species
to the reaction network.

In Section 2 we construct representative bifurcation diagrams
for skeletal models of each of the known categories of chemical
oscillators. Each category has its own distinctive bifurcation
diagrams, and hence these can be used for the classification of
essential species and for categorization of the reactions.

In Section 3 we show that the bifurcation diagrams are closely
related to the concentration shift matrix; then we construct a
global concentration shift matrix and formulate rules for this
matrix which can be used in the reverse problem, that of a
systematic reconstruction of a reaction network. As a preliminary
example of the reconstruction procedure we extend prototypes
of categories 1B and 1C by adding nonessential species,
calculate bifurcation diagrams, transform them to the global shift
matrix, and then describe the reconstruction of the network.

In Section 4 we apply these results to the problem of deducing
a network’s connectivity from experimentally obtained bifurca-
tion diagrams. We calculate bifurcation diagrams for the FKN
mechanism14,15of the BZ reaction and discuss the reconstruction
of the mechanism based on these diagrams. Then we discuss
the experimental feasibility of such a reconstruction. We have
also investigated successfully the mixed-Landolt (iodate-
sulfite-ferrocyanide) reaction,16-18 but the preliminary results
are not presented here.

Appendices A and B contain necessary elements of the SNA
theory and basic facts from the classification and categorization
of oscillatory mechanisms.

2. Calculations of Bifurcation Diagrams of the Categories
of Oscillatory Reactions

Oscillatory reactions can be grouped into several distinct
categories based on the aforementioned experiments. Since the
categorization process makes use of SNA,2 necessary elements
of that theory are reviewed in Appendix A; the fundamentals
of classification/categorization established in previous work1,3,4,9

are given in Appendix B. We also refer the reader to both
Appendices for the notation and basic form of equations
assumed throughout.

Once the classification/categorization is established one can
proceed to obtain more detailed information about the unknown
parts of the mechanism by deducing their network connectivity
(particularly with respect to nonessential species) from experi-
ments of type III and IV as described earlier4,8 and also from
experiments of type II and VII as will be shown here.

To develop the categorization derived from bifurcation
diagrams we begin with the use of SNA to locate an organizing
point capturing the oscillatory and multiple stationary state
dynamics, and from there we proceed with construction of the
bifurcation diagrams representing each category.

2.1. Bifurcation Diagrams in SNA Parameters.Categoriza-
tion relies on typical features shared by a group of mutually

related networks. Therefore paradigmatic examples provided for
each category in prior work1-9 need not be examined for every
possible combination of parameters; rather, a point or region
in the parameter space reflecting typical behavior may be
selected to demonstrate categorization criteria. Since we are
examining systems displaying in general either oscillatory
dynamics or multiple stationary states we first search for an
organizing singularity that involves both features. Such a
situation is provided by a Bogdanov-Takens (BT) bifurcation
associated with a double zero eigenvalue of the Jacobian at the
stationary state; this is a codimension 2 bifurcation, where a
saddle-node bifurcation (giving rise to multiplicity) and a Hopf
bifurcation (giving rise to oscillations) meet. In two-parameter
bifurcation diagrams this corresponds to a point where a Hopf
bifurcation curve terminates and touches a saddle-node bifurca-
tion curve. By starting with a BT point we can track the
emanating bifurcation curves by numerical continuation meth-
ods19 and construct the bifurcation diagram.

To select a BT point we employ a parametrization as used in
SNA2 (see Appendix A for more detail); instead of the reaction
rate coefficientsk1, ‚‚‚, kr (internal parameters) and the flow
rate k0 and inflow concentrationsx01, ‚‚‚, x0n (external con-
straints) we turn to the coefficientsRk, used in expressing a
general reaction rate vector (current) as a linear combination
of specific rate vectors representing major reaction subnetworks
(extreme currents), and the stationary state concentrationsxs1,‚
‚‚, xsn of the species involved. For a given network representing
a given category, we first calculate from its stoichiometric matrix
ν the set of extreme currents{ek}. Then we examine their
stability matrix V (see eq A4) and identify the potentially
unstable ones. This is indicated by negative principle minorsâ
of V. After that we choose stationary values of all concentrations
so that their values for certain groups ofl species (indicated by
negativeâl) are small enough, so that the instability of the
stationary state for the unstableek’s is ensured. Next we combine
all extreme currents by setting theirRk’s so that a Hopf
bifurcation point is obtained, taking into account certain
constraints imposed by the flow-through arrangement. This task
can be accomplished since we know the stability of the extreme
currents from the previous steps; hence major positive and
negative feedback loops can be identified and the corresponding
currents combined to get an oscillatory instability. Finally, we
select two extreme currents, one associated with oscillatory
dynamics and the other one with multiplicity, and use the two
correspondingRk’s as parameters to construct the Hopf bifurca-
tion curve in a two-parameter bifurcation diagram and trace it
down to the BT point.

We use the current evaluated at the BT point for switching
from parametrization byRk’s (at fixed stationary statexs ) (x01,
‚‚‚, x0n)) to the usual parametrization by rate coefficients and
external constraints. Since the values of reaction ratesV1(xs),
‚‚‚, Vr(xs) in this current are known, as well as their functional
form (power law kinetics are assumed), the reaction rate
coefficients can be readily calculated. In this way, rather than
being empirically chosen, the reaction rate coefficients are
selected by design based on a dominance of certain key
subnetworks in the linear combination of all extreme currents.
This approach gives considerable insight into the way the basic
subnetworks are put together to form the whole of the network.

2.2. Bifurcation Diagrams in External Constraints. The
flow rate and inflow concentrations are the external constraints
considered here. Eiswirth et al.1 provide a table characterizing
bifurcation diagrams of category 1 oscillators using various pairs
of inflow concentrationsX0, Y0, andZ0 of the essential species
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X, Y, and Z as bifurcation constraints. Following this approach
we extend the table by using pairs of flow rate-inflow
concentration, since they are frequently used in experimental
studies. In all diagrams of this type the important feature is the
orientation of the cusp with respect to the coordinate axes.
Generically the cusp is tilted rather than being parallel to one
of the coordinate axes. Consequently the “symmetry axis” of
the cusp (the line to which both branches of the cusp curve are
tangent at the tip) has generically either a positive or a negative
slope; we call the two casesdiagonal and anti-diagonal,
respectively. Within each category the diagonal or anti-diagonal
orientation is preserved for a given pair of constraintsregardless
of the choice of rate coefficients. Moreover, the tip of the cusp
is directed specifically either to the left or to the right (with
respect to the horizontal direction) for each essential species in
each category. In addition, an oscillatory region may extend
past the tip.Therefore the pattern of the saddle-node and the
Hopf curVes can be used to indicate categories and classify
essential species in much the same way as deductions from other
experiments, such as the concentration shifts and phase shifts.

Below we systematically construct and discuss bifurcation
diagrams in external constraints for each category with emphasis
on the flow rate-inflow concentration space.

