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The theoretical formulation presented for the solution reaction path and rate constant for the radical anion
[CN-Φ-Cl]•- dissociation in solution, described in the preceding paper of this series of work, hereafter
referenced as I. The reaction paths that lead to the bent geometry transition state, which is required for the
avoidance of the conical intersection point, and cross through such a state vary with the solvent (e.g., water
versus acetonitrile) and differ considerably from an equilibrium solvation image. A transition state theory
(TST) rate constant,kTST, is described in terms of reactive and nonreactive normal modes and is contrasted
with a conventional equilibrium solvation perspective. Finally, dissipative frictional effects on the reaction
rate are examined and determined to be negligible, which supports the use of thekTST formula for the rate
constant evaluation in I.

1. Introduction

In this paper, we examine the theoretical construction and
calculation of the reaction paths and the rate constants for the
dissociation of the radical anion [CN-Φ-Cl]•- in solution,
which is a ground electronic state conical intersection reaction,
the aspects of which have been analyzed in the first paper of
this series of work1 (hereafter referenced as I). Several of the
numerical results that are developed within have already been
used in I.

Our basic approach is in terms of a Hamiltonian formulation.
This formulation can be then used to analyze the reaction path
and rate constant, as shown by Lee and Hynes,2 in a manner
somewhat similar to a gas-phase reaction problem, except that
(i) there is a free energy functionG, rather than simply a
potential energy function, and (ii) there is a solvent coordinate
s in the description, which is, of course, critical. The reaction
path, which is the solution phase analogue2 of the gas-phase
Fukui intrinsic reaction coordinate,3 provides a molecular level
picture (at least in the reacting solute) of the key motions
involved on the way to the reaction transition state, the sequence
in which they occur, and the motions that the reaction system
uses to reach and cross the transition state. We have already
emphasized in I that there must be a bending of the CCl, to
avoid the conical intersection point as the C-Cl bond stretches.
In the solvent dielectric continuum description that has been
used, the participation of the solvent orientational polarization
in the reaction path and transition-state crossing is revealed. In
short, the reaction path is a picture of the mechanism of the
reaction, including the solvent’s role.

These reaction paths can be quite different for different
solvents, and they generally are quite different from the gas-

phase path. In addition, they generally are quite different from
those paths calculated under the most common assumption that
is applied for solution reactions. This is the assumption of
equilibrium solvation, in which, for the radical anion dissocia-
tion, the solvent would be imagined to be always equilibrated
to the reacting solute at each value of the C-Cl separationr
and the C-Cl wag angleθ. As shown within, for the radical
anion, the solvent does not have sufficient time to equilibrate
to the rapidly changing charge distribution of the dissociating
anion, and, instead, the reaction path involves extensive non-
equilibrium solvation.

The rate-constant formulation in this Hamiltonian perspective
is also a solution analogue of gas-phase transition state theory
(TST), which involves the reaction coordinate at the transition
state, as well as nonreactive mode motions there, all in the three-
dimensional (3D) space (with coordinatesr, θ, s). This allows
a simple and precise expression for the rate constant, such that
its various trends with, for example, solvent polarity can be
analyzed, as was done in I. This 3D TST approach is quite
different conceptually from what is usually understood as TST
in solution; the latter implicitly or explicitly involves the
equilibrium solvation assumption, which, as noted previously
and shown within, is not correct.

The aforementioned Hamiltonian description is a nondissi-
pative one. It does not include any dissipative, “frictional” effects
on any of the three coordinates. These frictional effects include,
for example, (i) an explicit role of the dynamical solvation time
in response to a changed charge distribution, as measured in
time-dependent fluorescence Stokes shift measurements of
solvation dynamics,4 and (ii) any “viscosity” effects that dampen
the motion of an ion such as Cl- moving through a solvent. It
is important to examine the possible role of these frictions on
the rate constant. If they are significant, then the 3D TST rate
constant will be in error, to some degree, and our estimates in
I would have to be revised. Indeed, it has been suggested5 that,
in the presence of “moats”, avoiding a conical intersection point
(which is exactly the situation established in I for the radical
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anion dissociation), there will be strong frictional damping
effects, inducing diffusive motion in the moats, with a resulting
strong reduction of the rate constant. These questions can be
explicitly examined for the [CN-Φ-Cl]•- system by applica-
tion of the Grote-Hynes theory6,7 for dynamical friction effects
on reaction rates. This theory has been repeatedly shown to be
accurate via molecular dynamics tests for realistic solution
reactions (see, for example, the work of Bergsma et al.8 and
Hynes9), and it has also proved useful for experiments (see, for
example, the work of Hynes,9 Kim and Hynes,10 and Changenet
et al.11).

The outline of the remainder of this paper is as follows. In
Section 2, we develop the (r, θ, s) kinetic energy expression,
which, together with the free energy surfaceG(r, θ, s) developed
in I, completes the Hamiltonian description. Section 3 begins
with the introduction of normal modes to facilitate the discussion
of the solution reaction path, followed by a detailed analysis of
the calculated reaction paths in the (r, θ, s) coordinates for the
[CN-Φ-Cl]•- dissociation in the three solvents. A strong
contrast is made with the paths expected on the basis of
conventional equilibrium solvation view. The theoretical for-
mulation of the TST rate constant expressions implemented in
I is presented in Section 4, and its interpretation in terms of
reactive and nonreactive normal modes is given. The contrast
is also made with the rate constants that would result from an
equilibrium solvation perspective. Section 5 examines the issue
of whether any serious corrections for the TST rate constants
are necessary that are due to the influence of dissipative
frictional forces acting on the (r, θ, s) coordinates. Brief
concluding remarks are given in Section 6.

2. Reaction System Hamiltonian

We first briefly describe the Hamiltonian formulation that is
associated with the free energy surface described in I. The
Hamiltonian

is the sum of a kinetic energyK and the free energyG(r,θ,s).
In I, we have already extensively discussed the free energy
surface in the variables of the bond stretchr, the CCl wag angle
θ, and the solvent coordinates,

in terms of the diabatic state free energiesGB,A(r,θ,s) and the
angle-dependent electronic couplingâ(θ). The evolving ground
adiabatic electronic wave function during the dissociation is

in terms of the diabatic bound (2B1) and dissociative (2A1) state
wave functions, where the squared coefficients (cB)2 and (cA)2,
which measure their respective contributions, are

For convenience, we will specify the explicit forms ofGB,A and
â that have been developed in I later, in Section 2.2. To complete

the Hamiltonian description, the kinetic energy that is to be
added to the free energyG(r,θ,s) must be found.

In Section 4 of I,1 we introduced an intermediate solvent
coordinatez, such that the orientational polarization fieldPor-
(x) at a locationx in the solvent was represented during the
reaction by

i.e., a linear combination of the equilibrium polarizations,
appropriate to the charge distributions of the reacting anion
system in its diabatic states: the bound2B1 state and the
dissociative 2A1 state (see Section 2.1 of I) with internal
coordinate valuesr and θ. There, it was stated that the
conversion to a new solvent coordinatesswhich ultimately led,
after some approximations, to the free energy formG(r,θ,s) (eq
4.17 of I)swas necessary to diagonalize the kinetic energy such
that there is no kinetic dynamic coupling betweens and the
solute internal coordinatesr and θ. Here, we discuss this
transformation, which allowss to be treated as an independent
dynamical variable.12

The kinetic energyK is given by

with the solvent polarization contribution being given by

where the dot indicates time differentiation andµr is the reduced
mass of the radial Cl-ring separation,µθ(r) is the mass for the
bend (which isr-dependent, because of the moment arm of the
Cl atom, with respect to the ring C atom), andmso is the
orientational polarization mass of the solvent:

whereωs
2 is a constant squared solvent frequency. The factor 1

- (ε∞/ε) in eq 2.8 reflects the fact that the velocity of the
comparatively slow orientational polarization is involved, rather
than the extremely rapid electronic polarization (characterized
by ε∞).

For the reaction problem, the equilibrium polarizations in eq
2.5 for Por(x) generally are dependent onr and θ, and the
polarization velocityP4 or has contributions fromz̆ andr andθ̇:

When this relation is inserted into eq 2.7 forKor, various cross
terms emerge, e.g., inz̆r̆ andz̆θ̇, such thatz cannot be regarded
as an independent dynamical variable. A different solvent
coordinate is required.

