Geometries, Electronic *g*-tensor Elements, Hyperfine Coupling Constants, and Vertical Excitation Energies for Small Gallium Arsenide Doublet Radicals, Ga_xAs_y (x + y = 3, 5)

Scott Brownridge and Friedrich Grein*

Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 6E2, Canada Received: June 5, 2003; In Final Form: August 1, 2003

Geometries of the gallium arsenide doublet radicals GaAs₂, Ga₂As, Ga₂As₃, Ga₃As₂, GaAs₄, and Ga₄As were optimized by the B3LYP/6-311+G(2df) method and compared with literature values. For the global minimum, as well as for isomers lying up to 0.2 eV higher, hyperfine coupling constants (HFCC) and electron-spin *g*-tensors were calculated. For HFCCs the B3LYP/6-311+G(2df) method was used, whereas for *g*-tensors second-order perturbation calculations with multireference configuration interaction wave functions and a valence triple- ζ basis set with polarization functions (TZVP) were performed. Generally, due to the low s-spin and high p-spin densities, A_{iso} values are small, and A_{dip} 's large. The *g*-shifts ($\Delta g = g - g_e$) are on the order of 100 000 ppm, caused by large spin—orbit couplings and low excitation energies. For the experimentally known Ga₂As₃, values calculated for the D_{3h} structure are (A's in MHz, $\Delta g'$ s in ppm) A_{iso} (⁶⁹Ga) = 1325 (1524); A_{iso} (⁷⁵As) = -23 (65); A_{dip} (⁶⁹Ga) = 65 (87); A_{dip} (⁷⁵As) = 36 (0); $\Delta g_{\perp} = -73$ 410 (-82 300); and $\Delta g_{\parallel} = 6460$ (0), with magnetic parameters derived from the experimental values in parentheses. Mulliken spin densities are shown to be a good measure of A_{dip} values. Vertical excitation energies, as obtained from the *g*-tensor calculations, are also tabulated.

1. Introduction

To date there have been few experimental electron paramagnetic resonance (EPR) studies on III–V (group 13–group 15 binary compounds) doublet radicals. To our knowledge, such work has been reported only for BNB¹ and Ga₂As₃.² For triplet or quartet III–V radicals, experimental EPR data are available for GaAs⁺ ($X^{4}\Sigma^{-}$)³ and GaP⁺ ($X^{4}\Sigma^{-}$).⁴ For bulk materials, antisite defects (e.g., GaAs–Al_xGa_{1-x}As,⁵ P_{Ga} in GaP,⁶ As_{Ga} in GaAs,⁷ and P_{In} in InP⁸) and Ga-vacancies in electronirradiated GaP⁹ have been characterized by EPR spectroscopy.

However there have been many theoretical studies on the electronic states and structures of Ga_xAs_y radicals. Of interest to this work are the neutral doublet radicals GaAs₂,^{10–15} Ga₂As,^{10,12–14} Ga₂As₃,^{13,16–18} Ga₃As₂,^{13,18} GaAs₄, and Ga₄As.¹⁹ Furthermore, calculations on neutral Ga₃As₄,^{14,17,20} Ga₄As₃,^{14,20} Ga₄As₅,^{14,17} and Ga₅As₄¹⁴ and on ionic Ga₃As[±] and GaAs₃[±] ²¹ have been reported. In addition to optimized geometries, Arratia-Pérez and Hernández-Acevedo¹⁶ calculated the *g*-tensor and hyperfine interactions of Ga₂As₃ using the self-consistent Dirac scattered wave method (SCF-DSW-X\alpha) of Yang et al.²² and a fully relativistic first-order perturbation procedure, which confirmed Weltner's² EPR spectral determination of a trigonal bipyramidal structure for Ga₂As₃. Arratia-Pérez and Hernández-Acevedo have also calculated the *g*-tensors and hyperfine interactions for GaAs₂ and Ga₂As₃.

The focus of this work is the calculation of *g*-tensors and hyperfine coupling constants (HFCC) for all Ga_xAs_y doublet radicals with x + y = 3 and 5, namely, $GaAs_2$, Ga_2As , Ga_2As_3 , Ga_3As_2 , $GaAs_4$, and Ga_4As . Guided by the available literature, new geometry optimizations were performed for various starting structures. In cases of several low-lying isomers, property

calculations were performed for all that lie within 0.2 eV of the global minimum.

Due to the scientific and industrial significance of Ga–As semiconductors, as well as the role played by EPR spectroscopy in probing structures and defects,^{5–9} the present study is intended to build a base of information, starting with the smallest GaAs radicals and moving to larger ones, eventually including clusters large enough to allow for the modeling of defects. In addition to providing numerical results of use to EPR spectroscopists, we discuss HFCCs and *g*-tensors as to their origin and their relation to other parameters.

2. Methods

Geometry optimizations and HFCC calculations were carried out with the GAUSSIAN 98 suite of programs²⁴ at the B3LYP/ 6-311+G(2df) level. Starting structures were those given in the literature, but other possible structures were also examined.

The theoretical evaluation of g-tensors using perturbation theory is described in detail in ref 25. The total g-shift Δg ($\Delta g = g - g_e$, where $g_e = 2.002319$ is the g-factor of a free electron²⁶) for a given molecule is comprised of first- and second-order terms. In this paper, only second-order g-tensor components were calculated, as the first-order contributions to the total Δg are known to be very small (ca. -100 ppm) in relation to the second-order Δg values. The contribution to Δg (second order) is due to the "magnetic" coupling of an excited state with the ground state (GS) and is proportional to their spin—orbit coupling (\langle SO \rangle) and magnetic transition moment ($\langle L \rangle$) matrix elements and inversely proportional to their energy separation (ΔE). The total second-order Δg is calculated as a sum-over-states expansion, which generally involves strong coupling to only the first few low-lying excited states.²⁷⁻²⁹

Computer programs used for *g*-tensor calculations are based on the Turbomole package³⁰ for efficient integral and SCF

^{*} To whom correspondence should be addressed. Phone: (506) 453-4776. Fax: (506) 453-4981. E-mail: fritz@unb.ca.

Brownridge and Grein

Figure 1. Optimized geometries of Ga_xAs_y (x + y = 3, 5) isomers. Bond lengths and angles are given in Table 1.

calculations, on the Grimme–Waletzke multireference configuration interaction (MRCI) package,³¹ which also gives the angular momentum matrix elements ($\langle L \rangle$) that we require, and finally on the Marian–Hess mean-field method for calculating spin–orbit integrals³² as implemented by Schimmelpfennig³³ and adapted for the Grimme MRCI package by Kleinschmidt et al.³⁴ Here the one- and two-electron spin–orbit elements are calculated from an effective one-electron one-center mean-field approximation. A description of these methods and comparison with results obtained by the original methods can be found in ref 35. The valence triple- ζ basis set with polarization functions (TZVP) by Schäfer et al.³⁶ was employed in the *g*-tensor calculations. The electronic charge centroid (ECC) is always taken as gauge origin.³⁷

3. Results and Discussion

3.1. Optimized Geometries. Geometry optimizations were done at the B3LYP/6-311+G(2df) level of theory. All geometries investigated are shown in Figure 1, which also includes

the symmetry group, the state symbol, and the energy difference relative to the most stable form. The results for the lowestenergy structures and for those that lie up to 0.2 eV higher are given in Table 1 and compared with those of previous calculations. For later applications, it should be pointed out that the planar C_{2v} molecules are always placed in the *yz*-plane, but the symmetry plane of C_s molecules is the *xy*-plane.

3.1.1. GaAs₂. GaAs₂ was first examined in 1987¹⁵ and again in 2000¹³ by Balasubramanian as a triangular C_{2v} structure; a 1991 study also considered a linear $C_{\infty v}$ geometry.¹² Work by Meier et al. in 1991¹¹ examined C_{2v} and linear (D_{4h}, C_{4v}) geometries. In all cases, the ground state was ²B₂ in C_{2v} symmetry.

Our results also gave X^2B_2 in $C_{2\nu}$ symmetry (1, see Figure 1) as the lowest-energy state. Alternate possible geometries considered here for GaAs₂ were linear $C_{\omega\nu}$ 2 ($X^2\Pi$, Ga-As-As: Ga-As = 2.48 Å, As-As = 2.16 Å) and $D_{\omega h}$ 3 ($X^2\Pi_g$, As-Ga-As: Ga-As = 2.22 Å) structures that were 0.52 and 1.62 eV, respectively, higher in energy than X^2B_2 (Figure 1).

TABLE 1:	Optimized	Bond Distan	ces (A) and A	Angles (deg) from	This Work []	B3LYP/6-311+G(2df)]	and Comparison to
Literature	Values for	All $Ga_x As_y$ (x	+y = 3, 5	Doublet Radicals	within 0.2 eV	of the Lowest-Energy	y Structures

molecule ^a				results			
GaAs ₂ (1) this work ref 13 ref 11 ref 14	Ga-As 2.775 2.800 2.86 2.73	As-As 2.193 2.184 2.27 2.20	AsGaAs 46.5 45.9 46.6 47.5				
Ga ₂ As (4) this work ref 13 Ga ₂ As (5) this work ref 13 ref 14	Ga ₁ -As 2.305 2.283 Ga-As 2.384 2.407 2.33	Ga_2 -As 2.503 2.534 Ga-Ga 3.553 3.091 3.52	Ga-Ga 3.613 3.41 GaAsGa 96.3 79.9 98.0	GaAsGa 97.3 90.3			
Ga ₂ As ₃ (8) this work ref 18 ref 14	Ga-As 2.594 2.589 2.65	As-As 2.555 2.563 2.62	Ga-As-Ga 110.7	As-As-As 60.0			
Ga ₂ As ₃ (9) this work this work	Ga ₁ Ga ₂ 2.576	$As_1 - As_2$ 2.539 $Ga_2Ga_1As_3$ 95.8	$\begin{array}{c} Ga_1 - As_3 \\ 2.523 \\ Ga_1 As_3 As_1 \\ 77.0 \end{array}$	$\begin{array}{c} Ga_1 - As_1 \\ 3.076 \\ Ga_1 Ga_2 As_1 \\ 72.3 \end{array}$	$\begin{array}{c} As_1-As_3\\ 2.417\\ Ga_2As_1As_3\\ 96.8 \end{array}$	As ₁ -Ga ₂ 2.639	
Ga ₃ As ₂ (13) this work this work	$\begin{array}{c} As_1 - As_2 \\ 2.361 \end{array}$	$\begin{array}{c} Ga_1 - Ga_2 \\ 4.037 \\ As_2 As_1 Ga_3 \\ 89.7 \end{array}$	As ₁ -Ga ₃ 2.502 As ₁ Ga ₃ Ga ₁ 68.4	$\begin{array}{c} As_1-Ga_1\\ 3.008\\ As_1As_2Ga_1\\ 74.9 \end{array}$	Ga_1-Ga_3 2.826 $As_2Ga_1Ga_3$ 78.7	Ga ₁ -As ₂ 2.577	
Ga ₃ As ₂ (14) this work ref 18 ref 14	Ga ₁ -Ga ₂ 3.751 3.702 3.72	Ga_2-Ga_3 3.979 4.114 4.57 $Ga_2Ga_1Ga_3$	$Ga_1 - As_1$ 2.446 2.401 2.41 $As_1Ga_1As_2$	$Ga_2 - As_1$ 2.671 2.725 2.59 $As_1Ga_2As_2$	$\begin{array}{c} As_1 - As_2 \\ 2.725 \\ 2.782 \\ 2.70 \end{array}$		
this work ref 18 ref 14	$C_{2} = A_{2}$	64.0 67.5 70.0	67.7 70.8 67.9	61.3 61.4 55.2			
this work ref 14 $G_2 \Delta_{S4} (18)^b$	3.202 2.65 $G_{2}=A_{S1}$	32.752 2.62 $32-4s_{2}$	$a_2 - As_1$ 2.570 2.28 $As_1 - As_2$	$As_1 - As_2$ 2.452 2.24 $As_1 - As_2$	92.9 94.9 AsaGaAsa	$G_{1}G_{2}A_{1}$ 73.8	101.8
this work $Ga_4As (21)^b$ this work	3.116 Ga ₁ -As 2.588	2.545 Ga_3 -As 2.487 Ga_1AsGa_2	$\begin{array}{c} 2.454 \\ Ga_1 - Ga_3 \\ 2.870 \\ Ga_1 AsGa_3 \end{array}$	3.006 Ga_1-Ga_2 2.599 Ga_1AsGa_4	$\begin{array}{c} 86.0 \\ Ga_1 - Ga_4 \\ 4.583 \\ Ga_3 As Ga_4 \end{array}$	77.1 Ga ₃ -Ga ₄ 4.913	93.4
this work		60.3	68.8	129.1	162.0		

^a See Figure 1 for atom-labeling scheme, symmetry, ground state, and relative energies. ^b No bond lengths or angles given in ref 19.

