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On the Dissociation of Aromatic Radical Anions in Solution. 2. Reaction Path and Rate
Constant Analysis
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The theoretical formulation presented for the solution reaction path and rate constant for the radical anion
[CN—®—Cl]e~ dissociation in solution, described in the preceding paper of this series of work, hereafter
referenced as |. The reaction paths that lead to the bent geometry transition state, which is required for the
avoidance of the conical intersection point, and cross through such a state vary with the solvent (e.g., water
versus acetonitrile) and differ considerably from an equilibrium solvation image. A transition state theory
(TST) rate constankrsr, is described in terms of reactive and nonreactive normal modes and is contrasted
with a conventional equilibrium solvation perspective. Finally, dissipative frictional effects on the reaction
rate are examined and determined to be negligible, which supports the usekeétii@rmula for the rate
constant evaluation in |I.

1. Introduction phase path. In addition, they generally are quite different from
d those paths calculated under the most common assumption that
is applied for solution reactions. This is the assumption of
equilibrium solvation, in which, for the radical anion dissocia-
tion, the solvent would be imagined to be always equilibrated
to the reacting solute at each value of the @ separatiorr

and the C-Cl wag anglef. As shown within, for the radical
anion, the solvent does not have sufficient time to equilibrate
to the rapidly changing charge distribution of the dissociating
anion, and, instead, the reaction path involves extensive non-
equilibrium solvation.

The rate-constant formulation in this Hamiltonian perspective
ﬂ's also a solution analogue of gas-phase transition state theory
(TST), which involves the reaction coordinate at the transition
state, as well as nonreactive mode motions there, all in the three-
dimensional (3D) space (with coordinate®, s). This allows

path, which is the solution phase analofoé the gas-phase a simple and precise expression for the rate constant, such that
' its various trends with, for example, solvent polarity can be

Fukui intrinsic reaction coordinateprovides a molecular level ) . . .
fep analyzed, as was done in I. This 3D TST approach is quite

picture (at least in the reacting solute) of the key motions aiff ¢ tually f hat i I derstood as TST
involved on the way to the reaction transition state, the sequence, ifierent conceptually from what IS usually understood as

in which they occur, and the motions that the reaction system in stqlu'_[ion; the I_atter implicit_ly or gxplicitly involves _the
uses to reach and cross the transition state. We have alread)‘?qu'“b”um SC_"V?‘“"_” assumption, which, as noted previously
emphasized in | that there must be a bending of the CCI, to and shown within, is not correct.

avoid the conical intersection point as the-Cl bond stretches. The aforemenﬂone(_i Hamllton|ar_1 d_esc_nphgn_ s a n”ond|35|-
In the solvent dielectric continuum description that has been pative one. It does not include any dissipative, “frictional” effects

used, the participation of the solvent orientational polarization ?n any of tlhe three cocird_inatles.]:rrrllesg frictiqnetll ef:ectfs include,
in the reaction path and transition-state crossing is revealed. In'0" €Xamp'€, (i) an explicit role of t e dynamical solvation time
short, the reaction path is a picture of the mechanism of the ' "€SPONS€ to a changed charge dlstr|bu_t|on, as measured in
reaction, including the solvent's role time-dependent fluorescence Stokes shift measurements of
These reaction paths can be quite different for different Solvation dynamicéand (if) any “viscosity” effects that dampen

solvents, and they generally are quite different from the gas- '.[he. motion of an ion ,SUCh as Cfnqvmg through a solyept. It
is important to examine the possible role of these frictions on

* Author to whom correspondence should be addressed. E-mail: the rate constant. If they are significant, then the 3D TST rate

In this paper, we examine the theoretical construction an
calculation of the reaction paths and the rate constants for the
dissociation of the radical anion [CNDP—CI]e~ in solution,
which is a ground electronic state conical intersection reaction,
the aspects of which have been analyzed in the first paper of
this series of work (hereafter referenced as 1). Several of the
numerical results that are developed within have already been
used in I.

