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The measurement of fluorescence from single protein molecules has become an important new tool in the
study of dynamic processes, allowing for the direct visualization of the motions experienced by individual
proteins and macromolecular complexes. The data from such single-molecule experiments are in the form of
photon trajectories, consisting of arrival times and wavelength information on individual photons. The analysis
of photon trajectories can be difficult, particularly if the motions are occurring at rates comparable to the
photon arrival rate or in the presence of noise. In this paper, we introduce the use of hidden Markov models
(HMMs) for the analysis of photon trajectory data that operate using the photon data directly, without the
need for ensemble averaging of the data as implied by correlation function analysis. Using a simple kinetic
model, we examine the relationship between the uncertainty in the estimates of the motional rate and the
photon detection rate. Remarkably, we obtain relative uncertainties in the rate constants of as little as 3%
even when the interconversion rate is equal to the photon detection rate, and the uncertainty increases to only
10% when the interconversion rate is 10 times the photon detection rate. This suggests that useful information
can be obtained for much faster kinetic regimes than have typically been studied. We also examine the impact
of background photons on the determination of the rate and demonstrate that the HMM-based approach is
robust, displaying small uncertainties for background photon arrival rates approaching that of the signal.
These results not only are relevant in establishing the theoretical limits on precision, but are also useful in the
context of experimental design. Finally, to demonstrate how the methodology can be extended to more complex
kinetic models and how it can allow one to make use of the full power of statistics for purposes of model
evaluation and selection, we consider a four-state kinetic model for protein conformational transitions previously
studied by Schenter et all.(Phys. Chem. A999 103 10477). We show how an HMM can be used as an
alternative to higher-order correlation function analysis for the detection of “conformational memory” and
apparent non-Markovian dynamics arising from such temporally inhomogeneous kinetic schemes.

Introduction from heterogeneity detected in distributions determined from
. . ) binned data. However, experimental and data analysis limitations
Single-molecule measurements are prowdmg insight into e prevented their quantification.
many phenomena that were previously intractable because of C . f rates bet inal lecul h
the ensemble averaging present in bulk measuremehis. ~omparisons of rates between single molecules c?gnzss ow
evidence of heterogeneity or conformational meni@r#:1°

particular, the dynamics of conformationally heterogeneous h » lecul ‘ ional
systems are benefiting from single-molecule studies. Protein [N the context of a molecular system, conformational memory
folding and conformational dynami€sis enzymologyé20 or intermittency® results from transitions between unobservable

: ’ states that modulate the dynamics of the observable states and

ribozyme functior?! bacterial light harvesting%?223and protein- ) : c
nucleic acid interactioR$ are just a few examples of complex ~can result in apparent dynamics of the observable states being

systems that have benefitted from the application of single- non-Markovian, even if the underlying dynamics involving the
molecule techniques. observable and unobservable states is Markovian. Rigler and

One goal of single-molecule measurements has been to extracfO"Workers have reported non-Markovian dynamics and molecule-
the rate of a dynamic process from a single-molecule trajectory. to-molecule differences in activity in the rate of single enzymatic
Single-molecule experiments have been used to obtain kinetictUrnovers. They characterized the dynamics in terms of a non-
rate information about a variety of biological processes, includ- Markovian function that is sensitive to memory in the trajec-
ing protein conformational dynamics and folding, enzymatic tory.*® Dovichi and co-workers reported that differences in single
turnovers, RNA and DNA conformational changes, and fluctua- alkaline phosphatase catalytic activity result from differing
tions and function of large biological assemblies. The rates that degrees of glycosylation or protease degradation using the total
have been determined have ranged from 1000 to 0.01 Hz.intensity of a fluorescence product turned over during a set

Indirect evidence of the presence of faster processes is commorincubation time?’ Such conclusions require that rates be
extracted from observations of single molecules and that reliable
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The capability of routinely making single-molecule measure- of an equilibrium ensemble. Confocal microscopy coupled with
ments has driven the need for new methods of analyzing single-high-sensitivity detection for time-correlated single-photon
molecule data that take full advantage of the new and increasedcounting can monitor changes in fluorescence polarization,
information they provid@® Essentially three approaches have spectrum, lifetime, and intensity that arise from fluctuations in
been used to quantify the rates of single-molecule fluctuations: the systeni? Single-molecule fluorescence measurements have
the fitting of dwell-time histograms, the analysis of the some important fundamental limitations that restrict the rate,
dependence of the shape of a distribution on binning time, and amount, and quality of information obtainable from the system.
the calculation of correlation functions. Of these methods, only Because individual single fluorophores can emit only one photon
higher-order correlation functions seem to be likely to fully at atime, they exhibit fluorescence anti-bunching at time scales
utilize the information present in single-molecule measure- very short compared to the fluorescence lifetime, thus limiting
mentst819.25.29 the maximum average observable count rate. Organic dyes are

The most commonly employed of these three methods is the typically used as labels and always have a finite cross section
fitting of dwell-time histograms. When a single-molecule for photobleaching. This limits the total number of photons that
trajectory has sufficient contrast between states, thresholds carfan be observed on average from a single molecule. Further-
be applied to distinguish the states of the molecule. These more, in solution, there will be contributions from spontaneous
thresholds are typically chosen manually and can introduce Raman scattering of the solvent. Even though Raman scattering
subjectivity into the analysis. Runs of each state are tallied to is weak, the high concentration of the solvent relative to a single
give histograms of the state dwell times, allowing for the molecule makes it a significant source of background in single-
determination of kinetic parameters by exponential fitting. molecule fluorescence measurements. Background photons are
Typically, this technique is limited to systems showing large uncorrelated with the state of the system and therefore degrade
modulations of the fluorescence signal. Binning of the data is the average information content of the photon stream.
also required, and this limits the temporal resolution of the  Converting the stream of detected photons, or photon arrival
measurement to be 1 or 2 orders of magnitude lower than thetrajectory, into knowledge regarding the unobservable and
photon count rate to overcome the effects of shot noise. To dynamically changing state of the molecule is the goal of single-
mitigate the effects of shot noise, some investigators have molecule data analysis and the topic of this paper. In this paper,
applied filters to the data prior to applying a threshBidhis we present a novel application of a statistical analysis method
can substantially improve the time resolution of the experiment for extracting information about dynamic processes from single-
by mitigating some of the effects of shot noise, but there is still molecule photon arrival trajectories. We specifically address the
the difficulty associated with choosing a threshold. problem of extracting the rate of conversion between states and