This compares well to the results of Meier et al.,¹¹ where X^2B_2 was lower than the $C_{\infty\nu}$ (Ga-As = 2.61 Å, As-As = 2.24 Å) and $D_{\infty h}$ (2.39 Å) structures by 0.81 and 1.53 eV, respectively.

3.1.2. Ga_2As . For Ga_2As , Balasubramanian reported an X^2B_2 ground state with C_{2v} symmetry (see Table 1) and a C_s (X²A') structure 0.025 eV higher in energy (multireference singles and doubles configuration interaction (MRSDCI) results).¹³ Two low-lying excited states with C_{2v} symmetry, ²B₁ (2.52 Å, 108.2°, $\Delta E = +0.22$ eV) and ²A₁ (2.47 Å, 118.5°, $\Delta E = +0.19$ eV), were also reported in ref 13.

Our optimized $C_{2\nu}$ (X²B₂) geometry (**5**) has a Ga–As–Ga angle of ca. 96° [for the 6-311+G(2df) basis set, B3LYP gave Ga–As 2.384 Å, 96.3°; MPW1PW91 gave 2.358 Å, 93.3°; and MP2 gave 2.365 Å, 103.5°], in close agreement with the local spin-density (LSD) result of 98.0° from ref 14 (see Table 1). However, a slightly lower energy was obtained in C_s symmetry (**4**, X²A'), 0.02 eV lower than **5**. Our linear $D_{\infty h}$ **6** (2.501 Å, X² Π_u) and $C_{\infty \nu}$ **7** (X² Π , As–Ga = 2.286 Å, Ga–Ga = 2.714 Å) were both saddle-point structures, 0.16 and 0.88 eV higher in energy, respectively, than **4**.

3.1.3. Ga_2As_3 . The geometry of Ga_2As_3 was predicted in 1992 to be a D_{3h} trigonal bipyramid with an X^2A_2'' ground state, using the LSD method.¹⁴ The EPR spectrum was obtained one year later, from which a trigonal bipyramidal structure was proposed.²

MRSDCI calculations by Liao et al.¹⁸ and HF followed by MP2 calculations by Piquini et al.¹⁹ also resulted in D_{3h} trigonal bipyramidal structures.

Our calculations showed the lowest-energy structure of Ga₂-As₃ to have an X^2A_2'' ground state with D_{3h} trigonal bipyramidal geometry (8), in agreement with the structure proposed from the experimental EPR data² and previous calculations.^{14,18,19}

Alternate possible geometries considered by us, shown in Figure 1, were two edge-capped tetrahedra 9 (C_s , X²A', +0.08 eV) and 10 (C_{2v} , X²A₁, +0.28 eV); a C_s square pyramid 11 (X²A'', +0.46 eV); and a C_{2v} square pyramid 12 (X²B₁), 0.97 eV higher in energy than 8.

3.1.4. Ga_3As_2 . The lowest-energy Ga_3As_2 isomer reported in refs 14 and 18 was a $C_{2\nu}$ distorted trigonal bipyramid (X²A₁, **14** in Figure 1). The isomer **15** ($C_{2\nu}$ edge-capped tetrahedron, X²B₁) was reported by Lou et al. to be 0.01 eV higher in energy than **14** (LSD results).¹⁴ Liao et al. found an isomer similar to **15**, but with the Ga₂,Ga₃ (notation according to Figure 1) atoms of **15** switching positions with As₁,As₂, to lie 0.005 eV (MRSDCI; 0.03 eV, CASSCF (complete active space selfconsistent field)) above isomer **14**, having a ²B₁ ground state.¹⁸

The distortion from a D_{3h} trigonal bipyramid to $C_{2\nu}$ symmetry (14) was accomplished by having the Ga₁-Ga₂ (and Ga₁-Ga₃)

TABLE 2: Spin Densities (SD), Atomic Charges, and Hyperfine Coupling Constants for ⁶⁹Ga and ⁷⁵As (MHz) for All Ga_xAs_y (x + y = 3, 5) Doublet Radicals within 0.2 eV of the Lowest-Energy Structures

						calc s- and	$d p-SD^c$
molecule	atom	charge ^a	spin density ^a	$A_{ m iso}$	$T_{xx}/T_{yy}/T_{zz}^{b}$	% s	%p
GaAs ₂ (1)	Ga	0.226	0.262	26	-57/131/-74	0.2	32
ref 23		0.193	0.338	52^d	-85^{d}		
	As	-0.113	0.368	7	-111/-113'/225'	< 0.1	34
ref 23		-0.096	0.331	229^{e}	60 ^e		
$Ga_2As(4)$	Ga ₁	0.089	0.443	702	227'/-116'/-112	6	55
	Ga ₂	0.178	0.048	93	-26'/42'/-16	0.8	10
	As	-0.267	0.508	-133	312'/-155'/-158	0.9	46
Ga_2As (5)	Ga	0.128	0.242	447	-63/-81'/144	4	35
ref 23		0.103	0.153	9 ^f	-47^{f}		
	As	-0.257	0.515	-148	-159/304/-145	1	45
ref 23		-0.206	0.694	124^{g}	-56^{g}		
$Ga_{2}As_{3}(8)$	Ga	0.194	0.369	1325	-65/-65/129	11	31
expt. ^h				1524	87		
ref 16		0.150	0.314	1583^{i}	64^i		
	As	-0.129	0.088	-23	-35/-36/71	0.2	11
Expt. ^h				64.7^{j}	j		
ref 16		-0.100	0.124	88^k	14^k		
$Ga_{2}As_{3}(9)$	Ga ₁	0.137	0.085	9	-32'/70'/-37	< 0.1	17
	Ga_2	0.147	0.441	1091	-86'/170/-83'	9	42
	As_1, As_2	-0.161	0.068	-4	58'/-33'/-25'	< 0.1	8
	As ₃	0.036	0.339	-69	215'/-112'/-104	0.5	32
Ga ₃ As ₂ (13)	Ga_1, Ga_2	0.140	0.094	125	-23'/-26'/49'	1	12
	Ga ₃	0.195	0.223	19	-62'/123'/-61	0.1	30
	As_1	-0.210	0.338	80	-115'/215'/-100	0.5	32
	As_2	-0.265	0.252	-7	136'/-74'/-62	< 0.1	20
Ga ₃ As ₂ (14)	Ga ₁	0.175	0.426	1735	-85/-71/156	14	38
	Ga_2, Ga_3	0.276	0.085	203	-21/45'/-24'	2	11
	As_1, As_2	-0.363	0.202	-25	-61'/-56/116'	0.2	17
Ga ₃ As ₂ (15)	Ga ₁	0.276	0.183	-3	-28/81/-53	< 0.1	20
	Ga ₂ ,Ga ₃	0.098	0.038	-17	-21'/35/-15'	0.1	8
	As_1, As_2	-0.236	0.371	87	-106/-109'/215'	0.6	32
GaAs ₄ (18)	Ga	0.214	-0.038	-153	4/17/-21	1	5
	As_1, As_2	-0.078	0.585	-46	-156/308'/-152'	0.3	46
	As ₃ , As ₄	-0.030	-0.066	12	-10'/45/-36'	0.1	6
Ga ₄ As (21)	Ga_1, Ga_2	0.083	0.342	-122	-89/177'/-88'	1	43
	Ga ₃ , Ga ₄	0.171	0.169	153	-34/-43'/76'	1	19
	As	-0.509	-0.021	0.05	-13/-7/20	< 0.1	3

^{*a*} Spin densities and atomic charges from a Mulliken population analysis (this work). ^{*b*} $T_{xx'}$, $T_{yy'}$, $T_{zz'}$ are diagonalized values, indicated by a prime after the value. ^{*c*} Approximate percent contribution per atom (**X**) to the s- $[A_{iso}^{\mathbf{X}}(molecule)/A_{iso}^{\mathbf{X}}(atom)]$ and p-character $[A_{dip}^{\mathbf{X}}(molecule)/A_{dip}^{\mathbf{X}}(atom)]$ of the total SD.²⁶ ^{*d*} Derived from $A_{||}(^{69}Ga) = -118$ MHz, $A_{\perp}(^{69}Ga) = 138$ MHz,²³ using $A_{iso} = 1/3(A_{||} + 2A_{\perp})$ and $A_{dip} = 1/3(A_{||} - A_{\perp})$.²⁶ ^{*e*} Derived from $A_{||}(^{75}As) = 349$ MHz, $A_{\perp}(^{75}As) = 168$ MHz.²³ ^{*f*} Derived from $A_{||}(^{69}Ga) = -85$ MHz, $A_{\perp}(^{69}Ga) = 55$ MHz.²³ ^{*g*} Derived from $A_{||}(^{75}As) = 11$ MHz, $A_{\perp}(^{75}As) = 180$ MHz.²³ ^{*h*} Ref 2, in Ar matrix. $A_{iso}(^{71}Ga) = 1936$ MHz, $A_{dip}(^{71}Ga) = 71$ MHz from EPR spectra for $^{71}Ga_2As_3$ (Ar matrix).² From our $A_{iso}(^{69}Ga)$, we obtain $A_{iso}(^{71}Ga) = 1684$ MHz. ^{*i*} Derived from $A_{||}(^{69}Ga) = 1711$ MHz, $A_{\perp}(^{69}Ga) = 1519$ MHz.¹⁶ ^{*j*} For ⁷⁵As, it was assumed that $A_{||} - A_{\perp} - A_{iso}$.² ^{*k*} Derived from $A_{||}(^{75}As) = 116$ MHz, $A_{\perp}(^{75}As) = 75$ MHz.¹⁶

distance shorter than Ga_2-Ga_3 (see Table 1). Ga_1 lies along the *z*-axis, Ga_2 and Ga_3 along *y*.

Our lowest-energy structure was a C_s edge-capped tetrahedron (13), lower than 14 by 0.02 eV. Structure 13 was not mentioned in ref 14, 18, or 19, but simulated annealing results by Vasiliev et al.³⁸ suggested 13 to be the lowest-energy isomer for Ga₃-As₂. Other geometries we investigated were a $C_{2\nu}$ edge-capped tetrahedron (X²B₂, 15) 0.18 eV higher in energy than 13; a C_s square pyramid (X²A'', 16), +0.66 eV; and a $C_{2\nu}$ square pyramid (X²A₁, 17), +1.38 eV.

