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A theoretical formulation is presented for the dissociation of aromatic radical anions in solution, [Ar-X]•-

f Ar• + X-, and applied to the dissociation of thep-cyanochlorobenzene radical anion [CN-Φ-Cl]•- in
several solvents. Key ingredients of the description are (i) the inclusion of the conical intersection (CI) aspects
of the problem and (ii) the incorporation of nonequilibrium solvation (within a dielectric continuum solvent
description). The CI feature is critical for this cleavage in the ground electronic state, because the required
electronic coupling that allows the dissociation vanishes for a planar molecular geometry but is finite for
finite C-Cl bending angle. The nonequilibrium solvation aspect is required, because of the inability of the
solvent to equilibrate instantly to the changing molecular charge distribution during the radical anion dissociation
process. These features are illustrated via the [CN-Φ-Cl]•- dissociation reaction path in a dimethylformamide
(DMF) solvent, where C-Cl out-of-plane bending is required to avoid the CI intersection point, which leads
to a bent transition state, and where the solvent is shown to reorganize prior to the crossing of the transition
state. Reaction rate constants calculated via transition state theory (TST) are in reasonable agreement with
experimental values in several solvents. It is also found that intrinsic activation free energies vary linearly
with the homolytic bond dissociation energy of the radical anion, which is an experimentally observed feature.
Comparison with previous descriptions is given, and inclusion of the CI features of the dissociation is shown
to lead to large differences in the reaction activation free energy, which is related to the large electronic
coupling, and the energetic cost to bend the C-Cl angle to reach the bent transition state. Possible improvements
of the treatment, as well as extensions to other reaction problems, are discussed. Several of the theoretical
constructs required for the reaction rate constants and reaction paths implemented in the present paper are
developed in the second paper of this series,On the Dissociation of Aromatic Radical Anions in Solution. 2.
Reaction Path and Rate Constant Analysis.

1. Introduction

The cleavage of an aromatic radical anion into the corre-
sponding aromatic radicalAr plus an anionic nucleophileX,

is important in a range of chemical contexts, most prominently
for the SR,N1 radical chain mechanism of nucleophilic substi-
tution,1-4 which is of major interest for organic synthesis and
more generally connected with fundamental mechanistic ques-
tions in nucleophile-electrophile chemistry. Furthermore, aro-
matic radical anions are involved in the formation mechanism
of Grignard reagents5 and in DNA strand damage.6 These
dissociations have been the object of extensive investigation

both in experimentsvia electrochemical,3,4,7-12 pulse radioly-
sis,13-17 electron transmission spectroscopy18-21 and electron
spin resonance (ESR)22 techniquessand in theory,2,23-32 via
assorted techniques. In this paper, we construct a theoretical
description for this reaction class in solution and illustrate it
via calculation of the reaction paths and rate constants for the
thermal dissociation of thep-cyanochlorobenzene radical anion
([CN-Φ-Cl]•-) in several solvents for which experimental rate
data are available for comparison.

In this first effort, our efforts are focused on the phenyl ring
class of aromatic radical anions (as opposed to, for example, a
benzylic anion class). As shown in more detail within, this class
is characterized by the presence of aconical intersection(CI),
which has a crucial role in the dynamics. A CI is produced by
the crossing of electronic curves in one geometry but is an
avoided crossing at other geometries. Although such CIs are
the subject of much current attention in a photochemical
context33-41swhere they provide a “funnel” that connects the
excited electronic states with the ground statesthere have been
very few theoretical studies of the influence of a CI on a ground-
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[Ar-X]•- f Ar• + X- (1.1)
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state thermal reaction,33,42,43 and none in the presence of the
solvent. Therefore, the present work, together with our earlier
communication,44 provides the first theoretical study that
examines the impact of a CI on a ground electronic state thermal
reaction in solution. We draw attention to a very recent study
by Lorance et al43 on neutralN-methoxyheterocyclic radical
dissociations, where CIs are also involved; these reactions were
studied experimentally in solution and theoretically via vacuum
electronic structure calculations (also see ref 17).

Our general approach is one that has already been followed
by one of us for a variety of solution-phase charge-transfer
reactions that involves bond breaking and/or bond making,45

or more generally involving strong participation of reacting
solute nuclear coordinates.46 Vacuum electronic structure cal-
culations are used to generate certain electronically nonadiabatic
valence bond (VB) energy curves and the electronic coupling
between them. The latter are then applied in a formulation that
includes nonequilibrium solvation by the surrounding polar
solvent. This nonadiabatic perspective allows a formulation
which incorporates the critical feature47 that the solution phase
adiabatic wave functions differ electronically from their vacuum
values, because of electrostatic interactions of the reacting solute
with the polar solvent molecules. As will be shown, the
electronic coupling for the radical anion dissociation is large,
which is a typical and crucial feature for bond-breaking
reactions, in strong contrast to the simpler weak coupling
situation for outer-sphere electron-transfer reactions.48,49 The
nonequilibrium solvation description is required by the feature
that, typically, the solvent is out of equilibrium during the rapid
passage through the reaction transition-state (TS) region.45 This
important feature has not been adressed in those few semiem-
pirical electronic structure treatments of aromatic radical anion
dissociations that include solvation,25,30,50,51which, instead, adopt
an equilibrium solvation perspective.

Compared to other ground-electronic-state unimolecular dis-
sociations studied via this basic approach,45b-f the phenylic
radical anion case is distinguished by the CI phenomenon, which
is an aspect that also distinguishes the present work from the
pioneering theoretical studies by Save´ant,2,4,8,23 as discussed
within. With respect to the electronic structure aspects of the
problem, several semiempirical calculations exist,25,26 as do
several vacuum ab initio studies.27,30-32,43,52However, the latter
addresses neither the critical CI nor the solvation aspects,
whereas the former methodology, as will be shown, unfortu-
nately is generally unable to accurately and usefully describe
even the vacuum system in planar geometry, necessitating the
present ab initio approach. (In special circumstances, however,
semiempirical calculations can still be useful, vide infra.) A
distinctive and important feature of these ab initio calculations
is that they address the critical issue of the vacuum autoion-
ization of the radical anions; the anions are unstable, with respect
to electron detachment ([ArX]•- f ArX + e-) in the vacuum,19

which is an aspect that requires special techniques.
The outline of the remainder of this paper is as follows.

Section 2 involves a variety of general considerations, including
issues of the electronic states involved and the electronic
coupling (and the key coordinate involved: the C-Cl bend) to
produce the CI features, as well as the choice of the paradigm
molecule ([CN-Φ-Cl]•-) for study. In Section 3, we present
the results of vacuum ab initio calculations, which provide the
explicit essential required ingredients, such as the diabatic energy
curves and the coupling between them, culminating in the picture
of the ground adiabatic potential energy surface with a bent
transition state for the reference vacuum dissociation. Section

4 addresses the radical anion dissociation in solution, where
the reaction actually occurs, including the basic formulation and
the evaluation of the ingredients required for its application.
Calculation of the anion dissociation rate constants in several
solvents is presented in Section 5, as are comparisons with
experiment. The similarities and differences of our approach
and previous work are also discussed. Concluding remarks are
given in Section 6.

In a companion paper53 (hereafter referenced as “II”), we
analyze the reaction paths and rate constant ingredients in detail.

2. General Considerations

In this section, we discuss some key aspects of the electronic
states that are involved in the dissociation, together with assorted
criteria resulting in the selection of a particular radical anion
for the present study.

2.1. Electronic States.Three electronic states are to be
considered for the thermal radical anion dissociation (eq 1.1).
The first two are theπ* states that arise from the degenerate
lowest unoccupied molecular orbital (LUMO) state of benzene,
noting that the degeneracy is lifted upon adding a substituent
in the ring. These states are labeled2A2 and2B1 in C2V geometry,
i.e., referring to a planar reference geometry of the molecule.
For suchπ* states, the excess electron is localized mainly in
the ring. The remaining state is the one withσ* excitation,
namely2A1. Here, the excess electron is essentially localized
in the C-X bond and the2A1 state leads to dissociation of an
X- ion, i.e., (Ar-X)•- f Ar• + X-; asymptotically, this2A1

state thus corresponds to the phenyl radical ground state.54 The
three potential energy curves are schematically illustrated in
Figure 1a, for a situation of planar geometry and with2B1 being
more stable than2A2.

All these electronic states are autoionizing in the gas phase,
i.e., the process (Ar-X)•- f (Ar-X) + e- intervenes, resulting
in lifetimes on the order of femtoseconds.19,55,56However, in

Figure 1. Schematic electronic-state patterns and energies for a phenyl
radical anion versus the dissociation coordinater: (a) in the planar
geometry and (b) in a bent geometry. NB: in some compounds, the
2B1 state may not be below the2A2 state (see Section 2.3).
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solution, autoionization should not have a role, because of the
stabilization of the ion by the polar solvent, and the much slower
dissociation process dominates.57,58

2.2. Electronic Coupling.For a phenyl radical anion in planar
C2V geometry, there is noπ*-σ* electronic coupling, and a
symmetry-breaking coordinate motion is required for a finite
coupling inducing an avoided crossing and allowing the reaction
(cf. Figure 1b). These are just the conditions to have a CI
between the potential energy surfaces that correspond to either
the 2A2 or 2B1 state and the dissociative2A1 state.

The symmetry-forbidden nature of the cleavage in planar
geometry was noted long ago for [Φ-Cl]•- in the gas phase.28,59

In a manner that is similar to that for haloethylene radical anions,
the π*-σ* intramolecular electron transfer occurs viaπ*-σ*
vibrational coupling.20,60 This symmetry-breaking motion was
suggested to correspond to the out-of-plane halogen wag;8,20

this was confirmed in the case of [Φ-Cl]•- by recent gas-phase
experiments32 and calculations,31 which showed that this out-
of-plane vibration strongly couples the2B1 and 2A1 states.61

Qualitatively, this can be understood by considering thea2π*,
b1π*, anda1σ* orbitals (Figure 2): there is no overlap between
the pairsa2π*/a1σ* andb1π*/a1σ* in C2V geometry, but an out-
of-plane displacement of the halogen leads to a nonvanishing
overlap, and thus mixing, between theb1π* anda1σ* orbitals.62

Thus, the reaction model that we develop within this work
centers on the out-of-plane wagging coupling mode, and its
explicit inclusion is one of the novel aspects of our treatment.44,63

Thus, a relatively simple two-state picture emerges, involving
2B1-2A1 coupling, provided that several conditions are ful-
filled: (i) the 2B1 state is the radical anion ground state; (ii) the
2B1 and2A2 states are reasonably well-separated, such that the
2A2 state is not thermally accessible; and (iii) the anion
equilibrium geometry is planar, such that the states mix only in
the course of the dynamical process. We next try to select a
suitable “paradigm molecule” for our study, guided by the
conditions described in points (i)-(iii), which prevent the
situation from becoming exceedingly complex.

2.3. Choice of “Paradigm Molecule”. Our paradigm mol-
ecule choice will be thep-cyanochlorobenzene radical anion
[CN-Φ-Cl]•-, as described below. Readers who are only
immediately interested in the result of that choice may safely
proceed to Section 2.4.

Condition (i) requires that the2B1 state should be much more
stable than the2A2 state. In benzene, these two states are
degenerate; therefore, this assurance will be achieved through
the addition of one or more substituent(s) on the ring, with well-
chosen inductive- and resonance-donating or withdrawing
properties. Because the inductive effect involves theσ electrons
close to the substituent, it affects the2B1 and 2A2 states in a
similar fashion but not the dissociative2A1 state. On the other
hand, the resonance effect affects theπ system that neighbors
the substituent: in the2A2 state, the orbital exhibits a node on
the substituent-bearing C atom, whereas, in the2B1 state, the
electronic density is high on this C atom; therefore, the
resonance effect only influences the2B1 state. Those qualitative

predictions have been experimentally confirmed for radical
anions for several substituents.19,55

With these considerations in mind, we first consider the
simplest anion, which has only a halogen substituent, e.g., the
chlorobenzene radical anion. The Cl atom already lifts the2B1-
2A2 degeneracy; however, it is only a weak resonance donor
and the2B1 and 2A2 states are still almost degenerate. This is
confirmed experimentally21 and by our ab initio calculations,
which are presented elsewhere,63 which show, in addition, that
there is a fundamental difficulty with [Φ-Cl]•- for our present
purposes.64 In contrast to the neutral species,65 these ab initio
results indicate that there isno equilibrium geometry for the
anion: the ground state is nonbonding, first bending and then
dissociating without any barrier.66,67

Because conditions (ii) and (iii) are thus not satisfied for the
simple chlorobenzene anion, we look for the adequate substituent
for the paradigm compound.68,69 The nitro substituent is ruled
out, because its strength as an inductive withdrawer is so strong
and stabilizes the2B1 state so much more than the2A1 state
that the dissociation can occur on the same time scale as other
bimolecular processes.2,8,14 The acetophenone radical anion
could be another candidate, because its cleavage is well-
documented experimentally;8,15,16,70however, this system is too
large to be studied with the required ab initio methods. The
p-cyanochlorobenzene radical anion [CN-Φ-Cl]•- is another
potential paradigm molecule. Indeed, the resonance withdrawer
effect of the cyano should ensure that the reactant ground state
is 2B1, whereas its inductive withdrawer power should lead to
a dissociation reaction that is neither diffusion-limited nor in
competition with other processes. These qualitative consider-
ations are confirmed both experimentally, where the measured
rate constant is in the 107-109 s-1 range,8,9,12,13,71-73 and by
our ab initio calculation results described in Section 3.2.1, which
indicate that2B1 is 9 kcal more stable than2A2. Furthermore,
the calculated equilibrium geometry is planar,74 in contrast to
[Φ-Cl]•-.