2.2.1. Category 2C.The prototype for category 2C networks
in Figure 1d (basically the Selkov model for glycolysis20) has
two essential species of type X and Z; there are three constraints,
the inflow concentrationsX0 andZ0 and the flow ratek0. The
bifurcation diagrams fork0-X0, k0-Z0, andZ0-X0 are shown
in Figure 1, parts a, b, and c, respectively. They all possess the
same structure with an anti-diagonal cusp-shaped saddle-node
bifurcation curve, and a Hopf bifurcation curve extending from
a single BT point around the tip of the cusp. The cusp points
up-left in parts a and c of Figure 1 and right-down in Figure
1b.

It is useful to distinguish two kinds of stationary states
according to the relative level of the concentration of X or Z.
Correspondingly, we label the concentration of each species at
a stationary state that is not a saddle (but otherwise may be

unstable) either as “upper” (Xu or Zu) or “lower”’ (X l or Zl).
The two such stationary states in Figure 1 are (Xl, Zu) and (Xu,
Zl); they coexist in the cusp region; the “lower” state with
respect to the autocatalytic species X (and “upper” for Z) extends
down-left from the cusp regionsthe autocatalytic pathway is
unimportant under such conditions; the “upper” state for X (and
“lower” for Z) extends up-right where the autocatalytic pathway
dominates. As will be shown later, this labeling makes it possible
to relate the bifurcation diagram to the concentration shift matrix.

Two main dynamical modes, oscillations (predominantly
occurring within a region marked by a Hopf bifurcation), and
bistable stationary states are labeled by osc and bis, respectively.
However, bistability does not fill up the cusp region entirely
because the Hopf bifurcation may destabilize one of the
stationary states. In this case the remaining stable stationary
state is excitable and we label the corresponding part of the
cusp region by exc. The border between oscillatory and excitable
regions is formed largely by a saddle-node-infinite-period
(SNIPER) bifurcation where the threshold for excitability
becomes zero.

Some features of the diagrams in Figure 1 are as follows:
(a) WhenZ0 is small, Figure 1b,c, there is a unique stationary

state while for large enoughZ0 regions of multiple stationary
states and/or oscillations occur due to autocatalytic instability.

(b) The effect ofX0 is just the opposite. For arbitrarily small
X0 a region of multiplicity can always be found; at medium
values ofX0 an oscillatory region exists while for large enough
X0 the stabilizing flow-through subnetwork for X eventually
dominates so that neither multiplicity nor oscillations can exist.
Therefore the tip of the cusp points in theX0 direction and the
oscillatory region closes up.

(c) Basic features of any of the three bifurcation diagrams
may be deduced from the other two. In particular, the anti-
diagonal structure and the direction into which the cusp opens
in Figure 1c is implied by Figure 1a,b; the curve connecting
the cusp points in theX0-Z0-k0 space must pass below the
k0-X0 plane shown in Figure 1a and for higher values ofX0

than the reference BT point. Also, parts a and c of Figure 1

Figure 1. Bifurcation diagrams and reaction network for a prototype of category 2C. Rate coefficients used in calculations:k1 ) 4.91569,k2 )
5.04517. Notation: solid line, saddle-node bifurcation; dashed line, Hopf bifurcation; square, BT point; osc, bis, exc, region of oscillations, bistable
stationary states, and excitability, respectively. Fixed parameter values for the reference BT point:k0 ) 0.5, X0 ) 0.5, Z0 ) 6.8.
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suggest that the crossover of the Hopf and saddle-node bifurca-
tion curves not found in Figure 1b would occur if the diagram
were generated for a smaller fixed value ofX0. (There must be
such a crossover based on generic arguments.)

(d) The oscillatory region enclosed by the Hopf curve and
the SNIPER bifurcation never extends to zero values ofk0

because oscillations in category 2C depend crucially on the
inflow of Z. Also, the oscillatory region is highly asymmetric
with respect to the cusp; it extends where the stationary state is
“high” with respect to X. Thek0-X0 diagram may sometimes
have a bounded region of multiplicity terminated by two cusps.
If so, then only the left one is associated with the Hopf curve
and thus of primary interest within the context of categorization
of oscillatory mechanisms.

2.2.2. Category 2B.This prototype has been derived9 from a
model of glycolysis.21 Here we present a modified version
(Figure 2d) that emphasizes the basic feature of a B category,
namely that it can provide oscillations in a batch reactor (of
course, it is assumed that some reactants, not shown in the
network diagram, must be provided in surplus or buffered so
that their concentrations are effectively constant and included
in the rate coefficients). The mechanism in Figure 2d follows
from a prototype of 1B category (a skeleton BZ reaction) by
merging type Z and Y species into a single species that becomes
type Z and assuming a second-order autocatalytic step with
respect to X. Therefore, there is a strong current cycle as
required for category 2 oscillators and, as a special feature, an
exit reaction between X and Z that is necessary for oscillations
when Z is recovered by a tangent rather than flow feedback.
As in 2C, there are two essential species X and Z and three
external constraintsX0, Z0, andk0.

The bifurcation diagrams in Figure 2 are distinctly different
from those for the 2C category. Thek0-X0 (Figure 2a) andZ0-
X0 (Figure 2c) diagrams are diagonal unlike in 2C. Thek0-Z0

(Figure 2c) diagram is anti-diagonal with the cusp pointing right-
down as in 2C. The stationary state pattern is different: (Xu,
Zu) at the low flow rate side of the cusp and (Xl, Zl) on the

other side. The oscillatory region is asymmetric as in 2C but
extends to zero flow rate and zero inflow concentrations
implying batch oscillations as expected. The Hopf curve does
not curve around the tip of the cusp and the oscillatory region
does not enclose the cusp, which implies that the bistable region
is near the tip unlike in 2C.

2.2.3. Categories 1CX and 1CW.There are three essential
species, X, Y, and Z, in 1CX, Figure 3g, and an additional
essential species, W, in 1CW, Figure 4g. The difference between
these two categories is rather subtle: 1CX requires an inflow
of type X species whereas 1CW does not; rather, an internal
production of X from Y is involved. Generally, in a 1C category
the exit reaction may produce W species that subsequently react
with Y, or W may arise by a branching off the autocatalytic
cycle (a tangent reaction), or may not appear at all. Bifurcation
diagrams for all six combinations ofX0, Y0, Z0, and k0 for a
prototype of the 1CX category (modified Franck model22) are
shown in Figure 3a-f. TheZ0-X0 plot, Figure 3d, is analogous
to that for 2C (Figure 1c), but thek0-X0 (Figure 3a) andk0-Z0

(Figure 3c) plots are diagonal unlike the corresponding diagrams
for 2C. For the Hopf curve in Figure 3b,c to form a loop
constituting the cross-shaped diagram, the removal of X needs
to be of first order and an additional removal of Y via a first-
order reaction has to be taken into account. The absence of the
latter causes the oscillatory region to extend to zero values of
the flow rate but the period of oscillations tends to infinity. In
experimental systems falling into the 1CX category, such as
the mixed Landolt system,16,17 this feature is not observed and
therefore we modified the prototype by adding the (slow)
removal of Y. The oscillatory region in Figure 3a extends to
zero values ofX0, which seems to contradict the requirement
for a 1CX oscillator to have an inflow of X. However, the
oscillations vanish atX0 ) 0 with an infinite period. (Remark:
Two of the three BT points in Figure 3a are mutually connected
by a Hopf bifurcation curve nearly coinciding with the saddle-
node curve.)