*3.1.5. GaAs*₄. GaAs₄ was included in a study of electronic and structural trends in small GaAs clusters by Piquini et al., who carried out Hartree–Fock optimizations including all electrons and no symmetry constraints, followed by single-point MP2 calculations on the minimum energy configurations.¹⁹ However, they did not report any geometry details other than a sketch of the molecule, the symmetry, and a table of averaged bond orders for only the lowest-energy structure.

Our results gave a $C_{2\nu}$ edge-capped tetrahedron (X²B₂, **18** in Figure 1) as the lowest-energy structure, resembling that shown in ref 19. We calculated $C_{4\nu}$ square pyramidal (X²A₁, **19**) and

 C_{2v} planar trapezoidal (X²B₁, **20**) geometries to be 0.30 and 1.68 eV, respectively, higher in energy than **18**.

3.1.6. Ga_4As . Ga_4As was also included in the study by Piquini et al.,¹⁹ and again no detailed geometrical information was given. The lowest-energy structure we obtained for Ga_4As was a C_{2v} planar trapezoidal structure (X²A₁) with the As atom in the center (C_{2v} , **21**), similar to Piquini et al.¹⁹ Our results showed square-pyramidal (C_{4v} , X²B₁, **22**) and C_{2v} edge-capped tetrahedral (X²A₂, **23**) geometries to be respectively 0.23 and 0.56 eV higher in energy than **21**.

3.2. Hyperfine Coupling Constants. Hyperfine coupling calculations were performed on the lowest-energy structures of each radical, and on structures up to 0.2 eV higher. The atomic charges, Mulliken spin densities (SD), and HFCC data for ⁶⁹Ga and ⁷⁵As are given in Table 2. For all the molecules in Table 2, the Ga atoms carry positive charges and the As atoms are negatively charged, as expected since As is more electronegative than Ga.

The Mulliken spin density is the sum of s- and p-spin densities and does not allow for the separation of the two components, which are, in the nonrelativistic treatment, responsible for the A_{iso} and A_{dip} contributions, respectively. However, since the SOMOs (singly occupied molecular orbitals) are comprised of mainly p orbitals, the s-density in the SOMO, and consequently in the total wave function, is expected to be very small, such that the Mulliken value can be taken as a good measure of the p-density.

Table 2 shows that $A_{iso}(^{69}\text{Ga})$ does not exceed 1735 MHz. Compared to the atomic $A_{iso}(^{69}\text{Ga})$ of 12 210 MHz, as given by Weltner²⁶ (corresponding to 100% s-density); this indicates a maximal s-density on any of the Ga atoms not exceeding 14% (usually much less). Similarly, the largest positive $A_{iso}(^{75}\text{As})$ is 87 MHz, indicating a very low s-density of 0.6% when compared with the atomic $A_{iso}(^{75}\text{As})$ of 14 660 MHz.²⁶ Due to such low s-densities, a rationalization of A_{iso} values is quite difficult.

The situation is different for the anisotropic contributions T_{xx} , T_{yy} , and T_{zz} , which are relatively large in comparison with Weltner's atomic values, as is also indicated by the Mulliken spin densities which are essentially of p-type. For example, for Ga₂As₃ (13), the Mulliken SDs are 0.094 for Ga₁ and Ga₂, 0.223 for Ga₃, 0.338 for As₁, and 0.252 for As₂. The largest component (the prime stands for diagonalized values) for Ga₁ and Ga₂ is T_{zz}' (49 MHz), and for Ga₃ it is T_{yy}' (123 MHz). Compared to the atomic $A_{dip}[^{69}Ga(4p)] = 408$ MHz,²⁶ the p_z' spin density for Ga₁ and Ga₂ is 12%, and the p_y' SD for Ga₃ is 30%. Using $A_{dip}[^{75}As(4p)] = 667$ MHz,²⁶ the p_y' SD for As₁ is 32%, and the p_x' SD for As₂ is 20%. These percentages are roughly proportional to the SD values predicted by the Mulliken analysis (which however lumps all p contributions together).

The s and p spin densities, as derived from the calculated A_{iso} and the largest component of A_{dip} , using the atomic values given by Weltner,²⁶ are listed in the last two columns of Table 2.

3.2.1. GaAs₂ (1). From our calculated A_{iso} and T_{ii} values in Table 2, the SD (p-type) is equally distributed over each Ga and As atom, with essentially zero s-density. Our Mulliken SDs are in reasonable agreement with the p-SDs obtained for the anisotropic terms. Due to symmetry, the b₂-SOMO has zero s-SD at the Ga atom, and the Hartree–Fock value of A_{iso} (Ga) is exactly zero. The small value actually obtained is due to spin polarization.

Arratia-Pérez et al. calculated A_{\parallel} and A_{\perp} values, assuming $A_{xx} = A_{yy} = A_{\perp}$ and $A_{zz} = A_{\parallel}$ for $1.^{23}$ From an approximate decomposition of the hyperfine tensors into Fermi, spin-dipolar, and orbital contributions, they estimated the isotropic and anisotropic spin populations. They report for Ga a SD of 0.338 (0.106 isotropic, 0.232 anisotropic) and for As 0.331 (0.121 isotropic, 0.210 anisotropic).

In their relativistic treatment, both $s_{1/2}$ and $p_{1/2}$ atomic spinors contribute to the isotropic component, and therefore a comparison with our nonrelativistic numbers is misleading.

3.2.2. Ga_2As (4, 5). According to our calculations, isomers 4 and 5 differ by only 0.02 eV, so it is not clear which isomer will be found experimentally. From the calculated HFCCs, it should be easy to deduce the structure of the eventually observed species, as 4 has an $A_{iso}({}^{69}Ga)$ of 702 MHz, whereas that of 5 is 447 MHz. The $A_{iso}({}^{75}As)$ values are very similar, and a distinction based them, as well on A_{dip} values, would be difficult.

As with GaAs₂ (1), the SD of both 4 and 5 is mainly p-type. However, Table 2 shows that A_{iso} for Ga₁ in 4 is much larger than that obtained for 1, implying the s-density on Ga₁ (6%) to be larger than encountered before. The A_{iso} for each Ga in 5 is also relatively large, with an s-density of about 4%. Also, T_{ii} 's for Ga₁ and As in 4 and As in 5 are larger than values obtained for **1**. In **4**, almost all the SD is on the Ga_1 and As atoms, which comprise the short (2.305 Å) bond; only about 10% p-character is on Ga_2 . The calculated p-SDs are in reasonable agreement with the Mulliken SDs.

Our data for **5** correspond to about 35% p-character at each Ga and 45% at the As atom. Arratia-Perez et al. report for Ga a smaller SD of 0.153 (0.057 isotropic, 0.096 anisotropic), and for As a larger SD of 0.694 (0.130 isotropic, 0.564 anisotropic).²³ For **5**, with a ²B₂ GS, the SOMO has zero s-SD at the As atom, and therefore (in the nonrelativistic description) $A_{iso}(As)$ is solely due to spin polarization.

3.2.3. Ga_2As_3 (8). Our calculated $A_{iso}(^{69}Ga) = 1325$ MHz and $A_{dip}(^{69}Ga) = 65$ MHz are in good agreement with the respective magnetic parameters derived from the experimental values of 1524 and 87 MHz.² Most of the SD(p) lies on the Ga atoms, in agreement with the Mulliken SD and the SD distribution from ref 16 (see Table 2). In the analysis of the experimental EPR spectra, the assumption was made that for As $A_{II} \cong A_{\perp} \cong A_{iso}$, leading to $A_{iso}(^{75}As) \cong 64.7$ MHz (and implying $A_{dip}(^{75}As) \cong 0$).² This has to be contrasted to our ⁷⁵As result of -23 MHz for A_{iso} and 36 MHz for A_{dip} . The ²A₂" GS does not allow the a_2 " SOMO to have s-orbitals located on the As atoms. Therefore, $A_{iso}(As)$ results solely from spin polarization and is negative, as was proposed earlier by Van Zee, Li, and Weltner.²

3.2.4. Ga_2As_3 (9). This isomer lies, according to our calculations, 0.08 eV above structure 8. The A_{iso} and T_{ii} values calculated for this isomer differ strongly from that of 8 and confirm the latter to be the experimental structure. The majority of the SD in 9 is on Ga₂ (p_y, ca. 42%) and As₃ (p_x', ca. 32%), with respective Mulliken SDs of 0.441 and 0.339.

3.2.5. Ga_3As_2 (13, 14, 15). For Ga₃As₂, three structures lie within 0.2 eV, with 13 the lowest, 14 calculated to be 0.02 eV higher, and 15 0.18 eV higher. Therefore 13 and 14 are contenders for the equilibrium form of Ga₃As₂ and should be distinguishable by their HFCC values. For 13, the largest A_{iso} is 125 MHz (on Ga₁, Ga₂), and for 14 it is 1735 MHz (on Ga₁), about 14 times larger. The largest A_{iso} of 15 is 87 MHz (on As₁, As₂), with anisotropic components up to 215 MHz.

3.2.6. GaAs₄ (18). For GaAs₄ (18) in C_{2v} symmetry, all A_{iso} 's are small (implying little s-density), whereas the components of A_{dip} for As₁ and As₂ are relatively large. Accordingly, the majority of SD lies on As₁ and As₂ (46%), with very little contribution from the other three atoms, in good agreement with the Mulliken values.

3.2.7. Ga_4As (21). Again, A_{iso} is small, and for the Ga atoms A_{iso} and A_{dip} values are of similar magnitude. Most of the Mulliken SD resides on Ga₁ and Ga₂ (0.342), as reflected in the large A_{dip} component of these atoms. The very small Mulliken SD on As (-0.021) agrees with small A_{dip} ⁽⁷⁵As) values, corresponding to a maximal p-density of about 3%.

3.3. *g***-Tensors.** For molecules with C_{2v} symmetry, the three components of Δg (in the order *x*, *y*, *z*) arise from coupling with ²B₂, ²B₁, and ²A₂ excited states if the GS is ²A₁ (**14**, **21**), from coupling with ²A₂, ²A₁, and ²B₂ states if the GS is ²B₁ (**8**, from X²A₂" in D_{3h}), and from coupling with ²A₁, ²A₂, and ²B₁ states if the GS is ²B₂ (**1**, **5**, **15**, **18**). For molecules with C_s symmetry and X²A' (**4**, **9**, **13**), Δg_{xx} and Δg_{yy} result from coupling with ²A" states, and Δg_{zz} from coupling with ²A' states. With the atoms placed in the *xy*-plane, the *x* and *y* components of Δg mix, and a matrix diagonalization is required.