From the aforementioned considerations, we select [CN-
Φ-Cl]•-, for the following reasons. For this species, we know
from the ab initio calculations (to be discussed in Section 3.2)
that (i) the2B1 state is the electronic ground state, (ii) this state
is sufficiently separated from the2A2 state, and (iii) the ground-
state geometry is planar. These are the basic requirements for
an analysis in terms of a two-state model, with the electronic
coupling of2B1-2A1 allowing the dissociation that was devel-
oping during the dynamics (see the end of Section 2.2).
Furthermore, the dissociation rate should be sufficiently high
that other deactivation routes for the anion do not have any
roles, and experimental rate data are available in several room-
temperature solvents for comparison.8,9,12,13,70-73,75

2.4. Diabatic versus Adiabatic Representation.The gener-
ally split adiabatic surfaces (see Figure 1b) are defined in the
conventional sense, i.e., as solutions to the electronic Schro¨d-
inger equation, in the Born-Oppenheimer approximation, thus
corresponding to the results obtained from electronic structure
calculations. Focusing solely on the ground (g) and (first) excited

Figure 2. Simplified schematic for thea2π* and a1σ* orbitals (left), and theb1π* and a1σ* orbitals (right).
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(e) adiabatic states, the wave functions areΨg(r,θ) and Ψe-
(r,θ), wherer denotes the distance between the chlorine and
the proximate ring carbon, andθ is the angle between the ring
plane and the C-Cl bond. In this representation, the nonadia-
batic coupling betweenΨg(r,θ) andΨe(r,θ) is then of kinetic-
energy type; it becomes singular at a CI, which makes this
representation computationally inconvenient.41d

A more convenient representation for the present purposes
is the diabatic representation. Focusing only on the coupled
states in Figure 1, the diabatic wave functions would beψB-
(r,θ) and ψA(r,θ). The adiabatic-diabatic representation con-
nection is then

where thec parameters are appropriate geometry-dependent
coefficients. The explicit construction of a suitable diabatic
representation in the vicinity of a CI has been much dis-
cussed.39,41b-e In the diabatic picture, the surfaces vary with
respect to a “tuning” coordinate (here, the carbon-halogen
separationr, which is located at the crossing of the two surfaces
(cf. Figure 1), and they are coupled and split by a potential-
like term that depends on the coordinate associated with the
“coupling mode”, in our case, the wag angleθ. This electronic
coupling, here calledâ, arises from the mixing ofπ* and σ*
orbitals, as discussed in Section 2.2 in bent geometries.

We construct a diabatic model for the coupled energy surfaces
pertaining to the radical anion dissociation in a vacuum,76 of
the following form:

such that the ground and excited adiabatic potentials are

Here, the B and A superscripts refer to the uncoupled (i.e., in
the absence of any electronic coupling)2B1 and2A1 states. Thus,
we have the vacuum diabatic potentialsVB(r,θ) andVA(r,θ) and
the vacuum couplingâ(θ).

A convenient prescription to define the diabatic states
explicitly relies on a Taylor expansion of the adiabatic surfaces
about the CI. It is often sufficient to include a coupling term
linear in the coupling mode, i.e.,

with the coupling parameterb obtained from the slope of the
adiabatic surfaces as the degeneracy is lifted away fromθ )
0.41c The fact that linear coupling gives the dominant effect is
characteristic of many CI problems.41d-f,77

In general,â should also be regarded as a function of the
C-Cl bond lengthr, presumably increasing asr decreases, for
fixed finite angleθ, because of the increasingπ*-σ* overlap.
Unfortunately, we have no information from the ab initio
calculations about this dependence, and we have no method that
we consider reliable to estimate it. Its impact near the planar
reactant geometry should not be important, because the coupling
will vanish due to itsθ dependence. At large separationsr,
where the coupling should vanish as the orbital overlap vanishes,
our treatment will overestimate the coupling; however, because
the 2B1-2A1 gap also increases at larger values, the impact

should not be serious (and larger values are, in any event, not
our focus). However, the impact in the transition-state (TS)
neighborhood may not be completely negligible, and this
limitation must be kept in mind.

In our formulation, we will use the aforementioned simple
diabatic representation, with the understanding that the corre-
sponding parameters will be eventually obtained from electronic
structure calculations for the vacuumadiabatic surfaces (see
Section 3). In particular, when using the “tuning mode”r and
“coupling mode”θ as the vacuum coordinates, the information
required in the linearized scheme consists of (i) the adiabatic
potential slopes atθ ) 0 (C2V geometry), i.e.,κg,e ) (∂Vg,e/
∂r)r)rCI, and (ii) the parameterb in eq 2.4, giving the linear
increase 2b of the gap between the adiabatic surfaces at the CI:
∆V ) Ve(rCI,θ) - Vg(rCI,θ) ≈ 2bθ. With these parameters, the
adiabatic/diabatic mixing angle, which is defined41c as ø(r,θ)
) 1/2 arctan{2bθ/[(κg - κe)r]} determines the adiabatic/diabatic
transformation,

which is a more explicit version of eq 2.1.
2.5. Analytic Diabatic Potential Models.For the discussion

of the gas-phase surfaces, and especially for the treatment of
the solution-phase reaction, we require analytic representations
for the diabatic potentialsVB andVA in eq 2.3.

For the energy variation in phenyl-halogen coordinater, we
adopt a Morse potential for the2B1 state, and an exponential
dissociative potential for the2A1 state. To both of these
potentials, we add a harmonic potential for the wag coordinate,
with the same force constant for the2B1 and2A1 states. Hence,

Several approximations are involved in eq 2.6, which we now
discuss.

We have assumed that the potential alongθ is purely
harmonic for the diabatic states. A quartic component may be
added, which would become dominant for largeθ angles.78

However, for the TS geometries, we will find, in Section 3.3,
that the angle remains relatively small (<30°); therefore,
incorporation of such a component does not seem to be critical.

We have also assumed that the force constantkθ is the same
in the bound2B1 state and in the dissociative2A1 state. However,
the charge distribution found in Section 3.2 is different in those
two states: for the2B1 state, the charge is delocalized on the
entire aromatic ring, whereas for the2A1 state, the charge is
more localized on the Cl group. Because the2A1 state is
dissociative, the force constant is probably somewhat smaller
than that in the2B1 bound state.

Finally, we have assumed that the wag force constantkθ in
eq 2.6 is independent of the dissociation coordinater. In fact,
it must decrease at larger, where there is no longer any restoring
torque for the angular motion of the Cl atom.79 However, the
fractional extension ofr from its equilibrium value to its TS
value in solution is on the order of 10%, and this neglect should
not be grossly in error.

3. Gas-Phase Surfaces

In this section, we examine the gas-phase aspects of the
radical anion dissociation problem; we describe the electronic

Ψg,e ) cg,e
B (r,θ) ψB(r,θ) + cg,e

A (r,θ) ψA(r,θ) (2.1)

V(r,θ) ) (VB(r,θ) â(θ)

â(θ) VA(r,θ) ) (2.2)

Vg,e(r,θ) )
VB(r,θ) + VA(r,θ)

2
-

1
2
x(VA(r,θ) - VB(r,θ))2 + 4â(θ)2 (2.3)

â(θ) ) bθ (2.4)

Ψg ) cosø(r,θ)ψB(r,θ) - sin ø(r,θ)ψA(r,θ)

Ψe ) sin ø(r,θ)ψB(r,θ) + cosø(r,θ)ψA(r,θ) (2.5)

VB(r,θ) ) V0
B + De

B{1 - exp[-aB(r - req
B )]}2 + 1

2
kθθ2

VA(r,θ) ) V0
A + De

A exp(-aAr) + 1
2
kθθ2 (2.6)
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structure methodology that has been used, the vacuum potential
energy curves and the coupling between them, and the force
constant for the C-Cl bend. The two-dimensional ground-state
surface is then discussed, together with the rate constant.

3.1. Ab Initio Methodology. Semiempirical methods were
proven to be unreliable when applied to the different systems
considered in Section 2.3. In particular, as already noted for a
related compound in the work by Fontanesi,80 the semiempirical
2A1 state is erroneously predicted to be bound alongr,25b,63but
it corresponds to a dissociativeσ* state. In addition, in the
[Φ-Cl]•- case, semiempirical methods yield a stable reactant
geometry,25b in contradiction with the result of the more-refined
ab initio methods detailed below.

This forces the utilization of ab initio methodology for the
[CN-Φ-Cl]•- anion. However, a difficulty does exist, from
the ab initio perspective: all the electronic states are autoionizing
in the gas phase ([Φ-X]•- f Φ-X + e-, i.e., with lifetimes
on the femtosecond scale.19,55In contrast, autoionization should
not have a role in solution, because of solvent stabilization of
the anion. Therefore, it would be convenient to refer to a
“modified vacuum Hamiltonian”, with the autoionization process
inhibited, as done in Section 2.4. The difficulty is then to
perform ab initio calculations in such a way that the system is
stabilized (i.e., the electronic states become bound) but the
potential energy surfaces are not modified in an uncontrolled
way.

Among the different suitable techniques that are available to
study autoionizing species, we adopted the “complex absorbing
potentials” (CAPs) method.81 The idea is to allow autoionization
but to absorb the escaping electron by the CAP, which is an
absorbing potential-iW that is added to the physical Hamil-
tonianH:

where W is typically a real “soft” boxlike potential in the
electron dissociation coordinateRandη is a strength parameter.
The eigenvalues ofH(η) correspond to the complex Siegert
energies of the resonant states:

whereEr is the real part of the energy that we will use in the
solution model, andτ is the state lifetime.

The first step of the computation is a self-consistent field
(SCF) calculation on the neutral molecule, performed with the
MOLCAS5 package82 with Dunning’s double-ú basis set83

augmented with one d-type polarization function and a (1s6p)/
[1s5p] set of diffuse functions on the heavy atoms. The
resonance-state wave functions are then constructed from the
set of all configurations that describe the N-electron target plus
an extra electron: (target)N(nφ*) 1, whereφ* is an orbital of
appropriate symmetry. Thus, the target electrons are frozen in
their SCF orbitals, and, loosely speaking, this static-exchange
assumption is analogous to Koopmans’ theorem84 for positive
electron affinities.

The specific CAP form that we used is the box-CAP that
was suggested by Santra et al.,85 where the CAP box size has
been set to the maximum component of the respective nuclear
coordinates plus 2.5 bohr in each Cartesian direction. The CAP
Hamiltonian is then diagonalized repeatedly for different CAP
strengthsη. All described resonance states can be identified at
all investigated geometries from theη-trajectories of their
complex energies that stay close to the real axis and show
stabilization cusps.

3.2. Ab Initio Results. 3.2.1. Results.Ab initio data points
have been calculated for the three electronic states2B1, 2A2,
and 2A1, along r for θ ) 0, i.e., in the planar geometry, and
alongθ for r similar to its value at the CI (see Figure 3). These
data have been fitted using eqs 2.6 and 2.4, with the fit
parameters collected in Table 1.

The 2B1 state is the anion electronic ground state and lies
well below the2A2 state, which is a feature anticipated in the
discussion of Section 2.3 (concerning substituent effects). The
ab initio calculated2B1-2A2 gap is∼9 kcal and remains almost
constant over a range ofr distances between the equilibrium
geometry and the2B1/2A1 intersection point (see Figure 3c).