Bifurcation diagrams for a prototype of the 1CW category

Figure 2. Bifurcation diagrams and reaction network for a prototype of category 2B. Rate coefficients used in calculations:k1 ) 0.22404,k2 )
0.11443,k3 ) 1.42369,k4 ) 0.017676. Notation: solid line, saddle-node bifurcation; dashed line, Hopf bifurcation; square, BT point; osc, bis, exc,
regions of oscillations, bistable stationary states, and excitability, respectively. Fixed parameter values for the reference BT point:k0 ) 0.23,X0

) 40.0,Z0 ) 1093.
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(essentially the minimal bromate oscillator23) are shown in
Figure 4a-f for the same pairs of constraints as in Figure 3.
Behavior of type W species, as indicated by the shift experi-
ments, is identical to that of type X species.1 Also, the
bifurcation diagrams show the same kind of structure when
plotting eitherX0 or W0 against any other constraint; therefore
we have omitted type W species in the figure. There is virtually
no difference in the corresponding diagrams for 1CX and 1CW.
The extent of oscillatory regions may vary substantially when
rate coefficients are changed. In some cases the Hopf bifurcation
curve does not form a loop around the cusp; rather, it is
contained within the cusp region and oscillatory regions
disappear. Even so, the orientation of the cusp structure remains
unchanged.

As in category 2, the structure of diagrams in a plane of two
inflow concentrations can be deduced from the flow rate-inflow
concentration diagrams.

2.2.4. Category 1B.This category has three essential species
X, Y, and Z and hence four external constraintsX0, Y0, Z0, and
k0. The prototype, Figure 5g, is essentially the three-variable
Oregonator.24 The six corresponding bifurcation diagrams are
shown in Figure 5, parts a-f. There is more correspondence
between comparable diagrams for 2B and 1B categories than
with the C categories. In particular, the flow rate-inflow
concentration plots are consistent for 2B and 1B: diagonal for
X0, Figures 2a and 5a, and anti-diagonal forZ0, Figures 2b and

5c. The diagrams for 1B show a region of multiplicity limited
by two cusps, rather than one. This is due to a particular choice
of rate coefficients; the left cusp in Figure 5a can be shifted to
negative values ofX0. As expected for a B category, the
oscillatory region extends to zero flow rates. Thek0-Y0 and
k0-Z0 diagrams in Figure 5b,c are identical up to a scaling factor
and therefore the correspondingY0-Z0 diagram in Figure 5f is
peculiar in that the bifurcation lines are degenerate. All of them
are parallel straight lines: there are two saddle-node bifurcation
lines very close to each other, and a Hopf bifurcation line;
eigenvalues along each line are constant. This is due to a special
way the species Z and Y are linked in the network as mentioned
already in Eiswirth et al.1

Generally, there may be more essential species of the same
type in an experimental oscillator or in its realistic model, for
example, more than one autocatalytic species is typically
expected to form an autocatalytic loop. Corresponding bifurca-
tion diagrams for the species of the same type will possess the
same features and thus the process of determination of the
category is reduced to that for the prototypes.

3. Relations between Bifurcation Diagrams and
Concentration Shift Matrix

3.1. Local and Global Concentration Shift Matrix. In a
flow-through reactor experiments may be carried out such that,

Figure 3. Bifurcation diagrams and reaction network for a prototype
of category 1CX. Rate coefficients used in calculations:k1 ) 0.31651,
k2 ) 2.43584,k3 ) 0.07292,k4 ) 0.05. Notation: solid line, saddle-
node bifurcation; dashed line, Hopf bifurcation; square, BT point. Fixed
parameter values for the reference BT point:k0 ) 0.034,X0 ) 0.1,Y0

) 0.77,Z0 ) 1.63.

Figure 4. Bifurcation diagrams and reaction network for a prototype
of category 1CW. Rate coefficients used in calculations:k1 )
0.0083786,k2 ) 0.73261,k3 ) 0.025, k4 ) 1.46522,k5 ) 0.02.
Notation: solid line, saddle-node bifurcation; dashed line, Hopf
bifurcation; square, BT point. Fixed parameter values for the reference
BT point: k0 ) 0.0052,X0 ) 0.1, Y0 ) 3.3, Z0 ) 7.3, W0 ) 0.1.
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at a stable stationary state near a Hopf bifurcation, the inflow
concentrations of the essential species are slightly increased one
at a time and the observed change in the stationary state
concentration of each species is measured. The resulting
concentration shift matrix can be used as a tool for category
determination and classification of essential species. When
comparing experiments to a proposed mechanism, the concen-
tration shift matrix may be readily calculated as the negative
inverse of the Jacobian3 (see eqs B2 and B3) and compared to
experiments; only sign symbolic representation is necessary for
determining the category. The elements of the shift matrix are
measuring the sensitivity of stationary concentrations to changes
in inflow concentrations. Since the flow rate is frequently used
as a variable constraint, it is convenient to extend the matrix
by one column expressing the sensitivity to the flow rate; see
Appendix B for the derivations.

In general, the shift method is local by virtue of perturbing
the stationary state only slightly (or infinitesimally in calcula-
tions). On the other hand, bifurcation diagrams may be viewed
as a global extension of the shift experiments. Instead of a
particular point in the space of constraints we are now
considering the whole region probed by taking two-parameter
slices. To see the effects of changing the constraints on the
stationary state, concentrations of the species need to be
measured when constructing the bifurcation diagram. To visual-
ize the changes in concentration for a particular species in the
prototypes of categories we take the reaction rate coefficients

at the BT point used in generating the bifurcation diagrams and
allow only one constraint to vary at a time while monitoring
the stationary state concentrations of all species. The slopes of
the curves in such a plot for each species at a given value of
the constraint are simply the values from a corresponding
column of the shift matrix. As an example, we show the flow
rate-stationary-state-concentration diagrams for all the catego-
ries in Figure 6a-d. Each curve has three branches, two of them
corresponding to an “upper” and a “lower” stationary state, and
the third one in the middle corresponding to the saddle.

An important observation is that the curves are monotonic
on the three respective branches when sufficiently close to the
region of multiplicity. Consequently in this region all the
elements of the concentration shift matrix determined locally
at any value of the constraints have unique signs. In prototypes,
this rule is mostly valid in a broad range of constraints and
represents a typical behavior used for categorization. However,
extremes on the curves may occur and the monotonicity holds
no longer (for example, see lower branch for Z in Figure 6b).
This restricts the range of constraints where the categorization
based on local concentration shifts may be applied. Therefore
the local concentration shift method for categorization is limited
to the proximity of either a saddle-node bifurcation or a Hopf
bifurcation1 provided that the latter is not too far from the saddle-
node bifurcation.