Table 3 summarizes our total Δg (second-order) values and compares them to known experimental and theoretical results. Experimental *g*-tensor results are available only for Ga₂As₃,²

TABLE 3: Calculated g-Tensor Data (Δg in ppm) for Ga_xAs_y (x + y = 3, 5) and Comparison with Experimental and Other Theoretical Results

molecule	Δg_{xx}	Δg_{yy}	Δg_{zz}	$\langle \Delta g angle^c$
$GaAs_2(1)$	175 300	-175 120	$-18\ 280$	-6035
ref 23, calc ^a	95 600	95 600	-116500	24 900
$Ga_2As(4)$	28 370	-11 285	$-78\ 000$	$-20\ 305$
$Ga_2As(5)$	-125950	-24850	51 030	$-33\ 260$
ref 23, calc ^a	$-188\ 500$	$-188\ 500$	40 100	-112 300
Ga ₂ As ₃ (8)	$-73 \ 410^{b}$	$-73 \ 410^{b}$	6460	-46790
ref 2, expt	$-82\ 300$	$-82\ 300$	-0	-54870
ref 16, calc	$-148\ 000$	-148000	$-162\ 00$	-104070
$Ga_2As_3(9)$	-63 625	-3540	$-101\ 270$	-56145
Ga_3As_2 (13)	135 055	-15070	104 970	74 985
Ga ₃ As ₂ (14)	-71590	$-11\ 150$	13 270	-23 155
Ga ₃ As ₂ (15)	180 375	257 660	58 025	165 355
GaAs ₄ (18)	-171030	-7540	-14720	-64430
Ga ₄ As (21)	-123540	-21850	$-43\ 470$	-62955

^{*a*} Ref 23 reports values for $\Delta g_{11} = \Delta g_{zz}$ and $\Delta g_{\perp} = \Delta g_{xx} = \Delta g_{yy}$. ^{*b*} Average of Δg_{xx} and Δg_{yy} from C_{2v} symmetry. ^{*c*} Average of the three Δg components.

whereas theoretical results have been reported for Ga_2As_3 ,¹⁶ $GaAs_2$, and $Ga_2As.^{23}$

Initially, nine excited states were calculated for each irreducible representation and used in the sum-over-states expansion. However, when significant magnetic coupling with the ground state (large $\langle SO \rangle$, $\langle L \rangle$) was still observed in the higher states, the number of excited states was increased. This will be outlined in the individual cases.

For an analysis of the *g*-tensor results, in Table 4 ΔE , $\langle SO \rangle$, $\langle L \rangle$, and Δg values are given for the two excited states having the strongest magnetic coupling with the ground state, for each irreducible representation. In Supporting Information tables, such information is extended to include the first five excited states and those additional states having a large magnetic coupling (>1000 ppm) with the ground state.

Table 3 shows that most $|\Delta g|$ values are on the order of 100 000 ppm. Such large numbers are mainly due to the large spin—orbit matrix elements for Ga and As. The atomic spin—orbit constants are 464 cm⁻¹ for Ga and 1201 cm⁻¹ for As.³⁹ Molecular SO coupling constants are on the order of 200–300 cm⁻¹. Combining in the second-order perturbation expression ($\langle SO \rangle \langle L \rangle / \Delta E$), $\langle SO \rangle = 200$ cm⁻¹ with $\langle L \rangle = 1$ au and $\Delta E = 1$ eV, leads to a Δg contribution of about (\pm) 100 000 ppm, changing the free electron g_e of 2.002319 by (\pm) 0.1.

3.3.1. GaAs₂ (1). It is seen that Δg_{xx} and Δg_{yy} are both large, of similar magnitude but opposite sign, whereas Δg_{zz} only has about a tenth of that magnitude. Table 4 shows that Δg_{xx} for GaAs₂ is governed by the coupling of 1²A₁ (4a₁ \rightarrow 2b₂, SOMO-1 to SOMO) and 2²A₁ (3a₁ \rightarrow 2b₂, SOMO-3 to

TABLE 4: Calculated Values of ΔE , $\langle SO \rangle$, $\langle L \rangle$, and Δg (second order) for Two Excited States of Each Irreducible Representation Having the Largest Magnetic Couplings with the Ground State for Ga_xAs_y (x + y = 3, 5), Given in the Order $\Delta g_{xx}, \Delta g_{yy}, \Delta g_{zz}$

state	$\Delta E ({ m eV})$	$\langle \text{SO} \rangle (\text{cm}^{-1})$	$\langle L \rangle$ (au)	Δg (ppm)	state	$\Delta E ({ m eV})$	$\langle \text{SO} \rangle (\text{cm}^{-1})$	$\langle L \rangle$ (au)	Δg (ppm)
GaAs ₂ (1)									
$1^{2}A_{1}$	1.47	170	1.10	64 366	$2^{2}A_{1}$	2.67	475	1.11	99 952
$1^{2}A_{2}$	1.26	476	-0.90	-172824	3^2A_2	3.90	-86	1.53	-17 199
$5^{2}B_{1}$	3.61	348	0.98	48 315	$6^{2}B_{1}$	3.89	191	-1.61	-40264
$Ga_2As(4)^a$									
$1^{2}A''$	0.40	-156	-0.21	42 478	$7^2A''$	3.27	-147	0.57	$-13\ 133$
$1^{2}A''$	0.40	192	0.14	33 996	$7^2A''$	3.27	236	-1.09	-40168
3 ² A'	2.06	198	-0.67	-32718	5 ² A'	2.66	220	-0.89	-37334
$Ga_2As(5)$									
$1^{2}A_{1}$	0.17	177	-0.07	-36004	$2^{2}A_{1}$	1.97	243	-1.02	-64 115
$2^{2}A_{2}$	2.57	157	-0.48	-14834	$4^{2}A_{2}$	3.32	159	-0.78	-19071
$1^{2}B_{1}$	0.33	255	0.22	87 664	$5^{2}B_{1}$	3.32	-220	1.07	-35932
Ga ₂ As ₃ (8)									
$3^{2}A_{1}$	3.30	343	-1.78	-94074	$5^{2}A_{1}$	3.70	247	0.63	21 549
$2^{2}B_{2}$	3.28	-356	1.76	$-97\ 100$	4^2B_2	3.67	269	0.71	26 635
$3^{2}A_{2}$	2.89	72	0.40	5083	6^2A_2	4.09	195	0.08	2041
Ga ₂ As ₃ (9) ^a									
5 ² A''	3.02	181	-0.68	-20852	$7^2A''$	3.71	111	-0.74	$-11\ 141$
$2^{2}A''$	2.67	41	-0.63	-4922	5 ² A''	3.02	-297	0.52	-26 129
$2^{2}A'$	1.95	230	-1.09	-65848	$4^{2}A'$	2.56	274	-0.59	-32219
Ga ₃ As ₂ (13) ^a									
$1^{2}A''$	0.62	228	0.83	155 983	3 ² A''	1.91	-148	0.88	-34778
$1^{2}A''$	0.62	158	0.10	12 691	$3^2 A''$	1.91	-183	0.60	-29048
$2^{2}A'$	1.44	148	0.76	40 103	$4^{2}A'$	2.22	308	0.78	54 851
$Ga_3As_2(14)$									
$1^{2}B_{2}$	0.72	-72	0.53	-26906	$3^{2}B_{2}$	2.94	221	-1.40	-53718
$1^{2}B_{1}$	1.15	80	0.90	32 076	$3^{2}B_{1}$	2.94	321	-0.60	$-33\ 328$
$1^{2}A_{2}$	1.00	77	0.39	15 339	$3^{2}A_{2}$	2.79	75	-1.12	$-15\ 409$
$Ga_3As_2(15)$									
$1^{2}A_{1}$	1.21	202	0.99	83 378	$2^{2}A_{1}$	1.97	370	0.97	93 261
$1^{2}A_{2}$	0.74	383	0.97	256 975	$11^{2}A_{2}$	4.22	-68	1.16	-9479
$1^{2}B_{1}$	0.92	127	0.86	60 313	$10^{2}B_{1}$	4.26	-117	0.70	-9812
GaAs ₄ (18)									
$1^{2}A_{1}$	0.55	390	-0.50	-179018	$2^{2}A_{1}$	2.22	-249	1.05	-59761
$1^{2}A_{2}$	1.91	-312	0.81	-66 989	2^2A_2	2.32	162	1.38	49 104
$1^{2}B_{1}$	1.90	286	0.78	59 501	$2^{2}B_{1}$	2.57	-260	1.29	-66074
Ga ₄ As (21)									
$1^{2}B_{2}$	1.28	223	-1.22	-108538	2^2B_2	1.59	-52	1.40	$-23\ 187$
$6^{2}B_{1}$	2.92	-31	1.61	-8668	$7^{2}B_{1}$	3.06	-72	0.72	-8675
$6^{2}A_{2}$	3.44	216	-0.42	-13477	$7^{2}A_{2}$	3.26	206	-0.45	-14511

^{*a*} Undiagonalized Δg_{xx} and Δg_{yy} (*C_s* symmetry).

SOMO) with X^2B_2 , both contributing positively, as expected for DOMO (doubly occupied molecular orbital) \rightarrow SOMO contributions.

The Δg_{yy} component is dominated by the coupling with 1^2A_2 $(2b_2 \rightarrow 2b_1, \text{ SOMO to LUMO+1})$. Following the rules for $SOMO \rightarrow LUMO$ (lowest unoccupied molecular orbital) excitations, this term is negative. Since the GS of GaAs₂ has no occupied a₂-orbital, DOMO \rightarrow SOMO type single excitations (with positive Δg) are not possible. Strong couplings with the three-open-shell states 2^2A_2 and 3^2A_2 almost cancel each other: their individual Δg_{yy} contributions are similar in magnitude but opposite in sign (due to the $\langle L \rangle$'s having opposite sign). This is a general trend observed for a pair of states generated by the same three-open-shell configuration.^{27,40,41} In the case of GaAs₂, the ΔE and $\langle SO \rangle$ values for 2^2A_2 and 3^2A_2 are similar, but the $\langle L \rangle$ values differ by ca. 50% (and have opposite sign). This variation of the $\langle L \rangle$ values occurs since although the leading configuration for both 2^2A_2 and 3^2A_2 is a $4a_1 \rightarrow 2b_1$ excitation (90% and 85%, respectively), there are differences in the other configurations contributing to $2^{2}A_{2}$ and $3^{2}A_{2}$.

For the total Δg_{zz} component the strongest couplings with X^2B_2 arise from 5^2B_1 and 6^2B_1 , but their Δg contributions almost cancel each other, since both of these states derive from the same three-open-shell configuration ($3a_1 \rightarrow 1a_2$, SOMO-3 to LUMO). The ΔE 's for the two states are very close, but the larger $\langle SO \rangle$ value of 5^2B_1 is compensated by 6^2B_1 having a larger $\langle L \rangle$ (in magnitude).

Arratia-Pérez et al.²³ calculated *g*-shifts for GaAs₂ utilizing a fully relativistic first-order perturbation procedure based on the SCF-DSW-X α method.²² These authors assumed $\Delta g_{xx} = \Delta g_{yy} = \Delta g_{\perp}$ and $\Delta g_{zz} = \Delta g_{\parallel}$ (see also section 3.2.1). As Table 3 shows, our results differ from theirs, both in magnitude (factor of 2–6) and sign (Δg_{yy}). There are no experimental EPR data available for GaAs₂ to gauge the accuracy of either result.

3.3.2. Ga_2As (4). For Ga₂As with structure 4 (C_s symmetry), Δg_{xx} and Δg_{yy} are relatively small, whereas Δg_{zz} is in the 100 000 ppm range. Twenty roots were calculated, since significant magnetic coupling was observed in the higher ²A' and ²A'' states of an initial 9-root calculation.

The undiagonalized Δg_{xx} is dominated by coupling to $1^2 A''$ ($1a'' \rightarrow 5a'$, SOMO-2 \rightarrow SOMO), giving, as expected, a positive contribution. However, significant (>1000 ppm) negative contributions arise from coupling with a number of other states ($7^2 A''$ given in Table 4, others given in Table 2S of the Supporting Information), lowering the total Δg_{xx} (undiagonalized) to 23 280 ppm.

The undiagonalized *yy* component is composed of a number of states contributing positively and negatively in an almost equal manner, resulting in a small overall total for 20 roots.