Distribution narrowing has been used to estimate rates in caseghe number of states involved. We include treatment of the
where clear assignment of states is not possible. If the data arestatistical uncertainties present in this type of single-molecule
acquired at sufficiently high temporal resolution, they can be measurement and analysis to allow the determination of the
“rebinned” at a lower resolution, effectively averaging over some significance of any differences observed between molecules.
of the conformational fluctuations by causing exchange between Our method allows us to demonstrate the fundamental limits
different portions of a distribution. The bin-width dependence of precision for determining this dynamic information by
of a distribution can allow the time of interchange to be applying it to simulated data and to determine the degree to
estimated by analogy with motional narrowing of spectral which experimental limitations due to background and detector
features in wavelength-resolved bulk spectroscopic measure-crosstalk further limit the determination of dynamic information.
ments. This rebinning technique has been demonstrated for theQuantification of the fundamental precision limits of parameters
conformational fluctuations in polypeptides and prot&iig* derived from single-molecule trajectories has important rami-
and appears to be useful for making estimates of interchangefications for experimental design and interpretation.
times when clear contrast between interchanging states does not \We have in mind a single-molecule fluorescence measurement
exist and adequate trajectories are not available to determinein which the molecular dynamics of interest will result in the
correlation functions. signal switching from one detection channel to the other. We

Correlation analysis is also commonly used and can provide call this the “two-color problem”. Many single-molecule
a great deal of information regarding the time scales of phenomena can be interpreted within this context, including
fluctuations in the system. Correlation functions can be formally spectral diffusion, fluorescence anisotropy, and FRET colocal-
defined in terms of integrals over time with infinite limits. ization. Single-molecule measurements are limited in precision
Conceptually, this corresponds to replacing the bulk ensemblebecause of the finite number of kinetic transitions in the
average with a single-molecule time average, but such anobservation period. We show how to calculate this “kinetic shot
approach can lead to difficulties for time scales that are not at noise” limit. The arrival of photons is stochastic and occurs at
least an order of magnitude faster than the average totala finite rate. We quantify the degree to which these character-
observation time of a single molecule. A single molecule does istics limit the fastest time scales that can be accurately
not typically sample enough of its fluctuation spectrum during measured. The knowledge of such limits is critical in experi-
a single measurement to allow robust correlation analysis. In mental design, as it allows for the estimation of the lowest
practice, a large number of trajectories must be averaged topossible intensity that will still permit measurement of the fastest

obtain adequate mathematical accursliéy;3%3particularly for time scale of interest, which is important in minimizing the effect
the higher-order correlation functions that are sensitive to of photobleaching. We show how background and crosstalk
memory effects and temporal heterogenéit}?:2529This pre- between detector channels degrades the accuracy of the rates

vents the examination of differences between single molecules.calculated. We show that our data analysis methods give
Finally, it can be difficult to determine the degree to which a substantial improvements in the time scales that can be measured
model successfully describes the data using correlation functionsfor single-molecule photon arrival trajectories.

One type of single-molecule experiment involves the obser-  The utility of maximum-likelihood methods for analysis of
vation of fluorescence fluctuations from an individual member single-molecule experiments has been previously nStééiFor
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example, single-molecule energy transfer distribution measure-whereNa andNg are the numbers of residences in states A and
ments often report energy transfer yields that are negative orB, respectivelyt® andt® are the lengths of thigh residences
greater than 1. This unphysical result has been attributed to thein states A and B, respectively; affd andTg = T — Ta are
broadening of the distribution due to finite statistical sampling the total amounts of time spent in states A and B, respectively.
(i.e., shot noise). This is a result of directly calculating molecular The maximume-likelihood estimates of the ratgsandk, are
properties as one would from bulk measurements. A likelihood- those that maximiz®(D|ki,kz) and are given byNa/Ta andNg/
based approach would not give such unphysical results, becauses, respectively. Alternatively, one can adopt a Bayesian
the likelihood function includes information regarding the approach, which allows one to estimate not only the optimal
physical process generating the signal. As a result, the mostvalues ofk; andk,, but also their uncertainties, in a conceptually
likely parameters that give rise to the observed signal can be straightforward mannée®. In this formulation, the joint posterior
determined and will not include artifacts from shot-noise probability of k; and k; given the dataP(k,kzD), can be

broadening. evaluated using Bayes’ theorem
The methods we describe operate directly on the photon
arrival trajectory of a single molecule by evaluating a likelihood P(ky,K,|D) O P(Dky,k;) P(ky,k,) 3)

function without the need for averaging over many molecules
such as is required for correlation functions. The likelihood where P(D|ky,ky) is the likelihood of the data as above and
function is defined by the solutions of the master equation for P(ki,ko) is a prior probability over the rates. If we consider a
the kinetic process of interest and incorporates [by means of auniform prior, i.e., one that is a nonzero constant for positive
hidden Markov model (HMM)] the corruption of the molecular values ofk; andk; and zero otherwise, theé(k;,k;|D) is equal
state information due to backround photons and spectral to the likelihood function to within a normalization factor (for
crosstalk. The HMM formalism also allows us to directly model positive k; and kz). The shape of th€(ky,ko|D) surface as a
the effects of temporal heterogeneity, which can be consideredfunction of k; and k, constitutes a representation of our
to be the corruption of the molecular state information by the knowledge ofk; andk; given the data. The normalization of eq
spectroscopic degeneracy of multiple molecular states. We 2 with respect td; andk; is straightforward, and the posterior
demonstrate that this likelihood-based approach yields unbiasedprobability is given by a product of gamma distributions
estimates of the molecular interconversion rate from the raw
data stream with little or no user “tweaking” of the algorithm T s T
and that the uncertainty in the estimate of that rate remains low P(Ky,k|D) = O fe A mkz e P