When two branches of stationary states overlap we can always
uniquely assign one of them as upper and the other as lower
with respect to each of the species. Thus the limitation of the
local concentration shift method can be overcome if we consider
the bifurcation diagrams Figures 1-5 and add the information
on upper and lower stationary values for each species provided
by diagrams in Figure 6. Now we can make the main conclusion
of this section: whenever there is atransition from an upper
state to a lower stateas a chosen constraint is increased, the
concentration shift regulation isinVerseor negatiVe (a minus
sign in the symbolic shift matrix) and, conversely, atransition
from a lower state to an upper stateis associated with adirect
or positiVe regulation (a plus sign in the symbolic shift matrix).
Hence the sign-symbolic matrix of local concentration shifts
can be replaced by a sign-symbolic matrix of global concentra-
tion shifts, which is easily derived from Figures 1-5 for each
category considering the upper/lower transitions for each species
in the direction of each constraint. In fact, flow rate-inflow
concentration diagrams alone are sufficient for deriving the
global concentration shift matrix, including the shifts with
respect tok0.

We denote an element of the (sign-symbolic) global shift
matrix as∆ij, where i represents theith species at stationary
state andj represents thejth constraint (either the inflow
concentration of a species or the flow rate). The global shift
matrices for essential species in each category are shown in
Table 1. By comparing the tilt of the cusp regions in the
bifurcation diagrams and by the way the matrix was constructed
we can make the following observations. (a) Columns: (1) each
pair of columns must have either the same signs or exactly
opposite signs of corresponding elements; (2) if two columns
are the same, then the bifurcation diagrams in the corresponding
constraints have anti-diagonal structure of the cusp; (3) if two
columns are opposite, then the bifurcation diagrams in the
corresponding constraints have diagonal structure of the cusp;
and (4) rules 2 and 3 imply that two bifurcation diagrams with
a common constraint can be used to predict the tilt of the cusp
in the complementary bifurcation diagram with the common
constraint left out. (b) Rows: (1) by symmetry, each pair of

Figure 5. Bifurcation diagrams and reaction network for a prototype
of category 1B. Rate coefficients used in calculations:k1 ) 6.69803,
k2 ) 1.06601,k3 ) 0.395,k4 ) 63.03,k5 ) 3.95. Notation: solid line,
saddle-node bifurcation; dashed line, Hopf bifurcation; square, BT point.
Fixed parameter values for the reference BT point:k0 ) 1.0, X0 )
0.1, Y0 ) 0.166,Z0 ) 1.0.
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rows must follow rule 1 for columns; (2) when two rows are
the same, the two species have the same regulation with respect
to all constraints and are either of the same type, or else they
are category specificsfor 1B and 2B, X and Z have the same
regulation, for 1C, Y and Z have the same regulation; and (3)
two rows of opposite signs indicate mutually competitive
actionsin category 1, X and Y have always opposite regulation,
for 1C and 2C, X and Z are opposite.

Thus by comparing regulation of two species S1 and S2 with
respect to all constraints (i.e., two rows), we can infer the kind
of reactions they are involved in. Opposite regulation suggests
reaction of the type S1+ S2f (as the exit reaction between X
and Y in category 1, or the flow feedback reaction between X
and Z in categories 1C and 2C); identical regulation suggests
that the species S1 and S2 are produced by the same reaction
(as X and Z in 1B or 2B) or both compete for the same species
(as Y and Z in 1C). Implications of the rules for columns and
rows will be fully explored in the following sections.

Because any two rows/columns are either the same or
opposite, the minimal information necessary to construct the
global shift matrix is to provide one row and one column, or
one row/column and diagonal elements. To construct one row
experimentally we need to measure the concentration of one
species and vary all constraints; to construct one column we
need to measure all species and vary one constraint. Although
experimental construction of flow rate-inflow concentration
bifurcation diagrams for all species requires only one species

to be measured so as to indicate bistability and oscillations, such
measurements provide only one row of the global shift matrix
for the particular measured species. In Eiswirth et al.1 another
indicator, in addition to concentration shifts, was introduced.
Namely, the stationary state at a Hopf bifurcation can be either
stabilizing or destabilizing as the constraint is increased. Here
again one species needs to be measured to determine whether
oscillations change to a stationary state or vice versa, hence
this method is equivalent to determining one row of the
concentration shift matrix. In conclusion, to obtain the full
matrix, all constraints must be varied and all species measured.

3.2. Effects of Including Nonessential Species into the
Prototypes.The prototypes described in Section 2 involve by
definition only essential species. We have shown that the
bifurcation diagrams and the associated global shift matrix can
be used to determine the connectivity of essential species in
the (skeleton) reaction network. However, the bifurcation
diagrams and the concentration shifts are defined equally well
for both essential and nonessential species and so the rules
outlined above in principle apply to any type of species.
Therefore the bifurcation diagrams and the global shift matrix
for a complete mechanism must provide some information on
the connectivity of nonessential species. Since methods for
distinguishing between essential and nonessential species are
available,1,3,4we assume that nonessential species have already
been identified and now we examine how their involvement in
the network reflects itself in the bifurcation diagrams/concentra-
tion shift matrix.

First we take the 1CX category prototype and add three
nonessential species of type a, b, and c, see Figure 7. In general,
type a species is areactantthat produces an essential species
by a first-order reversible reaction and is only weakly coupled
to the network (the reaction Zf a is slow); type b species is
a productweakly coupled to the network (bf X is slow); type
c species is either areactantthat reacts with an essential species
or an intermediate(as in Figure 7), possibly strongly coupled
to the network which, if buffered, does not prevent the system
from oscillations. As before with the essential species, we have
constructed bifurcation diagrams ink0-a0, k0-b0, andk0-c0

Figure 6. Dependence of stationary concentrationsXs, Ys, andZs on flow rate for each category. (a) Category 2C:X0 ) 0.5,Z0 ) 6.8. (b) Category
2B: X0 ) 100,Z0 ) 1000. (c) Category 1CX:X0 ) 0.1,Y0 ) 0.77,Z0 ) 1.63. (d) Category 1B:X0 ) 0.1,Y0 ) 0.18,Z0 ) 1.0. Rate coefficients
as in Figures 1, 2, 3, and 5, respectively. Notation: solid line, stable; dashed line, unstable; square, Hopf bifurcation.

TABLE 1: Global Sign-Symbolic Concentration Shift
Matrix {∆ij} for Each Category

category 2C category 2B

i j X0 Z0 k0 i j X0 Z0 k0

Xs ∆ij
+ + + Xs ∆ij

+ - -
Zs - - - Zs + - -

category 1C category 1B

i j X0 Y0 Z0 k0 i j X0 Y0 Z0 k0

Xs + - + - Xs + - - -
Ys ∆ij - + - + Ys ∆ij - + + +
Zs - + - + Zs + - - -
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parameter planes and determined the “lower” and “upper”
stationary states. However, for the sake of brevity, we convert
this information to the global shift matrix and use this
representation only, see Table 2. We expect the submatrix for
the essential species to provide clues for determining the
connectivity among essential species. There are two alternatives,
the flow feedback shown in Figure 7 with Z provided only in
the feed, or an internal feedback with Z being produced by the
exit reaction between X and Y. To determine which one is the
actual case we need external information provided either by a
method utilizing nonlinear dynamics, such as pulsed experi-
ments,3,25,26or simply by knowledge of the underlying chem-
istry. Assuming that the actual subnetwork for essential species
is as in Figure 7 we can proceed to the examination of the
connectivity of nonessential species.