The Δg_{zz} value is dominated by large negative contributions from $3^2A'$ (4a' \rightarrow 6a', SOMO-1 \rightarrow LUMO) and $5^2A'$ (5a' \rightarrow 6a', SOMO \rightarrow LUMO), which constitute 90% of the total Δg_{zz} . Smaller but important (>1000 ppm) positive and negative contributions arise from coupling with a number of other states (values given in Table 2S), adding -8000 ppm to the undiagonalized Δg_{zz} .

3.3.3. Ga_2As (5). Structure 5 of Ga₂As lies 0.02 eV above structure 4, discussed before. It is a possible contender for the equilibrium structure. Contrary to the *g*-tensor results for 4, 5 has a large Δg_{xx} , whereas Δg_{yy} and Δg_{zz} differ by a factor of 1.5–2 (in magnitude) from those of structure 4.

The Δg_{xx} value of Ga₂As (5) is dominated by coupling with four states, $1^2A_1 - 4^2A_1$, all making large negative contributions

to Δg_{xx} , countered to a small extent by 6^2A_1 (only 1^2A_1 and 2^2A_1 are given in Table 4). The 1^2A_1 state has a very low excitation energy of 0.17 eV, whose strong contribution to Δg is countered by a small $\langle L \rangle$ value (-0.07 au). Contrary to expectations, this excited state, of DOMO \rightarrow SOMO type, makes a negative contribution to Δg (the rule may not apply if $|\langle L \rangle|$ is small).

The two largest contributions to Δg_{yy} are negative values from 2^2A_2 and 4^2A_2 , countered by a positive one from 5^2A_2 . As the leading configurations for 4^2A_2 and 5^2A_2 are the same $(3a_1 \rightarrow 2b_1)$, the ΔE and $|\langle L \rangle|$ values are similar, but the $\langle SO \rangle$ values differ by ca. 50%. This is due to 4^2A_2 having more mixing with additional configurations, in particular with a double excitation from the SOMO-1 to the SOMO and LUMO+1 $(3a_1^2 \rightarrow 2b_2$ -1a₂). As there are no occupied a₂-orbitals in the GS, singly excited ²A₂ states can be obtained only by SOMO \rightarrow LUMO type excitations, giving negative Δg 's.

The Δg_{zz} value is dominated by coupling to 1^2B_1 , with a positive contribution due to its DOMO \rightarrow SOMO ($1b_1 \rightarrow 2b_2$) excitation. There are smaller contributions from $3,5,6^2B_1$. The 5^2B_1 and 6^2B_1 states have the same leading three-open-shell configuration, SOMO-1 ($3a_1$) to the LUMO+2 ($1a_2$), but again the Δg contributions from these two states do not cancel due to differences in the configuration setup.

As with GaAs₂, only Δg_{\parallel} and Δg_{\perp} values for Ga₂As (**5**) are given in ref 23. Their results for $\Delta g_{\perp} = \Delta g_{xx} = \Delta g_{yy}$ are significantly different from our Δg_{xx} and Δg_{yy} values (by factors of 1.5–7.5), but their Δg_{zz} (= Δg_{\parallel}) value is in reasonable agreement with ours.

Comparing the Ga₂As structures **4** and **5**, the out-of-plane components (Δg_{xx} of **5**, Δg_{zz} of **4**) differ by about 50 000 ppm, whereas the Ga–Ga components (Δg_{yy} of **5**, Δg_{xx} of **4**) are of similar magnitude but opposite in sign. On the basis of these results, and the ones given in the hyperfine section, an easy distinction between the two isomers should be possible.

3.3.4. Ga_2As_3 (8). This molecule has D_{3h} symmetry (X²A₂"), but our Δg calculations were done in the Abelian group $C_{2\nu}$ (X²B₁). In this case, the ²A₁ and ²B₂ states correspond to ²E'. For checking the accuracy of our calculations, we calculated Δg for both ²A₁ and ²B₂ states. Due to the independent selection of reference configurations and extrapolation for ²A₁ and ²B₂ states, slightly different values were obtained for Δg_{xx} and Δg_{yy} , and the average will be given. Table 4 and the Supporting Information tables list results for Δg_{xx} and Δg_{yy} separately.

For Ga₂As₃, experimental *g*-tensor results are available.² The degenerate component agrees within 10% with our result, whereas the parallel component (Δg_{zz}) could not be measured and was assumed to be $\cong 0$ ppm in the experiment, but calculated to be 6460 ppm. It is seen from Table 3 that theoretical literature values, ref 16, differ widely from our and the experimental results.

The values of Δg_{xx} and Δg_{yy} are dominated by coupling of the ground state with 3^2A_1 and 2^2B_2 , respectively, corresponding to excitation from the SOMO (3b₁) to the degenerate LUMO (6a₁) for Δg_{xx} and LUMO+1 (3b₂) for Δg_{yy} (negative contributions, as expected). The second largest contribution is from 5^2A_1 , an excitation from the SOMO to the degenerate LUMO+4 (7a₁), and from 4^2B_2 , SOMO to LUMO+3 (5b₂) (positive contribution). The remaining major excited-state couplings involve $6,7^2A_1$ and $5,6^2B_2$, excitations from the degenerate SOMO-2 (1a₂, Δg_{xx}) and SOMO-1 (2b₁, Δg_{yy}) to the LUMO+2 (4b₂), resulting in three-open-shell configurations. The ΔE and \langle SO \rangle values for 5^2B_2 and 6^2B_2 are very similar, but the \langle L \rangle 's have opposite sign, as reflected in their Δg contribution.

TABLE 5:	Vertical Excitation	n Energies (eV) and	d Leading (Configurations f	for the Fi	rst Five States	of Ga _x As _y	(x + y =	3, 5)
----------	---------------------	---------------------	-------------	------------------	------------	-----------------	------------------------------------	----------	------	---