Our basic approach is in terms of a Hamiltonian formulation.
This formulation can be then used to analyze the reaction path
and rate constant, as shown by Lee and Hyniesa manner
somewhat similar to a gas-phase reaction problem, except tha
(i) there is a free energy functio®, rather than simply a
potential energy function, and (ii) there is a solvent coordinate
s in the description, which is, of course, critical. The reaction

herS@chimie-er(ljS-fr.h | g constant will be in error, to some degree, and our estimates in

Département de Chimie, CNRS UMR 8642, Ecole Normale 8apee. ; ;

* Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale l would have to be“rewsegl. Indggd, it has .bee.n Squ@.Ehad .

Supeieure. in the presence of “moats”, avoiding a conical intersection point
8 University of Colorado. (which is exactly the situation established in | for the radical
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anion dissociation), there will be strong frictional damping the Hamiltonian description, the kinetic energy that is to be

effects, inducing diffusive motion in the moats, with a resulting added to the free energy(r,0,s) must be found.

strong reduction of the rate constant. These questions can be In Section 4 of I we introduced an intermediate solvent

explicitly examined for the [CN-®—Cl]e~ system by applica-  coordinatez, such that the orientational polarization fiefg,-

tion of the Grote-Hynes theor§’ for dynamical friction effects (x) at a locationx in the solvent was represented during the

on reaction rates. This theory has been repeatedly shown to baeaction by

accurate via molecular dynamics tests for realistic solution

reactions (see, for example, the work of Bergsma é&taaid P,(X)=(@1—2P edX; 1,0) + 2 P X 1,0) (2.5)

Hyne$), and it has also proved useful for experiments (see, for

example, the work of HynesKim and Hynesl? and Changenet  i.e., a linear combination of the equilibrium polarizations,

et allh). appropriate to the charge distributions of the reacting anion
The outline of the remainder of this paper is as follows. In system in its diabatic states: the bouf8; state and the

Section 2, we develop the, (6, s) kinetic energy expression,  dissociative?A; state (see Section 2.1 of I) with internal

which, together with the free energy surfasg, 0, s) developed coordinate values and 6. There, it was stated that the

in I, completes the Hamiltonian description. Section 3 begins conversion to a new solvent coordinatewhich ultimately led,

with the introduction of normal modes to facilitate the discussion after some approximations, to the free energy f&mno,s) (eq

of the solution reaction path, followed by a detailed analysis of 4.17 of I)—was necessary to diagonalize the kinetic energy such

the calculated reaction paths in thre , s) coordinates for the  that there is no kinetic dynamic coupling betwesand the

[CN—®—Cl]e~ dissociation in the three solvents. A strong solute internal coordinates and 6. Here, we discuss this

contrast is made with the paths expected on the basis oftransformation, which allowsto be treated as an independent

conventional equilibrium solvation view. The theoretical for- dynamical variablé2

mulation of the TST rate constant expressions implemented in  The kinetic energK is given by

| is presented in Section 4, and its interpretation in terms of

reactive and nonreactive normal modes is given. The contrast K(r,0,P. (X)) = 1 P2+ 1 (r)[92 +K (p x) (2.6)

is also made with the rate constants that would result from an o 2 2o nor

equilibrium solvation perspective. Section 5 examines the issue o o ) )

of whether any serious corrections for the TST rate constants With the solvent polarization contribution being given by

are necessary that are due to the influence of dissipative . 1 .

frictional forces acting on ther( 0, s) coordinates. Brief Kor(Po(X)) =5My, f dx (Por(x))2 (2.7)

concluding remarks are given in Section 6.

where the dot indicates time differentiation ands the reduced
mass of the radial Cl-ring separatiqm(r) is the mass for the

We first briefly describe the Hamiltonian formulation thatis bend (which is-dependent, because of the moment arm of the
associated with the free energy surface described in I. TheCl atom, with respect to the ring C atom), and, is the
Hamiltonian orientational polarization mass of the solvent:

2. Reaction System Hamiltonian

H=K+G(, 6,9 2.1) 1 4

is the sum of a kinetic energy and the free energ(r,0,s).