Type a species has the same row and column as the species
Z to which it is coupled; likewise type b species has the same
row/column regulation as the species X to which it is coupled.
Hence a simple first-order reverse coupling to an essential
species implies an identical regulation. Like type b, type c
species has the same regulation as type X species, but we already
know that c is an intermediate and hence cannot be simply
coupled to X as b is. We can, for example, assume that its
coupling to the network will be similar to the coupling of a
type W species, that is, reaction X+ Y f c is assumed.
However, other couplings of c providing the same regulation
are possible; for example, c could be produced from X without
participation ofY and then react with Y. Therefore the global
shift matrix provides alternatives rather than unique answers
and further information is needed to decide which one is correct.
As before, this information may be provided by pulsed experi-
ments or by knowledge of the underlying chemistry.

The second example is the 1B category prototype extended
by three type c nonessential species, see Figure 8. The species
c1 and c2 enter the network as reactants by reacting with an
essential species, and species c3 is an intermediate. The shift
matrix is shown in Table 3; the submatrix corresponding to
essential species is consistent with the 1B prototype. As with
the 1C category, there are two possible ways species Z might
be involved. One of themspossessing atangent feedbacksis
the prototype itself. Here Z is produced by the tangent reaction
c1 + X f 2X + 2Z and negative feedback is mediated by the
reaction 2Z+ c2 f Y. The other possible arrangements
displaying anexit feedbacksproduces Z by the exit reaction X
+ Y f Z and subsequently Z is converted to Y in the same

way as the species c3. As mentioned above, we need some
auxiliary information to determine the actual connectivity of
the essential species. Given that this information points to the
tangent feedback as in Figure 8, the connectivity of nonessential
species can be deduced as follows: the row in the shift matrix
for c1 is opposite that for X and the column is the same as that
for X. Moreover, c1 exhibits a negative self-regulation. Thus
its shift behavior is the same as the shift behavior of the type
Z species in the 1C category, which indicates that c1 reacts
with X much like Z does in the 1C category. The species c2
has the same shift behavior as the type Y species and this
suggests that c2 might react with X in an exit-like reaction;
another possibility comes from observing that the row shift
regulation of c2 is opposite not only to X but also to Z, which
suggests that c2 might react with Z. Pulsed experiments or other
external information is needed for correct determination. Finally,
the species c3 shows the same regulation as Z and therefore
should be involved in the exit feedback since Z itself is involved
in the tangent feedback.

These examples suggest that the nonessential species should
be identified before examining the shift matrix; the shift matrix
cannot be used to distinguish various types of nonessential
species (unlike the essential species). The shift regulation can
be the same as that for an essential species, which together with
the known type of species provides an important clue as to its
involvement in the network. However, the shift regulation may
not be consistent with any essential species within the given
category. This itself is an indication that the species is
nonessential but, more importantly, such a species may have
shift behavior consistent with an essential species from another
category (such as the Z-like regulation in 1C of the species c1
in the second example belonging to 1B) and that strongly
suggests its connectivity.

In conclusion, the global shift matrix proves useful in the
determination of connectivity in the network. It provides
alternatives rather than unique choices for various parts of the
network which, however, is still valuable input to the mecha-
nism-determining procedure.

4. Determination of Reaction Mechanism from
Bifurcation Diagrams

Belousov-Zhabotinsky Reaction. After examining proto-
types of categories and their extension to include nonessential
species for the purpose of calculating bifurcation diagrams we
now focus on the reverse problem. For a more complex

Figure 7. Reaction mechanism and network diagram for the 1CX
category extended by adding nonessential species a, b, and c.

TABLE 2: Global Sign-Symbolic Concentration Shift
Matrix {∆ij} for an Extended 1CX Category (1CX+ a, b, c)

i j X0 Y0 Z0 a0 b0 c0 k0

Xs

∆ij

+ - + + + + -
Ys - + - - - - +
Zs - + - - - - +
as - + - - - - +
bs + - + + + + -
cs + - + + + + -

Figure 8. Reaction mechanism and network diagram for the 1B
category extended by adding nonessential species c1, c2, and c3.

TABLE 3: Global Sign-Symbolic Concentration Shift
Matrix {∆ij} for an Extended 1B Category (1B+ c1, c2, c3)

i j X0 Y0 Z0 c10 c20 c30 k0

Xs

∆ij

+ - - + - - -
Ys - + + - + + +
Zs + - - + - - -
c1s - + + - + + +
c2s - + + - + + +
c3s + - - + - - -
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mechanism,we calculate its bifurcation diagrams and then
discuss the process of network reconstruction from those
diagrams and the associated shift matrix. The reaction mecha-
nism in Table 4 is a variant of the Field-Körös-Noyes model
of the Belousov-Zhabotinsky reaction14,15with the organic part
simplified according to Field and Noyes;24 the rate constants
are taken from Edelson et al.15 and Field and Fo¨rsterling.27 The
corresponding reaction network is shown in Figure 9. There
are 11 species; some of them are very quickly reacting
compounds or radicals which cannot be stored and fed into the
reactor and therefore corresponding bifurcation diagrams are
experimentally not feasible. For the sake of a complete picture,
however, we calculate diagrams for every species and discuss
the experimental feasibility later.

The nonessential species can be discerned by determining
relative oscillatory amplitudes and quench vectors,28 leaving
HBrO2, BrO2

•, Br-, and Ce4+ as essential species. For a range
of experimentally plausible constraints we calculated the inflow
concentration-flow rate bifurcation diagrams for all species.
The inflow concentrations for a reference point common to all
bifurcation diagrams are the following: [BrO3-] ) 0.08 M,
[MA] ) 0.05 M, [Br-] ) 8.5 × 10-4 M, [Ce3+] ) 0.002 M;
inflow concentrations of other species are zero. The concentra-
tion of hydrogen ions in the reactor is assumed fixed, [H+] )
1.5 M. For rate coefficients see Table 4. In addition, we
calculated the dependence of stationary states on the flow rate
k0, which enables us to identify transitions between lower and
upper stationary states. These results are shown in Figures 10-
12. The two kinds of diagrams for each species form a pair and
are grouped accordingly in the figures. We carry out as much
of the analysis as possible by using Figures 10-12 and referring
to bifurcation diagrams for prototypes. Then we reformulate
the information in Figures 10-12 in terms of the global shift
matrix and double-check the results.