state	1	2	3	4	5
GaAs ₂ (1)			1b ₂ ² 1b ₁ ² 4a ₁ ² 2b ₂ ¹ (13 VE) ^a		
${}^{2}A_{1}$	1.47 $(4a_1 \rightarrow 2b_2)$	$2.67 (3a_1 \rightarrow 2b_2)$	$2.89 (1b_1 \rightarrow 1a_2)$	$3.97 (2b_2 \rightarrow 5a_1)$	$4.24 (1b_1 \rightarrow 1a_2)$
${}^{2}A_{2}$	$1.26 (2b_2 \rightarrow 1a_2)$	$3.19 (4a_1 \rightarrow 2b_1)$	$3.90 (4a_1 \rightarrow 2b_1)$	$4.37 (3a_14a_1 \rightarrow 2b_21a_2)$	$4.71 \ (4a_1^2 \rightarrow 2b_2 1a_2)$
${}^{2}\mathbf{B}_{1}$	$2.27 (2b_2 \rightarrow 2b_1)$	$2.55 (1b_1 \rightarrow 2b_2)$	$2.62 (4a_1 \rightarrow 1a_2)$	$3.13 (4a_1 \rightarrow 1a_2)$	$3.61 (3a_1 \rightarrow 1a_2)$
$^{2}B_{2}$	0.00 (GS)	$3.58 (2b_2 \rightarrow 3b_2)$	$4.25 (1b_14a_1 \rightarrow 2b_21a_2)$	$4.35 (4a_12b_2 \rightarrow 1a_22b_1)$	$4.76 (1b_1 \rightarrow 2b_1)$
$Ga_2As(4)$			1a'''24a'25a'1(11 VE)		
$^{2}A'$	0.00 (GS)	0.40 (4a' → 5a')	2.06 (4a' → 6a')	$2.30~(4a' \rightarrow 6a')$	2.66 (5a' → 6a')
$^{2}A''$	0.40 (1a" → 5a')	2.43 (1a" → 6a')	$2.57 \ (4a' \rightarrow 2a'')$	$2.62 (1a'' \rightarrow 6a')$	$2.90 (1a''4a' \rightarrow 5a'6a')$
$Ga_2As(5)$			$\dots 1b_2^2 1b_1^2 3a_1^2 2b_2^1 (11 \text{ VE})$		
${}^{2}A_{1}$	$0.17 (3a_1 \rightarrow 2b_2)$	$1.97 (2b_2 \rightarrow 4a_1)$	$2.72 (1b_1 \rightarrow 1a_2)$	$2.90 (3a_1^2 \rightarrow 2b_2 4a_1)$	$3.38 (1b_1 \rightarrow 1a_2)$
${}^{2}A_{2}$	$2.32 (1b_1 \rightarrow 4a_1)$	$2.57 (2b_2 \rightarrow 1a_2)$	$2.78 (1b_1 \rightarrow 4a_1)$	$3.32 (3a_1 \rightarrow 2b_1)$	$3.82 (3a_1 \rightarrow 2b_1)$
${}^{2}B_{1}$	$0.33 (1b_1 \rightarrow 2b_2)$	$2.57 (1b_1 3a_1 \rightarrow 2b_2 4a_1)$	$2.66 (3a_1 \rightarrow 1a_2)$	$3.01 \ (1b_1 3a_1 \rightarrow 2b_2 4a_1)$	$3.32 (3a_1 \rightarrow 1a_2)$
$^{2}B_{2}$	0.00 (GS)	$2.24 (3a_1 \rightarrow 4a_1)$	$2.65 (3a_1 \rightarrow 4a_1)$	$3.17 (1b_1 3a_1 \rightarrow 2b_2 1a_2)$	$3.41 (2b_2 \rightarrow 3b_2)$
$Ga_{2}As_{3}\left(8 ight)$			$2b_2^2 5a_1^2 1a_2^2 2b_1^2 3b_1^1 (21 \text{ VH})$	E)	
${}^{2}A_{1}$	$1.98(5a_163b_1)$	$2.98 (4a_1 \rightarrow 3b_1)$	$3.30 (3b_1 \rightarrow 6a_1)$	$3.87 (3a_1 \rightarrow 3b_1)$	$3.70 (3b_1 \rightarrow 7a_1)$
$^{2}A_{2}$	$1.58 (1a_2 \rightarrow 3b_1)$	$3.64 (5a_1 \rightarrow 4b_2)$	$2.89 (4a_1 \rightarrow 4b_2)$	$4.55 (3b_1 \rightarrow 2a_2)$	$3.85 (5a_1 \rightarrow 4b_2)$
${}^{2}\mathbf{B}_{1}$	0.00 (GS)	$1.58 (2b_1 \rightarrow 3b_1)$	$3.85 (2b_2 \rightarrow 4b_2)$	$4.54 (3b_1 \rightarrow 4b_1)$	$4.50 (2b_2 \rightarrow 4b_2)$
$^{2}B_{2}$	$2.69 (2b_2 \rightarrow 3b_1)$	$3.28 (3b_1 \rightarrow 3b_2)$	$3.50 (3b_1 \rightarrow 4b_2)$	$3.67 (3b_1 \rightarrow 5b_2)$	$3.83 (2b_1 \rightarrow 4b_2)$
$Ga_2As_3(9)$			7a ² 3a ² 8a ¹ (21VE)		
$^{2}A'$	0.00 (GS)	1.95 (8a' → 9a')	2.25 (7a' → 8a')	2.56 (6a' → 8a')	$3.38 (3a'' \rightarrow 5a'')$
$^{2}A''$	$1.36 (3a'' \rightarrow 8a')$	2.67 (3a" → 9a')	3.07 (3a" → 9a')	2.85 (2a" → 8a')	$3.02 (8a' \rightarrow 4a'')$
$Ga_3As_2(13)$	$\dots 6a'^{2}3a''^{2}7a'^{1}$ (19 VE)				
$^{2}A'$	0.00 (GS)	1.44 (6a' → 7a')	1.77 (7a' → 8a')	2.22 (5a' → 7a')	$2.57 (3a'' \rightarrow 4a'')$
$^{2}A''$	$0.62 (3a'' \rightarrow 7a')$	1.15 (2a" → 7a')	$1.91 \ (7a' \rightarrow 4a'')$	2.31 (3a" → 8a')	2.56 (3a" → 8a')
$Ga_3As_2(14)$			$4a_1^2 2b_1^2 1a_2^2 2b_2^2 5a_1^1 (19 \text{ VH})$	E)	
${}^{2}A_{1}$	0.00 (GS)	$1.68 (4a_1 \rightarrow 5a_1)$	$2.18 (2b_2 \rightarrow 3b_2)$	$2.56 (2b_1 \rightarrow 3b_1)$	$2.90 (2b_2 \rightarrow 3b_2)$
$^{2}A_{2}$	$1.00 (1a_2 \rightarrow 5a_1)$	$2.73 (2b_2 \rightarrow 3b_1)$	$2.79 (2b_2 \rightarrow 3b_1)$	$3.05 (1a_2 \rightarrow 6a_1)$	$2.92 (1a_2 \rightarrow 6a_1)$
${}^{2}\mathbf{B}_{1}$	$1.15 \ (2b_1 \rightarrow 5a_1)$	$2.52 (1a_2 \rightarrow 3b_2)$	$2.94 (5a_1 \rightarrow 3b_1)$	$2.58 (1a_2 \rightarrow 3b_2)$	$3.90 (2b_1 \rightarrow 6a_1)$
$^{2}B_{2}$	$0.72 (2b_2 \rightarrow 5a_1)$	$1.87 (1a_2 \rightarrow 3b_1)$	$2.94 (5a_1 \rightarrow 3b_2)$	$2.52 (1a_1 \rightarrow 3b_1)$	$2.94 \ (2b_2 \rightarrow 6a_1)$
$Ga_{3}As_{2}(15)$			$.5a_1^2 2b_1^2 1a_2^2 1b_2^2 2b_2^1$ (19 VE	2)	
$^{2}A_{1}$	$1.21 (5a_1 \rightarrow 2b_2)$	$1.97 (4a_1 \rightarrow 2b_2)$	$2.15 (1a_2 \rightarrow 3b_1)$	$2.44 (1a_2 \rightarrow 3b_1)$	$2.48 (3a_1 \rightarrow 2b_2)$
${}^{2}A_{2}$	$0.74 (1a_2 \rightarrow 2b_2)$	$2.42 (5a_1 \rightarrow 3b_1)$	$2.90 (1a_22b_1 \rightarrow 2b_23b_1)$	$2.96 (5a_1 \rightarrow 3b_1)$	$3.17 (2b_1 \rightarrow 6a_1)$
$^{2}B_{1}$	$0.92 (2b_1 \rightarrow 2b_2)$	$1.96 (2b_2 \rightarrow 3b_1)$	$3.06 (2b_1^2 \rightarrow 2b_2 3b_1)$	$3.28 (1a_2 \rightarrow 6a_1)$	$3.51 (1a_2 \rightarrow 6a_1)$
$^{2}B_{2}$	0.00 (GS)	$1.98 (2b_1 \rightarrow 3b_1)$	$2.47 (2b_1 \rightarrow 3b_1)$	$3.13 (2b_2 \rightarrow 3b_2)$	$3.28 (5a_11a_2 \rightarrow 2b_23b_1)$
GaAs ₄ (18)		••	$1a_2^2 2b_2^2 3b_1^2 5a_1^2 3b_2^1 (23 \text{ VI})$	E)	
$^{2}A_{1}$	$0.55 (3b_2 \rightarrow 6a_1)$	$2.22 (5a_1 \rightarrow 3b_2)$	$2.46 (3b_2 \rightarrow 7a_1)$	$2.82 (2b_2 \rightarrow 6a_1)$	$2.61 (2b_2 \rightarrow 6a_1)$
$^{2}A_{2}$	$1.91 (3b_1 \rightarrow 6a_1)$	$2.32 (3b_1 \rightarrow 6a_1)$	$3.06 (3b_2 \rightarrow 2a_2)$	$3.37 (2b_1 \rightarrow 6a_1)$	$3.18 (2b_1 \rightarrow 6a_1)$
${}^{2}\mathbf{B}_{1}$	$1.90 (3b_1 \rightarrow 3b_2)$	$2.57 (3b_2 \rightarrow 4b_1)$	$2.40 (3b_1 3b_2 \rightarrow 6a_1^2)$	$3.10 \ (2b_1 \rightarrow 3b_2)$	$3.19 (3b_1 \rightarrow 4b_2)$
$^{2}\text{B}_{2}$	0.00 (GS)	$1.62 (3b_2 \rightarrow 4b_2)$	$2.60 (5a_1 \rightarrow 6a_1)$	$2.54 (2b_2 \rightarrow 3b_2)$	$2.63 (2b_2 63b_2)$
Ga ₄ As (21)			$1b_1^2 4a_1^2 3b_2^2 5a_1^1 (17 \text{ VE})$		
${}^{2}A_{1}$	0.00 (GS)	$1.66 (4a_1 \rightarrow 5a_1)$	$2.79 (3b_2 \rightarrow 4b_2)$	$2.80 (3b_2 \rightarrow 4b_2)$	$3.02 (1b_1 \rightarrow 2b_1)$
$^{2}A_{2}$	$1.22 (5a_1 \rightarrow 1a_2)$	$2.49 (4a_1 \rightarrow 1a_2)$	$2.62 (4a_1 \rightarrow 1a_2)$	$2.42 (3b_2 \rightarrow 2b_1)$	$2.93 (1b_1 \rightarrow 4b_2)$
${}^{2}B_{1}$	$1.45 (5a_1 \rightarrow 2b_1)$	$2.23 (1b_1 \rightarrow 5a_1)$	$2.03 (3b_2 \rightarrow 1a_2)$	$2.44 (3b_2 \rightarrow 1a_2)$	$2.75 (4a_1 \rightarrow 2b_1)$
$^{2}B_{2}$	$1.28 (5a_1 \rightarrow 4b_2)$	$1.59 (3b_2 \rightarrow 5a_1)$	$2.73 \ (2b_2 \rightarrow 5a_1)$	$2.98 (1b_1 \rightarrow 1a_2)$	$3.02 (1b_1 \rightarrow 1a_2)$

^{*a*} VE = valence electrons.

The Δg_{zz} was calculated to be an order of magnitude smaller than Δg_{xx} and Δg_{yy} , with the largest contribution from coupling with the 3²A₂ state, an excitation from SOMO-5 (4a₁) to LUMO+2 (4b₂). In D_{3h} symmetry, only ²A₁" states will couple with the ²A₂" GS for the Δg_{zz} component. Since the valence sand p-orbitals of Ga₂As₃ cannot form a₁" MOs, as was pointed out by Van Zee et al.,² DOMO \rightarrow SOMO and SOMO \rightarrow virtual MO singly excited ²A₁" states are not possible in the valence region, leading to a small overall value for Δg_{zz} . Although in C_{2v} symmetry the lowest ²A₂ state results from a DOMO \rightarrow SOMO (1a₂ \rightarrow 3b₁) excitation, the 1a₂ MO does not correlate with an a₁" MO in D_{3h} symmetry, and therefore the $\langle L \rangle$ and $\langle SO \rangle$ matrix elements are extremely small, prohibiting a contribution of 1²A₂ to Δg_{zz} .

3.3.5. Ga_2As_3 (9). Despite good agreement of experimentally observed with calculated EPR parameters for structure 8 of Ga₂-As₃, we calculated these parameters also for structure 9 (C_s symmetry), which is only 0.08 eV higher in energy. This relates to our goal of obtaining properties for all isomers that lie within 0.2 eV of the lowest-energy structure. Table 3 shows that the *g*-tensor components differ widely from those calculated for 8, and from the experimental values, confirming 8 to be the observed structure. Twenty roots were calculated for 9, as

significant magnetic coupling was observed in the higher ${}^{2}A'$ and ${}^{2}A''$ states of an initial 9-root calculation.

The largest contributions to the undiagonalized Δg_{xx} arise from coupling of 5²A" and 7²A" with the X²A' GS. With the exception of 1²A" (3a"6 \rightarrow a', SOMO-1 \rightarrow SOMO), all other significant couplings (values given in the Supporting Information, Table 5S) with the ground state are negative.

The undiagonalized *yy* component is dominated by the coupling of $5^2A''$ (8a' $\rightarrow 4a''$, SOMO \rightarrow LUMO+1) with the GS. Coupling from other states making positive and additional negative contributions to Δg_{yy} effectively cancel each other out.

The overall Δg_{zz} is composed mainly of coupling of $2^2A'$ (3a" \rightarrow 9a', SOMO-1 \rightarrow LUMO) and $4^2A'$ (2a" \rightarrow 8a', SOMO-4 \rightarrow SOMO) with the GS. As with Δg_{yy} , positive and negative contributions from a number of other states cancel each other.

3.3.6. Ga_3As_2 (13). This lowest-energy isomer of Ga_3As_2 has two large Δg components (*x* and *z*), both being in the 100 000 ppm range, and a smaller one (Δg_{yy}) of -15 000 ppm. Twenty roots were calculated for 13 since significant magnetic coupling was observed in the higher ²A' and ²A'' states of an initial 9-root calculation.

TABLE 6: Summary of EPR Results for ${}^{69}\text{Ga}_x{}^{75}\text{As}_v$ (x + y = 3, 5) (all hyperfine coupling constants in MHz)

molecule	atom	$A_{ m iso}$	T_{xx}^{a}	T_{yy}^{a}	$T_{zz}^{\ a}$	g_{xx}	g_{yy}	g _{zz}	$\langle g \rangle^b$
$GaAs_2(1)$	Ga	26	-57	131	-74	2.177619	1.827199	1.984039	1.996286
- ()	As	7	-111	-113'	225'				
$Ga_2As(4)$	Ga ₁	702	227'	-116'	-112	2.030689	1.991034	1.924319	1.982014
	Ga ₂	93	-26'	42'	-16				
	As	-133	312'	-155'	-158				
$Ga_2As(5)$	Ga	447	-63	-81'	144	1.876369	1.977469	2.053349	1.969062
	As	-148	-159	304	-145				
$Ga_{2}As_{3}(8)$	Ga	1325	-65	-65	129	1.928909	1.928909	2.008779	1.955532
	As	-23	-35	-36	71				
$Ga_{2}As_{3}(9)$	Ga ₁	9	-32'	70'	-37'	1.938694	1.998779	1.901049	1.946174
	Ga ₂	1091	-86'	170	-83'				
	As_1, As_2	-4	58'	-33'	-25'				
	As ₃	-69	215'	-112'	-104'				
Ga ₂ As ₃ (expt.) ^c	Ga	1524	-87^{d}	-87	174	1.920019	1.920019	2.002319	1.947452
	As	-23	64.7^{e}						
Ga ₃ As ₂ (13)	Ga_1, Ga_2	125	-23'	-26'	49'	2.137374	1.987249	2.107289	2.077304
	Ga ₃	19	-62'	123'	-61				
	As_1	80	-115'	215'	-100				
	As ₂	-7	136'	-74'	-62				
$Ga_{3}As_{2}(14)$	Ga ₁	1735	-85	-71	156	1.930729	1.990819	2.015589	1.979046
	Ga ₂ , Ga ₃	203	-21	45'	-24'				
	As_1, As_2	-25	-61'	-56	116'				
$Ga_{3}As_{2}$ (15)	Ga ₁	-3	-28	81	-53	2.182694	2.259979	2.060344	2.167672
	Ga ₂ , Ga ₃	-17	-21'	35	-15'				
	As_1, As_2	87	-106	-109'	215'				
GaAs ₄ (18)	Ga	-153	4	17	-21	1.831289	1.994779	1.987599	1.937889
	As_1, As_2	-46	-156	308'	-152'				
	As_3, As_4	12	-10'	45	-36'				
Ga ₄ As (21)	Ga_1, Ga_2	-122	-89	177'	-88'	1.878779	1.980469	1.958849	1.939366
	Ga ₃ , Ga ₄	153	-34	-43'	76'				
	As	0.05	-13	-7	20				

^a See footnote b in Table 2. ^b Average of the three g-tensor components. ^c Ref 2. ^d A_{dip} reported as 87 MHz in ref 2. ^e See footnote j in Table 2.