To a good approximation, the gap between the coupled2A1

and2B1 states increases linearly along the angleθ, as assumed
for the diabatic couplingâ(θ) ) bθ (cf. eq 2.4); the gap is given
by ∆(θ) ) 2bθ, and one can determine the coupling parameter
b value, given in Table 2.

3.2.2. Force Constant for the Out-of-Plane Bend.The
potentials alongθ also serve to determine the force constantkθ
in the assumed harmonic out-of-plane bend potentialVθ )
1/2kθθ2. We now discuss several pieces of information that allow
us to fix a range of values that we would expect forkθ.

In terms of ab initio calculations, we only have force constant
information on the2A2 state. Indeed, in the2B1 and2A1 states,
for small θ values, the potential energy contribution from the

H(η) ) H - iηW (3.1)

Eres) Er - i( p
2τ) (3.2)

Figure 3. Fitted ab initio data for [CN-Φ-Cl]•- (a) alongr for θ )
0 and (b) alongθ for r values similar to its value at the conical
intersection (CI).

TABLE 1: Parameters of the Morse and Dissociative
Exponential Forms Used for the2B1, 2A2, and 2A1 Statesa of
[CN-Φ-Cl]•-

value

parameter 2B1 state 2A1 state 2A2 state

V0 (kcal) 38 -7 49
De (kcal) 114 1074 108
a (Å-1) 1.47 1.29 1.60
req

B (Å) 1.76 1.75

a See eq 2.6.
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quadratic bend potential1/2kθθ2 is so small, compared to the
linear electronic coupling energybθ, that no reliable information
on kθ can be extracted from the fit of the ab initio data. Theθ
curvature of theA2 state, evaluated atr ) rCI, is reported in
Table 2. We consider this to be a lower bound, because the
force constant should decrease somewhat asr increases.86

Another estimate forkθ can be obtained by a normal-mode
analysis at the anion equilibrium geometry and the approxima-
tion that the wagging local-mode frequency can be identified
with the relevant normal-mode frequency. This leads to an
estimate ofkθ = 34 cal/deg2, to be compared to the valuekθ =
23 cal/deg2 that was just estimated using the2A2 state
curvature.63

In conclusion, it would seem reasonable to consider a force
constant range of 23-34 cal/deg2, with a preference for the
former value of 23 cal/deg2.

The reduced mass for theθ coordinate is the moment of
inertia of the Cl atom in its angular motion, which depends on
the ring-Cl-group distance,r. For simplicity, we fix its value
at that for the transition state (TS).87

3.2.3. Charge Distributions.Finally, our calculations provide
some information on the charges and dipole moments that are
associated with the different electronic states of [CN-Φ-Cl]•-,
which will be exploited for the solution calculation, because
they govern the important reacting solute-solvent interaction.
The calculations provide estimates for the atomic charges and
the dipole moments for the different electronic states, all data
being for the2B1 state equilibrium geometry (cf. Table 3).

We will consider the neutral cyanochlorobenzene molecule
for comparison, where we find that the Cl atom is practically
neutral, whereas in all electronic states of the anion, it is more
negative than in the neutral, and substantially moreso in the
dissociative2A1 state (although Table 3 indicates that, in the
latter, the Cl charge is not-1; we will return to this point in
Section 4). At the same time, the dipole moment is much larger
in this state. The data for the2B1 and2A2 states are not identical
but are similar to each other. As will be discussed in Section
4.2, the solvation energies for these two bound states are mainly
due to the total point charge, whose magnitude is similar in the
two states, and the dipole moment difference will be too small
to change the bound-state ordering. Therefore,2B1 should remain
lower in energy than2A2 in solution; this important conclusion
will allow us to continue to focus in solution on the2B1 and
2A1 states. The detailed impact of the [CN-Φ-Cl]•- charge

distribution on the reaction characteristics will be described in
detail in Section 4.

3.3. Ground Adiabatic Potential in the Gas Phase.The
gas-phase potential energy surface for [CN-Φ-Cl]•-, using
the results and considerations of Sections 3.2.1 and 3.2.2, is
shown in Figure 4. Although, as noted in Sections 2.1 and 3.1,
the anion will autoionize in the gas phase, this surface is,
nonetheless, instructive.

The topology corresponds to a CI: there is an actual surface
crossing in planar geometry and avoided crossings in all “cuts”
of the potential surfaces forθ * 0. During the course of the
thermal dissociation, the CI is approached “from below”, and
the cone topology deflects the trajectories. In the parlance of
Robb et al.,33 it corresponds to a “peaked conical intersection
with a horizontal moat”, where the dynamics is confined to the
“moat” of the CI, which is a perspective previously discussed
by Rettig in connection with twisted intramolecular charge-
transfer reactions in solution.88

Because the trajectories are forced to circumscribe the cone,
the process isadiabatic: the electronic coupling influence is
predominant over that of the wag force constant.89 At the CI,
when θ increases from zero, the energy decrease due to the
stabilization by the increasing coupling is larger than the energy
increase, because of the moving away from the wag harmonic

TABLE 2: Characteristic Data for [CN -Φ-Cl]•-

parameter value

gap between2B1 and1A1 states atr0(B1), ∆a 63 kcal
wag force constant in the bound

uncoupled2A2 state,kθ(2A2)
23 cal/deg2

coupling parameter,b 0.62-0.75 kcal/deg
equilibrium position parameter,xb 0.53
vacuum reaction energy,∆rV -45 kcal

a ∆ ) |VA(req
B , 0) - VB(req

B , 0)|. See ref 116.b x ) 2b2/(kθ∆).

TABLE 3: Charges and Dipole Moments in the Different
Electronic States of [CN-Φ-Cl]•-, Each Fixed in Its
Equilibrium Geometry for the Neutral a

charge

state qCl qring qCN

dipole moment,
µ (D)

neutral 0.02 0.13 -0.15 2.9
2B1 -0.12 -0.55 -0.33 5.1
2A2 -0.08 -0.69 -0.23 3.6
2A1 -0.43 -0.34 -0.23 3.2

a The origin of the dipole moments is the center of mass.

Figure 4. Gas-phase potential energy surface for [CN-Φ-Cl]•- with
kθ ) 28 cal/deg2: (a) three-dimensional representation and (b) contour
plot with a 2 kcal spacing between two successive contour lines. (Note
that the actual well inθ for larger values should be softer inθ, because
we assumed thekθ force constant to be independent ofr.) The trajectory
plotted in panel a corresponds to the virtual gas-phase dissociation,
which never occurs, because the electron ejection is faster.

TABLE 4: Influence of the Force Constant (kθ) and the
Coupling Parameter (b) on the Gas-Phase Transition State
Location, Prefactor Avac, Activation Energy (∆Vq), and Rate
Constant (k300K)

kθ

(cal/deg2)
b

(kcal/deg)
rq

(Å)
θq

(deg)
Avac

(× 1013 s-1)
∆Vq

(kcal/mol)
k300K

(s-1)

23 0.62 2.14 27 1.7 12.8 7.5× 103

35 0.62 2.14 19 1.9 15.6 7.2× 101

23 0.75 2.14 33 1.1 8.9 3.5× 106
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potential’s equilibrium position. However, for very large angle
values, because, by assumption, the coupling is linear, and the
wagging potential is quadratic inθ, the potential increases again
(see Figure 4).

Table 4 collects the rate constants that are calculated in the
transition state theory (TST) description90 and are derived in
II:

which involves the perpendicular normal-mode frequencyω⊥
q

at the bent transition state and the mode frequenciesω|
R and

ω⊥
R parallel and perpendicular to the reaction path in the

reactant. There are two independent and symmetric transition
states, located at+θq and-θq, because the Cl atom can wag
either above or below the ring plane. These two paths are
independent, because they are very far apartse.g., in the most
reasonable case in Table 4,θq = (27°swhich is the origin of
the factor of 2 in eq 3.3.

The aforementioned vacuum results will be used in Section
5 to gain perspective on the reaction in solutionswhere the
reaction actually occurssand we limit our remarks here to two
important points. First, we note that, at the transition state, the
parallel (i.e., along the reaction path) and perpendicular normal
modes almost coincide with ther and θ modes, respectively.
As we will see, this need not be the case in solution. Second,
the electronic coupling magnitude only depends on the angleθ
in our description. In our range ofkθ andb values, the coupling
at the vacuum TS varies betweenâ ) 12 kcal/mol and 25 kcal/
mol, such that the reaction always remains very strongly
electronically adiabatic. This order of magnitude of electronic
coupling is consistent with other reactions that involve bond
breaking.45a-c

4. Solution-Phase Reaction

4.1. Formulation. 4.1.1. General PerspectiVe.We now turn
to the formulation of the radical anion dissociation problem in
solution, where the reaction actually occurs, for which we adopt
a dielectric continuum solvent model. There are two key
ingredients beyond the gas-phase issues addressed and informa-
tion obtained in the previous sections: the electronic structure
of the reacting solute, and the nonequilibrium state of the
solvent.

The first ingredient centers on the fundamental feature that
the anion’s electronic structure, at different values of the
separationr and the bending angleθ, is altered in the presence
of a polar solvent, compared to the vacuum. Thus, for example,
one cannot simply consider that the anion at different points of
the calculated electronically adiabatic surface shown in Figure
4 should simply now be solvated. A natural way to describe
the actual state of affairs is to retain the diabatic perspective of
Section 2.4. In the vacuum, the adiabatic wave function is
generated by the mixing of the diabatic wave functions by the
electronic coupling, as in eqs 2.1 and 2.5. In solution, the mixing
of these states to produce the adiabatic state is, in addition,
influenced by electrostatic interactions with the solvent, because
of thedifferentcharge distributions associated with these diabatic
states. Thus, the ground (adiabatic) electronic wave function
of the anion in solution is a different linear combination of the
vacuum diabatic wave functions than that in the vacuum.

The second ingredient concerns the nonequilibrium polariza-
tion state of the solvent. Although much theoretical work
involves the characterization of the electronic structure of a
solute in equilibrium with the surrounding solvent91sthe solvent
polarization is in equilibrium with the solute’s charge distribu-
tion at all timessthis is generally inappropriate. In the present
problem, the critical solute nuclear motions involved in the
reaction dynamics are too rapid for the solvent to remain in
equilibrium with the dissociating anion’s changing charge
distribution, and nonequilibrium solvation must be addressed.

The solvent nonequilibrium polarization state is characterized
in our description by the solvent coordinates, described further
below, which gauges the electric nuclear (e.g., orientational)
polarization in the solvent. Because one coordinate is a reduced
description compared to a full many-body description, the
solution surfaces of interest are free-energy, rather than energy,
surfaces, whose composition is now described.

We continue to adopt the diabatic perspective for the radical
anion, and the solution electronically ground and excited-state
adiabatic wave functions are expressed as linear combinations
of the vacuum diabatic wave functions

where the coefficientscB(r,θ,s) and cA(r,θ,s) depend on the
solvent coordinates. Thus, the composition of the adiabatic
states in solution, in terms ofψB andψA, depends on the solvent
coordinates, which gauges the solvent polarization. In such a
description, solvent effects are added in terms of a diagonal
contributionGB,A that is dependent ons,92,93

such that the ground-state free-energy surface is

in analogy to the gas-phase version in eq 2.3. Because we will
only be concerned with the ground state, we drop the subscript
g notation. The occupation probabilities of the diabatic states
[cB,A(r,θ,s)]2 in the adiabatic solution wave function shown in
eq 4.1 are given by

Here, VB,A(r,θ) are the diabatic state vacuum energies (see
Section 2.4), whereas∆Gs

B,A(r,θ;s) are additional free-energy
contributions that result from the interaction of the diabatic-
state charge distribution with the solvent polarization, and the
“self free energy” of the solvent (which is related to the
interaction between the electric polarization in two small
elements of the solvent, summed over the elements). If the
solvent polarization were in equilibrium with the charge
distribution of the diabatic state (B, A), then∆Gs

B,A(r,θ; s)
would reduce to the equilibrium solvation free energy∆Gs,eq

B,A.94

k ) 2(ω|
R

2π)(ω⊥
R

ω⊥
q) exp(- ∆V‡

kBT)
) Avac exp(- ∆V‡

kBT) (3.3)

Ψ ) cB(r,θ,s) ψB(r,θ) + cA(r,θ,s) ψA(r,θ) (4.1)

G(r,θ; s) ) (VB(r,θ) + ∆Gs
B(r,θ,s) â(θ)

â(θ) VA(r,θ) + ∆Gs
A(r,θ,s) )

) (GB(r,θ,s) â(θ)

â(θ) GA(r,θ,s) ) (4.2)

Gg(r,θ,s) )
GB(r,θ,s) + GA(r,θ,s)

2
-

1
2
x(GA(r,θ,s) - GB(r,θ,s))2 + 4(â(θ))2 (4.3)

[cB,A(r,θ,s)]2 )

1
2[1 (

GA(r,θ,s) - GB(r,θ,s)

x(GA(r,θ,s) - GB(r,θ,s))2 + 4(â(θ))2] (4.4)
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We will decompose∆Gs
B,Asand, thus,GB,Asinto equilibrium

and nonequilibrium solvation contributions below.
We pause to note that our basic perspective, and the results

which follow from it below, has been previously applied to VB
wave functions,45,46,96which are particular diabatic wave func-
tions, each with a definitefixedcharge distribution (or at least
one that, even if varying with an internal coordinate such asr,
is independent of the solvation97); the latter requirement would
guarantee that the wave functionsψB and ψA in eq 4.1 are
precisely independent ofs. Here, we apply the formulation to
the diabatic states we have previously discussed; the issue of
any possible solvent dependence of the charge distribution of
the reacting system, and thus ofψB andψA, will be discussed
in Section 4.2.1.