In I, we have already extensively discussed the free energy
surface in the variables of the bond stretcthe CCl wag angle

0, and the solvent coordinat

Wherea)§ is a constant squared solvent frequency. The factor 1
— (e~l€) in eq 2.8 reflects the fact that the velocity of the
comparatively slow orientational polarization is involved, rather
GB(r,O,s) + GA(r,O'S) - 'g;a: ;he extremely rapid electronic polarization (characterized
2 For the reaction problem, the equilibrium polarizations in eq

1\/(GA(r,0,s) ~ G¥(r,0,9)? + 4(8(0))* (2.2) 2.5 for Po(x) generally are dependent anand 6, and the
2 polarization velocityP,, has contributions fronx andr and6:

G(r,0,9) =

in terms of the diabatic state free energ@&s”(r,0,s) and the : _ ) DB [y
angle-dependent electronic couplifi@). The evolving ground PolX) (PQ,,G4X, ,0) = PoredX; 1,0)) +

adiabatic electronic wave function during the dissociation is \8P§r,ec(X; r,0) 3P§r,eq(X; r,0)

r [(1 -2 o + z or
L PoedXi1,0) | 9P X T,6)

or,e

0|(1—2 20 +z 20 ] (2.9)

W(r,0,9) = cB(r,0,9WE(r,0) + *(r,0,9¥A(r,0) (2.3)

in terms of the diabatic boundR;) and dissociative’A;) state
wave functions, where the squared coefficien®yand ¢*)?,

which measure their respective ContributionS’ are When this relation is inserte‘d into eq 2.7 Ié(l;r, various cross
terms emerge, e.g., it andzf, such that cannot be regarded
(cBA(r,0,9)* = as an independent dynamical variable. A different solvent
A B coordinate is required.
1 14 G(r0.8 — G (0.9 (2.4) To proceed to find this coordinate, we make several ap-
2 «/[GA(r 0,9 — GB(r 0 s)]2 + 4@(0))2 proximations. First, we neglect thé dependence of the

equilibrium polarizationsPy/ (x; r,6). Indeed, the wagging

For convenience, we will specify the explicit forms®@$# and motion does not change the solute charge distribution of the
S that have been developed in | later, in Section 2.2. To completeanion in the diabatic states much and induces only a small
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change in the resulting electric field. Second, for the solute in

the bound statéB;, we ignore ther dependence oPor ed X

r,0), because there is little charge on the Cl atom in this state

and the solute electric field will change negligibly as the@
bond is stretched. (In I, we ultimately made a similar ap-
proximation for the dissociativéA; state (cf. Section 4.1.2);
however, it is convenient to retain tmedependence oP{jreq
for the moment. Por edX; 1,0) then may be always assigned its
value atr = r2 which is the equilibrium position in the
B-state.

With these approximations, eq 2.9 simplifies considerably
to

eq

. X; 1)
Por(x) or, ecp( I’) or eq(x’ req)) + r - Zl;(
(2.10)
and the kinetic energy in eq 2.7 becomes
_1 1 2
Ko, —Ems(r)zz +a(r2) 2 + 352 (2.11)

in which ther-dependent solvent mass(r) is

my(r) = my, [ dx (Ph o 1) —

and thea andp factors are

PoredXi fed)” (2.12)

P odX; T
a(r2) =mgz [ de— et 'a‘fx (Ph odoi 1) = PE ofx: 15)

(2.13)
B2 = m 7 [ dx ( credX r)) (2.14)

Next, by introducing a solvent force constagfr),
k() = wZmy(r) (2.15)

in which w§ is the constant square solvent frequency in eq 2.8,

such that the dependence ofJ(r) is that of mg(r), we note,
from eqs 2.12-2.14, that

d
a(r) % I;S:r)

2.16
2t (2.16)

It can then be readily verified that, with the new solvent
coordinate, which is defined by

k(r)
kS
wherek? = ks (r = r2) is the force constant evaluated at the

2B;-state equilibrium value af, the polarization kinetic energy
(given in eq 2.11) is now diagonal:

=£sz+ >t

(2.17)

o(r,s)

Brs) — )

) (2.18)

The polarization kinetic energlf,, (given in eq 2.18) is now
characterized by a constant mass:

Burghardt et al.

o= (2.19)

ol P

This solvent masgs enters in the solvent coordinate kinetic
energy in eq 2.18 and is associated with eq 2.6, in regard to the
total kinetic energy, giving a renormalization contribution to
the masg:, for ther coordinate. However, in the approximations
developed in | (see Section 4.1.2 of 1), the equilibrium
orientation polarlzatlorP’gre is assumed to be independent of
the stretching dissociative coordinateThus, its derivative in
both egs 2.13 and 2.14 vanishes, with the consequencetthat
= =0, and there is no renormalization of thenass.

Thus, the final expression for the full kinetic energy is

K= %u,rz + %u@(r)éz + %ussz (2.20)
and the desired Hamiltonian description for the dissociating
anion system in solution is

H=K+ G(r,0,9 (2.22)

with K being given by eq 2.21 an@ being given by eq 2.2,
with its components to be given explicitly in Section 2.2.

2.1. Solvent Mass and Inertial Solvation DynamicsThe
constant solvent mass (given in eq 2.19) is directly related to
the solvent frequenays and the constant solvent force constant
kf. The latter is given in our analytical model by the second
derivative of the diabatic free energy®, evaluated at the
equilibrium bond extensionsq:

CACH
B 852 rgq

However, one can show that the constant solvent mass
also given by the dielectric continuum expression in eq 2.8;
there, it is calledns, By combining eqs 2.19 and 2.22, we can
determine the solvent frequency, and, thus, the solvent mass,
by a more convenient route than using the dielectric continuum
solvent mass expression in eq 2.8. This route is to use
experimental time-dependent fluorescence Stokes shifts, i.e.,
time-dependent solvation dynamics, as was done in ref 10. The
connection is the following. Carter and HyA#g$also see the
work of Maroncellt4) have shown that the short-time, “inertial”
component of the solvation dynamics is governed by the
Gaussian function

a)itz)

2

thus providingws (see Table 1). As discussed in more detail in
Sections 4 and 5, this inertial frequency is quite distinct from
any frictional aspects that are associated with the solvent
coordinates and is, thus, precisely the quantity needed for the
nondissipative Hamiltonian description.

2.2. Free Energy SurfaceG(r,0,s). The free energy surface
G(r,0,s) was developed in detail in I. Here, we gather together
the explicit expressions fdg and its ingredients to be used in
the remainder of this pape&(r,0,s) is given by eq 2.2, in terms
of the diabatic free energies®” and the coupling (eq 2.4 of

):

(2.22)

Inertial component exr(— (2.23)

p) =
The final forms ofGBA are (eq 4.17 of |)

(2.24)
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GPA(r,0,9) = VBA(,0) + AGES + Afs — se (1)) (2.25)

s,eq

in which VBA(r,0) are the vacuum potentials (eq 2.6 in )

VE(r,0) = Vg + De{[1 — exp[=a(r — rg)ll}> + %kgez

VA(r,0) =V + DS exp(=a’r) + %kgez (2.26)

and where the equilibrium solvation free energieS”

given by (eq 4.32 of I, with the prime notation now suppressed)

AGE _(1 B _)((qco L @)

n ZqEqu
sed 2 ac &  dectro

) _(1 . _) { (&l | [hrra))” zngg}
€ ac| ag

et 1
(2.27)
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TABLE 1: Solvent Static and High-Frequency Dielectric
Constants €o and €., Respectively), Solvent Frequencyds),
and Solvation Time (rs)?