To proceed to find this coordinate, we make several ap-
proximations. First, we neglect theθ dependence of the
equilibrium polarizationsPor,eq

B,A (x; r,θ). Indeed, the wagging
motion does not change the solute charge distribution of the
anion in the diabatic states much and induces only a small

H ) K + G(r, θ, s) (2.1)

G(r,θ,s) )
GB(r,θ,s) + GA(r,θ,s)

2
-

1
2
x(GA(r,θ,s) - GB(r,θ,s))2 + 4(â(θ))2 (2.2)

Ψ(r,θ,s) ) cB(r,θ,s)ΨB(r,θ) + cA(r,θ,s)ΨA(r,θ) (2.3)

(cB,A(r,θ,s))2 )

1
2(1 (

GA(r,θ,s) - GB(r,θ,s)

x[GA(r,θ,s) - GB(r,θ,s)]2 + 4(â(θ))2) (2.4)

Por(x) ) (1 - z) Por eq
B (x; r,θ) + z Por eq

A (x; r,θ) (2.5)

K(r,θ,Por(x)) ) 1
2

µrr̆
2 + 1

2
µθ(r)θ̇

2 + Kor(P4 or(x)) (2.6)

Kor(P4 or(x)) ) 1
2
mso∫ dx (P4 or(x))2 (2.7)

mso ) 1

ωs
2

4π
1 - (ε∞/ε)

(2.8)

P4 or(x) ) z̆(Por,eq
A (x; r,θ) - Por,eq

B (x; r,θ)) +

r̆ [(1 - z)
∂Por,eq

B (x; r,θ)

∂r
+ z

∂Por,eq
A (x; r,θ)

∂r ] +

θ̇[(1 - z)
∂Por,eq

B (x; r,θ)

∂θ
+ z

∂Por,eq
A (x; r,θ)

∂θ ] (2.9)
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change in the resulting electric field. Second, for the solute in
the bound state2B1, we ignore ther dependence ofPor,eq

B (x;
r,θ), because there is little charge on the Cl atom in this state
and the solute electric field will change negligibly as the C-Cl
bond is stretched. (In I, we ultimately made a similar ap-
proximation for the dissociative2A1 state (cf. Section 4.1.2);
however, it is convenient to retain ther dependence ofPor,eq

A

for the moment.)Por,eq
B (x; r,θ) then may be always assigned its

value at r ) req
B , which is the equilibrium position in the

B-state.
With these approximations, eq 2.9 simplifies considerably

to

and the kinetic energy in eq 2.7 becomes

in which ther-dependent solvent massms(r) is

and theR andâ factors are

Next, by introducing a solvent force constantks(r),

in which ωs
2 is the constant square solvent frequency in eq 2.8,

such that ther dependence ofks(r) is that of ms(r), we note,
from eqs 2.12-2.14, that

It can then be readily verified that, with the new solvent
coordinate, which is defined by

whereks
B ) ks (r ) req

B ) is the force constant evaluated at the
2B1-state equilibrium value ofr, the polarization kinetic energy
(given in eq 2.11) is now diagonal:

The polarization kinetic energyKor (given in eq 2.18) is now
characterized by a constant mass:

This solvent massµs enters in the solvent coordinate kinetic
energy in eq 2.18 and is associated with eq 2.6, in regard to the
total kinetic energyK, giving a renormalization contribution to
the massµr for ther coordinate. However, in the approximations
developed in I (see Section 4.1.2 of I), the equilibrium
orientation polarizationPor,eq

A is assumed to be independent of
the stretching dissociative coordinater. Thus, its derivative in
both eqs 2.13 and 2.14 vanishes, with the consequence thatR
) â ) 0, and there is no renormalization of ther mass.

Thus, the final expression for the full kinetic energy is

and the desired Hamiltonian description for the dissociating
anion system in solution is

with K being given by eq 2.21 andG being given by eq 2.2,
with its components to be given explicitly in Section 2.2.

2.1. Solvent Mass and Inertial Solvation Dynamics.The
constant solvent mass (given in eq 2.19) is directly related to
the solvent frequencyωs and the constant solvent force constant
ks

B. The latter is given in our analytical model by the second
derivative of the diabatic free energyGB, evaluated at the
equilibrium bond extensionreq

B :

However, one can show that the constant solvent massµs is
also given by the dielectric continuum expression in eq 2.8;
there, it is calledmso. By combining eqs 2.19 and 2.22, we can
determine the solvent frequency, and, thus, the solvent mass,
by a more convenient route than using the dielectric continuum
solvent mass expression in eq 2.8. This route is to use
experimental time-dependent fluorescence Stokes shifts, i.e.,
time-dependent solvation dynamics, as was done in ref 10. The
connection is the following. Carter and Hynes13 (also see the
work of Maroncelli14) have shown that the short-time, “inertial”
component of the solvation dynamics is governed by the
Gaussian function

thus providingωs (see Table 1). As discussed in more detail in
Sections 4 and 5, this inertial frequency is quite distinct from
any frictional aspects that are associated with the solvent
coordinates and is, thus, precisely the quantity needed for the
nondissipative Hamiltonian description.

2.2. Free Energy SurfaceG(r,θ,s). The free energy surface
G(r,θ,s) was developed in detail in I. Here, we gather together
the explicit expressions forG and its ingredients to be used in
the remainder of this paper.G(r,θ,s) is given by eq 2.2, in terms
of the diabatic free energiesGB,A and the coupling (eq 2.4 of
I):

The final forms ofGB,A are (eq 4.17 of I)

P4 or(x) ) z̆(Por,eq
A (x; r) - Por,eq

B (x; req
B )) + r̆z

∂Por,eq
A (x; r)

∂r
(2.10)

Kor )1
2
ms(r)z̆

2 + R(r,z) z̆r̆ + 1
2
â(r,z)r̆2 (2.11)

ms(r) ) mso∫ dx (Por,eq
A (x; r) - Por,eq

B (x; req
B ))2 (2.12)

R(r,z) ) msoz∫ dx
∂Por,eq

A (x; r)

∂r
(Por,eq

A (x; r) - Por,eq
B (x; req

B ))

(2.13)

â(r,z) ) msoz
2∫ dx(∂Por,eq

A (x; r)

∂r )2

(2.14)

ks(r) ) ωs
2ms(r) (2.15)

R(r) ) 1

2ωs
2

dks(r)

dr
(2.16)

s ) zxks(r)

ks
B

(2.17)

Kor )
ks

B

2ωs
2
s̆2 + 1

2
r̆2(â(r,s) -

R(r,s)2

ms(r) ) (2.18)

µs )
ks

B

ωs
2

(2.19)

K ) 1
2

µrr̆
2 + 1

2
µθ(r)θ̇

2 + 1
2

µss̆
2 (2.20)

H ) K + G(r,θ,s) (2.21)

ks
B ) ∂

2GB

∂s2 |
req
B

(2.22)

Inertial component) exp(-
ωs

2
t2

2 ) (2.23)

â(θ) ) bθ (2.24)
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in which VB,A(r,θ) are the vacuum potentials (eq 2.6 in I)

and where the equilibrium solvation free energies∆Gs
B,A are

given by (eq 4.32 of I, with the prime notation now suppressed)

whereR is the scaling parameter discussed in Section 4.2.2 of
I and qCl

B,A andqΦ
B,A are the partial charges on the Cl atom and

ring sites, in the2B1- and2A1-states, respectively. The equilib-
rium solvent coordinatesseq

B,A(r) for the 2B1- and 2A1-states
entering in eq 2.25 were defined in I to be

The final nonequilibrium solvation term in eq 2.25 involves
the reorganization energyλs and itsr-dependent versionλs(r)
(eq 4.36 of I with the prime notation suppressed):

The latter enters the equilibrium valueseq(r,θ) of the solvent
coordinate for the adiabatic ground state (eq 4.20 of I), which
can be rewritten as

The squaredA component of the electronic structure composition
of the adiabatic wave function (eq 2.3), when the solvent is in
equilibrium for a given (r,θ) set of coordinates for the radical
anion, can be found via eq 2.4 and∂G/∂s ) 0 for fixed r and
θ.

3. Solution Reaction Path

Using eq 2.18 for the kinetic energyK and eqs 2.2 and 2.4-
2.30 for the free energy surface and its ingredients, we can now
calculate the radical anion reaction paths in solution in the 3-D
space (r,θ,s). The reaction path is defined as a zero-kinetic-
energy, mass-weighted, steepest-descent path from the transition
state (TS) and toward either the reactant (R) or the product

state.2,15-19 On starting from R, the path describes how the
reacting system reaches the TS, crosses it, and evolves thereafter.
A useful terminology for the path is that it specifies the reaction
coordinate. Before presenting the calculated paths in Section
3.2, we first discuss the concept of normal modes for the
reaction, to help interpret those results.

3.1. Normal-Mode Analysis.As noted in the Introduction,
the solution reaction path (or reaction coordinate) is the
condensed-phase analogue of the Fukui intrinsic reaction
coordinate path in the gas phase.3,20 It is also important to
consider the directions transverse to this path. In the harmonic
approximation at each point along the path, this will define
nonreactive normal modes (NMs), i.e., stable modes of vibration
perpendicular to the reaction path at that point. They are
nonreactive modes, because it is the reaction path itself that
the system follows from the R to the TS and beyond to effect
the reaction. The identities and frequencies of these nonreactive
NMs will generally vary along the reaction path, because the
path composition in terms ofr, θ, andswill vary, e.g., on going
from the R to the TS.

The transverse nonreactive NMs and the reaction path
coordinatesthe reaction coordinatesare especially interesting
in the R region and in the TS region. In the former region, these
indicate how the reaction begins; in the latter region, they specify
how the TS is crossed, which will be of special importance for
us. In these two regionsswhich, as we will see, are sufficient
to specify the reaction rate constantsin the harmonic ap-
proximation, the reaction coordinate itself becomes a NM: a
reactive normal mode. In the R region, the reactive NM is a
stable vibration, whereas at the TS, it is an unstable vibration,
i.e., the reaction system is crossing the TS, “seeing” a parabolic
free energy variation in the reaction coordinate direction. In this
TS region, the transverse nonreactive NMs complete the picture
of a saddle region. We now develop the description of all these
modes and their frequencies.