4.1.2. Diabatic Free Energies.We now outline the develop-
ment to find the form of the diabatic free energiesGB,A(r,θ,s),
extending the basic procedure of Lee and Hynes98 and Borgis
and Hynes92 to the anion dissociation. A dielectric continuum
model is used for the solvent. It is assumed that the electronic
polarization of the solvent is equilibrated around any relevant
charge distribution of the solute, because of the rapid time scale
of the solvent molecule electrons. On the other hand, the
orientational polarizationsbecause of the dipole moments of
the polar solvent moleculessis not generally so equilibrated;
thus, we must consider general nonequilibrium orientational
polarization fieldsPor(x), wherex indicates a field point in the
solvent.

In the special case that the orientational polarization is
equilibrated to the solute’s charge distribution, the latter with
internal coordinatesr andθ, in either diabatic state2B1 or 2A1,
then an equilibrium orientational polarizationPor,eq

B,A (x; r,θ)
exists in the solvent, and the free energy is the equilibrium
one: Geq

B,A(r,θ). Here, the (r,θ) dependence arises because, for
example, in the2A1 state, the location of the negatively charged
Cl- anion will be different for differentr andθ values. In the
general case, the free energies are functionals of the polarization
field Por(x):

in which

which involves the static dielectric constantε and high-frequency
dielectric constantε∞, is a force constant that gauges the
difficulty of having an orientational polarization fluctuation away
from the appropriate equilibrium value. The dielectric constant
combination ((1/ε∞) - (1/ε)) is a characteristic for that polariza-
tion (see, for example, refs 48 and 98).

We now assume that, for the anion dissociation, the relevant
nonequilibriumPor(x) throughout the reaction process is a linear
combination of the equilibrium polarization fields for2B1 and
2A1:

The variablez thus specifies the orientational polarization state
of the solvent and can be regarded as a solvent coordinate. Thus,
for smallz, the polarization is more similar to that appropriate
to the2B1 state, whereas forz values that approach unity, it is
more similar to that appropriate to the2A1 state. Using eq 4.7,

the nonequilibrium diabatic free energies given in eq 4.5 are

where we have introduced a new solvent force “constant”,ks-
(r,θ),

which, however, is dependent on the solute internal variablesr
andθ, because the equilibrium polarizations are dependent on
them.

Using eq 4.8 in conjunction with eq 4.3 for the adiabatic free
energyG, it is easy to show that the derivative ofG, with respect
to the solvent coordinatez (using eq 4.4), is given by

so that when the solvent is in equilibrium at any givenr andθ,
and this derivative vanishes, the solvent coordinate is equal to
the square equilibrium A component of the adiabatic wave
function:

More generally, one should regard the electronic composition
at a fixedr andθ as a function ofz, via eqs 4.4 and 4.8.

For qualitative purposes, the aforementioned description, in
terms of z, would be sufficient. However, for the anion
dissociation, we will calculate the rate constant, and, in II, the
reaction path; both calculations require the inclusion of the
kinetic energyKor ∝ ∫ dx [P4 or(x)]2, which is associated with
the polarization fieldPor(x), where the dot indicates time
differentiation. Using eq 4.7, because of ther- andθ-dependent
equilibrium polarizations, this leads to cross terms in kinetic
energy, e.g., a cross term that involvesz̆r̆. Thus, the termsz, r,
and θ are not dynamically independent variables, which very
greatly complicates the analysis. However, as shown in II, a
new solvent coordinates can be defined in which the kinetic
energy is diagonal ins̆, r̆, θ̇, circumventing this difficulty. As
detailed in that work, we assume that the charge distributions
of the 2B1 and 2A1 states are not sensitive toθ, and that the
2B1-state charge distribution (centered in the aromatic ring) does
not change with the C-Cl extensionr, such that the2B1-state
equilibrium polarization is independent ofr andθ, and the2A1

state equilibrium polarization is independent ofθ:

i.e., the equilibrium functional dependences are

with req
B being the equilibrium C-Cl bond extension in the B

state of the anion.

GB,A(r,θ,[Por(x)]) )

Geq
B,A(r,θ) + 1

2
ks° ∫ dx [Por(x) - Por eq

B,A (x; r,θ)]2 (4.5)

ks° ) 4π( 1
ε∞)( 1

(1/ε∞)
- (1/ε)) (4.6)

Por(x) ) (1 - z) Por,eq
B (x; r,θ) + zP or,eq

A (x; r,θ) (4.7)

GB(r,θ,z) ) Geq
B (r,θ) + 1

2
ks(r,θ)z2

GA(r,θ,z) ) Geq
A (r,θ) + 1

2
ks(r,θ)(z - 1)2

(4.8)

ks(r,θ) ) ks°∫ dx [Por,eq
A(x; r,θ) - Por,eq

B(x; r,θ)]2 (4.9)

∂G(r,θ,z)
∂z

) ks(r,θ)[z - cA(r,θ,z)2] (4.10)

zeq ) [ceq
A (r,θ,zeq)]

2 (4.11)

∂Por,eq
B

∂r
)

∂Por,eq
B

∂θ
) 0

∂Por,eq
A

∂θ
) 0 (4.12)

Por,eq
B (r,θ) ) Por,eq

B (req
B )

Por,eq
A (r,θ) ) Por,eq

A (r) (4.13)
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The solvent coordinates then is given by

in which ks (given in eq 4.9), by the aforementioned assump-
tions, is now only a function ofr, and ks(req

B ) is its value
evaluated at the equilibrium geometry of the radical anion in
the B state. It will prove more convenient to re- express these
parameters in terms of reorganization energies, whose signifi-
cance is explained below:

where the latter is just the former evaluated at the B-state solute
equilibrium geometry. The expression forλs(r) from eqs 4.15
and 4.9, with the relations given in eqs 4.13, is

Using eqs 4.14 and 4.15 (together with eq 4.9), the free
energies presented in eq 4.5 can now be expressed in terms of
the solvent coordinates, via our working equations:

where we have now expressed the equilibrium free energies in
terms of their two components,VB,A(r,θ), which is the diabatic-
state vacuum energy (cf eq 4.2), and∆Gs,eq

B,A(r,θ), which is the
equilibrium solvation free energy for the solute geometry (r,θ).
Consistent with eq 4.13, the equilibrium solvation free energies
for the anion in the diabatic states are independent ofθ, with
that for the2B1 state having nor dependence, whereas ther
dependence is retained for∆Gs,eq

A (r), which corresponds to the
different degree of equilibrium solvation as the Cl moiety moves
away from the ring in the2A1 state; as discussed later in Section
4.2.1, this involves a redistribution of the charge between the
ring and the Cl atom.

The net consequence for these free energies of the shift to
the new solvent variablesdescription is that there are harmonic
contributions for the nonequilibrium polarization terms, centered
at the equilibrium positionsseq

B,A(r) of s for the anion reaction
system in the2B1 and2A1 states:

These expressions follow from the definitions in eqs 4.14 and
4.15, together with eq 4.9 and the evaluations of eq 4.7 at the
appropriate equilibrium polarizations for the2B1- and2A1-state
solutes, with the assumptions given in eq 4.12. An additional
important feature of thescoordinate description is that the force
constant, 2λs ) ks(req

B ), for the nonequilibrium polarization

terms is a constant that isindependentof the anion system
internal variablesr andθ.

The equilibrium positionsseq
B,A(r) defined in eqs 4.19 have

the following significance. When the anionic system is in the
2B1 diabatic state, the equilibrium solvent coordinate valueseq

B

) 0 denotes an equilibrium solvent polarization condition
appropriate to the equilibrium geometryr ) req

B . When the
solute is in the2A1 diabatic state, the equilibrium polarization
changes as charge is redistributed between the ring and the Cl
atom as the latter moves away; this is ultimately reflected in eq
4.19 via ther-dependentλs(r) factor. We must stress that this
shift, which will be more fully discussed in Section 4.2, is within
the diabatic2A1 state. The charge shift for the reaction itself is
a consequence of the electronic coupling between the diabatic
2B1 and2A1 states; i.e., it occurs in the electronically adiabatic
ground state.

Similarly, we emphasize that these equilibrium positions are
for the diabatic states. For the adiabatic case, there is only one
equilibrium solvent coordinate positionseq for a givenr andθ,
which, from eqs 4.14 and 4.11, is

Generally, the electronic composition is given by eq 4.4, together
with eqs 4.17 and 4.18.

4.1.3. Diabatic Free Energy Discussion.Equations 4.15-
4.19 complete the reformulation of the diabatic free energies
GB,A(r,θ,s), in terms of the new solvent variables.

The schematic behavior of the diabatic free energies presented
in eq 4.17 is illustrated in Figure 5. We consider the two-
dimensional (r, s) perspective, in which the geometry is planar
(θ ) 0). At any other fixed angle, the bending potential1/2kθθ2

would be added and would thus simply add a constant term to
all displayed curves. In the ensuing discussion, we describe these
curves, focusing on the issues of the solvent equilibrium
positions and force constants.

In panel a of Figure 5, we focus on the dissociation coordinate
r behavior, with the solvent coordinate transverse. The vacuum
contributionsVB,A(r,θ ) 0) for the bound and dissociative states
are indicated by the dashed curves. In a polar solvent, the
constant equilibrium solvation free energy∆Gs,eq

B (req
B ) for the

2B1 state, with the charge localized in the ring system, lowers
the vacuum curveVB(r,θ ) 0) uniformly. The solvent coordinate
equilibrium position is seq

B ) 0, and the nonequilibrium
solvation contribution well,λs(s - seq

B )2 ) λss2, is indicated as
a transverse well. In regard to the dissociative diabatic2A1 state
in panel a, along the lines ) seq

A (r), where the solvent is
equilibrated to the dissociating anion2A1 state at eachr, the
equilibrium solvation free energy∆Gs,eq

A (r) lowers the vacuum
curve VA(r,θ ) 0) by an increasing amount as the C-Cl-

coordinate increases. For ease of representation, we only label
this stabilization at a convenient geometryrCIP

A that corre-
sponds to a contact ion pair (CIP). At anyr, the nonequilibrium
solvation contributionλs[s - seq

A (r)]2 is a transverse well with a
(constant) force constantks ) 2λs, with its minimum located at
s ) seq

A (r) ) xλs(r)/λs, as indicated in Figure 5a only at the
CIP geometry.