The bifurcation diagrams for HBrO2 and BrO2
• are diagonal

and display transitions from upper to lower stationary state as

k0 is increased (negative regulation with respect tok0); this is
consistent with type X species from 2B, 1B, or 1C. The
bifurcation diagram for Br- is anti-diagonal and the regulation
with respect tok0 is positive. Such behavior is consistent with
type X species from 2C or with type Y species; the former is
inconsistent with the assumed type X for HBrO2 and BrO2

•.
Thus we rule out category 2C and assume Br- to be of type Y.
Therefore category 2B is also ruled out but both 1B and 1C are
still possible. The anti-diagonal bifurcation diagram for Ce4+

is consistent with type Z species in 1B and this is confirmed
by a negative regulation with respect tok0. (Remark: The two
BT points in thek0-[Ce4+]0 diagram in Figure 10 are connected
by a Hopf bifurcation curve nearly coinciding with the saddle-
node curve.) So far we can assume that HBrO2 and BrO2

• are
involved in an autocatalytic cycle. An alternative is that one of
them is a type W species that would be produced by an exit
reaction X+ Y f. However, a 1B mechanism including W
has not been found as yet and, moreover, by taking an argument
from chemistry, the reaction of Br- with either of HBrO2 and
BrO2

• to produce the other does not proceed. Next we need to
determine whether Ce4+, the type Z species, is involved in a
tangent or exit feedback. By looking at the nonessential species
Ce3+ (Figure 11) we find that the diagonal cusp region and
positive regulation with respect to flow rate are consistent with
type Z behavior in category 1C. This is the same situation as
with c1 in the previous example of extended 1B prototype, that
is, Ce3+ should react with a type X species. This strongly
suggests that Ce3+ reacts with BrO2

• to provide Ce4+, which in
turn implies a tangent feedback for Ce4+.

The species in Figures 11 and 12 are all nonessential. It should
be noted that all of them have some irregularities in the shape
of the region of multiple stationary states: either there are
additional humps or there is no cusp at all. These features may
be taken as indications of the nonessential nature of these
species. As shown earlier, such irregularities do not need to
occur in diagrams for nonessential species but may provide an
independent confirmation.

BrO3
- shows the same Z-like behavior as Ce3+ and therefore

it should react with a type X species. The obvious choice is
HBrO2. HOBr has a diagonal cusp and positive regulation with
respect tok0. This is characteristic of the type X or W species;
in fact, HOBr should be seen as W-like, since by being
nonessential it cannot be a part of the autocatalytic cycle. This
situation is analogous to that for the species c in the extended
1C prototype; therefore we deduce that HOBr is produced by
the exit reaction HBrO2 + Br- f. The bifurcation diagram for
Br2 is anti-diagonal and the regulation with respect tok0 is
negative, which is consistent with Z-like behavior (in 1B). This
means that Br2 is involved in either a tangent or exit negative
feedback loop. Since the (primary) tangent feedback is already

TABLE 4: Reaction Mechanism and Rate Coefficients for a Modified FKN Mechanism of the BZ Reactiona

reaction no. reaction rate coefficient

(1) Br- + HOBr + H+ f Br2 + H2O k1 ) 8 × 109 M-2 s-1

(2) Br- + HBrO2 + H+ f 2HOBr k2 ) 3 × 106 M-2 s-1

(3) Br- + BrO3
- + 2H+ f HOBr + HBrO2 k3 ) 2 M-3 s-1

(4) 2HBrO2 f HOBr + BrO3
- + H+ k4 ) 3000 M-1 s-1

(5, -5) HBrO2 + BrO3
- + H+ h 2BrO2

• + H2O k5 ) 42 M-2 s-1

k-5 ) 4.2× 107 M-1 s-1

(6, -6) Ce3 + + BrO2
• + H+ h Ce4+ + HBrO2 k6 ) 8 × 104 M-2 s-1

k-6 ) 8.9× 103 M-1 s-1

(7) Ce4 + + BrMA f Ce3 + + Br- + products k7 ) 0.5 M-1 s-1

(8) Br2 + EnMA f H+ + Br- + BrMA k8 ) 6 × 106 M-1 s-1

(9,-9) H+ + MA h EnMA + H+ k9 ) 1.3× 10-2 M-1 s-1

k-9 ) 1.3× 104 M-1 s-1

a MA ≡ CH2(COOH)2, EnMA ≡ (OH)2CdCHCOOH, BrMA ≡ BrCH(COOH)2.

Figure 9. Network diagram for the FKN mechanism of the BZ reaction
shown in Table 4. Species with effectively constant concentrations (H+

and H2O), inflows, and outflows are omitted.
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associated with (the essential species) Ce4+ we should formulate
a reaction that would mediate an (secondary) exit feedback. This
can be done by assuming that HOBr formed by the exit reaction
gives rise to Br2, which in turn should react to form Br- so that
the negative feedback is accomplished. By chemistry arguments
the first of the two reactions should combine HOBr and Br-.

By the same arguments, the other reaction, reduction of Br2

to Br-, is expected to involve bromination of malonic acid MA
or its enol form EnMA. We can verify this hypothesis against
bifurcation and regulatory behavior of EnMA and MA. Indeed,
regulation of both EnMA and MA is opposite that for Br2,
suggesting that Br2 reacts with EnMA or MA. Bifurcation
diagrams for both EnMA and MA are without cusp and can be
assigned neither diagonal nor anti-diagonal structure. These two

species have the same (and rather degenerate) behavior signify-
ing that they are mutually coupled by a reverse reaction. This
situation is similar to the pairs of species a and Z or b and X in
the extended prototype of the 1C category in Figure 7. However,
which of the species EnMA and MA is reacting with Br2 cannot
be deduced from these diagrams. The bromination of EnMA
(or MA) produces Br- (completing thereby the exit feedback)
and bromomalonic acid, BrMA.

Finally, two diagrams for BrMA are somewhat difficult to
interpret. The cusp region is distorted and bent near the tip;
nevertheless, we classify it as a slightly distorted anti-diagonal
rather than a strongly distorted diagonal structure. The regulation
is negative with respect tok0 and both diagrams combined imply
negative self-regulation for BrMA. This regulation clearly points

Figure 10. Bifurcation diagrams (left) and corresponding stationary state diagrams (right) of essential species for the FKN model. Notation in
bifurcation diagrams: solid line, saddle-node bifurcation; dashed line, Hopf bifurcation; solid square, Bogdanov-Takens point; osc, bis, regionof
oscillations and bistable stationary states, respectively. Notation in stationary state diagrams: solid line, stable; dashed line, unstable; open square,
Hopf bifurcation point. For parameter values see Table 4 and text.
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to Z-like behavior and is consistent with the assumed anti-
diagonal bifurcation diagram. These observations suggest that
BrMA feeds back to Br-; however, the same regulation with
respect tok0 as Ce4+ seems to rule out a mutual reaction in
contrast to the actual case.

As an alternative to the use of bifurcation diagrams one can
derive from Figures 10-12 the global shift matrix, shown in
Table 5. By inspecting this table we can deduce and confirm
the same features of the network connectivity. In particular, the
key features are derived from theZ-like behavior of the
nonessential species BrO3

-, Ce3+ (as in 1C), and Br2 and BrMA
(as in 1B) indicated by negative diagonal elements and by
comparing the corresponding rows with the prototypes.