3.1.1. Normal Mode Transformation.In the TS neighborhood,
the first derivatives of the free energyG(r,θ,s) vanish, and the
equations of motion are

The notation for the various free-energy second-derivative terms
has been condensed into, for example,Gq

rθ ) ∂2G/(∂r ∂θ)|q, and
we have introduced the deviations ofr, θ, ands from their TS
values (e.g.,δr ) r - rq). µr, µθ, andµs are the notations that
we will use from this point forward for the respective masses
of each coordinate. Theθ coordinate associated mass (µθ) is
evaluated at the TS geometry (see Table 1).

GB,A(r,θ,s) ) VB,A(r,θ) + ∆Gs,eq
B,A + λs(s - seq

B,A(r))2 (2.25)

VB(r,θ) ) V0
B + De

B{[1 - exp[-aB(r - req
B )]]}2 + 1

2
kθθ2

VA(r,θ) ) V0
A + De

A exp(-aAr) + 1
2
kθθ2 (2.26)

∆Gs,eq
B ) - R

2(1 - 1
ε)((qCl

B )2

aCl
+

(qΦ
B)2

aΦ
+

2qCl
B qΦ

B

dCC + req
B )

∆Gs,eq
A (r) ) - R

2(1 - 1
ε){[qCl

A (r/R)]2

aCl
+

[qΦ
A(r/R)]2

aΦ
+

2qCl
A qΦ

A

dCC + r}
(2.27)

seq
B (r) ) 0

seq
A (r) ) x λs(r)

λs(req
B )

(2.28)

λs ) R( 1
ε∞

- 1
ε){[qCl

B - qCl
A (req

B )]2

2aCl
+

[qΦ
B - qΦ

A(req
B )]2

2aΦ
+

[qCl
B - qCl

A ][qΦ
B - qΦ

A(req
B )]

dCC + req
B }

λs(r) ) λs(r ) req
B ) (2.29)

seq(r,θ) ) (ceq
A (r,θ,seq))

2xλs(r)

λs
(2.30)

TABLE 1: Solvent Static and High-Frequency Dielectric
Constants (E0 and E∞, Respectively), Solvent Frequency (ωs),
and Solvation Time (τs)a

solvent ε0 ε∞

ωs

(ps-1)
τs

(ps)
µr

(g/mol)
µθ(rq)

(Å2 g/mol)
µs

(Å2 g/mol)

water 78.4 1.7756 45 0.2 37.5 145 14
acetonitrile 37.5 1.7999 8.3 0.26 37.5 149 353
DMF 36.7 2.0398 7 2.0 37.5 148 426

a From ref 4; masses associated with the coordinatesr, θ, s.

{δ̈r ) - 1
µr

Gr,r
q δr - 1

xµrµθ

Gr,θ
q δθ - 1

xµrµs

Gr,s
q δs

δ̈θ ) - 1

xµrµθ

Gr,θ
q δr - 1

µθ
Gθ,θ

q δθ - 1

xµθµs

Gθ,s
q δs

δ̈s ) - 1

xµrµs

Gr,s
q δr - 1

xµθµs

Gθ,s
q δθ - 1

µs
Gs,s

q δs

(3.1)
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For both the NM analysis and the reaction-path calculations,
we require mass- weighted coordinates: these are simply the
usual coordinatesr, θ, ands, scaled by the square root of the
appropriate mass,r′ ) xµrr; θ′ ) xµθθ; s′ ) xµss. In all that
follows, we will use the mass-weighted coordinates; therefore,
we will suppress the prime symbols. However, we do retain
the Gq

xy notation, to indicate the free-energy derivatives, with
respect to the unscaled coordinates.

The Hessian matrix that is associated with eq 3.1 can be
diagonalized; i.e., one can find the rotation matrixRq such that
NM frequencies are generated:21

At the TS, the Hessian eigenvectors are the three mass-
weighted NMs, which are linear combinations of the coordinates
δr, δθ, δs. Here, the topology of the free-energy surface
corresponds to a saddle point: one modesthe reactive mode
xq

1sis unstable, whereas the two other modes, which are the
transverse modesxq

2 and xq
3, are stable. Thesexq

i modes are
defined, with respect to the (r, θ, s) coordinates, by the rotation
matrix Rq

and the NM equations of motion are

A precisely similar analysis can be conducted in the R region,
where the three stable NMs correspond to motion along the
reaction coordinate direction there and the two transverse
vibrations. The equations of motion are

and the relation of these NMs to the original (mass-weighted)
coordinates is

where theRR matrix is defined by the relation

and differs from the TS region matrixRq: the identity of the
various NMs is generally different in the R and TS regions.

3.1.2. Origin of Coordinate Couplings for the NMs.It will
be useful for our subsequent discussion to discuss the nature of
the couplings between the coordinates that generate the various
NMs, which result from the cross terms in the free-energy
derivativesGxy. For this purpose, it is convenient to use the
free-energy surface expression in eq 2, in terms of the occupation
probabilities (cB)2 and (cA)2 (eq 2.4) for the diabatic statesΨB,A

in the adiabatic wave functionΨ (see eq 2.3). The first
derivative ofG, with respect to any coordinatey, varies with
the varying electronic structure, according to

where we have also used eq 2.4. This general expression for
the gradients ofG, which govern the reaction path itself, can
be used to gain some insight on theG second-derivative factors
that determine the NMs in the R and TS regions.

In the R region, (cB)2 = 1 and (cA)2 = 0; therefore, with eqs
2.25-2.27 for the diabatic free energiesGB,A and eq 2.24 for
the couplingâ, we conclude that, in the R region,

so that there is negligible coupling between coordinates. Thus,
the NMs will correspond to the coordinates (r, θ, s).

The situation is quite different in the TS region. There, the
electronic structure is changing rapidly, (cB)2 = (cA)2 and are
rapidly varying with assorted coordinates (as we will see); thus,
a coupling between the coordinates will result, such that the
NMs will be various combinations of the basic (r,θ,s) coordi-
nates NMs. Even in the special case of the wag angle, where
the two first terms of eq 3.8 become independent of the
electronic structuresbecause the derivatives∂GB,A/∂θ ) ksθ are
equal and (cB)2 + (cA)2 ) 1sthe term that involves the
derivative of the angle-dependent electronic coupling remains
electronic structure-dependent,

thus inducing, generally, a coupling betweenθ and the other
coordinates viacBcA.

(ω1
q2 0 0

0 ω2
q2 0

0 0 ω3
q 2) )

Rq ( - 1
µr

Gr,r
q - 1

xµrµθ

Gr,θ
q - 1

xµrµs

Gr,s
q

- 1

xµrµθ

Gr,θ
q

- 1
µθ

Gθ,θ
q - 1

xµθµs

Gθ,s
q

- 1

xµrµs

Gr,s
q - 1

xµθµs

Gθ,s
q

- 1
µs

Gs,s
q ) (Rq)-1 (3.2)

(x1
q

x2
q

x3
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) (cB)2∂GB
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∂y
- 2cBcA∂â
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∂G
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∂VB

∂r
) a function ofr only

∂G
∂θ

=
∂VB

∂θ
) kθθ

∂G
∂s

=
∂VB

∂s
) kss (3.9)

∂G
∂θ

) ksθ - 2cBcA∂â
∂θ

(3.10)
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3.2. Reaction Path.We now turn to the calculation of the
[CN-Φ-Cl]•- dissociation reaction paths in the three sol-
vents: water, acetonitrile, and dimethyl formamide (DMF). The
results for acetonitrile are very similar to those of DMF;
therefore, we do not present explicit results for it.

To calculate the reaction path, the first step is to locate the
TS on the reactive surface, which is accomplished in a standard
fashion. Topologically, the TS is a saddle point; i.e., all the
free-energy first derivatives, with respect to the different
coordinates, are zero, and it is a minimum along all coordinates
except one. After the TS has been located, two trajectories are
calculated, both of which start along the unstable mode but in
opposite directions: one leads to the reactant and the other to
the product. Each trajectory is calculated as a zero-kinetic-
energy, mass-weighted, steepest-descent path from the TS and
toward either the reactant or the product state.

The reaction path is determined on theG surface with three
coordinates (r, θ, s); therefore, it is difficult to plot it in any
intuitive way. To address this situation, we will present the
calculated contribution of each of the three coordinates to the
reaction coordinate, i.e., the contribution to the reaction path.
We supplement this with calculations of the various reactive
and nonreactive NM frequencies in the R region and at the TS
to give some further insight.

It is useful, for perspective, to first recall the potential energy
surface for the dissociation in a vacuum (see Figure 4 of I),
reproduced here for convenience as Figure 1.22 The basic
character of the reaction path is obvious from this figure:
starting from R, the CCl angle will first bend to avoid the conical
intersection point, followed by significant motion in the CCl
stretch, which is the reaction coordinate at the bent TS.