H H A B
even when the interconversion rate reaches or exceeds the
photon detection rate. We also show that the HMM approach (4)

is remarkably robust with respect to degradation of the signal t,o mean and variance iaf are given by Kl + 1)/Ta and (a

by b.ackgrounq_and crosstalk photons. These results not c_)nlyJr 1)ITa2, respectively, and similarly fok, (with A replaced
conﬂrm the utlllty' of the methodology, but also are useful in by B)40 Therefore, the estimates &f andk, in the complete
experimental design. We demonstrate how HMM-based meth- ¢, mation limit are statistically independent and depend only

ods, together with statistical model selection, can be used as ary, he total residence time and number of residences in each
alternative to higher-order correlation function analysis for the ¢,

detection of intermittency or temporal heterogeneity with a The Noiseless Photon Trajectory and Markov Processes.

simple example involving a kinetic model prgviously Stl_Jdied As mentioned above, one cannot, in general, observe the state
by Schentel_r etéﬁm_the context of non-Markovian fluctuations trajectory directly. At best, one can know the state of the
of enzymatic reaction rates. molecule at a finite number of times corresponding to the
arrivals of fluorescence photons at the detector (which, for
example, can be determined by a Poisson process unrelated to
The State Trajectory. For clarity of presentation in this  the A< B interconversion). We will call such a finitely sampled
paper, we primarily consider two-state kinetic models, i.e., a state trajectory a “noiseless photon trajectory”. If the underlying
molecule that can exist in one of two discrete states, A and B, kinetics in eq 1 is Poisson, then the sequence of states in a

Theory and Computational Methods

that interconvert with Poisson kinetics at ratgsaandk; noiseless photon trajectory is a Markov chain corresponding to
the well-known “random telegraph proces§The transition
g B 1) probabilities of the random telegraph process are determined

by the ratek; andk, and the time between photon arrival§

) and they are expressed by the conditional probabilities (solutions
Suppose that we are given complete knowledge of the state ofy¢ the master equation) for being in st&eat a timeAt after
a molecule at all time$ (0 = t = T), which we will call the being inS, P(S|S Kk ko, At)

“state trajectory” of the molecule. Although this state trajectory
cannot generally be observed by single-molecule methods, it is k, k, (k)AL
of interest as a theoretical limit corresponding to “complete P(AIA Ky ko, At) = Kk kTke ?
information” about the system. Because the time spent in a given 1o e

state for a Poisson process is exponentially distribéftétgiven K, o
ki andkz, we can easily calculate the likelihood for any state P(AIB kK, At) = Tk [1 — e tatiry
trajectoryD =
kl
Na Ng P(B|A ky,k,At) = [1 — e titAy
P(D|k1,k2) = ( kle_qu(A))( kze—kztl{B)) kl F k2
1= = ) .
=_ 1 2 _(katkoAt
= (klNAe_leA)(kZNBe_szs) (2) P(B|B,k1,k2,At) kl T k2 + kl n kzc (5)
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P(A1B, kq, ko, At)

Y

molecule molecule

in state A in state B
probability that the photon probability that the photon
will appear in channel 1:  pg + (1-Ps) Pb1 will appear in channel 1:  (1-pg) Pp1
pr_obability t_hat the photon probability that the photon
will appear in channel 2:  (1-ps) (1-Pp1) will appear in channel 2:  pg + (1—ps) (1-Pp1)
P(AIA, ky, ko, At) P(B 1B, Kk, ko, At)

PBIA, ki, kp, At)

Figure 1. Schematic diagram of the hidden Markov model used to analyze single-molecule photon trajectory data using a two-state exchange
model (eq 1) that allows for the presence of background photon noise. Each box represents the state of the molecule at the time of a photon
detection event. The model can “transition” from box to box (possibly returning to the box it came from) depending on the transition probabilities
P(SIS.ki,ko,At) as given by eq 5, wherat is the time elapsed since the previous photon detection event. Each transition corresponds to the
detection of a photon. The photon can arrive in either channel 1 or channel 2, with relative probabilities given in each box (known as the “emission
probabilities”). A formally identical HMM can be used to model spectral crosstalk and the combination of background scatter and crosstalk; however,
the meanings of the emission probabilities would then be given by eqs 12 and 13, respectively.

Because the transition probabilities depend on the time betweenof data that are ideal except for the presence of background
photon arrivalsAt and because those times are themselves a scattering. Background photon data are completely uncorrelated
random variable, the transition probabilities are not constant with the state of the molecule and can be described completely
(as they are in standard Markov chains). However, this is not a by the probability of the arrival of a background photon in

problem, because for any given data set, all of Mtevalues channel 1, which we denote g®s;. The probability that a
are known, and therefore, all of the transition probabilities can background photon will arrive in channel 2 is simply-1pp;.
be calculated as functions &f andk; using eq 5. Given that the molecule is in state A, the probabiljty, that a

The posterior distribution df;, andk, given a noiseless photon ~ photon will arrive in channel 1 (as opposed to channel 2) is
trajectoryD is no longer given by gamma distributions, as we given by
do not, in general, have any knowledge about the state of the
molecule at times other than photon arrivals. However, we can P(pyA) = pst (1 — PIPyy (7
make use of the Markovian nature of the process, which allows

us to write the overall likelihood of the data as the product of WNereps is the probability that any given photon is a signal
conditional probabilities photon. The corresponding probability for channel 2 is

Ne1 P(RJA) =1 —P(p,A) = (1 —p)(L—py)  (8)
P(DIky,Kp) = P(Dy/ky,kp) | |P(Di4IDyky KAL) (6)

while the analogous results for molecular state B are

P(p,B) = (1 — 9
whereD is the data vectors, ..., Dn—1, Dn) corresponding to (PuIB) = ( PPz )