The undiagonalized xx component is dominated by the coupling of $1^2A''$ ($3a'' \rightarrow 7a'$, SOMO-1 \rightarrow SOMO) with the ground state, but other states make large positive and negative contributions to Δg_{xx} (values given in the Supporting Information, Table 6S).

The largest components of Δg_{yy} , 1²A" and 3²A", are relatively small and of opposite sign, with a sum of -16 357 ppm. Although there are a number of other contributing states, the total undiagonalized Δg_{yy} is small (-18 080 ppm) since the positive and negative Δg components from these other excited states nearly cancel each other out.

The Δg_{zz} is dominated by coupling of the GS with $2^2A''$ (6a' \rightarrow 7a', SOMO-3 \rightarrow SOMO) and $4^2A'$ (5a' \rightarrow 7a', SOMO-4 \rightarrow SOMO). Large positive contributions from $5^2A'$ and $6^2A'$ are canceled by 3,7,8,9,17²A'.

3.3.7. Ga_3As_2 (14). Our calculations show that 14 lies only 0.02 eV above 13. According to Table 3, these two compounds can be easily distinguished experimentally by their *g*-tensors (and HFCC, discussed above). Although the Δg_{yy} components are similar for 13 and 14, both Δg_{xx} and Δg_{zz} are much larger for 13 than 14 (see Table 3). Fifteen roots were calculated for 14, as significant magnetic coupling was observed in the higher ²B₁ states of an initial 9-root calculation.

The Δg_{xx} value is governed by the coupling of 1^2B_2 and 3^2B_2 with the X²A₁ ground state (Table 4), both making large negative contributions to Δg_{xx} .

There are numerous contributions to Δg_{yy} , the largest being $1^{2}B_{1}$ ($2b_{1} \rightarrow 5a_{1}$, SOMO-3 to SOMO) and $3^{2}B_{1}$ ($5a_{1} \rightarrow 3b_{1}$, SOMO to LUMO+2), which almost cancel each other. The overall Δg_{yy} is relatively small, with most of the other small negative contributions (2,4,6,14²B₁) being negated by the positive contributions from $5^{2}B_{1}$ and $11^{2}B_{1}$ (values given in the Supporting Information, Table 7S).

The overall Δg_{zz} is also small, due to canceling contributions from pairs of states generated by three-open-shell configurations. Contributions to Δg_{zz} from 2²A₂ and 3²A₂, both having the same configuration, almost cancel each other: their ΔE values are nearly identical, and although the $\langle SO \rangle$ of 2²A₂ is ca. 70% larger than that of 3²A₂, the $\langle L \rangle$ value for 2²A₂ is ca. 80% smaller than that of 3²A₂ (and of opposite sign). The leading configuration for 4²A₂ and 5²A₂ is the same (1a₂ \rightarrow 6a₁, SOMO-2 to LUMO+1), but the respective Δg 's differ vastly in magnitude, due to mixing of configurations.

3.3.8. Ga_3As_2 (15). Structure **15** of Ga_3As_2 lies 0.18 eV above the lowest-energy structure **13**, so it is an unlikely competitor for the equilibrium structure. It has two very large components, Δg_{xx} and Δg_{yy} , both being positive, and a smaller but still positive Δg_{zz} . From such *g*-tensors, structure **15** can be easily distinguished from both isomers **13** and **14**. Twenty roots were calculated for **15** since significant magnetic coupling was observed in the higher ${}^{2}A_{1}$, ${}^{2}A_{2}$, and ${}^{2}B_{1}$ states of an initial 9-root calculation.

The Δg_{xx} component is composed mainly of positive couplings of 1^2A_1 ($5a_1 \rightarrow 2b_2$, SOMO-3 \rightarrow SOMO) and 2^2A_1 ($4a_1 \rightarrow 2b_2$, SOMO-4 \rightarrow SOMO) with the X²B₂ GS. Other large positive couplings from 3,4,6,10²A₁ are effectively canceled by 5^2A_1 and 12^2A_1 .

The Δg_{yy} component is dominated by coupling with 1^2A_2 (1a₂ $\rightarrow 2b_2$, SOMO-2 \rightarrow SOMO). The net contribution of higher states, making large positive and negative contributions to Δg_{yy} , is only -80 ppm.

Similarly, the Δg_{zz} component is governed by the coupling with 1^2B_1 ($2b_1 \rightarrow 2b_2$, SOMO-1 \rightarrow SOMO). A number of states contribute positively and negatively to Δg_{zz} , with a net contribution of about -4500 ppm.

3.3.9. *GaAs*₄ (18). For GaAs₄, one very large negative (Δg_{xx}) and two small negative (Δg_{yy} , Δg_{zz}) components were found. The Ga atom lies on the *z*-axis, and As₁–As₂ in the *yz*-plane; As₃ and As₄ lie in the *xz*-plane. Fifteen roots were calculated for **18** since significant magnetic coupling was observed in the higher ²A₁, ²A₂, and ²B₁ states of an initial 9-root calculation.

The Δg_{xx} component is dominated by coupling with 1^2A_1 (3b₂ \rightarrow 6a₁, SOMO to LUMO). Large negative contributions from 2,5²A₁ are effectively canceled by 4,9²A₁.

In contrast to Δg_{xx} , the overall Δg_{yy} and Δg_{zz} values are small due to canceling positive and negative Δg components from numerous excited states. For Δg_{yy} , large contributions from 1^2A_2 and 2^2A_2 are of opposite sign (three open shells) and nearly cancel. The next largest contributions arise from 5^2A_2 and 10^2A_2 , both being positive, effectively canceled by negative contributions from a number of states (values given in the Supporting Information, Table 9S).

The largest contributions to Δg_{zz} , from 1^2B_1 and 2^2B_1 , are again of opposite sign (one being of DOMO \rightarrow SOMO type, the other SOMO \rightarrow virtual MO). Next largest in magnitude are contributions from 8^2B_1 and 11^2B_1 , which have the same three-open-shell configuration. Due to other contributing states, the final Δg_{zz} is again relatively small.

3.3.10. Ga_4As (21). For this planar $C_{2\nu}$ structure of Ga₄As, all three Δg components are negative (as was the case for GaAs₄), with Δg_{xx} being large, and the other two much smaller. Fifteen roots were calculated for 21, as significant magnetic coupling was observed in the higher ²B₁ and ²A₂ states of an initial 9-root calculation.

For Δg_{xx} , the magnetic coupling is dominated by two excited states $(1,2^2B_2)$, both having the same two leading configurations $(5a_1 \rightarrow 4b_2 \text{ and } 3b_2 \rightarrow 5a_1)$ but opposite composition $(1^2B_2: 62\% \text{ and } 29\%; 2^2B_2: 29\% \text{ and } 63\%$, respectively). Both states contribute negatively, despite the dominant configuration of 2^2B_2 being of DOMO \rightarrow SOMO type.

The largest contributions to Δg_{yy} are from high-lying excited states (6,7,8²B₁). All of the states contributing significantly to Δg_{yy} had negative Δg components with the exception of 5²B₁, which is one of a pair of states (with 6²B₁) from a three-open-shell configuration (4a₁ \rightarrow 2b₁).

High-lying states also dominate Δg_{zz} , with the largest negative contributions from 6,7,12,14²A₂. The largest positive Δg contribution arises from 11²A₂, which has the same three-openshell configuration as 12²A₂ (3b₂ \rightarrow 3b₁), although neither state is dominated by this configuration (42% for 11²A₂, 60% for 12²A₂). The other state with a positive contribution to Δg_{zz} is 4²A₂, which has the same leading three-open-shell configuration as 6²A₂ (3b₂ \rightarrow 2b₁); here the \langle SO \rangle values are quite different and the ΔE 's differ by ca. 1 eV. The two Δg contributions are opposite in sign but very dissimilar in magnitude (see Supporting Information, Table 10S).

4. Vertical Excitation Energies

The first five vertical excitation energies for each irreducible representation and the corresponding leading configurations are given in Table 5 for all Ga_xAs_y (x + y = 3, 5) isomers within 0.2 eV of the lowest-energy structure. These isomers exhibit a high density of excited states, with all calculated excited states (up to 20 roots) lying within 5.5 eV of the ground state.

No theoretical or experimental vertical excitation energies are found in the literature, but calculated adiabatic values are reported for GaAs₂,^{11,13,15} Ga₂As,¹³ Ga₂As₃, and Ga₃As₂.¹⁸ For Ga₂As₃ and Ga₃As₂, the geometries of the adiabatic excited states reported in ref 18 are significantly different from the ground-state geometry, resulting in poor comparison with our vertical excitation energies. They will not be discussed any further.

For GaAs₂, Meier et al. reported an adiabatic excitation energy of 0.65 eV for $1^2A_{1,}^{11}$ in good agreement with the experimental (photoelectron spectroscopy) value of 0.694 ± 0.077 eV.⁴² This is significantly different from our vertical value of 1.47 eV, due to the much shorter Ga–As bond length of 2.49 Å in the adiabatic 1^2A_1 state, compared to the ground state.¹¹ The adiabatic value of ref 11 is in agreement with Balasubramanian's result for 1^2A_1 of 0.71 eV.¹³ The geometry of the 1^2B_1 state reported in ref 13, with a Ga–As bond length of 2.76 Å and an angle of 51.4°, is close to our ground-state geometry (2.775 Å, 46.5°), and the adiabatic energy of 2.08 eV is comparable with our vertical excitation energy of 2.27 eV. The 1^2A_2 state (2.90 Å, 46.5°) from ref 13 lies 1.09 eV above the ground state, close to our vertical excitation energy of 1.26 eV.

For Ga₂As (5), Balasubramanian reports adiabatic values of 0.19 and 0.22 eV for $1^{2}A_{1}$ (Ga-As = 2.47 Å, angle = 118.5°) and $1^{2}B_{1}$ (2.52 Å, 108.2°),¹³ similar to our respective vertical excitation energies of 0.17 and 0.33 eV. For both excited states, the optimized geometry is close to that of the ground state (2.407 Å, 79.9° (ref 13); 2.384 Å, 96.3° (this work)).

5. Summary and Conclusions

The main purpose of this paper was the study of EPR parameters for gallium arsenide clusters up to five atoms. Since not all geometries were known, and some were uncertain, in the first step all geometries were optimized for a number of possible structures.