Figure 2 shows the calculated results for the anion dissociation
in the DMF solvent. Panel (a) shows that, starting from the R

region, the solvent begins to reorganize first, and then the wag
angle starts to change, again so that the conical intersection point
will eventually be avoided, and ultimately the CCl bond
stretches; the reaction coordinate at the bent TS is almost
exclusively the bond stretch, just as it is in the vacuum (see
Figure 1). These basic characteristics are also displayed in a
different way in Figure 2b, where the progress of the system
free energy is also shown.

Important general aspects of this path follow from a consid-
eration of characteristic time scales, determined by the inverse
of the frequencies that are associated with coordinate motions.
In the R region, the coordinate frequencies are given in Table
2 in the DMF solvent; these also coincide with the R-region
NM frequencies, as is to be expected from our discussion in

Figure 1. Gas-phase potential energy surface for [CN-Φ-Cl]•- with
kθ ) 28 cal/deg2: (a) three-dimensional (3D) representation and (b)
contour plot with a 2 kcal spacing between two successive contour
lines. (Note that the actual well inθ for larger values should be softer
in θ, because we assumed thekθ force constant to be independent of
r.)

Figure 2. Dissociation of [CN-Φ-Cl]•- in dimethyl formamide
(DMF) (case f in I): (a) contribution of each (mass-weighted) coordinate
to the reaction coordinate along the reaction path; and (b) normed
progressê ) x/xq (with x ) r, θ, s, G) of the three coordinates and of
the free energy, together with the charges on the ring and Cl sites,
along the reaction path.

TABLE 2: Frequencies in the Reactant along the
Coordinates r, θ, s, Normal-Mode Frequencies in the
Reactant (R) and at the Transition State (TS), and
Activation Free Energy (∆Gq) in the Three Solventsa

water
(case a)

MeCN
(case e)

DMF
(case f)

ωr
R (ps-1) 74 74 74

ωθ
R (ps-1) 10 10 10

ωs
R (ps-1) 45 8 7

ω|
R (ps-1) 10 8 7

ω⊥1
R (ps-1) 45 10 10

ω⊥2
R (ps-1) 74 74 74

ω|
q (ps-1) 75 70 70

ω⊥1
q (ps-1) 14 14 14

ω⊥2
q (ps-1) 46 9 8

∆Gq (kcal/mol) 9.7 10.2 9.9

a See eq 4.3.
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Section 3.1, which indicates small coupling between the
coordinatesr, θ, ands. On the basis of these frequencies, in
the DMF solvent, the solvent coordinate is the slowest, followed
by the angle and the bond stretch, which is, by far, the fastest
coordinate. This, of course, is consistent with the time sequence
pattern of Figure 2 when one realizes that to ultimately cross
the TS, which is a rapid process, slow coordinates must
reorganize first; there will be no time to do this in the TS passage
itself. Of course, the frequency values used for this argument
were those in the R region, and this is not the complete story.
Electronic structure variation issues are also key, as implied by
our discussion in Section 3.1 and now discussed.

Figure 2b shows the radical anion electronic structure
variation along the reaction path in DMF as the charge is
adiabatically transferred from the ring (designated byΦ) to the
Cl atom. This information is presented in terms of the charges
associated with the adiabatic wave functionΨ (from eq 2.3)
along the reaction path:

In approximately half of the progress displayed from the R to
the TS, the electronic structure remains essentially that of the
R, and the aforementioned frequency arguments still apply.
Figure 2b shows that most of the electronic structure variation
is concentrated in the TS neighborhood, and that, very impor-
tantly, the changes thats andθ are going to make on the way
to the TS arealready completed. The solvent coordinate has
preorganized to be appropriate to the approximately 50/50
charge distribution at the TSbeforethat charge distribution is
established, and the wag angle has increased to provide the
electronic coupling, allowing that charge distribution (and, of
course, avoiding the conical intersection point). As the system
heads into the neighborhood of the TS,s andθ are no longer
involved, leaving only the most rapid coordinater: notice in
Figure 2a that, in the region of rapid increase in contribution
of r to the reaction coordinate,s andθ drop out rapidly. The
fact that the basic ordering of time scales still applies in the TS
region is further confirmed by examination of the NM frequen-
cies at the TS (see Table 2). The highest of these, the parallel
frequencyω|

q, is obviously mainly associated with the bond
stretchr, though now this is an unstable motion in the barrier
region. The frequencies of the two transverse modesω⊥1

q and
ω⊥2

q , which are essentially the angle and the solvent respec-
tively, both have frequencies lower than that ofr, and are again
in the order angle higher than solvent.

As noted previously, the picture for the reaction in acetonitrile
is essentially the same as that in DMF, as should be evident
from the comparison of their characteristic frequencies in Table
2.

For the [CN-Φ-Cl]•- dissociation in the water solvent,
however, the reaction path is noticeably different (see Figure
3). Panel (a) shows that the initial motion away from the R

region is in the wag angle. The solvent then rearranges
somewhat, the C-Cl bond stretches, and the TS is crossed along
a mixture of the bond stretch and solvent coordinates. This is
not only in significant contrast to the DMF case, but it also
contrasts with the vacuum reaction in the identity of the TS
reaction coordinate.

Again, time-scale considerations are critical here. The fre-
quency entries in Table 2 for the R region show that, in water,
the solvent is much faster than the wag angle (the opposite of
the DMF situation) and is, in turn, slower than the bond stretch,
which accounts for the basic ordering of the motions in Figure
3a. The fast time-scale character of water, which is directly
reflected in the very short inertial time scale (=ωs

-1) that is
observed experimentally, results from the water librational
(hindered rotational) motions. The librational motions of the
light H atoms have a high frequency, and, therefore, the water
dipole moments can rearrange very quickly; in the present
continuum description, the water orientational polarization can
adjust rapidly.

Beyond the feature that the wag angle is the slowest
coordinate for the reaction in water, its central role in establish-
ing the electronic coupling and avoiding the conical intersection
point is much the same as that in DMF, and we do not consider
it further. The continued significant involvement of the solvent
coordinate in the reaction coordinate motion all the way to the
bent TS is striking (Figure 3a). This aspect is also associated
with the rapidity of the water motions. Although not as fast as
ther-coordinate, the water solvent coordinate is sufficiently fast
to at least partially adjust to the changing electronic structure
and charge distribution as the reaction proceeds (Figure 3b).
Finally, the fact that the ordering of the time scales we have
used in our discussion remains the same in the TS region is

qΦ ) (cB)2qΦ
B + (cA)2qΦ

A

qCl ) (cB)2qCl
B + (cA)2qCl

A

qΦ
B ) -0.60

qΦ
A(r) ) 0.28- 3.2 exp(- r

0.9 Å)
qCl

B ) -0.12

qCl
A (r) ) -1 + 3.2 exp(- r

0.9 Å) (3.11)

Figure 3. Dissociation of [CN-Φ-Cl]•- in water (case a in I): (a)
contribution of each (mass-weighted) coordinate to the reaction
coordinate along the reaction path; and (b) normed progressê ) x/xq

(with x ) r, θ, s, G) of the three coordinates and of the free energy,
together with the charges on the ring and Cl sites, along the reaction
path.

11298 J. Phys. Chem. A, Vol. 107, No. 51, 2003 Burghardt et al.



confirmed by the TS reactive and transverse nonreactive NM
frequencies in Table 2.

3.3. Equilibrium Solvation Reaction Path.We can compare
the reaction paths just discussed with those that would follow
from the most common view of chemical reactions in solution.
The latter adopts a different view from that previously used, in
that an equilibrium solvation (ES) perspective is assumed: the
solvent is considered to be always equilibrated, at each value
of the reacting molecule coordinates. This is also the assumption
of various calculational methods that involve quantum chemistry
in solution23 and has been used in some studies of radical anion
dissociation.24

For the anion dissociation, the equilibrium solvent coordinate
seq for a given molecular geometry is defined such that the free
energy is minimized at each point of the (r,θ) surface,

such that the solvent coordinate, which is defined as a function
seq(r,θ) of the remaining coordinates, is then a nonreactive
transverse coordinate.

To calculate the reaction path in the ES perspective, we use
the same NM analysis as that used previously, where the solvent
coordinate was explicit, with the exception that only ther and
θ modes remain, the solvent coordinate always being a
transverse, nonreactive coordinate. The counterpart of eq 3.3 is

The comparison of the reaction coordinate frequencies in the
full 3D picture and in the equilibrium solvation approach shows
that the ES picture strongly sharpens the apparent barrier. Thus,
for example, from Tables 2 and 3, the barrier frequencyω|

q in
water is 75 ps-1 in the 3D picture, whereas in the ES description,
there is a marked increase to a value ofω|,ES

q ) 97 ps-1. This
effect is due to the very rapid change in the solvent coordinate
around the barrier, which, in the ES description, must “instantly”
equilibrate to the rapidly changing charge distribution. This can
be observed, for example, in the approach to the TS in Figure
4b. The charges on the two sites change very rapidly, and, in
the ES picture, the solvent instantly adapts to the evolving charge
distribution. In particular, the change in solvent coordinate (seq)
is restricted to the immediate neighborhood of the TS, where

the charges change rapidly. In contrast, along the correct reaction
path (Figure 2), considerable solvent rearrangement has occurred
long before the TS region is reached, and the solvent coordinate
motion in the TS region itself is far less.