In panel b of Figure 5, we display the solution situation in
the solvent coordinates, at the two different values ofr, labeled
in panel a. The two diabatic solvent curves are displayed at the
2B1-state equilibrium geometryr ) req

B ; these two curves were
represented as transverse in panel a. The two solvent wells have

s ) zx ks(r)

ks(req
B )

(4.14)

λs(r) ) 1
2
ks(r)

λs ) 1
2
ks(req

B ) (4.15)

λs(r) ) 2π
ε∞[(1/ε∞) - (1/ε)]

∫ dx [Por eq
A (x; r) - Por,eq

B (x; req
B )]2

(4.16)

GB,A(r,θ,s) ) VB,A(r,θ) + ∆Gs,eq
B,A(r) + λs(s - seq

B,A(r))2

(4.17)

∆Gs,eq
B (r) ) ∆Gs,eq

B (req
B ) (4.18)

seq
B (r) ) 0

seq
A (r) ) x λs(r)

λs(req
B )

(4.19)

seq(r,θ) ) [ceq
A (r,θ,seq)]

2x ks(r)

ks(req
B )

(4.20)
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different equilibrium positions but the same force constant 2λs.
Indeed, this figure identifiesλs as the so-called solvent
reorganization energy atr ) req

B . As indicated in the left-hand
panel of Figure 5b, the latter is defined in terms of a Franck-
Condon transition from the bottom of the2B1 curve to the2A1

curve, at the2B1-state equilibrium solvent coordinate values
) seq

B ) 0, followed by the solvent reorganization to the
minimum of the2A1-state curve:

On the other hand, at a differentr value, e.g.,r ) rCIP
A in the

right-hand side of panel b in Figure 5, the reorganization energy
is different, because the equilibrium solvent position for the2A1

state differs fromr ) req
B :

Equations 4.21 and 4.22 both are special cases of the general
relationship

with seq
B (r) ) seq

B (req
B ) ) 0.

This completes the discussion of the diabatic free energies
GA and GB. The desired ground-state adiabatic free-energy
surfaceG(r,θ,s) is given in terms of these energies in eq 4.3.

4.2. Solution-Model Specification.In this subsection, we
examine the specifics of the modeling of the solvation aspects
of the rate problem, first discussing the equilibrium solvation
and then the nonequilibrium solvation features that are required
in the overall free energyG(r,θ,s) expression (cf. eq 4.3 and
eqs 4.15-4.19). Several features are common to both. The
solvation is treated by considering the molecule to be composed
of two cavities that are embedded in the dielectric continuum
solvent: one centered on the aromatic ring, the other on the Cl
moiety. In the bound2B1 state, the negative charge is mainly in
the ring cavity, and in the dissociative2A1 state, it is mainly in
the Cl cavity (to a degree that depends onr; see below).
Dissociation then involves a charge transfer from the ring cavity
to the Cl cavity, which is allowed by the2B1-2A1 electronic
coupling, and the dominant effect of solvation is due to the
charge-solvent interaction. In the treatment below, any depen-
dence of any solvation on the wag angle is neglected, which is
consistent with our model specifications in Section 4.1.2.

4.2.1. Equilibrium SolVation Free-Energy Formulation.We
first consider the equilibrium solvation free energies, which,
from eqs 4.17 and 4.18, are

Figure 5. Schematic picture of the definitions of∆Gs
B,A andλs, showing free-energy curves of the2B1 and 2A1 states along (a) the dissociation

coordinater and (b) the solvent coordinates in the reactant and product geometries. In both cases, the geometry is kept planar. Legend for the upper
panel is as follows: (- - -) in the vacuum and (s) in a polar solvent.

λs ) GA(req
B ,s ) seq

B ) 0) - GA(req
B , s ) seq

A [req
B ])

) GA(req
B , s ) seq

A [req
B ]) +

2λs

2
[seq

A (req
B )]2 -

GA(req
B , s ) seq

A [req
B ])

)
2λs

2
[seq

A (req
B )]2

) λs[λs(r ) req
B )

λs(r ) req
B )] ) λs (4.21)

λs(r ) rCIP
A ) ) GA(rCIP

A , s ) seq
B ) 0) -

Geq
A (rCIP

A , s ) seq
A [rCIP

A ])

)
2λs

2 (λs(r ) rCIP
A )

λs
) (4.22)

λs(r) ) GA(r,s ) seq
B ) 0) - Geq

A (r,s ) seq
A [r])

)
2λs

2
[seq

A (r) - seq
B (r)]2 (4.23)

∆Gs,eq
B (req

B ) ) - 2π
ε∞

2[ 1
(1/ε∞) - (1/ε)] ∫ dx [Por

B(x; req
B )]2 -

2π[ 1
1 - (1/ε∞)] ∫ dx [Pel

B(x; req
B )]2

11280 J. Phys. Chem. A, Vol. 107, No. 51, 2003 Laage et al.



in terms of the orientional and electronic polarization fields
Por,el

B,A (x). These are as follows:

whereEB,A are the vacuum electric fields that result from the
charge distributions of the reacting solute in the2B1 and 2A1

states. Substituting eq 4.25 into eq 4.24, the equilibrium free
energies of solvation can be directly expressed in terms of the
vacuum electric fields:

where the electronic and orientational contributions have been
combined. The (1- (1/ε)) factor here reflects the feature that
both the electronic and orientation polarizations are equilibrated;
the static dielectric constantε gauges the total polarization in
equilibrium.

We evaluate these in terms of the Born model of solvation,48c

in which the equilibrium solvation free energy of a unit charge
in a cavity can be expressed as

whereE(x) is the vacuum field due to the charge. Evaluation
for a spherical cavity gives the well-known result48c

in terms of the static dielectric constantε of the solvent, the
elementary chargee, and the cavity radiusa, which is the key
ingredient that must be assigned for each of the two cavities of
the [CN-Φ-Cl]•- model. The specification of the cavities is
discussed next.

4.2.2. CaVity Model Specification.This specification proves
to be somewhat long and complex; readers who are more
interested in the results that follow from the specification may
proceed directly to Section 5.

4.2.2.1. Dissociative2A1 State. For very larger values, the
adiabatic ground state asymptotically tends toward the2A1

diabatic dissociative state, and there is a full negative charge in
the Cl cavity and no charge in the ring cavity. However, for
smaller r values, the orbital that accommodates the excess
electron is transforming from an atomic 3p orbital localized on

the Cl atom to a molecularσ* orbital, delocalized over the Cl
atom and the ring C atom that it is approaching.

As confirmed by the ab initio calculations, for the2A1

electronic state in the2B1 equilibrium geometry, the Cl charge
is only approximately-0.4 (see Table 3). Most of the remaining
negative charge is on the C atom that bears the Cl atom, and
receives approximately half of the electronic density of theσ*
orbital. This explains the significantly negative charge on the
ring in the2A1 state reported in Table 3. The2A1 state charges
thus depend on the bond lengthr, as modeled by an exponential
decay,qCl

A (r) ) -1 + q0 exp(-r/d). The parameter values,q0

) 3.2 andd ) 0.9 Å, are obtained from AM199 semiempirical
calculations with configuration interaction between five states,
performed with AMPAC100 for different bond lengthsr, and in
a planar geometry, where the obtained adiabatic states coincide
with the diabatic states.

In addition, these calculations show that the cyano endgroup
charge remains approximately constant when the C-Cl bond
is stretched. Even at very larger values (= 5 Å, i.e., well past
the transition state (TS)), the CN charge in the diabatic2A1 state
has ultimately decreased in magnitude by only∼25%; the
approximate constancy of the2A1-state CN charge from the
reactant to the TS region is evidently associated with the fact
that, as discussed previously, the major rearrangements in the
2A1 state are associated with rearrangements in the C-Cl
moiety, far from the CN. Therefore, we assume that the CN
group charge remains constant (qCN ) -0.28), and we ap-
proximate it to be identical in both the2A1 and2B1 states, which
is an approximation that has been shown to be reasonable by
the AM1 calculations. The cyano endgroup thus generates no
difference in the equilibrium solvation free energies of the two
states, and no solvent reorganization occurs around it during
the charge transfer. Its only effect is to reduce the magnitude
of the charge transfer between the ring and the Cl atom. The
ring cavity charge is eventually deduced asqΦ

A(r) ) -1 -
qCl

A (r) - qCN.
The Cl cavity radius is determined by the requirement that

the Born solvation free energy fit the experimental hydration
free energy of the Cl- anion. For the ring cavity, we use an
estimate based on the benzyl anion with a full negative charge
in the cavity. For simplicity, we assume that the cavity sizes
are independent of the magnitude of the charge in the cavity.
The cavity sizes in water, dimethyl formamide (DMF) and
acetonitrile (MeCN) are reported in Table 5. It is an unavoidable

∆Gs,eq
A (r) ) - 2π

ε∞
2[ 1

(1/ε∞) - (1/ε)] ∫ dx [Por
A(x; r)]2 -

2π[ 1
1 - (1/ε∞)] ∫ dx [Pel

A(x; r)]2 (4.24)

Por,eq
B (x) )

ε∞

4π( 1
ε∞

- 1
ε)EB(x; req

B )

Pel,eq
B (x) ) 1

4π(1 - 1
ε∞)EB(x; req

B )

Por,eq
A (x; r) )

ε∞

4π( 1
ε∞

- 1
ε)EA(x; r)

Pel,eq
A (x; r) ) 1

4π(1 - 1
ε∞)EA(x; r) (4.25)

∆Gs,eq
B (req

B ) ) - 1
8π(1 - 1

ε)∫ dx [EB(x; req
B )‚EB(x; req

B )]

∆Gs,eq
A (r) ) - 1

8π(1 - 1
ε)∫ dx [EA(x; r)‚EA(x; r)] (4.26)

∆Gs(ε) ) - 1
8π(1 - 1

ε)∫ dx [E(x)‚E(x)] (4.27)

∆Gs(ε) ) - e2

2a(1 - 1
ε) (4.28)

TABLE 5: Solvent Static and High-Frequency Dielectric
Constants (E and E∞, Respectively), Solvation Free Energies
(∆Gs), and Estimated Chlorine and Ring Cavity Sizes (aCl
and aΦ, Respectively) for [CN-Φ-Cl]•- in Water, Dimethyl
Formamide (DMF), and Acetonitrile (MeCN)

value

parameter water MeCN DMF

εa 78.4 37.5 36.7
ε∞

a 1.78 1.80 2.04
∆Gs (Cl-) (kcal/mol) -83b -73c -71c

∆Gs (CN-Φ-) (kcal/mol) -62d -57e -56e

aCl (Å) 1.97 2.21 2.25
aΦ (Å) 2.65 2.85 2.90

a Dielectric constants from ref 117.b Hydration free energies from
ref 117.c Solvation free energies in DMF and MeCN from the hydration
free energies, and the transfer free energies from ref 117.d Solvation
free energy from ref 105, plus the difference between the hydration
free energies of Cl- in refs 117 and 105.e No transfer free energies
were available forΦ-CH2

-; it was estimated from the values from
ref 117 for anions that have similar hydration free energies (I- and
SCN-).
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feature of this type of modeling that the cavity size changes
with the solvent. In the three solvents considered, the radius of
the ring cavity was estimated to be larger than that of the Cl-

anion cavity (cf Table 5). At this point, we stress the importance
of the relative sizes of the Cl and ring cavities, because these
will determine which diabatic state is preferentially stabilized
in a polar solvent.

4.2.2.2. Bound2B1 State. In the planar geometry, the2A1-
2B1 state coupling vanishes, and the adiabatic ground state
coincides with the2B1 state. Thus, the charge distribution of
our model diabatic2B1 state must match that of the adiabatic
ground state in planar geometry. These charges have already
been calculated ab initio in the vacuum (see Table 3), but they
should be altered in solution. We estimate the polar solvent
influence on the charge distribution via semiempirical calcula-
tions in a model dielectric continuum solvent, via standard
procedures.91 We have already noted in Section 3.1 that
semiempirical calculations are generally not reliable for radical
anions; therefore, we stress that the semiempirical charge
distribution is only used as a guide. Nonetheless, when used in
the vacuum and compared with the ab initio results, the
semiempirical results seem to yield satisfactory charges (see
Table 6).

Two different solvent models were used for the water solvent,
and the different models led to similar charge distributions; the
main trend is a shift of the electronic distribution from Cl-

toward CN-. (Similar results are found for acetonitrile and DMF
solvents; see Table 6.) However, this observation raises the issue
first mentioned in Section 4.1.1, concerning the identification
of the diabatic states as VB states,97 with the latter having the
characteristic features that the charge distribution, at any given
molecular geometry, is fixed. If the2B1 diabatic state were truly
a VB state, solvation would change its free energy, compared
to that in the vacuum, but would not change the charge
distribution. However, Table 6 has shown that the internal charge
distribution of the2B1 state is changed by solvation. We must
conclude that the diabatic2B1 state cannot be strictly represented
as a single VB structure. Evidently, a detailed description would
require at least two VB states, each with a fixed charge
distribution, whose contribution in solution would be shifted
compared to that in the vacuum. One could imagine, for
example, two VB structures with all the negative charge not in
the ring on the CN and one where that excess charge was on
the Cl atom. Although one could consider a generalization to
include this feature, the extra complexity required is very
considerable.45d,95However, judging from Table 6, the vacuum-
solution charge shift is not extensive; therefore, we will simply
adopt a value ofqCl

B ) -0.12 in the following discussion as the
diabatic2B1-state fixed distribution.