the state of the molecule (A or B) at each of the photon arrival
times andAt; is the time elapsed between tite and { + 1)st
photon. The first factor in eq 6 is simply the equilibrium P(p,IB) = ps+ (1 — pJ(1 — py,y) (10)
probability of statei (A or B), and the following conditional
probabilities are given by eq 5. Although this no longer gives Therefore, the observed data (the arrival channel of each photon)
a simple closed-form solution as in eq 2, the maximum- can be thought of as a probabilistic function of an unobserved
likelihood estimates of the ratdg and k, can be found by  Markov process (the state of the molecule), which is the classic
nonlinear optimization, while the posterior probability can be definition of a hidden Markov model (HMM) (Figure #3.
normalized using numerical integration, and visualized usinga HMMs have been extensively used in fields as diverse as
two-dimensional contour plot. However, we have chosen to speech recognition, bioinformatics, neuroscience, climatology,
show results below only for the one-dimensional case (i.e., and finance, and the associated methodology has developed
assumingk = k; = kp) to simplify the graphical presentation.  rapidly#2-44 In HMM language, the states of the unobserved
The Noisy Photon Trajectory and Hidden Markov Mod- Markov chain are called the “hidden states” (in our case, A
els.The preceding analysis assumed that, for each photon arrival,and B), and each hidden state has associated with it an “emission
we have perfect knowledge of the state of the molecule at that probability” for each observable (eqs-70 in our case). In
time. As discussed in the Introduction, this is not normally the contrast to standard HMM approaches, the transition prob-
case for experimental single-molecule fluorescence data, whichabilities between hidden states are not constant, but depend on
routinely contain noise resulting from Raman scattering back- the time elapsed since the previous photon arrival, and they are
ground and spectral crosstalk. For example, consider the casegiven by the random telegraph process master equation solutions

nd

QO
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(eq 5). Given values for the emission and transition probabilities  Although eq 13 shows that a straightforward two-state HMM
and full knowledge of the hidden states, one could easily can be used to model the simultaneous presence of background
calculate the likelihood of a noisy photon trajectory by simply and crosstalk, it should be noted that, without prior information,
modifying eq 6 to include emission probabilities. However, the one cannot use the HMM parameters to estimate the relative
hidden state sequence is unknown, making the evaluation ofamounts of background and crosstalk, as both processes
the likelihood more difficult. On the surface, calculation of the contribute to the model via the emission probabiliti&p;|A)
likelihood would involve optimizing or averaging over all andP(pi|B) in a way that prevents their simultaneous estimation.
possible hidden state trajectories, which is computationally However, a lack of knowledge of the relative amounts of
impossible for reasonably sized data sets. However, the speciabackground and crosstalk does not prevent the use of the HMM
structure of the HMM allows one to perform the optimization for the determination of the rates of the kinetic process.

or averaging in a recursive manner, thereby avoiding the Computational Methods. The analyses described in this
combinatorial explosion implied by an explicit enumeration of paper were performed using synthetic data. Data were generated
all possible hidden state sequent&s? In our case, the by first constructing a state trajectory for the molecule based
recursion can be constructed by noting that the joint probability on the kinetic scheme of eq 1. This was done by choosing an
fi(A) = P(w1,w2,...0,h=A) that the arrival channel sequence initial state based on the equilibrium probabilities and generating

is (w1, wz, ..., wy) and that the molecule is in hidden state= waiting times distributed according to an exponential distribution
A at timet can be written as with ratek; if the molecule is in state A ankp if the molecule
is in state B%® A set of photon detection times were then
f1(A) = P(w,4|A)[P(AIA,AL) f(A) + P(A|B,At) f(B)] generated with interphoton times exponentially distributed with
(11) a photon detection ratg. For each photon detection event, the

state trajectory can be used to determine the channel in which
that photon would, under ideal circumstances, be detected (i.e.,
channel 1 for state A and channel 2 for state B). The resulting
list of photon arrival times and channels represents a realization

where the emission probabilitidyw,|A) are given by eqs 7
and 8 and the transition probabilities are given by eq 5. An
analogous recursion can be written for(B) in terms offi(A)

andf,(B). The recursion is initiated usirfg(A) = P(w1,h=A) of a noiseless photon trajectory consistent with the riatel,

= P(w1/A) P(A), whereP(A) is the equilibrium probability of ~ 21dkp- ,

the molecule being in state A, and similarly fafB). The final The _effect of backgro_un_d scattering and ;pectral crosstalk
overall averaged likelihood is simpl(A) + fu(B), whereN were simulated by modifying the photon arrival channels of

is the number of photons. Equation 11 is known as the “forward” the abqve noiseless photgn trajectpries. To simulate _background
recurrence relation. An equivalent “backward” recurrence can Scattering, each photon in the noiseless photon trajectory was
also be formulated by beginning at the final data point and ePlaced by a background photon with probability-1ps and
proceeding in the opposite direction using the conditional Was assigned to channel 1 or 2 with probabilifigsand 1—
probabilities b(A) = P(wi1,0tia,...onh=A) and b(B) = Pob1, re§pect|vely. Similarly, spectra! crosstall_< was S|mqlated by
P(wer 1,0t 2,...on|h=B).42-4 Traditionally, an expectation- changing eaph channe.ll 1 photon in the noiseless trajectory to
maximization procedure known as the BauWelch algorithm ~ channel 2 with probabilitys, and each channel 2 photon to
has been used to estimate unknown HMM paraméfets: channel 1 with pr_obablhtyprl. '_I'hls procedure was also
however, in principle, any nonlinear optimization algorithm can Performed on all signal photons in the background-corrupted
be used? In our case, we have estimated the properties of the trajectory to generate a trajectory containing both crosstalk and
posterior probability ofki, ks, and the background scattering Packground.

parameters by Monte Carlo sampling (see below). . All parameter.estimati'on was done from a Bayesian perspec-
tive under a uniform prior in closed form for state trajectory

data, by direct evaluation of the posterior probability for
noiseless photon trajectory data or by means of Metropolis
Monte Carlo sampling over the HMM paramet&r§for models
containing noise. For all of the analyses presented here, the noise

The effect of spectral crosstalk can be modeled using exactly
the same HMM as for background photons. However, the
emission probabilities are now given by

P(PIA) =1~ Pa levels (i.e., the emission probabilities) were considered to be
P(p,|A) = p unknown and were treated as adjustable parameters in the model.
2 XA2Z The Monte Carlo sampling was based on the joint posterior
P(p,|B) = pygas probability of the HMM model parameters calculated directly
using the forward recursion with rescaling to prevent numerical
P(P,IB) =1 — pygy (12) underflow?14447The result of a Monte Carlo simulation is a

set of points in the parameter space that are distributed according
wherepya, andpyg: are the leakage probabilities of state A into  to their posterior probabilities, from which it is straightforward
channel 2 and state B into channel 1, respectively. The emissionto estimate moments (e.g., means and standard deviations) and
probabilities for modeling background photons and crosstalk other summary statistics. The Metropolis proposals were gener-
simultaneously are simply the combination of egs1® and ated from a multivariate normal density with means and
eq 12 covariance matrix chosen in an iterative manner as described
in ref 48 to maintain a rejection rate of approximately 40%.