There is a remaining important comparison to make: the ES
reaction paths for reaction in DMF and water in Figure 5a and
4a, versus the full paths for these two solvents in Figure 5b
and 4b. For the ES description, the two paths are very similar
to each other, with very small differences that are due only to
the different dielectric constants of the two solvents; the
dynamical properties of the solvents have no role, because the
solvent is assumed to be instantly equilibrated. In strong contrast,
the true reaction paths (with the explicit solvent coordinate)
differ quite considerably for the two solvents, reflecting their
important dynamical differences.

4. Transition State Theory Rate Constants

4.1. Rate Constant.We now present and discuss the radical
anion dissociation rate constant in solution, using transition state
theory (TST) and the normal-mode (NM) perspective that we
introduced in Section 3.1. Although the result can be derived
from flux time correlation formulas,6,7 we follow a simpler route
here.

The standard TST rate-constant formula25 for a unimolecular
reaction such as the present one is adapted for our free-energy
surface:

in which p is Planck’s constant,Qq is the partition function
(pf) of the TS species,QR is the pf of R, and ∆Gq is the
activation free energy, i.e., the free energy of the TS species

TABLE 3: Frequencies in the Reactant along ther, θ, s
Coordinates, Normal-Mode Frequencies in the Reactant (R)
and at the Transition State (TS), in the Three Solvents, in
the ES Picturea

water
(case a)

MeCN
(case e)

DMF
(case f)

ωr,ES
R (ps-1) 74 74 74

ωθ,ES
R (ps-1) 10 10 10

ωs,ES
R (ps-1) 45 8 7

ω|,ES
R (ps-1) 10 10 10

ω⊥,ES
R (ps-1) 74 74 74

ωs,ES
R (ps-1) 45 8 7

ω|,ES
q (ps-1) 97 92 89

ω⊥,ES
q (ps-1) 14 14 14

ωs,ES
q (ps-1) 36 7 6

a See eq 4.10.

∂G(r,θ,s)
∂s |r,θ,seq

) 0 (3.12)

(x1,ES
q

x2,ES
q ) ) RES

q (δr
δθ ) (3.13)

Figure 4. Dissociation of [CN-Φ-Cl]•- in water (case a in I) in the
ES picture: (a) contribution of each (mass-weighted) coordinate to the
reaction coordinate along the reaction path; and (b) normed progressê
) x/xq (with x ) r, θ, seq, G) of the three coordinates and of the free
energy, together with the charges on the ring and Cl sites, along the
ES reaction path.

kTST ) 2(kBT

p )(Qq

QR) exp(- ∆G‡

RT ) (4.1)
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minus the free energy ofR. We include the symmetry factor of
2, because of the two routes around the conical intersection,
with symmetrically related but otherwise identical TSs. We first
need to stress a point that was made as an example in the
Introduction, that ourG has free-energy character, rather than
strictly potential-energy character, because of the fact that all
the molecular solvent degrees of freedom have been collapsed
to the single solvent coordinate. (Thus, for a given value ofs,
many different microscopic solvent molecule configurations are
possible.) However, otherwise, it acts precisely as a potential
energy, from the point of view of the system Hamiltonian, the
reaction path, and the rate constant. Thus,∆Gq in eq 1 is directly
analogous to the potential energy difference between the TS
and the R in a gas-phase reaction (or, indeed, the vacuum radical
anion dissociation).

With this concept being understood, the meaning ofQq is
that it is the pf of the system fixed at the TS value of the reaction
coordinate and, thus, exclusively involves the transverse non-
reactive coordinate motions at the TS. In the 3D NM perspec-
tive, these are the two transverse vibrations with respective
frequenciesω⊥1

q , ω⊥2
q , with each individual mode having its

own vibration pfq⊥1
q , q⊥2

q . In the R region, there are three NM
vibrationssone parallel to the reaction coordinate, and two
transverseswith frequenciesω|

R and ω⊥1
R , ω⊥2

R , respectively,
and each mode has a vibrational pf. Given these considerations,
eq 4.1 becomes

In the classical approximation for the various vibrations, each
vibrational pfq term is26 q ) kBT/(pω), so that we obtain

which is independent of Planck’s constantp, as it should be.
This is the formula used in I to calculate the dissociation rate
constants in three solvents. The prefactorAsol of the exponential
in kTST introduced in I is just

It is worthwhile to express eq 4.3 in a different way:

where the termω|
R/(2π) can be regarded as an “attempt

frequency” along the reaction coordinate in theR region, and
the activation entropy

represents the entropy change that is associated with the two
transverse NMs, on going from the R to the TS (and, of course,
has no association with any activation entropy that is associated
with the∆Gq term that is given in eq 4.3 and carried over to eq
4.5). The physical effect represented by∆Sq is the fact that the
phase space perpendicular to the reaction coordinate at the TS,
i.e., at the saddle, does not need to be the same as that
perpendicular to the reaction coordinate in R.

If the transverse NM frequencies are lower at the TS than in
the R, there is more phase space (e.g., less-confining “wells”
in the NM coordinates) at the TS than at the R and the activation
entropy∆Sq is positive. On examination of Tables 2 and 4, this
is the case for the solvents that have been examined, although
the identity of the transverse modes differs for water and DMF
(which is quite similar to MeCN).

We found in I that the prefactorAsol in eq 4.4 did not vary
much for the various solvents. From eqs 4.4 and 4.6, we see
that Asol is

We now see that this lack of variation is due to the similar
attempt frequencies (ω|

R/(2π) = 1.1-1.6 ps-1), even though
the relevant coordinate is different, which induces the small
variation in the activation entropies, which are themselves small
(Table 4).

It is important to stress that activation entropies always depend
on the perspective adopted. To illustrate this, it is certainly the
case that if one considered the anion dissociation in a more
traditional, one-dimensional waysfocused on the bond stretch
coordinatesone would consider the attempt frequency to beωr/
(2π) = 12 ps-1, whereas, in fact, it is never this value for the
solvents that have been studied. Because the NM frequencies
in the R are essentially those of the coordinates themselves (see
Table 2), it is easy to show, from the aforementioned equations,
that Asol could also be expressed as

Figure 5. Dissociation of [CN-Φ-Cl]•- in DMF (case e in I) in the
ES picture: (a) contribution of each (mass-weighted) coordinate to the
reaction coordinate along the reaction path; and (b) normed progressê
) x/xq (with x ) r, θ, seq, G) of the three coordinates and of the free
energy, together with the charges on the ring and Cl sites, along the
ES reaction path.

kTST ) 2
kBT

p
1

q|
R

q⊥1
q q⊥2

q

q⊥1
R q⊥2

R
exp(- ∆G‡

RT ) (4.2)

kTST ) 2(ω|
R

2π)(ω⊥1
R

ω⊥1
q )(ω⊥2

R

ω⊥2
q ) exp(- ∆G‡

RT ) (4.3)

Asol ) 2(ω|
R

2π)(ω⊥1
R

ω⊥1
q )(ω⊥2

R

ω⊥2
q ) (4.4)

kTST ) 2(ω|
R

2π) exp(∆S‡

R ) exp(- ∆G‡

RT ) (4.5)

∆Sq ) R ln(ω⊥1
R

ω⊥1
q

ω⊥2
R

ω⊥2
q ) (4.6)

Asol ) 2(ω|
R

2π) exp(∆S‡

R ) (4.7)

Asol ) 2(ωr

2π)e∆Sq′/R (4.8)
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where now the new activation entropy is

Table 4 shows that, in contrast to the positive∆Sq value,∆Sq′
is negatiVe, as indeed it must be to reduce the inappropriately
high attempt frequency in eq 4.8 to agree with theAsol value in
eq 4.7, whose correct attempt frequency is almost an order of
magnitude lower.

4.2. Equilibrium Solvation Rate Constant. The NM-
perspective TST result (from eq 4.3) isnot, in fact, the solution-
phase TST rate constant that would typically be considered in
the usual perspective found in the literature,23,25,27as noted in
the Introduction and Section 3.2. The usual conception is,
instead, that of equilibrium solvation (ES), with the solvent
always being equilibrated (eq 3.12). Here, we examine the
difference between the two TST methods.

We have already displayed the ES perspective for the pseudo-
two-dimensional free-energy surface in Figure 6, and the ES
TST result can be written down simply by examination of the

surface and the use of NM ideas (which gave eq 4.3). The ES
TST rate constant is

where ωs
R and ωs

q are the R and TS solvent frequencies,
respectively. In this view, the “attempt frequency” factor,
ω|,ES

R /(2π), is modified by the inverse ratios of the transverse
TS and R frequenciesω⊥,ES

q andω⊥,ES
R , respectively. The factor

ωs,ES
R /ωs,ES

q is the entropy effect,

which accounts for the thermal fluctuations at the TS and R of
the solvent about the respective equilibrium valuesseq

q , seq
R ) 0.