Therefore, the equilibrium solvation energy of the2B1 state
will involve a partial charge in the Cl cavity and a partial charge
in the ring cavity. The Cl and ring cavity sizes are assumed to
be the same as those in the2A1 state (see Table 5).

With such cavity radii, in the ground-state equilibrium
geometry, the two cavities will overlap, because, from our ab
initio calculations, the distance between the ring center and the
C atom isdCC ) 1.41 Å and the C-Cl equilibrium distance is
1.76 Å, so that the distance between the two cavity centers is
3.17 Å. This would bring us into a regime where the separate
cavity approach is definitely no longer valid. To address this
situation, we have decided to rescale the cavity radii while also
rescaling the solvation energies, to keep the values of those
energies unchanged; this could be considered to be a rescaling
of the dielectric constant. We rescale the two cavity radii so
that their sum is equal to the distance between the two cavity
centers in the ground-state equilibrium geometry. Thus, we
define the scaling factor as

and the new cavity radii and solvation energies (denoted by
primes after rescaling) are

Therefore, the equilibrium solvation energies are

Note that eq 4.32 defines the2A1 and 2B1 state equilibrium
solvation free energies for the anion system at the equilibrium
geometry of the2B1 state, i.e., atr ) req

B . As we have already
discussed, we are ignoring any possible dependence of the
equilibrium polarization for the2B1 state on the C-Cl bond
extension, largely because of the smallness ofqCl

B . The situa-
tion is more complicated for the2A1 state. As discussed in
Section 4.2.1, there is a charge redistribution between the ring
C atom and the Cl atom in the2A1 state asr increases. We
have taken this important effect into account, and it provides
the majorr dependence for∆Gs,eq

A on the bond extension that
is carried along in the formulation equations eq 4.17 and 4.32.
Otherwise, much less important sources ofr dependence that
are associated with the changing physical location of a charged
Cl moiety and the induced solvent displacement are discussed
in ref 101.

Finally, we note that, with the2A1 and2B1 charges defined
as previously noted, the charge transfer between the2B1 and
2A1 states is fractional:∆q(r) ) qCl

B - qCl
A (r), ∆q(req

B ) = 0.4.
This transfer factor will occur explicitly in the nonequilibrium
solvent reorganization free energy, which is discussed next.

4.2.3. Nonequilibrium SolVation Reorganization Energies.
The nonequilibrium solvation components,λs(s - seq(r))2, of
the diabatic free energies shown in eq 4.17, involve the
reorganization free energyλs, which, with eqs 4.15, 4.16, and
4.25, is given by

TABLE 6: Calculated Charge Distributions for 2B1
[CN-Φ-Cl]•- Ground State in the Gas Phase and in
Water, Acetonitrile (MeCN), and Dimethyl Formamide
(DMF) Solvents (ab Initio Results from Table 3)

charge distribution

environment method qCl qring qCN

vacuum ab initio -0.12 -0.55 -0.33
vacuum AM1- C. I. 5 -0.14 -0.57 -0.29
water AM1- C. I. 5 - SM2 -0.07 -0.57 -0.36
water AM1- C. I. 5 - COSMO -0.07 -0.55 -0.38
MeCN AM1 - C. I. 5 - COSMO -0.08 -0.54 -0.38
DMF AM1 - C. I. 5 - COSMO -0.08 -0.54 -0.38

R )
dCC+ req

B

aCl + aΦ
(4.29)

a′ ) Ra (4.30)

∆G′s,eq(r′) ) R∆Gs,eq(r′)

) - Rq2

2Ra(1 - 1
ε) ) ∆Gs,eq(r) (4.31)

∆G′s,eq
B ) - R

2(1 - 1
ε)((qCl

B )2

a′Cl
+

(qΦ
B)2

a′Φ
+

2qCl
B qΦ

B

dCC + req
B )

∆G′s,eq
A (r′) )

- R
2(1 - 1

ε)([qCl
A (r′/R)]2

a′Cl
+

[qΦ
A(r′/R)]2

a′Φ
+

2qCl
A qΦ

A

dCC + r′) (4.32)
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and, by eq 4.19, becauseseq
B (r) ) 0, only the equilibrium

position seq
A (r) must be evaluated and this involves ther-

dependent analogue of eq 4.33:

Again, the presence of the difference of the inverses of the high-
frequency and static dielectric constants reflects the feature that
the reorganization is associated exclusively with the orientational
polarization.

When the integrals within the Marcus-Hush cavity model
framework are evaluated,102 the two reorganization energies are

wheredCC is the distance between the center of the ring and
the C atom (which has been determined by ab initio calculations
to be dCC ) 1.41 Å) and aCl and aΦ are the cavity radii
determined previously (they are assumed not to vary with the
charge present in the cavity). After the rescaling procedure, as
described in Section 4.2.1, these become

As we noted at the end of Section 4.2.2, nor-dependent
screening effects are included in the reorganization energy
expressions. The origin of ther dependence here, beyond that
which occurs from ther-dependent charge distribution in the
2A1 state, is the fact that the cost of the charge transfer from
the 2B1 state to the2A1 state is dependent on the transfer
distance, which increases asr increases.103

5. Reaction Rate Constants in Solution

We now address the calculation of the reaction rate constant
for the [CN-Φ-Cl]•- dissociation in solution. We use the
approach and the parameters that have been presented previously
in the three solvents (water, acetonitrile, and DMF). After
discussion of the rate-constant formulation, we initially explore
the variation of those parameters and the solvent to examine
how sensitive the resulting transition state (TS) locations and
barrier heights are. Using the most likely parameter choices,
we then compare the predicted rate constants with experimental
results.

5.1. Rate-Constant Formulation. The first step is the
calculation of the adiabatic ground-state free-energy surface
G(r,θ,s), using eqs 4.3 and 4.15-4.19, with the vacuum
potentialsVB,A (given in eq 4.4), the electronic couplingâ (from
eq 4.2), the equilibrium solvation free energies∆Gs,eq

B,A (evalu-

ated according to eq 4.32), and the reorganization energiesλs

and λs(r) (the latter of which enters the equilibrium solvent
positionseq

A (r) via eq 4.20), evaluated according to eq 4.36.
Next, the TS on this surface is located (see II), and, in each

solvent, the molecule is bent at the TS, because of conical
intersection point (CIP) avoidance; the reactant (R) minimum
also is located. Finally, the rate constant is calculated via
transition state theory (TST). The basic program is similar to
that used previously for events such asSN1 dissociations,45b,c

proton transfer,45a and excited-electronic-state intramolecular
charge-transfer reactions.46

According to TST as applied to our three-coordinate system
and discussed in detail in II, the reaction rate constant is

whereω|
R is the frequency along the reaction coordinate in the

R region, whereasω⊥1
R andω⊥2

R are the frequencies for the two
modes transverse to the reaction coordinate in the R region and
at the TS. We have defined∆Gq to be the difference of the
free-energy values at the TS and the R minimum.104 We recall
from Section 4.1 that it is a free energy, rather than an energy,
because of the many degrees of freedom of the solvent molecule
that are implicit in the solvent coordinate.

The full details of the pre-exponential frequency factors in
the rate-constant expression in eq 5.1 will be discussed in II.
Here, we simply combine them into one prefactor,Asol:

As we will see, theAsol factor is approximately the same for
the solvents considered (Asol ) 1.6× 1013 s-1) and is reasonably
similar to its vacuum analogue (cf Table 4). Thus, we focus on
the most sensitive factor fork: the ∆Gq factor.

5.1.1. Exploration of Model Parameter SensitiVity of ∆Gq.
5.1.1.1. The Wag Force Constantkθ and the Coupling Parameter
b. We have already studied the influence ofkθ and b on the
vacuum reaction barrier height in Section 3.3. For our solution
calculations, we will keep the most likely values: the force
constant in the2A2 state, which iskθ ) 23 cal/deg2, and the
linear increase of the coupling, which isb ) 0.62 kcal/deg.

5.1.1.2. The Cavity Sizes. Case a in Table 7 gives the results
for the water solvent, using the hydration free energy values
employed for Table 5. However, other estimates exist for the
hydration free energies,105 which leads to larger Cl and ring
cavity radii. The result is presented in case b in Table 7, which

λs ) 1
2( 1

ε∞
- 1

ε) ∫ dx [EA(x; req
B ) - EB(x; req

B )]2 (4.33)

λs(r) ) 1
2( 1

ε∞
- 1

ε)∫ dx [EA(x; r) - EB(x; r)]2 (4.34)
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ε∞

- 1
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A (r)]2
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+

[qΦ
B - qΦ

A(r)]2

2aΦ
+

[qCl
B - qCl

A (r)][qΦ
B - qΦ

A(r)]

dCC + r }
λs ) λs(r ) req

B ) (4.35)

λ′s(r) ) R( 1
ε∞

- 1
ε)([qCl

B - qCl
A (r)]2

2a′Cl
+

[qΦ
B - qΦ

A(r)]2

2a′Φ
+

[qCl
B - qCl

A ][qΦ
B - qΦ

A(r)]

dCC + r )
λ′s ) λ′s(r ) req

B ) (4.36)

TABLE 7: Influence of the Cavity Sizes (aΦ and aCl), the
Magnitude of the Charge Transfer (∆q(r f ∞)), and the
Charge on the Cyano Engroup (qCN) on ∆Gq in Water,
Acetonitrile (MeCN), and Dimethyl Formamide (DMF) a

case solvent ε0 aΦ (Å) aCl (Å) ∆q (e) qCN (e)
∆Gq

(kcal/mol)

a water 78.4 2.65 1.97 0.88 -0.28 9.7
b water 78.4 2.87 2.18 0.88 -0.28 10.1
c water 78.4 2.65 1.97 0.85 -0.28 8.8
d water 78.4 2.65 1.97 0.88 -0.20 11.8
e MeCN 37.5 2.85 2.21 0.88 -0.28 10.2
f DMF 36.7 2.90 2.25 0.88 -0.28 9.9
g DMF 36.7 3.00 2.25 0.88 -0.28 9.6

a kθ ) 23 cal/deg2 and b ) 0.62 kcal/deg. The term∆q(r f ∞)
represents the charge transfer from the reactant to the final product.
See text for the description of the various cases. Some selected
transition-state (TS) locations are reported in Table 8.

k ) 2
ω|

R

2π
ω⊥1

R

ω⊥1
q

ω⊥2
R

ω⊥2
q

exp(- ∆Gq

RT ) (5.1)

k ) Asol exp(- ∆Gq

RT ) (5.2)
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leads to a barrier height increase of∼0.4 kcal. This direction is
understandable, in terms of the decreased solvation for increased
radii, which is more important for the charge-localized Cl atom.

The ring cavity sizes in DMF and acetonitrile in Table 5 have
been approximately determined from the solvation free energies
of anions that have similar hydration free energies. The
consequence of this uncertainty on the barrier properties for the
DMF reaction is detailed in Table 7: the larger ring cavity in
case g, compared to that in case f, leads to a smaller solvation
of the (predominantly2B1 state) R, compared to the TS, which
is a mixture of2B1 and2A1 states, and, thus, a slightly reduced
∆Gq result.

5.1.1.3. Influence of the Diabatic Charge Distributions.
Section 4.2.1 showed that the determination of the partial
charges in both2A1 and2B1 statessand, therefore, the charge-
transfer magnitudesis not unambiguous. We recall here that
this magnitude is∆q(r f ∞), i.e., from the reactant to the final
product.

In case c in Table 7, the magnitude of the charge transfer is
decreased, with respect to case a, from∆q ) 0.88 to ∆q )
0.85. The consequence on the barrier height is a decrease of
∼0.9 kcal.106

We now examine the influence of the charge located on the
cyano endgroup. In our model, this charge is approximated to
be fixed, and equal, for the2B1 and2A1 states (cf. Section 4.2.2).
In case d in Table 7, the cyano endgroup chargeqCN is decreased
from -0.28 to-0.20, whereas the charge-transfer magnitude
∆q and the Cl charges are kept constant; this amounts to
changing the fraction of the ring charge that is withdrawn by
the cyano group. Decreasing the fraction of the charge fixed
on the cyano group implies that the charge shared by the “active”
parts of the system (the ring and the Cl) is increased. The barrier
height consequence is an increase of∼2.1 kcal/mol. Indeed,
the larger ring charge stabilizes the2B1 state, with respect to
the 2A1 state, because the2B1 solvation free energy is mainly
due to the solvation of the ring.