P(p1|A) = ps(l - prZ) + (l - ps)pbl

P(P,IA) = pdyar T (1 = pI(L — Py The Complete Information Limit. We began by generating
P(p;1B) = pPyg; + (L — pIPy; 100-ms-long synthetic state trajectories as described above using

exchange ratels; = k, = kof 0.1, 0.5, 1, 5, 10, 50, 100, 500,

P(P,IB) = p(1 = Pgd) T (1 =PI — Py  (13) 1000, 5000, and 10 000 m’s Although such trajectories are

Results and Discussion
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TABLE 1: Results for Likelihood-Based Analyses of Synthetic Single-Molecule Trajectory Data

state noiseless backgroundt+
trajectoryt photon trajectory backgrounél crosstalk crosstalR
rel. rel. rel. rel. rel.
truek estimate uncert. estimate uncert. estimate uncert. estimate uncert. estimate uncert.
(ms™) (ms™?)f (%) (ms™?)f (%) (ms™?)f (%) (ms™?)f (%) (ms™?)f (%)
0.1 0.140+0.037 37 0.116: 0.033 33 0.11H#- 0.035 35 0.112-0.035 35 0.112-0.036 36
0.5 0.550£0.074 15 0.526:0.073 15 0.539%: 0.077 15 0.555-0.083 17 0.55@- 0.086 17
1 1.04+ 0.10 10 0.99+ 0.10 10 0.98+ 0.11 11 0.99+ 0.11 11 1.02-0.12 12
5 4,91+ 0.22 4.4 5.06+ 0.25 5.0 4.89-0.28 5.6 4,97 0.36 7.1 4,77 0.36 7.2
10 9.73+0.31 3.1 9.76+ 0.38 3.8 9.53+ 0.46 4.6 9.73k 0.61 6.1 9.25k 0.66 6.6
50 48.9+ 0.7 1.4 49.4-15 3.1 51.2+2.4 4.9 49.9+ 3.8 7.6 49.8+ 4.5 8.9
100 99.24+-1.0 1.0 97.3: 3.3 3.4 95.8- 5.3 5.3 94. 74 8.6 8.6 95+ 11 11
500 499.5+ 2.2 0.4 502+ 31 6.1 500+ 46 9.3 483+ 88 18 501+ 88 22
1000 996.2+ 3.2 0.3 1118+ 97 9.8 1143+ 174 17 129A- 272 27 1174370 37
5000 5014. 4 7.1 0.14 6715k 1625 25 5422+ 1495 30 5489 —h —h 5179+ —h —h
10 000 9980k 10 0.10 9120+ 2182 37 17 70310672 107 19253 —h —h 36 1224 - —h

aComplete knowledge of the molecular state at all times for an observation period of 10@tate trajectory restricted to knowledge of the
molecular state at photon arrivalk, (= 100 ms?). ¢ Noiseless photon trajectory with background photgms= 0.909,p,; = 0.5). ¢ Noiseless
photon trajectory with crosstalk photomsA = pxe1 = 0.15).¢ Noiseless photon trajectory with background and crosstalk photons (above parameters).
fMean + standard deviation of marginal posterior probability densitk.of(Standard deviation of marginal posterior probability density)bf
(truek) "Standard deviation of marginal posterior probability density is undefined, and only the maximum-likelihood estikta bé obtained.

not directly experimentally observable, they represent a lower 10 ¢
limit on the uncertainty in the estimates of the exchange rate
and provide us with the fundamental limit for parameter
estimation from a finite-length trajectory. We considered each
synthetic state trajectory as if it were experimental data and
asked how well we could infer the exchange ratgsing eq 4
(under the assumptidn= k; = ky). As might be expected, the
estimated values fdcare extremely good; however, the relative
uncertainties in those estimates vary over more than 3 orders
of magnitude from 37% &= 0.1 ms*to 0.01% ak = 10 000
ms~! (Table 1). This result follows from the fact that the relative
uncertainty decreases as the square root of the numberef A
B interconversions observed. Because, for a given finite
observation time, we observe more interconversions vidisn
larger, the relative uncertainty will decrease monotonically as 01 ' ' s
k increases. As discussed above, this relative uncertainty ~— °° P et nrcomerson e kg 1
represents a theoretical lower bound, because it assume
gﬂmf’ée:ﬁekgggvelf\?gﬁ)r?fpte}ﬁoztate of the molecule at all times k as a function of the ratit/k,, wherek; is the photon detection rate
: (data from Table 1). The dashed gray data are for the complete

Noiseless Photon TrajectoriesTo investigate the loss of  information limit derived from analysis of the state trajectory data (a
information due to finite sampling of the state trajectory, we value ofk, = 100 ms?! was used for plotting purposes only) and are
generated noiseless photon trajectories based on the above stag@mpletely determined by the relative sizekodnd the inverse of the

trajectories using a photon detection rage.of 100 ms™. For = 2oeee g e e e ejectorics with a boisson
each tra.JeCtory,_the_Iogarlthm of the I'ke.“hOOd under. the rate ofk, = 100 ms™. The remaining lines correspond to the addition
assumption ok, = k, = kwas calculated by directly evaluating  of yarying amounts of noise to the noiseless photon trajectories:

the sum of the logarithms of the conditional probabilities in eq background scatter withs = 0.909,pp; = 0.5 (dotted), crosstalk with

6. The mean and standard deviationkofinder the posterior  pw2 = pwe1 = 0.15 (dashed), and both (dedashed).

distribution were calculated using numerical quadrature and are

shown in Table 1 and Figure 2. Because the results depend onlyincreasingly likely that a particular residence will be completely

on the relative magnitude dé compared tok, and the total unobservable because no photon arrives during that time. Thus,

observation timeT, the abscissa of Figure 2 is given in the relative uncertainty has contributions from two competing

dimensionless units dé/k,. effects: the finite number of transitions whéris small and
The dependence of relative uncertainty in the estimatk on approached* (kinetic shot noise) and the finite sampling of

is interesting, in that it approaches the theoretical complete the state trajectory whek is large and approachds. This

information limit (where the uncertainty is defined completely results in a V-shaped dependence of relative uncertainty on

by the relative size df and the inverse of the observation time) ~with a minimum in the neighborhood d&fk, = 0.5 (Figure 2,

for very small values ofkik, but it begins to increase solid curve).