This is complemented by the entropic effect of the remaining
transverse coordinate in the overall activation entropy that is
associated with eq 4.10:

The rate constantkES is larger than the full (3D) rate constant
kTST, because recrossing of the TS plane, which is due to the
coupling of the solvent coordinates with the coordinatesr and
θ, is not considered in the ES description. To characterize this
difference, we define the reaction transmission coefficientκES,

which, from eqs 4.3 and 4.10, is given by

This can be simplified via a Redlich-Teller-type analysis28 for
the R region:15

whose physical significance is that the product of the coordinate
frequencies is independent of the orientation of the axes, to give

The calculated values ofκES for the [CN-Φ-Cl]•- dissocia-
tion in the three solvents are in the range of=0.75-0.78 (see
Table 5); these values are noticeably, although not dramatically,
less than unity. This is due to recrossing of the TS dividing
surface that is implicit in the ES view (see below). Equation
4.16 indicates that it will be the smaller to the extent that the
actual transverse frequenciesω⊥1

q and ω⊥2
q exceed their equi-

librium solvation counterpartsω⊥,ES
q andωs

q. Higher values of
the former mean that, in the directions transverse to the TS, the
confining “walls” are more restrictive for passage in the reaction
coordinate than the ES picture predicts. Indeed, this vision
suggests that an entropy of activation effect is involved, and
we now pursue this view.

TABLE 4: Free Energy of Activation ( ∆Gq), Frequency
Prefactor (Asol, from eq 4.4), Activation Entropies (∆Sq and
∆Sq′, from eqs 4.6 and 4.9, Respectively), and Rate Constant
(k300K, from eq 4.3) for the Dissociation of [CN-Φ-Cl]•- in
Water, MeCN, and DMF

water
(case a)

MeCN
(case e)

DMF
(case f)

∆Gq (kcal/mol) 9.7 10.2 9.9
Asol (1013 s-1) 1.6 1.6 1.6
T300K∆Sq (kcal/mol) 0.97 1.05 1.16
T300K∆Sq′ (kcal/mol) -0.21 -0.25 -0.25
k300K (106 s-1) 1.5 0.5 0.9

Figure 6. Free-energy surface, inr and θ coordinates, in the
equilibrium solvation perspective, withs ) seq(r,θ) at each point, in
water (case a in I): (a) 3D representation and (b) contour plot with a
2 kcal spacing between two successive contour lines; the two symmetric
TS regions are indicated by an “X”.

∆Sq′ ) R ln( ωs
R ωθ
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ω⊥1
q ω⊥2
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R
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The transmission coefficientκES can be rewritten with eqs
4.6 and 4.12 as

in terms of the difference of the activation entropies for the 3D
NM view (∆Sq) and the ES view (∆SES

q ), and the frequencies
for motions transverse to the reaction coordinate in theR region
in the two perspectives. Now, in theR region, the electronic
structure hardly changes (cf Figures 2b and 3b) and there is
negligible coupling between ther, θ, s coordinates there (see
Sections 3.1 and 3.2). Thus, theR NMs will differ insignificantly
from the coordinates, and the prefactor in eq 4.17 will differ
negligibly from unity, which is an inference borne out by the
calculated frequencies in Tables 2 and 3. Thus, the prefactor in
eq 4.17 is approximately unity and we can interpret the
transmission coefficientκESas a direct reflection of the activation
entropy differences for the 3D NM and ES perspectives:

There is a further interpretation ofκES
16 that focuses on the

source of the recrossing as being due to extra solvent barriers
that arise because the nonequilibrium solvent does not follow
the equilibrium solvation path to which the rapidly changing
charge distribution inr is always adjusted. We do not pursue
this here, but refer instead to ref 16, where a closely related
situation for an SN2 reaction Cl- + CH3Cl f ClCH3 + Cl-

reaction is discussed in detail. For that reaction, there is a rapid
charge shift from the attacking Cl atom to the leaving Cl atom;
in the [CN-Φ-Cl]•- reaction, the rapid charge shift is from
the ring to the departing Cl atom.29 Just as in the SN2 reaction,
the equilibrium solvation rate constantkES is not numerically
greatly in error (κES is not much less than unity), despite the
strong difference in the actual and ES reaction paths, because
o the basic sharpness of the reaction barrier.

5. Dynamical Recrossing Corrections for Rate Constants

The entire perspective to date has been in terms of the
nondissipative Hamiltonian and equations of motion. However,
as stressed in the Introduction, this ignores any dissipative forces
on any of the coordinates, which could induce dynamical
recrossing effects at the TS. In the NM-perspective resultkTST

(eq 4.3), recrossing of the TS will reduce the actual rate constant
below kTST; TST assumes that every trajectory heading from
the side of the R and crossing the TS toward the product side
is a successful trajectory, whereas a recrossing trajectory will
not be. Here, we assess these effects, which have been

suggested5 to be very important for moat trajectories about a
conical intersection in solution.

The conclusion of the lengthy analysis to follow is that
dissipative frictional effects are negligible.

5.1. Generalized Frictional Forces on the Coordinatesr,
θ, s. We begin with the nondissipative equations of motion in
the TS region (eq 3.1) and supplement each of them with a
simple non-Markovian, i.e., a non-time-local direct friction term
that involves the coordinate velocity:

The equations of motion are then each of a generalized
Langevin form, with each coordinate time-dependent friction,
e.g., úr(t), related to the time correlation function of the
fluctuating force on that coordinate.30 The non-time-local form
of the frictional terms in eq 5.1 incorporates the important
feature that these force correlations have finite lifetimes, as
opposed to the common Brownian motion Langevin approxima-
tion, in which a time-dependent friction would be assumed to
decay instantly, i.e., to have a delta function time dependence
úr(t) ) úrδ(t), whereúr is the friction constant, which is the
full time area ofúr(t):

For molecular systems, the Langevin approximation is generally
a poor one, and it is particularly unphysical for chemical reaction
problems,6 as discussed below.

5.2. Normal-Mode Perspective.Just as was the case for the
nondissipative problem in Section 3.1, the transformation to the
normal modes in the TS region is especially convenient. The
transformationRq (from eq 3.2) is again applied, and this
produces the NM equations of motion:

In the absence of any dissipational friction effect, this, of
course, reduces to the nondissipative NM equations of motion
(eq 3.4) and the NM frequencies in eq 5.3 have precisely their
same meaning as in eq 3.4. However, now, the direct frictional
terms in the coordinate equations of motion (eq 5.3) have
resulted in three frictional contributions for each of the NMs.
This is because each NM is a linear combination of the
coordinatesr, θ, s, resulting in a frictional coupling between
the NMs, i.e., motion in one NM induces motion in the other
NMs. Mathematically, the friction matrix in the NM representa-
tion is the result of the rotation of the friction matrix expressed
in the (r, θ, s) coordinates:

TABLE 5: Free Energy of Activation ( ∆Gq), Frequency
Prefactor (Asol,ES), Activation Entropy ( ∆SES

q , from eq 4.12),
Rate Constant (k300K

ES , from eq 4.10), and Transmission
Coefficient (KES, from eq 4.13) for the Dissociation of
[CN-Φ-Cl]•- in Water, MeCN, and DMF in the ES
Picture

water
(case a)

MeCN
(case e)

DMF
(case f)

∆Gq (kcal/mol) 9.7 10.2 9.9
Asol,ES(1013 s-1) 2.1 2.1 2.0
T300K∆SES

q (kcal/mol) 1.12 1.10 1.08

k300K
ES (106 s-1) 1.8 0.7 1.2

κES 0.78 0.75 0.78

κES ) ( ω⊥1
q ω⊥2

q

ω⊥,ES
R ωs,ES

R ) exp(∆Sq - ∆SES
q

R ) (4.17)

κES = exp(∆Sq - ∆SES
q

R ) (4.18)

{δ̈r ) - 1
µr

Gr,r δr - 1

xµrµθ

Gr,θ δθ - 1

xµrµs

Gr,s δs - ∫
0

t
dτúr,r(τ) δ̇r(t - τ)

δ̈θ ) - 1

xµrµθ

Gr,θ δr - 1
µθ

Gθ,θ δθ - 1

xµθµs

Gθ,s δs - ∫
0

t
dτúθ,θ(τ) δ̇θ(t - τ)

δ̈s ) - 1

xµrµs

Grs δr - 1

xµθµs

Gθs δθ - 1
µs

Gs,sδs - ∫
0

t
dτús,s(τ) δ̇s(t - τ)

(5.1)

úr ) ∫0

∞
dt úr(t) (5.2)

{ẍ1) ω1
q2x1 -∫

0

t

dτú11(τ)x̆1(t - τ) -∫
0

t

dτú12(τ)x̆2(t - τ) -∫
0

t

dτú13(τ)x̆3(t - τ)

ẍ2) -ω2
q2x2 -∫

0

t

dτú21(τ)x̆1(t - τ) -∫
0

t

dτú22(τ)x̆2(t - τ) -∫
0

t

dτú23(τ)x̆3(t - τ)