5.1.1.4. Influence of Solvent Polarity. A comparison of Tables
4 and 8 shows that the solution activation barriers are, in all
cases, lower than the vacuum energy barrier, and that the TS
location of the C-Cl bond extension (rq) is smaller in solution
than that in the vacuum. These are associated trends, which are
ultimately related to the better solvation of the anion system in
its dissociative2A1 state, with the charge localized on the Cl-

anion, compared to the bound2B1 state with the charged
delocalized in the ring system; in increasingly polar solvents,
the CI location moves toward smallerr values, and thus toward
lower energies, because of this differential solvation. Related

behavior should be expected, more generally, for CIs that
involve states with differing charge distributions.

Figure 6 shows the free energy for the calculated reaction
path in DMF, together with the potential energy along the
(virtual) vacuum reaction path. Although the R, TS, and product
are all greatly stabilized by the solvent, the net solution barrier
is only slightly reduced (by 2.9 kcal/mol), compared to the gas
phase. The TS occurs earlier, consistent with the Hammond
postulate, which is further pursued below.

Actually, although useful, the aforementioned diabatic per-
spective explanation is quite crude, given the fact that the
electronic coupling that produces the adiabatic free-energy
surface is very large at the bent TS, which is characterized by
a finite wag angle,θq. A more proper explanation would be in
terms of the electronic structure of the adiabatic TS, the
stabilization of the contact ion pair (CIP) product and the
Hammond postulate, as follows.

The electronic composition of the TS for the three solvent
reactions can be determined from eq 4.4, with the results being
[cB(rq,θq,sq)]2 ) 0.63, 0.61, and 0.62 in water, acetonitrile, and
DMF, respectively, compared to the vacuum value (0.52). The
important solvation of the2B1 state component of the electronic
structure of the TS species reduces the barrier compared to that
in the vacuum. The CIP product is even more stabilized,
compared to that in the vacuum, because the charge on Cl is
more fully developed: (cCIP

B )2 ) 0, and the reaction free
energies for the three solvents, defined from the reactants to
the CIP, are-73, -70, and -73 kcal/mol, respectively.
Consistent with the Hammond postulate, the TS will be
progressively earlier. Interestingly, this TS electronic structure
variation, as in other examples45b,45c,46is not consistent with
other proposals107 that it should remain fixed at a value of1/2.

5.1.2. Comparison with Experiment.The experimental rate
constants for [CN-Φ-Cl]•- measured in water, acetonitrile,
and DMF are reported in Table 8.

Our best estimate (using the raw parameters extracted from
the calculations in Table 2 and the experimental solvation
energies detailed in Section 4.2.1) is case a, for whichk ) 1.5
× 106 s-1 in water. This rate constant is similar to the range
defined by the two available rates,k ) 5 × 106 s-1 andk ) 17
× 106 s-1. In acetonitrile and DMF, our best estimates are,
respectively, case e, for whichk ) 0.5 × 106 s-1, and case f,
for whichk ) 0.9× 106 s-1, which are both reasonably similar
to the available experimental determinations. However, cases
b, c, d, and g show that the uncertainty on these values is large
(at least an order of magnitude).

From the theoretical rate constants just listed, the reaction
seems to be slightly accelerated by a more polar solvent. This
trend, although not pronounced, is consistent with the picture
of the 2A1 state being preferentially stabilized with respect to

TABLE 8: Transition-State Coordinates, Prefactor ASol,
Free Energy Barrier ∆Gq, and Calculated and Experimental
Rate Constantsk and kExp for [CN -Φ-Cl]•- Dissociation in
Water, Acetonitrile (MeCN), and Dimethyl Formamide
(DMF) Solvents

value

parameter case a (water) case e (MeCN) case f (DMF)

ε0 78.4 37.5 36.7
ε∞ 1.78 1.80 2.04
rq (Å) 2.04 2.05 2.05
θq (deg) 26 26 26
sq 0.50 0.52 0.51
Asol (× 1013 s-1) 1.6 1.6 1.6
∆Gq (kcal/mol) 9.7 10.2 9.9
k300K (× 106 s-1) 1.5 0.5 0.9
k300K

exp (× 106 s-1) 5-17a 50-500b 160-450 ((90)c

a From refs 13 and 72.b From refs 73 and 71.c From refs 8 and 12.

Figure 6. Free energy in DMF and vacuum potential energy profiles
along the [CN-Φ-Cl]•- dissociation reaction path.
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the 2B1 state in a more polar solvent, implying a decrease of
the free-energy barrier (see Section 5.1.1). The polarity trend
of the experimental rates in Table 8 seems to be in the opposite
direction. However, the change in the rate-constant values
between DMF, acetonitrile, and water (e.g., approximately an
order of magnitude) is too small, compared to the experimental
uncertainty (an order of magnitude for the measurements in
acetonitrile), to be significant. (Furthermore, related recent
experiments do not observe a polarity dependence.108) In
addition, those rates have been measured by different groups
with different methods, and this renders the comparison more
difficult. We would recommend a re-examination of those
experimental results. On the other hand, in our treatment, the
description of the solvent by a dielectric continuum with solute
cavities whose sizes must be determined semiempirically for
each solvent is obviously a heavy approximation. The influence
of solvent polarity on the rates should be re-examined with
molecular dynamics simulations.109

5.2. Comparison with Previous Work. We will discuss
many more details of the reaction rate constant, as well as the
reaction path, in II. Here, we limit ourselves to an exposition
of those aspects that are connected solely to a comparison with
the only previous theoretical formulation for radical anion
dissociation in solution, which is due to Save´ant.2 The latter
formulation shares some general features with the present work.
For example, bound-state and dissociative-state model potentials
in the separation coordinater were used (although not informed
by ab initio calculations), and solvent reorganization was
included (although in a fashion appropriate for outer-sphere
electron transfers). Two quite significant differences are that
(i) the C-Cl wag angle was not explicitly included and its
impact on the barrier height was neglected,110 although its role
in allowing the dissociation was clearly recognized, and (ii) the
explicit numerical impact of the electronic coupling on the
barrier height (and reaction path) was neglected. The explicit
incorporation of the wag angle and the electronic coupling
provides essential ingredients in our formulation; therefore, here,
we present some results that have been obtained using the
methods of II, which are addressed specifically to the conse-
quences of these aspects.

We begin in Figure 7, which has information about the three-
dimensional reaction path for the anion dissociation in DMF
(calculated in II). This figure represents the contribution of each
of the coordinates (r,θ,s) to the reaction path leading from the
R to the TS with bent geometry. The pathway portrayedsand
explained in II, in terms of the various time scales for these
coordinatessis a path that, initially, is dominated by the
reorganization of the solvent (i.e., motion ins), followed by an
adjustment of the bending angleθ, and finally followed in the
immediate neighborhood of the TS by the C-Cl stretch motion

in r. The required reorganization ofθ ands to reach the required
TS valuessfor the first, to avoid the CIP, and for the second,
to provide the requisitive solvation for the TS charge distributions
is largely completed before the major part of this final stretching.
(As we will see in II, the reaction paths vary in important aspects
for the other solvents water and acetonitrile.)

Figure 8 compares the free-energy profiles of [CN-Φ-Cl]•-

in DMF calculated along the reaction coordinate, explained in
II in terms of the three dimensionsr, θ, ands (Figure 8a), and
along the path restricted to planar geometryθ ) 0, and thus
with no electronic coupling (Figure 8b). The barrier in the latter
case is significantly higher (=8 kcal/mol) than that in the former,
which is a pattern that has also been observed for the other two
solvents considered. Focusing solely on the most significant
aspects of this difference, we note that, in our formulation
(illustrated in Figure 8), the wag angle is significant (θq ) 26°)
at the TS and the electronic coupling at this value is quite large
(â(θq) ) 16 kcal/mol).111 Beyond the feature that, in Figure 8,
the TS is not located at the samer (or s) values in the two
descriptions, the large difference between the barrier heights
(8 kcal/mol) is a result of the stabilizing effect on the ground-
state adiabatic surface by the electronic coupling (see ref 112
on the additional effect of solvent-induced coupling), together
with the smaller destabilizing effect that is due to the energy
cost to bend the C-Cl bond, i.e., just those ingredients
responsible for the fact that the solution reaction path (II), when
viewed in ther and θ coordinates, corresponds to motion in
the moat avoiding the CIP, just as in the gas phase (Figure 4).
We continue to examine these issues below.

5.2.1. Free Energy Profile along s and r at the Transition
State.We noted in the Introduction that the current strong
electronic coupling anion dissociation is to be distinguished from
the situation for more weak-coupling outer-sphere electron
transfer (ET) reactions. The differences are many, but Figures
9 and 10 show especially important ones.

In Figure 9, the free energy is shown as a function of the
solvent coordinate in the neighborhood of the TS value ofs
(sq), all with r and θ values at their TS valuesrq and θq,
respectively. The TS solvent coordinatesq is a local minimum.
On the other hand, if, at these TSrq,θq values, the electronic
coupling were ignored, as in standard ET perspectives, the pair
of solvent parabolas result (and there is no longer any solvent
minimum). In the latter view, an activated ET process in the
solvent coordinate would be involved. Clearly, the current
adiabatic and a standard ET description are significantly
different.

In Figure 10, the free energy is shown as a function of the
C-Cl distancer in the TS neighborhood, withθ ands being
fixed at their TS valuesθq andsq, respectively. In the adiabatic

Figure 7. Dissociation of [CN-Φ-Cl]•- in DMF (case f), showing
the contribution of each (mass-weighted) coordinate to the reaction
coordinater, θ, ands along the reaction path.

Figure 8. Free-energy profiles along the (r,θ,s) reaction coordinates,
and along the path restricted to planar geometry, with no electronic
coupling, for [CN-Φ-Cl]•- in DMF (case f). The reaction free energy
is ∆rG = -70 kcal/mol.
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ground state, the system goes over a barrier alongr. On the
other hand, if the electronic coupling vanishes, the picture is
that of two crossing curves, again strongly contrasting the
present adiabatic perspective with that of ET.

5.2.2. Anion Bond Dissociation Energy.The considerations
just discussed indicate the very strong difference between the
predictions where the electronic coupling (and the associated
C-Cl wagging motion) are neglected, and when they are
included. However, it is a very striking result that, in the former
type of treatment, Save´ant2 has been able to determine that the
activation free energy for the thermodynamically symmetric
reaction (∆rG ) 0), the so-called intrinsic barrier∆G0

q, should
vary with the homolytic bond dissociation energyD of the
radical anion ([Ar-X]•- f [Ar•]•- + •X) and a solvent
reorganization energy that, here, is calledλ. In particular, the
intrinsic barrier height was predicted to be2

The intrinsic barriers were extracted from rate data for non-
symmetric reactions via the quadratic relation of the Marcus
type, as derived by Save´ant:2

The predicted linear dependence onD of the intrinsic barriers
so extracted was observed to be in very good general agreement
with experiment.2,24

An important question is then: does our treatment, which
explicitly includes the strong electronic coupling and the wag
coordinate neglected in the Save´ant treatment, show this type

of dependence onD? Our [CN-Φ-Cl]•- reaction results in
three solvents do not provide a wide range; therefore, we have
chosen to address this question in the following manner.

Our strategy is to varyD artificially about its [CN-Φ-Cl]•-

value, separately in the vacuum and in DMF, in such a way
that the reaction free energy remains constant. To do this
conveniently, we must somewhat alter the vacuum potential
forms given in eq 2.6, such that the2A1 repulsive curve is
described as in the Save´ant model:2

The connection with the parameters of eq 2.6 is the following:

In this formulation, the2B1 and2A1 state bond dissociation
energies are proportional, and scaling the parameterD implies
scaling the dissociation energies of both states by the same
amount.

With the modification shown in eq 5.5, we then calculate
the rate constants in the vacuum and in DMF, for various values
of D, using exactly our entire theoretical development used to
predict the rates in Tables 4 and 8. All these reactions are
asymmetric: in the vacuum, the reaction free energy is∆rV )
V0

A - V0
B = -45.5 kcal/mol, and in DMF, the equilibrium

solvation increases the asymmetry to∆rG ) (V0
A + ∆Gs,eq

A ) -
(V0

B + ∆Gs,eq
B ) = -73 kcal/mol.