substantially fork/k, > 0.1. This is understandable, because It is remarkable that one can obtain relative uncertainties of

whenk < k,, there are many photon arrivals for every residence ~3% even when the interconversion ratk, = 1 and that the

time; therefore, very little loss of information occurs as a result uncertainty increases to only 10% whgk, = 10. This suggests

of the finite sampling of the state trajectory. Howeverkig that useful information can be obtained for much faster kinetic

approaches and exceeds unity, we lose information about theregimes than have typically been studied, and it is a significant

precise length of each residence. In addition, it becomes benefit arising from measuring the photon arrival trajectory over
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Figure 2. Dependence of the relative uncertainty in the estimation of
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' ' ' ' photons is due to the fact that the model does not include noise,
but rather assumes that every photon is “telling the truth”. For
interconversion rates that are slow relative to the photon arrival
rate, this leads to data where the molecule is clearly in a single
state for a long period but with one photon occasionally
“straying” into the other channel. Such data are extremely
unlikely under a simple Poisson model, and use of such a model
by the naive application of eq 6 results in grossly inflated
estimates of the interconversion rate. At larger valuels dfie
background photons tend to “blend in” more with the signal,
thereby causing a much lower systematic error.

One can incorporate the presence of background photons into
the likelihood-based approach using an HMM as discussed
above, and this results in estimates that are much closer to the
< , true value than those obtained by the naive application of eq 6

10 10 10 . ; ; Qi
true rate (ms™) (Figure 3, squares). However, the price paid for this improved

Figure 3. Maximume-likelihood estimate of the rate (i.e., the mode of aclcuracy 15 a decrgase n Pre,C'S'O”v partlgt!larly v.\lhesrlarge
the posterior under a uniform prior) obtained using a naive application (Figure 2, dotted line). This is not surprising, given that the
of eq 7 to photon trajectory data containing background scatter with HMM results are obtained by implicitly averaging over all 2
parametergs = 0.909 and,, = 0.5 (circles) and maximum-likelihood  possible hidden variable state sequences. However, Wign
estimates obtained using a hidden Markov model that incorporates noisesma||, the relative uncertainty remains near the complete
(squares) as a function of the true rateThe line of unit slope  intormation limit. This is because very few of thedésequences
(corresponding to perfectly unbiased estimation) is shown in dashes. . . .

are likely under a Poisson model for exchange, allowing the
|HMM to determine which photons are lying with a high degree
6f confidence. Similar results are obtained with the introduction
of crosstalk or the combination of background and crosstalk
(Table 1 and Figure 2, dashed and-ddashed lines).

In our analysis, we assumed that the noise photon rate and

o‘.

maximum likelihood estimate of rate (ms“)

3

10

binned measurements. Because the photons stochastically samp
the state trajectory, there are a substantial fraction of photons
closer together temporally than the mean interphoton time. This
effectively increases the bandwidth of the measurement by an

order of magnitude or more over measurements binned at the "' Y4 @bk
photon count rate. distribution is completely unknown. However, such knowledge

In addition to demonstrating the power of the direct likeli- c0uld be obtained experimentally from the pattern of photon
hood-based analysis of photon trajectory data, Figure 2 can alsg/"Vals in the absence of sample. One might ask whether and
be used in the context of experimental design. In general, to "OW much such a priori knowledge of the noise properties could
minimize the effect of photobleaching, one would like to use MProve the estimate of the interconversion rate. Thls_questlon
the lowest possible laser intensity that will still allow measure- 1S r€lévant from the perspective of experimental design: one
ment of the fastest time scale of interest. If one has an Wouldwanttoknow how much effort to put into experimentally
approximate guess for the fastest interconversion process in théharacterizing the noise characteristics of the hardware. In
system of interest, then for a given relative uncertainty, one 9eneral, one will observe an improvement only if there is
can use the curves of Figure 2 to determine the lowest photonSubstantial correlation between the uncertaintiek and the
detection rate that will allow the measurement of that rate to HMM emission probabilities. We have observed that such
the desired precision. For example, if one required a precision Correlation is practically zero wheais small or when the noise
of a few percent, then one would need to use sufficient laser 1€Vel is low (Figure 4A). Therefore, prior information about
power to obtain a photon arrival rate at least 5 times the expectedth® amount of crosstalk and/or background scatter will not
interconversion rate (in the absence of noise). On the other handiMProve the estimate dfin this limit. Some weak correlation
if one were willing to tolerate a relative uncertainty approaching 'S observed ak and/or the noise level increases (Figure 4B),
10%, then one could decrease the laser power so that the photoguggesting that very careful experimental measurement of the
arrival rate was slower than the interconversion rate. background and crosstalk parameters might give a slight

Noisy Photon Trajectories and Hidden Markov Models. improvement in the estimate & The marginal gain in the
The most serious source of nonideality in real photon trajectories Précision and accuracy appears to be quite small, however, and
is the presence of spectral crosstalk and background photonsdoes not justify the expenditure of significant effort.