As a result, we were able to deduce reactions 1, 2, 5, 6, 8,
and 9 and partly deduce reaction 7; reactions 3 and 4 are masked

by shift behavior characteristic of other reactions. Whether the
reactions are reversible or nearly irreversible cannot be stated.

5. Discussion and Conclusions

Bifurcation diagrams in external constraints calculated for a
prototype of each category of oscillatory reactions suggest that
specific features in the reaction network of an examined
oscillatory reaction can be identified by specific patterns in the
corresponding diagrams. As already pointed out in Eiswirth et
al.1 the decisive feature is the tilt of the cusp-shaped region of
multiple stationary states. Supplementary clues are provided by
the location of oscillatory or excitable regions adjacent to the
region of bistability. It is sufficient to construct the inflow
concentration-flow rate diagrams for every species; the tilt in
the inflow concentration-inflow concentration diagram for any

Figure 11. Bifurcation diagrams (left) and corresponding stationary state diagrams (right) of inorganic nonessential species for the FKN model.
Notation and parameters as in Figure 10.
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pair of species is implied (see rule 4 for columns in Section
3.2). If the information about “lower” and “upper” stationary
states is added, the bifurcation diagram becomes a powerful
tool not only for distinguishing among categories and for
determination of essential species, but also for reconstruction
of reaction networks. In particular, transitions between “lower”
and “upper” stationary states across the boundary of the cusp
in the bifurcation diagrams can be arranged into a global
concentration shift matrix, which is intimately connected with
a (local) concentration shift matrix formulated as a tool for
mechanism determination in prior work.1,3,7These matrices are
written in a sign symbolic form; by comparing columns/rows
for pairs of various species the mechanism can be at least
partially reconstructed.

In the case of the FKN mechanism for the BZ reaction we
were able to reconstruct most of the reaction network provided
that all reacting species can be measured and all these species
can also be added in the feed. While the first part of the
assumption may be experimentally feasible, the second part may
not be, because highly reactive intermediates cannot be fed
continuously into the reactor. The question arises how far the
reconstruction of the network connectivity can be carried out
in such a case. The reactive intermediates are HBrO2, BrO2

•,
HOBr, and EnMA. Thus the corresponding bifurcation diagrams
in Figures 10-12 are not available and likewise the correspond-
ing columns in the global shift matrix in Table 5 are left out.
On the basis of measurements of relative oscillatory amplitudes
we can still discern essential and nonessential species. Thus Br-

Figure 12. Bifurcation diagrams (left) and corresponding stationary state diagrams (right) of organic nonessential sqpecies for the FKN model.
Notation and parameters as in Figure 10.

TABLE 5: Global Sign-Symbolic Concentration Shift Matrix {∆ij} for the FKN Mechanism of the BZ Reaction

essential species nonessential species

i j [HBrO2]0 [BrO2
•]0 [Br-]0 [Ce4+]0 [BrO3

-]0 [Ce3+]0 [HOBr]0 [Br2]0 [BrMA] 0 [EnMA]0 [MA] 0 k0

[HBrO2]s

∆ij

+ + - - + + + - - ? ? -
[BrO2

•]s + + - - + + + - - ? ? -
[Br-]s - - + + - - - + + ? ? +
[Ce4+]s + + - - + + + - - ? ? -

[BrO3
-]s

∆ij

- - + + - - - + + ? ? +
[Ce3+]s - - + + - - - + + ? ? +
[HOBr]s + + - - + + + - - ? ? -
[Br2]s + + - - + + + - - ? ? -
[BrMA] s + + - - + + + - - ? ? -
[EnMA]s - - + + - - - + + ? ? +
[MA] s - - + + - - - + + ? ? +
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and Ce4+ can be safely determined as type Y and Z species,
respectively. Since Ce4+ has a negative regulation with respect
to flow rate, the category must be 1B. HBrO2 and BrO2

• have
the same negative regulation with respect to flow rate as Ce4+

(and hence the same rows in the shift matrix); so they may be
of type Z or type X. The missing clue can be provided by
another method for classification, namely by oscillatory phase
shifts:3,9 type Z species in 1B are phase delayed with respect to
type X species. This information is accessible since we assume
that all species can be measured. Further reasoning about the
network connectivity can rely on the same arguments as
discussed in Section 4 up to the point of determining HOBr.
The missing bifurcation diagram (or column in the shift matrix)
leaves undecided whether this species should be seen as W-like
or Z-like. Again, this can be decided from the phase shift of
oscillations: W-like behavior should be in phase with type X
species, Z-like behavior should be in phase with type Z species
and delayed with respect to type X species. Finally, the
bifurcation diagrams for EnMA and MA are degenerate (and
the corresponding columns are undetermined); therefore impli-
cations are equally incomplete whether EnMA can be fed in or
not. Thus the FKN network can be reconstructed to the same
extent.

We have shown that the task of reconstructing reaction
networks from measurements based on methods of nonlinear
dynamics and bifurcations can be followed to a great extent by
using bifurcation diagrams and transitions between “lower” and
“upper” stationary states. If combined with other methods for
classification and determination of oscillatory reaction mech-
anisms this approach enables us to reconstruct the networksor
at least an essential part of itseven if limitations in feeding
unstable intermediates into the reactor are taken into account.
Thus the whole set of methods systematically studied in this
and earlier papers1,3-9,25,26,29provides a useful systematic tool
that can be used in cases where the classical intuition-based
approach does not give satisfactory results, or can be used to
help decide between alternative proposed mechanisms.

6. Appendices

Appendix A: Basic Notions from the SNA Theory.2

Assume that there arem species taking part inr chemical
reactions so thatn species,n g m, are entering at least one of
the reactions

whereνij
L andνij

R are respectively the left-hand and right-hand
stoichiometric coefficients of species Xi in reaction Rj. Thefirst
n species are reactants or intermediates and the remainingm -
n are products. Letνj ) {νij

R - νij
L} be the (n × r) stoichiomet-

ric matrix, x ) (x1, ‚ ‚ ‚, xn) the vector of the chemical species
concentrations, andVj(x) ) (V1(x), ‚ ‚ ‚, Vr(x)) the vector of
reaction rates. The chemical equations A1 together with the
vector functionVj(x) define the mechanism of the reaction, also
called a stoichiometric network. Only the concentrations of
reactants and intermediates are dynamical variables for which
independent dynamical equations can be written. The time
evolution ofx in a flow-through system at constant temperature
in a well-stirred reaction cell of constant reaction volume is

wherex0 ) (x01, ‚ ‚ ‚, x0n) is the vector of feed concentrations
for each species andk0 is the flow rate (or more accurately, the
reciprocal residence time). The inflow and outflow terms can
be formally treated as zeroth- and first-order pseudoreactions,
respectively, and can be included in an extended reaction rate
vectorυ(x) ) (υj, k0x0, k0x). Accordingly, by rewriting the flow
term k0(x0 - x) as k0I(x0 - x), whereI is identity matrix, an
extended stoichiometric matrix isν ) [νj, I,. -I]. Thus the
overall rate functionf(x) in (2) can be expressed in a compact
form f(x) ) νυ(x).