ẍ3) -ω3
q2x3 -∫

0

t

dτú31(τ)x̆1(t - τ) -∫
0

t

dτú32(τ)x̆2(t - τ) -∫
0

t

dτú33(τ)x̆3(t - τ)

(5.3)

(ú11 ú12 ú13

ú21 ú22 ú23

ú31 ú32 ú33
) ) R(úrr 0 0

0 úθθ 0
0 0 úss

)R-1 (5.4)
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The system depicted in eq 5.3, of three coupled differential
equations for the three normal modes, is formally solved using
Laplace transformation31 and algebra

and is explained in Appendix A, with the result that there is a
new generalized Langevin equation (GLE) for the reaction
coordinate, with a time-dependent friction that acts on the
reactive NMx1

and the Laplace transform of the time-dependent frictionú1(t)
is

where the quantitiesa12 anda13 are defined in Appendix A.
Before proceeding, we briefly discuss the character of this

result. If there were no coupling between the modes induced
by the NM rotation (see eq 5.4), then only the first term in eq
5.7 would survive. However, generally the NM rotation induces
a coupling between the modes and eq 5.7 contains the final
two terms. For example, the second term in eq 5.7, together
with eq A.3, shows that the coupling frictionú̂12 leads to an
effect onx1, even if the third modex3 were absent (ú23, ú31,
ú33, ω3

q ) 0): modes 1 and 2 are frictionally coupled, in that
motion in the NM coordinatex2 influences the dissipative forces
that are exerted on the reactive NM. The general web of
frictional couplings contained in eqs 5.7, A.3, and A.4 can be
analyzed in detail by the methods of refs 6 and 7, but this is
not necessary for our present purposes.

Now that we have the GLE (eq 5.6) for the reactive NM, we
can apply Grote-Hynes (GH)6,7 theory directly to write the
actual rate constantk in the presence of the friction as our
previous nondissipative NM TST resultkTST (see eq 4.1)
multiplied times a transmission coefficientκ:

with κ being expressed as the ratio of an effective reactive
frequencyλ to the reactive NM frequencyω|

q

and the reactive frequency is determined from the self-consistent
relation

The content of eqs 5.9 and 5.10 is 2-fold. First, in the presence
of dissipative friction, the actual reactive frequency is less than
or equal to its nondissipative analogueω|

q; and second, the
relevant friction in this reduction is the “frequency-dependent
friction” at the reactive frequency:

Becauseλ is on the order ofω|
q, this means that the time-

dependent frictionú1(t) that is relevant for the reaction is that
on the time scale (ω|

q)-1. For the radical anion dissociation in

all solvents, we will see that this time is on the order of 200 fs,
and only the short-time component ofú1(t) is relevant for the
reaction. This can often be quite differentsusually much lesss
than what would be predicted by imagining that the full effect
of the long-time response applies, the latter being the ap-
proximation of Kramers theory.32 For example, a GH approach
for rate constants of the TICT reaction of DMABN in alcohols
is in close agreement with the experimental results of Changenet
et al.,11 whereas a Kramers approach is in disagreement by
several orders of magnitude.10

We do not pursue here all aspects of the analysis, but instead
restrict our discussion to addressing the impact of the dissipative
friction on our previous NM TST rate-constant result.

5.2.1. DissipatiVe Friction on the SolVent Coordinate.First,
we specialize to the case where there is only a direct friction in
eq 5.1 on the solvent coordinates (úr,r ) úθ,θ ) 0), and,
furthermore, we assume the direct time-dependent friction ons
to be a delta function in timeús,s(t) ) ús,sδ(t), such that its
Laplace transform is a constant:

which is derived in the work of van der Zwan and Hynes.33

Here,ωs is the solvent frequency discussed in Section 2 andτs,
the correlation time, is the average time of the spectral response
function, which is available from time-dependent fluorescence
experiments.4 Application of the aforementioned formalism with
this simple direct friction only ons for [CN-Φ-Cl]•- in DMF,
acetonitrile, and water gives the results collected in Table 6.

For DMF and MeCN solvents, Table 6 shows that thekTST

rate-constant reduction is utterly negligible, because of the very
high barrier frequencyω|

q, but also because of the feature
noted in the discussion of the reaction path for DMF in Section
3.2: the NM reactive coordinatex1 is almost exclusively in the
CCl stretch (MeCN is very similar). The influence of the direct
friction ons influences the effective friction onx1 only indirectly,
e.g., by the coupling∂2G/(∂s ∂r) (cf eq 3.1) and this influence
is clearly weak.

The effect for water solvent (κ = 0.8) is finite but not very
large. This influence mainly results from the fact that, as
discussed in Section 3.2 for the reaction path in water, the
reactive NM coordinate at the TSx1 has both CCl stretch and
solvent coordinate components. Thus, the direct impact ofús,s

is felt. However, even this rather minor effect of reducingkTST

by =20% is, itself, an overestimate. Equation 5.12 resulted from
the delta function in time assumption that the full solvent friction
acts instantly; this is physically impossible, given the charac-
teristic time scale for barrier crossing ((ω|

q)-1 = 140 fs), and
the physically relevant friction on these short times will be
considerably less than that implied by eq 5.12. Thus, we
conclude that the impact of any friction on the solvent coordinate
has negligible influence in reducing the rate constant below the
kTST value, and we pursue it no further.

5.2.2. Friction on the C-Cl Stretch.We now examine the
effects of a direct frictionúr,r(t) on the CCl stretch (cf eq 5.1),

f̂(z) ) ∫0

∞
dt e-zt f(t) (5.5)

ẍ1(t) ) ω1
q2x1(t) - ∫0

t
dτ ú1(τ)x̆1(t - τ) (5.6)

ú̂1(z) ) ú̂11 + ú̂12a12(z) + ú̂13a13(z) (5.7)

k ) kTSTκ (5.8)

κ ) λ
ω|

q
(5.9)

λ )
ω|

q2

λ + ú̂1(λ)
(5.10)

ú̂1(λ) ) ∫0

∞
dt e-λtú1(t) (5.11)

TABLE 6: Solvent Frequency (ωs),a Correlation Time (τs),b

Friction ( úss),c Barrier Frequency (ω|
q), and Grote-Hynes

Correction (K) for the Different Cases Studied in I, with a
Direct Friction on the s Coordinate

case solvent ωs (ps-1) τs (ps) úss (ps-1) ω|
q (ps-1) κ

a water 45 0.2 405 75 0.941
e MeCN 8.3 0.26 18 70 1.000
f DMF 7 2.0 98 70 1.000

a From eq 2.23.b See ref 38.c From eq 5.12.

ú̂s,s(z) ) ús,s) ωs
2τs (5.12)
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because motion in the moat around the conical intersection
intimately involves this coordinate. (For the moment, we ignore
any direct frictionúθ,θ(t) on the wag angle.) In all three solvents,
the barrier frequencyω|

q is high; therefore, the aforementioned
GH considerations indicate that we only need to be concerned
with a form forúr,r(t) at short times. We estimate this friction,
for the case of water solvent, as follows.

To assess the impact of the direct time-dependent friction on
the CCl stretch, we will assumeúr,r(t) to be equal toúCl-(t),
where, for a translating Cl- ion in water,úCl-(t) is the time-
dependent friction acting on the ion. This is an approximation
that is consistent with our neglect of any static screening terms
for the Cl species in the dissociation (see Section 4.2.2 of I).
We will use just this friction, for short times, as our estimate
for úr,r(t). The details of this estimation are given in Appendix
B, with the result

Thus, the initial value of this friction and its time rate of decay
are governed exclusively by the parameterF, with F ) 40 ps-1.
Thus, we use eq B.4, which is the Laplace transform of eq 5.13,
for the direct frequency-dependent frictionúr,r(z), and ignore
any direct friction ons or θ.

The result for the transmission coefficientκ that corrects the
NM TST rate constant for the anion dissociation in water solvent
is given in Table 7, where we have included, simply for
perspective, the predictions for the acetonitrile and DMF solvent
cases on the basis of the very rough assumption that the direction
friction on r is the same as that in water. It is clear that, even
though the TS NM reaction coordinate is composed largely of
r in all cases, the recrossing correction is completely negligible.
Thus, the NM TST rate-constant result is most definitely not
modified because of any extensive recrossing, because of
extensive frictional damping on the stretch coordinate in its
motion in the TS neighborhood.

5.2.3. Friction onθ. Finally, we consider the influence of a
direct time-dependent friction on the CCl wagging coordinate
θ. Rigorously, this is, within irrelevant constants, the time
correlation function (tcf) of the fluctuating torque (rather than
force) on the wag divided by the effective mass forθ. This tcf
involves two factors of the torque. Here, we approximate the
wagging motion as a rectilinear wag, i.e., a translational motion
perpendicular to the fixed bond lengthrq at the TS. The torque
tcf per mass then will be approximately equal toúr,r(t), which
is the friction for ther-coordinate, because the differing factors
of torque and force (rq) will be canceled by the different mass,
i.e., the moment of inertia, that involves (rq)2, compared to the
translational reduced mass forr.