This results in a random fraction of the observed photons being  To investigate the ability to infek as a function of the amount
anticorrelated or uncorrelated with the molecular state. In other of background photons, we generated 13 data sets ksig
words, some fraction of the observed photons will be “lying”, 50 ms* and signal photon probabilitiegs, ranging from 0.976
i.e., their arrival channel will be the opposite of the channel (signal-to-background rati&B = pJ/(1 — ps) = 40) to 0.231
that would be expected on the basis of the actual state of the(SB = 0.3) using equal background photon probabilities in each
molecule. To investigate the effect of background photons on channel f,; = 0.5) and repeated the analyses of Figure 2. Those
the naive use of eq 6, we perturbed the noiseless photonresults (along with the results fpe = 0.909 described above)
trajectories to simulate background photons with—= 0.909 are shown as the solid curve in Figure 5. Remarkably, the
(i.e., a signal-to-background ratio 6f10:1) andp,, = 0.5 (a relative uncertainty ik remains below 20% even f&B levels
worst-case scenario of equal background in both channels). Theapproaching 1. Although the increase in relative uncertainty as
results are shown in Figure 3 (circles). The effect of excluding a function of background level is approximately exponential,
noise from the model is quite catastrophic wheis small, the rate of increase is nonetheless surprisingly slow, indicating
resulting in misestimates &by more than a factor of 100 when that the likelihood-based HMM analysis strategy is quite robust
k = 0.1 ms?, but it becomes less severe laincreases. The  for small or moderate values &fk,. We repeated the above
very poor performance of eq 6 in the presence of background analysis using an asymmetric background photon distribution
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Figure 5. Dependence of the relative uncertainty in the estimation of
09 t+ e k as a function of the background photon level for a 100-ms photon
trajectory generated usitkg= 50 ms'%, k, = 100 ms?, p,s = 0.5 (solid/
. circles), andb,; = 0.8 (dashed/squares). The signal-to-background ratio
<_i is defined to bep/(1 — ps). The lower long-dashed horizontal line
a 08 r . represents the theoretical lower bound on the relative uncertainty
ol corresponding to the complete information limit, whereas the upper
horizontal short-dashed line representshe= 0 limit corresponding
0.7 to sampling the state trajectory with a Poisson rat&,of 100 ms™.
example, consider the following four-state model studied by
Schenter and co-workéfs
L I L | L 1 L
0 1000 2000 3000 4000 A ko B
k (ms™) Ky
Figure 4. Scatter plot of Metropolis Monte Carlo output for the analysis alffp allp s
of photon trajectories containing both background and crosstalk noise K
(P(p1)A) = 0.818 15) generated usig= (A) 1 and (B) 1000 ms' A B'

using an HMM analysis. Each panel corresponds to a projection of the 1
full set of Monte Carlo samples from the posterior probability

distribution onto a plane corresponding to the interconversionkate where the states A and Aand B and B) are spectroscopically
and the emission probability for state A. The fact that the cloud of indistinguishable. This degeneracy results in apparent dynamics

points is elongated and tilted from the horizontal in panel B is a 4 js non-Markovian and is said to exhibit conformational
graphical indication that there is a weak correlation between the inferred

rate and emission probability, whereas the lack of such behavior in memaory or tgmporal heterogeneity. The memary .effect is the
panel A indicates the lack of correlation. result of not including enough states in the description of the

dynamics, and expansion of the model from the two spectro-
(Por = 0.8), and the results are shown in the dashed curve of scoplcqlly dlstlngylshable states to four results in simple
Figure 5. The relative uncertainties are very similar togge ~ Markovian dynamics. Models of this type have been used, for
= 0.5 case, with only a small decrease in uncertainty at very €X@Mmple, to model enzymatic reaction rates that are fluctuating
high background levels. Overall, the robustness of the analysis@S @ result of conformational dynamics in the enzyfe.
is negligibly affected by the distribution of background photons Alterr!atlvelyaore .cr?n alsg View th”|s kinetic sch%me as,a! b!alrrler-
between channels and depends only on the overall signal-to-cros,Slng model with two deep wells (cqrresp_on Ing to .
background ratio. Because the models for background andB/B)where the well depths and/or barrier heights are fluctuating

. . . A in a Poissonian manner. In previ work, this model h n
crosstalk are mathematically identical, we expect similar results a roissonian manne previous work, this model has bee
for the effect of asymmetry in crosstalk.

fit using an approach based on correlation functiSrigowever,

) o ) because the ordinary two-point correlation function does not
Extension to Models Exhibiting Temporal Heterogeneity. - contain sufficient information to reliably distinguish between
We have shown that likelihood-based methods that make usethe four-state model (eq 14) and the simpler two-state model

of hidden Markov models are a robust tool for estimating (eq 1), multipoint correlation functions, which are more difficult
interconversion rates from single-molecule photon trajectories to interpret and suffer from higher levels of noise, are required.
in the context of two-state jump kinetics. They provide notonly |t is straightforward to formulate an HMM based on the
reliable parameter estimates, but also statistically rigorous kinetic scheme of eq 14. Let us assume for the moment that
estimates of the uncertainty in those estimates. Another advan-here is no background scatter and that the spectral crosstalk is
tage of HMMs in the context of photon trajectory analysis is zero, i.e., that all photons from states A andaive in channel

that they can be easily generalized to more complex non-two- 1 and all photons from states B and @rive in channel 2. If

state models, and provide a statistical context in which to we consider a model with four hidden states (A, B, and B),
evaluate the relative goodness-of-fit of different models. As an then the observed data is a deterministic function of the hidden
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states, i.e., we have an HMM where the emission “probabilities” single-molecule fluorescence experimental data. In particular,
are identically O or 1. This is a special case of eq 11 extendedthey directly make use of the information from individual

to four hidden states. All that is needed are the transition photons without the need for binning, averaging, or other
probabilities analogous to those in eq 5. These are given by themethods that transform the data before analysis. Although

elements of the matrix exponential ek, whereK is the methods based on binning or averaging can make the subsequent
kinetic matrix analysis more straightforward or familiar, they can obscure the
dynamical information, particularly if the dynamics are occurring
—(k +a) k B 0 on time scales comparable to or faster than the binning or
K = Ky —(k;ta) 0 B (15) averaging. The gain in bandwidth obtained by the direct analysis
o 0 =k +p) k' of the photon trajectory is quite large, suggesting that useful
0 o k, =k, +p) information could be obtained for dynamics occurring at rates

more than an order of magnitude faster than the photon detection
Whereas exp{t) can, in principle, be calculated in closed rate. In addition, the HMM methodology for the analysis of
form for a four-state model, the general solution is sufficiently noisy photon trajectories is remarkably robust with respect to
awkward that numerical solution is preferable. However, the the amount of noise, which suggests that it will be of significant
symmetric case whetle = k, =k, ki’ = k'’ =K, anda = f practical utility in the analysis of real-world data.
gives a relatively simple solution, the details of which are given | ikelihood-based methods, particularly in their Bayesian

in the Appendix. form, lead to natural and intuitive estimates of the uncertainties