For our comparison in the vacuum, for each value ofD, ∆V0
q

is obtained in two different ways. First, we use our model with
the explicit wag coordinateθ and a nonvanishing coupling. The
TS is located on the two-dimensional (r,θ) reaction surface, and
∆V0

q is calculated as the R-TS potential-energy difference for
the symmetric reaction. The other route is via the Save´ant-
Marcus relations given in eqs 5.3 and 5.4, where, in the latter,
there is obviously no solvent reorganization contribution for the
vaccum reaction, and only potential energy is involved. This
yields, in fact, the potential-energy difference between the tip
of the CI and the reactant. The two sets of∆V0

q results
displayed in Figure 11 are approximately linear inD; however,
the comparison shows that, in the (r,θ) picture, the wag allows
access to a TS that is lower in energy, because of the avoidance
of the CI tip, which is due to the wagging motion.

In DMF, we compare two different ways of obtaining∆G0
q.

First, it is (properly) calculated as the free-energy difference
between the TS and the R on our three-dimensional (r,θ,s)
surface. A second determination is provided by the Save´ant-
Marcus relationships presented in eqs 5.3 and 5.4. Figure 12
shows the important point that the present treatment yields an
approximately linear relation between∆G0

q and D. The other
determination yields values of∆G0

q, which are approximately
linear withD, but the value obtained is considerably larger than
that in the full picture.

5.2.3. ActiVation Free Energies.We have already drawn
attention in our discussion of Figures 9 and 10 to the fact that

Figure 9. Free-energy profile along the solvent coordinate, with the
solute in its transition-state (TS) geometry (rq,θq), in the adiabatic
ground state and in each diabatic state, for [CN-Φ-Cl]•- in DMF
(case f). The free-energy origin isG(rq,θq,sq).

Figure 10. Free-energy profile alongr in the TS neighborhood, with
(θ,s) ) (θq,sq), in the adiabatic ground state and in each diabatic state,
for [CN-Φ-Cl]•- in DMF (case f). The free-energy origin is
G(rq,θq,sq).

∆G0
q ) D + λ

4
(5.3)

∆Gq ) ∆G0
q(1 +

∆rG

4∆G0
q)2

(5.4)

VB(r,θ ) 0) ) V0
B + D{1 - exp[-a(r - req

B )]}2

VA(r,θ ) 0) ) V0
A + D exp[-2a(r - req

B )]

) V0
A + D exp(2areq

B ) exp(-2ar) (5.5)

De
B ) D

De
A ) D exp(2areq

B )

aB ) a

aA ) 2a (5.6)

11286 J. Phys. Chem. A, Vol. 107, No. 51, 2003 Laage et al.



the barrier heights estimated in the absence of the electronic
coupling and wag motion are in considerable excess (=8 kcal)
than those calculated in our theory; this excess is approximately
composed of the magnitude of the electronic coupling minus
the wagging potential energy, both evaluated at the TS. This
same sort of excess is also evident in Figures 11 and 12 at any
D value considered. Here, we analyze the situation more
explicitly.

To proceed, we re-express the adiabatic system free energy
G, presented in eq 4.3, in the form (we suppress the (r,θ,s)-
dependent notation)

in terms of the population factors, the diabatic free energies
GB,A, and the couplingâ. Here, we have used the2B1- and2A1-
state populations (cB)2 and (cA)2, given in eq 4.4, in the adiabatic
wave function, and the relation

With eq 4.17, we then have

where the equilibrium diabatic free energiesGeq
B,A consist of

the vacuum potentials and the equilibrium solvation free
energies:Geq

B,A ) VB,A + ∆Gs,eq
B,A.

A discussion of the thermodynamically symmetric reaction
will suffice to make the basic point. The TS will be located, by
symmetry, atGB ) GA, with (cB)2 ) (cA)2 ) 1/2, and eq 5.9
reduces at the TS to

where we have defined a solvent reorganization termΛ:

If, for simplicity, we ignore ther dependence ofseq
A q (see eq

4.19) andseq (see eq 4.20), then this reduces to the simple result
2λs{(1/2)2 + [(1/2) - 1]2} ) λs.

In the R, we can safely assume, as a good approximation,
that the composition is pure B, i.e., (cB)2 ) 1, (cA)2 ) 0, ands
) 0 (see eq 4.19), so that, from eq 5.9, we haveGR ) Geq

B at
the B reactant geometry. The intrinsic barrier height for the
symmetric reaction then is

where we have used the fact that, in our model, the equilibrium
solvation free energy of B does not change between the R and
TS locations: ∆Gs,eq

B q - ∆Gs,eq
B (req

B ) ) 0.
The result shown in eq 5.12 shows two important things. First,

within the approximations stated, the contribution of the C-Cl
bond stretching contained in the expression [VB(rq,θq) -
VB(req

B ,θ ) 0)] is proportional toD, where D is the anion
homolytic bond dissociation energy. This explains the linear
correlation withD observed in our theory of the intrinsic barrier
(see Figure 12). Second, theexcessover this∆G0

q value of the
intrinsic barrier ∆G0

q′ (∆∆G0
q ) ∆G0

q′ - ∆G0
q), which one

would infer by ignoring the wag and the electronic coupling, is
then

which explicitly shows the difference that has been previously
discussed qualitatively: the electronic coupling minus the cost
of the wag to reach the TS value ofθ.

This explains why the experimental intrinsic barriers12 ∆G0
q

are much smaller than the (D + λ)/4 value that is predicted by
eq 5.3. The intrinsic barrier should not be interpreted, as
suggested in ref 12, as being mainly constituted by the solvent
reorganization energy, with a negligible geometric reorganiza-
tion energy corresponding to a significant electronic density
already in the2B1 state. Numerically, for [CN-Φ-Cl]•- in
DMF, VB(θq) - VB(θ ) 0) ) 21.2 kcal/mol,Λ ) 10.7 kcal/
mol, âq ) 16.2kcal/mol, which shows that the geometric
reorganization energy is far from being negligible. In addition,
our resulting intrinsic barrier value∆G0

q ) 7.7 kcal/mol is in
good agreement with the experimental result12 of 5.7 kcal/mol.

6. Concluding Remarks

In this paper, we have developed a theoretical description
for the dissociation of aromatic radical anions in solution,
illustrated for [CN-Φ-Cl]•- in water, acetonitrile, and di-

Figure 11. Comparison of∆V0
q obtained from our picture with

explicit couplingâ and angular coordinateθ, and from the Marcus-
Savéant relationships presented in eqs 5.3 and 5.4 for different bond
dissociation energies (D) in the vacuum.

Figure 12. Comparison of the intrinsic activation free energy∆G0
q

obtained from our picture with explicit couplingâ and angular
coordinateθ and the∆G0

q value obtained from the Marcus-Savéant
relationships presented in eqs 5.3 and 5.4 for different bond dissociation
energies (D) in DMF. Note: for [CN-Φ-Cl]•-, D ) 114 kcal/mol,
but the corresponding∆G0

q value reported here is not the one that we
have determined in DMF, because our analytical model is based on
the fits of the ab initio potentials, and these fits cannot be reproduced
by the restrictive form of Save´ant’s model potentials that are given in
eq 5.5: our potentials do not fulfill the condition described in eq 5.6.

G ) (cB)2GB + (cA)2GA - 2cBcAâ (5.7)

cBcA ) x(cB)2(cA)2 ) â

x(GA - GB)2 + 4â2
(5.8)

G ) (cB)2Geq
B + (cA)2Geq

A +

λs[(c
B)2s2 + (cA)2(s - seq

A )2] - 2cBcAâ (5.9)

Gq ) Geq
B q + 1

4
Λ - âq (5.10)

Λ ) 2λs[s
q2 + (sq - seq

A q)2] (5.11)

∆G0
q ) Gq - GR

) [VB(rq,θq) - VB(req
B ,θ ) 0)] + 1

4
Λ - âq (5.12)

∆∆G0
q = âq - [VB(θq) - VB(θ ) 0)] (5.13)
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methyl formamide (DMF) solvents. A key and novel component
is the treatment of the conical intersection (CI) aspects of the
reaction. In particular, the C-Cl wag motion is critical in
avoiding the CI and, thus, generating strong electronic couplings
between the diabatic bound and dissociative statesswhich
allows the charge flow from the ring system onto the departing
Cl atom and results in a bent transition state (TS). The required
electronic structure information was provided by ab initio
calculations. The strong coupling of the reaction to the sur-
rounding polar solvent was included via the explicit introduction
of a solvent coordinate, with attention to the central nonequi-
librium solvation feature: the solvent does not have time to
equilibrate to the C-Cl stretch and bending motions as the
reaction proceeds.

The entire formulation was couched in analytic terms,
culminating in expressions for the dissociation reaction rate
constant. Evaluation in the three solvents gave results that were
in fair agreement with experiment, given the uncertainties in
the latter. This success suggests that the present formulation
could be useful for other ground-state CI-dominated dissocia-
tions (see, for example, ref 43). The relatively modest increase
of the rate constant with increasing solvent polarity (=1 order
of magnitude) suggests that major changes in rate constants from
one molecule/solvent system to another are likely to be
dominated by molecular changes, which implies different
electronic coupling and state ordering effects (see Sections 2.2
and 2.3).

Analysis of the rate constantssand, in particular, analysis of
the activation free energiessshowed that the inclusion of the
wagging motion and the resulting strong electronic coupling
has a very important impact on the reaction barrier; without
this effect, the barrier almost doubles, from=9.7 kcal to=18
kcal. This contrasts with the neglect of this feature in the
pioneering theoretical model that was reported by Save´ant.
However, the Save´ant model first pinpointed the important
correlation of the barrier height with the homolytic bond
dissociation energy of the anion; this experimentally confirmed
correlation is also shown by the present theory.

The present treatment is approximate, and several improve-
ments within this present formulation could be made. Examples
include inclusion of the C-Cl bond-length-distance dependence
of the electronic coupling and attention to a varying screening
of the Cl solvation as the dissociation proceeds. These will not
change the basic picture but probably will have some relatively
minor numerical consequences.113 A more significant extension
of interest would be to include a microscopic treatment of the
solvent, rather than the somewhat crude dielectric continuum
model that has been applied within. In this connection, one must
remember that the electronic structure issues must be simulta-
neously addressed. One possibility would be to maintain the
diabatic description of the present work, augmented by calcula-
tions to determine ther dependence of the electronic coupling,
and to combine that with the type of molecular dynamics
computer simulation used successfully for, e.g.,SN1 dissocia-
tion.45f,114a,114bFor this purpose, one would have to define a
microscopic analogue of the type of solvent coordinate we have
used within both to find the TS region and to examine the
dynamics in its neighborhood. In other bond-breaking and bond-
making reaction problems, one can define such a coordinate,114

which is related to the difference of the full microscopic
Hamiltonians, including the solvent molecule’s contributions,
for the reaction system in the two diabatic states, and it seems
likely that one could do the same for the anion dissociation
problem, using the2A1 and2B1 diabatic states.

Beyond its role inSR,N1 nucleophilic substitution, radical
anion dissociation is also implicated in the formation mechanism
of Grignard reagents, which is of considerable significance in
organic synthesis. Two mechanisms are envisaged, which differ
in the decay channel for the radical anion [R-X]•- intermedi-
ate: it can either dissociate or be reduced by the magnesium
metallic surface to form a dianion.5 Accordingly, an analysis
of the present type for the lifetime of aromatic radical anions
in solution could help decide between those mechanisms.

Furthermore, our analysis should also be relevant for halo-
genated uracil (halo-uracil) compounds6 that are involved in
DNA damage. Halo-uracils are widely used in radiation therapy,
where they are incorporated in DNA in place of thymine bases
to enhance the DNA sensivity to radiation and increase the death
of proliferating cells. The ionizing radiation produces secondary
electrons and their attachment to halo-uracil leads to the
dissociation [U-X]•- f U• + X-, producing the uracil radical
U•, which causes breaks in the DNA strand. The detailed
mechanism is not yet well understood; however, recent calcula-
tions that are associated with the present research indicate the
occurrence of a CI in the chloro-uracil dissociation.115

Finally, aspects of the present formulation could prove useful
for the study of photochemical dynamics for radical anions in
solution;11 however, the nature of the states that are excited
requires clarification,11 and further theoretical developments for
the dynamical passage through CIs in solution will be required.
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