With the aforementioned approximation,úθ,θ(t) is justúr,r(t)
(see eq 5.13), and the results for the transmission coefficient
are shown in Table 8. The minor differences in Table 8,
compared to those in Table 7, are due to the fact that the
couplings of the wag coordinate to the reactive NM coordinate

are different; in particular, the wag component of the latter is
very small in all solvents.

However, the major point clearly is that, once again, there is
a negligible dissipative frictional correction to the NM TST rate
constants; dissipative frictional effects in the moat are com-
pletely unimportant and the value ofκ in eq 5.8 is essentially
unity.34 We have confirmed35 that this conclusion also holds if
both the direct frictions on the stretch and the wag are included
simultaneously. Thus, no modifications are required, because
of this source, of the radical anion dissociation rate constants
calculated in I.

The ultimate reason for the unimportance of dissipative
frictional effects for the [CN-Φ-Cl]•- dissociation in the
solvents considered is that the TS reactive frequencyω|

q is
very highsthe TS barrier is “sharp”sand dissipative frictional
effects are negligible on the associated short time scale, which
is =(ω|

q)-1 for the barrier crossing. Strong frictional damping
in the “moat”, which is associated with conical intersection
avoidance (as envisioned in ref 5 for a different problem) would
require both a very low barrier and an associated low value of
ω|

q, which, for certain solvents, could allow significant fric-
tional forces to develop on the now long time scale, which is
=(ω|

q)-1 for TS passage.

6. Concluding Remarks

In this paper, we have examined in detailsin terms of the
CCl stretch, CCl wag, and solvent coordinatessthe reaction
paths, the normal-mode transition state theory (TST) rate
constants, and dissipative frictional corrections to the latter, for
the [CN-Φ-Cl]•- radical anion dissociation in solution, which
is a ground electronic state reaction that involves conical
intersection avoidance.

It has been shown that the solution reaction paths differ
between solvents, e.g., between water and dimethyl formamide
(DMF), as does the composition of the reactive normal mode
by which the bent geometry transition state is crossed. These
effects were shown to be due to the different time scales of the
solvents. It was also shown that the conventional equilibrium
solvation perspective, which assumes that the solvent is always
equilibrated to the other coordinates, gives a quite different and
incorrect description for the paths. The formulation generating
the normal-mode (NM) TST rate constant was described and
contrasted with the perspective following from an equilibrium
solvation assumption. Furthermore, the influence of dissipative
friction effects in reducing the actual anion dissociation rate
constants below our NM TST rate constants was shown to be
negligible, thus supporting the rate-constant estimates that were
made in Part 1 (I).1

Finally, we discussed in I the possibility that the basic
formulation of the free-energy surface for the reaction problem
could be extended to include a microscopic description of the
solvent. With such an extension in hand, the reaction path and
rate-constant issues of the present work could be examined in

TABLE 7: r-Friction Decay Rate Parameter (G),a Barrier
Frequency (ω|

q), and Grote-Hynes Correction (K) for the
Different Cases Studied in I, with a Direct Friction on r
Exclusively

case solvent F (ps-1) ω|
q (ps-1) κ

a water 40.0 75 0.947
e MeCN 40.0 70 0.934
f DMF 40.0 70 0.934

a From eq 5.13.

TABLE 8: r-Friction Decay Rate Parameter (G),a Barrier
Frequency (ω|

q), and Grote-Hynes Correction (K) for the
Different Cases Studied in I, with a Direct Friction on θ
Exclusively

case solvent F (ps-1) ω|
q (ps-1) κ

a water 40.0 75 1.000
e MeCN 40.0 70 1.000
f DMF 40.0 70 1.000

a From eq 5.13.

úCl-(t) ) (F2

2) exp(- F2t2

2 ) (5.13)
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a molecular solvent context via available methods (see, for
example, the work of Staib et al.36 and Gertner et al.37).
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Appendix A

Here, we derive the generalized Langevin equation results
that are given in eqs 5.6 and 5.7.

A detailed analysis6,7 requires attention to the various initial
conditions on the coordinates and their velocities; however, the
same results follow more rapidly by proceeding purely formally
and eliminating all the initial conditions entirely. We follow
the latter route and assume that the system starts at the transition
state (TS) with a zero velocity:

Given that x̂i(z) denotes the Laplace transform ofxi(t), the
transform of eq 5.3 is

The strategy is to express the transforms of the nonreactive
normal modes (NMs)x̂2 and x̂3, in terms of the NM reaction
coordinatex̂1. This is accomplished by simultaneously solving
the last two members of eq A.2, to find

and

To use these relations in the first member of eq A.2, we require
the transforms of the time derivatives,

so that the transform equation forx̂1 in eq A.2 becomes

Appendix B

Here, we discuss the origin of eq 5.13 for the time-dependent
friction on Cl-.

The normalized ion velocity time correlation function,C(t),

is obtained from a molecular dynamics computer simulation,
the details of which are described in ref 35 and its short-time
behavior can be well described by a Gaussian decay, as shown
in Figure B1,

with F ) 40.0 ps-1. The Laplace transformúCl-(t) is26

which, for short times, i.e., for largez values, can be ap-
proximated by10,31

which, itself, is the Laplace transform of the Gaussian friction
in time (see eq 5.13 of the text).

References and Notes

(1) Laage, D.; Burghardt, I.; Sommerfeld, T.; Hynes, J. T.J. Phys.
Chem. A2003, 107, 11271-11291.

(2) (a) Lee, S.; Hynes, J. T.J. Chem. Phys.1988, 88, 6853-6862. (b)
Lee, S.; Hynes, J. T.J. Chem. Phys.1988, 88, 6863-6869.

(3) (a) Fukui, K.J. Phys. Chem.1970, 74, 4161-4163. (b) Fukui, K.
Acc. Chem. Res.1981, 14, 363-368.

(4) (a) Maroncelli, M.J. Mol. Liq.1993, 57, 1-37. (b) Horng, M. L.;
Gardecki, J. A.; Papazyan, A.; Maroncelli, M.J. Phys. Chem.1995, 99,
17311-17337.

(5) Rettig, W.Angew. Chem., Int. Ed. Engl.1986, 25, 971-988.
(6) Grote, R. F.; Hynes, J. T.J. Chem. Phys.1980, 73, 2715-2732.
(7) Grote, R. F.; Hynes, J. T.J. Chem. Phys.1981, 74, 4465-4475.
(8) Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T.J. Chem.

Phys.1987, 86, 1356-1376.
(9) Hynes, J. T. Crossing the Transition State in Solution. InSolVent

Effects and Chemical ReactiVity; Tapia, O., Bertran, J., Eds.; Kluwer:
Amsterdam, 1996.

(10) Kim, H. J.; Hynes, J. T.J. Photochem. Photobiol. A1997, 105,
337-343.

(11) Changenet, P.; Plaza, P.; Martin, M. M.; Meyer, Y. H.J. Phys.
Chem. A1997, 101, 8186-8194.

(12) A related transformation was first performed by Borgis and Hynes
(Borgis, D.; Hynes, J. T.Chem. Phys.1993, 170, 315-346).

(13) Carter, E. A.; Hynes, J. T.J. Chem. Phys.1991, 94, 5961-5979.
(14) Maroncelli, M.J. Chem. Phys.1991, 94, 2084-2102.
(15) van der Zwan, G.; Hynes, J. T.J. Chem. Phys.1983, 78, 4174-

4185.
(16) Gertner, B. J.; Bergsma, J. P.; Wilson, K. R.; Lee, S.; Hynes, J. T.

J. Chem. Phys.1987, 86, 1377-1386.
(17) van der Zwan, G.; Hynes, J. T.J. Chem. Phys.1984, 90, 21-35.

xi(t ) 0) ) 0

xi(t ) 0) ) 0 (A.1)

{z2x̂1 ) ω1
q2x̂1 - zú̂11x̂1 - zú̂12x̂2 - zú̂13x̂3

z2x̂2 ) - ω2
q2x̂2 - zú̂21x̂1 - zú̂22x̂2 - zú̂23x̂3

z2x̂3 ) - ω3
q2x̂3 - zú̂31x̂1 - zú̂32x̂2 - zú̂33x̂3

(A.2)

x̂2 ) z[ zú̂23ú̂31 - ú̂12(z
2 + zú̂33 + (ω3

q)2)

(z2 + zú̂33 + (ω3
q)2)(z2 + zú̂22 + (ω2

q)2) - z2ú̂232

x̂1]
) a21(z) x̂1 (A.3)

x̂3 ) z[ zú̂32ú̂21 - ú̂13(z
2 + zú̂22 + (ω2

q)2)

(z2 + zú̂33 + (ω3
q)2)(z2 + zú̂22 + (ω2

q)2) - z2ú̂232

x̂1]
) a31(z) x̂1 (A.4)

x̂2 ) a21(z) x̂1

x̂3 ) a31(z)x̂1 (A.5)

x̂1 ) ω1
q2x̂1 - (ú̂11 + ú̂12a21(z) + ú̂13a31(z)) x̂1 (A.6)

Figure B1. Translational velocity time correlation function (tcf)
of the Cl- ion in water, calculated by (s) molecular dynamics and
(- - -) Gaussian fit of the short-time behavior.
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