For GaAs₂, the lowest-energy structure has $C_{2\nu}$ symmetry, in agreement with previous reports.^{10–15} For Ga₂As, a C_{2v} and a C_s structure are in competition, with the first one found 0.025 eV below the second one by Balasubramanian,15 and the opposite ordering, with a 0.02 eV gap, found by us. For Ga₂-As₃ we concur with the previous experimental² and theoretical^{14,16–18} evidence for a D_{3h} structure, although we find a C_s structure to lie only 0.08 eV above the D_{3h} one. For Ga₃As₂, the accepted structure was $C_{2\nu}$ ^{14,18} whereas we find a C_s structure, not previously considered, to be 0.02 eV lower in energy. For GaAs₄ and Ga₄As, no published geometry parameters could be found. In a paper by Piquini et al. a C_{2v} edgecapped structure was proposed for GaAs₄, and a $C_{2\nu}$ trapezoidal one for Ga₄As (no details of the geometry were given).¹⁹ In comparing them with other possibilities, we confirmed both of them to be the respective lowest-energy structures.

Properties were calculated for all structures lying up to 0.2 eV above the lowest-energy one; HFCC and *g*-tensor results are summarized in Table 6.

With both Ga and As having p-occupations, the SOMO of the cluster molecules is of p-type, and therefore only relatively small A_{iso} 's, proportional to the s-spin density, but large A_{dip} 's, related to the p-density, are expected. Using the atomic values of A_{iso} for 100% s-occupation as a yardstick, a 1% s-occupation, typical for the cluster molecules, gives $A_{iso}(^{69}\text{Ga}) = 122$ MHz and $A_{iso}(^{75}\text{As}) = 147$ MHz. Similarly, for a typical 30% p-occupation, A_{dip} values of about 136 MHz for ^{69}Ga and 222 MHz for ^{75}As are expected and have been found. Overall, A_{iso} and A_{dip} values are of similar magnitude, corresponding to highly anisotropic EPR spectra.

On the other hand, components of the *g*-shift (deviation from the electronic g_e) are relatively large. Using explicit sum-overstates expansions of second-order perturbation theory, values for the spin-orbit matrix elements on the order of 200-300 cm⁻¹ and low-lying excited states of about 1 eV lead to *g*-shifts of about 100 000 ppm, corresponding to changes in the *g*-factor by ± 0.1 . First-order perturbation contributions have not been calculated and are expected to be relatively small, on the order of several hundred ppm.

From our findings for HFCCs, we confirm the EPR spectral assignment of Ga₂As₃ to correspond to the D_{3h} structure, with the calculated $A_{iso}(^{69}Ga)$ lying about 13% below the experimental value. For the two structures of Ga₂As that are within 0.02 eV of each other, the highest $A_{iso}(^{69}Ga)$ values differ by a factor of 2. On the basis of this and other calculated values, a distinction by EPR should be easy. For Ga₃As₂, also having two structures 0.02 eV apart, the largest $A_{iso}(^{69}Ga)$ is 125 MHz for one and 1735 MHz for the other, again providing sufficient information for determining the correct structure based on EPR spectroscopy. Only one low-energy structure was found for GaAs₄ and Ga₄As, so the HFCCs obtained serve as prediction for future EPR studies.

A similar situation applies to the calculated *g*-tensors. Due to sufficiently large differences in the *g*-components, a distinction between the competing structures of Ga₂As should be possible. The calculated *g*-shifts for Ga₂As₃ lie within about 10% of the observed ones, again confirming the experimental assignment of a D_{3h} structure. For the two isomers of Ga₃As₂, close in energy, calculated *g*-shifts differ both in magnitude and sign, allowing for their distinction by EPR spectroscopy.

At this time, the calculation of hyperfine parameters is well established, and in most situations reliable HFCCs can be obtained by using density functional methods. For g-tensors, however, density functional methods are still somewhat unreliable, and in many cases poor results are obtained.³⁵ Also, for different functionals, the results can vary widely. On the other hand, the present study and many previous ones (e.g., refs 25, 27-29, 35) have shown that explicit second-order perturbation state-by-state methods based on MRCI wave functions lead to g-shifts usually within 10% of the observed ones. While such calculations are more expensive in terms of computer time, efficiencies in programming and advances in computer hardware allow for applications to larger systems. In future work, the present study of GaAs clusters is to be extended to larger ones, having up to 12 and more atoms. The more daunting prospect here is finding the appropriate geometry, as many more structures are competing for the lowest-energy isomer, with the increasing likelihood of missing some important starting structures.

Acknowledgment. This work was supported by a grant from the U.S. Air Force Office of Scientific Research (AFOSR) in Arlington, VA. We thank Major Daniel K. Johnstone for the award of the grant, and Dr. Shashi Karna for his help, encouragement, and discussions. We are grateful to Prof. Stefan Grimme at the University of Muenster for making his RI-MRCI programs available to us, and to Prof. Christel Marian at the University of Duesseldorf for permission to use the mean-field method for spin—orbit calculations. We also thank Dr. Pablo Bruna for helpful discussions and for reading the manuscript, and Alan Pickard and Andrew MacKay for help with geometry optimizations of the Ga_xAs_y clusters. A contribution from NSERC (Canada) is also acknowledged.

Supporting Information Available: Calculated values of ΔE , $\langle SO \rangle$, $\langle L \rangle$, and Δg (second order) for the first five excited states and those having a large magnetic coupling (>1000 ppm) with the ground state for GaAs₂ (1), Ga₂As (4, 5), Ga₂As₃ (8,

9), Ga_3As_2 (13, 14, 15), $GaAs_4$ (18), and Ga_4As (21) are available free of charge via the Internet at http://pubs.acs. org.

References and Notes

(1) Knight, L. B., Jr.; Hill, D. W.; Kirk, T. J.; Arrington, C. A. J. Phys. Chem. 1992, 96, 555.

(2) Van Zee, R. J.; Li, S.; Weltner, W., Jr. J. Chem. Phys. 1993, 98, 4335.

(3) Knight, L. B., Jr.; Petty, J. T. J. Chem. Phys. 1988, 88, 481.

(4) Knight, L. B., Jr.; Herlong, J. O. J. Chem. Phys. 1989, 91, 69.

(5) Stein, D.; v. Klitzing, K.; Weimann, G. Phys. Rev. Lett. 1983, 51, 130.

(6) Kauffmann, U.; Schneider, J.; Räuber, A. Appl. Phys. Lett. 1976, 29, 312.

(7) Wagner, R. J.; Krebs, K. J.; Strauss, G. H.; White, A. M. Solid State Commun. 1980, 36, 15.

(8) Kennedy, T. A.; Wilsey, N. D. Appl. Phys. Lett. 1984, 44, 1089.

(9) Kennedy, T. A.; Wilsey, N. D. Phys. Rev. Lett. 1978, 41, 977.

(10) Quek, H. K.; Feng, Y. P.; Ong, C. K. Z. Phys. D 1997, 42,

309.
(11) Meier, U.; Peyerimhoff, S. D.; Grein, F. Chem. Phys. 1991, 150, 331.

(12) Das, K. K.; Balasubramanian, K. J. Chem. Phys. 1991, 94, 6620.

(13) Balasubramanian, K. J. Phys. Chem. A 2000, 104, 1969.

(14) Lou, L.; Nordlander, P.; Smalley, R. E. J. Chem. Phys. 1992, 97, 1858.

(15) Balasubramanian, K. J. Chem. Phys. 1987, 87, 3518.

(16) Arratia-Pérez, R.; Hernández-Acevedo, L. J. Chem. Phys. **1998**, 109, 3497.

(17) Lou, L.; Wang, L.; Chibante, L. P. F.; Laaksonen, R. T.; Nordlander, P.; Smalley, R. E. J. Chem. Phys. **1991**, 94, 8015.

(18) Liao, M. Z.; Dai, D.; Balasubramanian, K. Chem. Phys. Lett. 1995, 239, 124.

(19) Piquini, P.; Canuto, S.; Fazzio, A. Nanostruct. Mater. 1998, 10, 635.

(20) Piquini, P.; Canuto, S.; Fazzio, A. Int. J. Quantum Chem. Quantum Chem. Symp. 1994, 28, 571.

(21) Balsubramanian, K.; Zhu, Z. J. Chem. Phys. 2001, 115, 8858.

(22) (a) Yang, C. Y.; Case D. A. In Local Density Approximations in Quantum Chemistry and Physics; Dahl, J. P., Avery, J., Eds.; Plenum: New York, 1983. (b) Arratia-Pérez, R.; Case, D. A. J. Chem. Phys. 1983, 79, 4939. (c) Arratia-Pérez, R.; Malli, G. L. J. Chem. Phys. 1986, 85, 6610.
(d) Arratia-Pérez, R.; Hernández-Acevedo, L.; Gómez-Jeria, J. S. Chem. Phys. Lett. 1995, 236, 37. (e) Pablo-Vásquez, J.; Arratia-Pérez, R. J. Phys. Chem. 1994, 98, 5627. (f) Arratia-Pérez, R.; Hernández-Acevedo, L.; Alvarez-Thon, L. J. Chem. Phys. 1998, 108, 5795.

(23) Arratia-Pérez, R.; Hernández-Acevedo, L.; Weiss-López, B. J. Chem. Phys. 1999, 110, 10882.

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.

(25) (a) Lushington, G. H.; Grein, F. J. Chem. Phys. 1995, 106, 3292.
(b) Lushington, G. H.; Bündgen, P.; Grein, F. Int. J. Quantum Chem. 1995, 55, 377. (c) Lushington, G. H.; Grein, F. Theor. Chim. Acta 1996, 93, 259.
(d) Lushington, G. H.; Grein, F. Int. J. Quantum Chem. 1996, 60, 1679. (e) Lushington, G. H. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 1996.

(26) Weltner. W., Jr. *Magnetic Atoms and Molecules*; Dover: New York, 1983.

(27) Bruna, P. J.; Lushington, G. H.; Grein, F. J. Mol. Struct. 2000, 527, 139, and references therein.

(28) Bruna, P. J.; Grein, F. J. Chem. Phys. 2000, 112, 10796, and references therein.

(29) Bruna, P. J.; Grein, F. Chem. Phys. 2002, 276, 1.

(30) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.

(31) (a) Grimme, S.; Waletzke, M. J. Chem. Phys. **1999**, 111, 5645. (b) Grimme, S.; Waletzke, M. Phys. Chem. Chem. Phys. **2000**, 2, 2075.

(32) Hess, B. A.; Marian, C. M.; Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365.

- (33) Schimmelpfennig, B. Atomic Spin-Orbit Mean-Field Integral Program; Stockholms Universitet: Sweden, 1996.
- (34) Kleinschmidt, M.; Tatchen, J.; Marian, C. M. J. Comput. Chem. 2002, 23, 824.
- (35) Brownridge, S.; Grein, F.; Tatchen, J.; Kleinschmidt, M.; Marian, C. M. J. Chem. Phys. **2003**, 118, 9552.
- (36) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
- (37) Luzanov, A. V.; Babich, E. N.; Ivanov, V. V. J. Mol. Struct. (THEOCHEM) 1994, 331, 211.

(38) (a) Vasiliev, I.; Öğüt, S.; Chelikowsky, J. R. *Phys. Rev. Lett.* **1997**, 78, 4085. (b) Vasiliev, I.; Öğüt, S.; Chelikowsky, J. R. *Phys. Rev. B* **1999**, 60, R8477.

(39) Lefebvre-Brion, H.; Field, R. W. *Perturbations in the Spectra of Diatomic Molecules*; Academic Press: Orlando, FL, 1986; Table 4.6, p 214.

(40) Lushington, G. H.; Grein, F. J. Chem. Phys. 1997, 106, 3292.

(41) Törring, J. T.; Un, S.; Knüpling, M.; Plato, M.; Möbius, K. J. Chem. Phys. 1997, 107, 3905.

(42) Taylor, T. R.; Gomez, H.; Asmis, K. R.; Neumark, D. M. J. Chem. Phys. 2001, 115, 4620.