For purposes of demopstratlon, we gengrated a 100-ms-|qngin the estimated parameters arising from both experimental noise
synthetic two-channel noiseless photon trajectory correspondmgand finite sampling. Realistic error estimates are critical in

to the kinetic scheme of eq 14 in the symmetric limit with rate - . - S
experimental work, for example, in assessing the significance

constantk = 20 ms ', k =80 ms!, anda. = 10 ms ! and a i . . .
photon detection rate of 100 msusing an approach similar to of differences in rate constants under different experimental
conditions. Likelihood-based methods provide such error esti-

that described in the Computational Methods section aBbve. o i
mates. In addition, these methods can be made to operate in a

We analyzed that trajectory using the symmetric four-state ) ) e . .
HMM with Metropolis Monte Carlo sampling in the same fully automatic mode or with only minimal analyst intervention.

manner as for the two-state model, except that the emission This is critical given the quantity of data that must be analyzed
probabilities were taken to be 0 or 1 as appropriate and the in typical experimental situations.
transition probabilities were those given in the Appendix. The  For reasons of presentational clarity, the models considered
resulting parameter estimates (posterior meanstandard  in this paper have, for the most part, been limited to two-state
deviation) werek = 16.6 +£ 2.2 ms™, k' = 93.2+ 6.9 ms', exchange processes with equal forward and reverse rates.
ando = 14.4+ 4.8 ms™. Analysis of the same data using a | jkelihood-based methods are certainly not limited to such
two-state model based on eq 1 wkh= k. =k (eq 6) gave a  gimple models. For example, unequal forward and reverse rates
parameter estimate &f= 44.4+ 2.0 ms, whereas the H'VJM represent a trivial extension and merely require additional
model based on eq_l gave an estlma_tk of41.7+ 1.6 ms . visualization methods. Furthermore, we have shown how more
Tn-ﬁjgts igfrseé?ioﬂﬁgv% Sttamzttlﬁll d%zr'ﬁa?;i‘:té?ii r:r?;,j?,l% dvéfcomplex models that contain larger numbers of states and exhibit
. - e . a temporal heterogeneity can be addressed. In principle, models
will always improve the “fit”, but not necessarily the statistical f arbit lexity. including th ith | b f
significance. One simple way in which this can be done is via ot arbl g?ry complexily, Inciuding those with fargé numbers o
the Bayes information criterion (BIC), which is given by sta.teé& or tlme-dependent rate constafitsan be f}t to photon
trajectory data using this methodology, provided that the

BIC=-2L+dInN (16) conditional probabilities analogous to eq 5 for the dynamic

process can be solved analytically or numerically. In addition,

whereL is the maximized logarithm of the likelihood,is the the HMM used to analyze noisy photon trajectory data can also
number of dimensions in the parameter space, ldnd the be used in unmodified form to analyze data from other types

number of data point¥. The BIC can be used both to select of single-molecule fluorescence experiments, such as those
the best fitting model and to determine the relative probabilities based on resonance energy transfer. Given a choice of possible
of the models*? In our case, the BIC showed that the four-state models, it becomes critical to have reliable means of evaluating

HMM is very convincingly the best model of the three in a  the goodness-of-fit of each model and the statistical significance

statistical sens®, thereby demonstrating the effectiveness of f improvements in fit between different models. Likelihood-

an HMM-based model selection procedure as an alternative ©0psed methods allow for such model evaluation and testing in
the multipoint correlation function for the detection of temporal statistically rigorous manner.

hetergeneity. Although we have used a noiseless photon

trajectory for this simple example, the effect of noise on a four- ) )
state model could be incorporated simply by allowing the Acknowledgment. This work was supported in part by the

emission probabilities to deviate from the deterministic values National Institutes of Health (GM 30580 and GM 64375) and
of 0 and 1. the Research Corporation through a Research Innovation Award.

Conclusions Appendix

We have shown how likelihood-based statistical methods can
be applied to the analysis of photon trajectories from single-  The conditional probabilities analogous to eq 5 for the four-
molecule fluorescence experiments. The likelihood-based meth-state kinetic scheme of eq 14 in the symmetric likait= k; =
ods presented here will enhance the ability to extract information k, ki' = k)’ = k', ando. = 8 are the elements of the matrix
about motions in proteins and macromolecular complexes from exponential expg{t), whereK is the kinetic matrix
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—(k+a) k o 0
|k —(k+a) 0 a
K=l 0 K+ K (A1)
0 a K —(K + )

The matrix exponential can be calculated from the eigenvalues

Ai and eigenvectors; using

expKt) = UA(U* (A2)
whereU is the matrix of eigenvectors ¢¢ and
expe.t) 0 0 0
_10 expi,t) 0 0
AQ= 0 expli) 0 (A3)
0 0 0 exp@,t)

as described in ref 53. The resulting conditional probabilities
are

P(A|A kK o, At) = P(B|B,kK o, At)

__(1+62aAt+ek+At+eKAt)+
k—K

(e KAt e*l(fAt)
4
P(A'|A" kK 0,AY) = P(B'[B' KK @AY
_ %1(1 b2y Ay oAy
*K+At 7/( At
e )
P(A|B.kK,a,At) = P(B|A kK ,o,At)
(1 +e —20At e—K+At _ e—l(fAt) _
( *K+At *K At)
P(A'[B' kK oA = P(B'|A" kK oAl
— Z(l + e—Z(IAt _ e—K+Al _ e—KfAt) +
k k’(e KAt e*l(fAt)
4
P(A|A KK AL = P(B'|B kK a,AL) =
1(1 gy ( A gy
P(B'IAkK ,o,At) = P(A'|B,kK ,a,At) =
1(1+ e*Z(XAt) + (e K+ At efkat)
P(A|B' kK ,o,At) = P(B|A' kK ,o,At)
_1 —20At 2
=20 )~ gtk = K~y x
—k+ At —Kk-At
e e
P(AJA’ kK ,a,At) = P(B|B' kK ,o,At) ( )
1 —2a. 1
=ja+e 2 At)+m[(k— K)2 — 97 x
(e K+ At e—l(fA[)
where
y=va’+ (k= k)’
and

ky=o0+k+K=xy
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