A stationary statexs satisfies the equationνυ(x) ) 0. Hence
υs ) υ(xs) is contained in the null space ofν. Moreover, all
components ofυ must be nonnegative numbers, which narrows
the set of all possible stationary reaction rate vectorsυs (the
currents in SNA terminology) to an open, convex,dr-
dimensional cone,dr ) r - rank(ν), in the space of allυ’s.
The edges of this stationary state cone represent sets of stationary
states that have minimum possible nonzeroυj’s admitted by
(2), and uniquely define a set of major subnetworks (or extreme
currents) of the mechanism. In general, the numberK of such
subnetworks equals at least the dimension of the cone,K g dr.
Denote byek, k ) 1, ...,K the (arbitrarily normalized) vectors
pointing along the edges of the cone. Any linear combination
∑k)1

K Rkek with nonnegative coefficients is again a current.
Conversely, any currentυs can be expressed as a linear
combination of extreme currents (such a decomposition is,
however, not unique ifK > dr). If the ek’s are suitably
normalized, for example so that∑j)1

r ekj ) 1, k ) 1, ...,K, then
the numbersRjk ) Rk/∑k)1

K Rk quantify the contribution of
extreme currents to a particular current. Certain subsets of
extreme currents span subcones that ared-dimensional faces of
the stationary state cone,d ) 2, ..., dr - 1. Hence there is a
hierarchy of subnetworks associated with edges and faces of
the stationary state cone that may be used as simplified models
instead of the full network.

The identification of the edges and faces is useful when
examining the stability of the (sub)network at a stationary state
xs. The JacobianJ of eq A2 atxs is

whereυs ) ∑k)1
K Rkek and the kinetic matrixκ ) {κij} ) {∂ ln

υj(xs)/∂ ln xi}.The numberκij is the effective order of thejth
reaction with respect to theith species; if the reaction rates obey
power law thenκij is independent ofxs. Thus a reparametrization
of the system (A2) is suggested such thatxs1, ..., xsn andR1, ...,
RK are new parameters.

If power law kinetics is in effect, the stability of the current
υs is indicated by principal subdeterminantsâl of order l, l )
1, ...,n of the matrix

There are(l
n) different âl’s related to all permutations ofl

species. If at least one of them is negative, then at least one
eigenvalue ofJ is unstable provided that the values of the
stationary state concentrations of the corresponding species are
sufficiently small.2 Sinceυs ) ∑k)1

K Rkek, the stability of the
network’s stationary states depends on the stability of the
extreme subnetworks. An unstableek induces instability of the
entire network if the correspondingRk is large enough andxs

satisfies the requirement of small concentration of those species
for which the correspondingâl < 0. When linearly combined,
the stableek’s usually do not form an unstable current (then

Rj: ∑
i)1

n

νij
LX i f ∑

i)1

m

νij
RX i, j ) 1, ‚ ‚ ‚, r (A1)

dx
dt

) f(x) ) νjυj(x) + k0(x0 - x) ) νυ(x) (A2)

J ) df
dx

|x)xs
) νdυ

dxx)xs
) ν(diagυs)κ

T (diagxs)
-1 (A3)

V ) ν(diagυs)κ
T (A4)
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they are called mixing stable), but an instability may occur, since
υ(x) is generally nonlinear inx.

A network diagram is a convenient graphical representation
of mass action networks. Any elementary reaction is drawn as
a multiheaded multitailed arrow oriented from species entering
the reaction to those produced by the reaction: the number of
feathers (barbs) at each tail (head) represents the stoichiometric
coefficient of the reactant (product); the order of the reaction is
the number of left feathers. A graph theoretical approach allows
for checking the stability of a (small enough) network by
inspection of the graph.2

Appendix B: Classification/Categorization Approach.1

Two classes of species are recognized, theessential and
nonessentialspecies, which are distinguished primarily by
measuring their relative amplitudes of oscillations and their
quench amplitudes. The nonessential species may be one of three
types: type a species are reactants with a negligible feedback,
type b species are products with a negligible feedback, and type
c species are those intermediates which can be buffered without
losing the oscillations. The nonessential species have either small
relative amplitude (type a) or large quench vectors (type b) or
both (type c); all types can be buffered without losing the
oscillatory dynamics. The essential species have large oscillatory
amplitudes and, if buffered, the oscillatory dynamics is lost;
there are type X orautocatalytic specieswhich occur on an
autocatalytic cycle with positive feedback, type Y orexit species
which react with type X species (by so-called exit reaction)
thereby inhibiting the autocatalysis, and type Z orfeedback
specieswhich take part in a negative feedback loop controlling
the oscillations. In addition, in some cases there may be a type
W or recoVery specieswhich is produced by an exit or tangent
reaction. The experiments of type I, III, IV, and VI (as listed in
the Introduction) are particularly useful for the classification of
species.

There are two main categories distinguished by certain
features of their reaction network: (a) category 1 involves an
exit reaction (hence involving also type Y species) in addition
to reactions of the autocatalytic cycle and the controlling
negative feedback loop, and (b) category 2 does not have an
exit reaction (and therefore no type Y species), instead, it
possesses a higher order reaction on the autocatalytic cycle. This
feature implies that category 2 oscillators encompass abstract
or simplified schemes rather than detailed mechanisms consist-
ing of elementary steps. Both main categories are further divided
into subcategories, 1B, 1CX, 1CW and 2B, 2C, respectively.
The role of essential species in each category is specific for
that category and the corresponding classification is found in
the process of determining the category. Experiments in (I), (II),
and (VII) are the main tools for accomplishing this task.

In this paper a link between the sign-symbolic global/local
concentration shift matrix and bifurcation diagrams has been
established. It is interesting to note that at a stationary state
near the Hopf bifurcation the local concentration shift matrix
itself is linked to the Jacobian matrix and thus methods II, V,
and VII for category and mechanism determinations are inter-
linked.

Assuming that the stationary statexs of (2) depends onx0 we
can write

The local concentration shift matrix{δxsi/δx0j} is experimen-

tally obtained by measuring a changeδxsi in the ith stationary
state concentration as a response to a changeδx0j in the jth
inflow concentration. For small variations in constraints this
matrix can be approximated3 by (dxs/dx0), which is obtained
from (5) upon differentiating with respect tox0,

whereJ ) (df/dx)|x)xs is the Jacobian matrix. Here we assume
that the stationary point is nondegenerate stable (near a Hopf
bifurcation), and thereforeJ is invertible. Hence the local shift
concentration matrix is proportional to the inverse of the
Jacobian matrix. Similarly, upon differentiating (5) with respect
to k0 we obtain an additional column of the shift matrix
expressing the sensitivity of the stationary state with respect to
changes ink0,
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) -k0J
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) -J-1(x0 - xs) (B3)
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