Ws  Ts Ur o(r®) Us
solvent € e (ps Y (ps) (g/mol) (A2g/mol) (A2 g/mol)

water 78.4 1.7756 45 0.2 375 145 14
acetonitrile 37.5 1.7999 8.3 0.26 37.5 149 353
DMF 36.7 20398 7 20 375 148 426

aFrom ref 4; masses associated with the coordingtés s.

state?15-19 On starting from R, the path describes how the
reacting system reaches the TS, crosses it, and evolves thereafter.
A useful terminology for the path is that it specifies the reaction
coordinate. Before presenting the calculated paths in Section
3.2, we first discuss the concept of normal modes for the
reaction, to help interpret those results.

3.1. Normal-Mode Analysis.As noted in the Introduction,
the solution reaction path (or reaction coordinate) is the
condensed-phase analogue of the Fukui intrinsic reaction
coordinate path in the gas pha@.It is also important to

whereq is the scahng parameter discussed in Section 4.2.2 of consider the directions transverse to this path. In the harmonic

| and g&* andg3”*

ring sites, in theB;- and2A1 states, respectively. The equilib-

rium solvent coordinates; (r) for the 2B;- and 2A;-states
entering in eq 2.25 were defmed in | to be

N =0
A
SHOES . ZS%) (2.28)

The final nonequilibrium solvation term in eq 2.25 involves

the reorganization energly; and itsr-dependent versioas(r)
(eq 4.36 of | with the prime notation suppressed):

oot r|flde — delrel” | [6s — dared)”
= ¢ €, € 2a, 2

[of — ol — qé(riq)]]

e+ 1o,
Adr) =Adr =rg)

The latter enters the equilibrium valgg(r,0) of the solvent

(2.29)

coordinate for the adiabatic ground state (eq 4.20 of 1), which

can be rewritten as

Se1.0) = (Cof1.0.5:9)° o / A1)

(2.30)

The squared component of the electronic structure composition
of the adiabatic wave function (eq 2.3), when the solvent is in
equilibrium for a given i(,0) set of coordinates for the radical

anion, can be found via eq 2.4 an®/9s = 0 for fixed r and
0.

3. Solution Reaction Path
Using eq 2.18 for the kinetic enerdfyand eqs 2.2 and 24

are the partial charges on the Cl atom and 2aPproximation at each point along the path, this will define

nonreactive normal modes (NMs), i.e., stable modes of vibration
perpendicular to the reaction path at that point. They are
nonreactive modes, because it is the reaction path itself that
the system follows from the R to the TS and beyond to effect
the reaction. The identities and frequencies of these nonreactive
NMs will generally vary along the reaction path, because the
path composition in terms of 6, ands will vary, e.g., on going
from the R to the TS.

The transverse nonreactive NMs and the reaction path
coordinate-the reaction coordinateare especially interesting
in the R region and in the TS region. In the former region, these
indicate how the reaction begins; in the latter region, they specify
how the TS is crossed, which will be of special importance for
us. In these two regiorswhich, as we will see, are sufficient
to specify the reaction rate constaft the harmonic ap-
proximation, the reaction coordinate itself becomes a NM: a
reactive normal mode. In the R region, the reactive NM is a
stable vibration, whereas at the TS, it is an unstable vibration,
i.e., the reaction system is crossing the TS, “seeing” a parabolic
free energy variation in the reaction coordinate direction. In this
TS region, the transverse nonreactive NMs complete the picture
of a saddle region. We now develop the description of all these
modes and their frequencies.

3.1.1. Normal Mode Transformatiolm the TS neighborhood,
the first derivatives of the free ener@y(r,0,s) vanish, and the
equations of motion are

5r=—iefr5r ——G/, 00 —
e "

1 +
——G,.0s
Y% r/"o hY; Helhs "

< 1 1 =

00 =———=G;, or ——Geﬂ 00 ———=G,s0s (3.1
Rz T e st *7 @)

5's=——G,Sar Ggsae— G 0s

Vs

The notation for the various free-energy second-derivative terms
has been condensed into, for exam@g, = 92G/(ar 96)|+, and

2.30 for the free energy surface and its ingredients, we can nowwe have introduced the deviationsmf), ands from their TS
calculate the radical anion reaction paths in solution in the 3-D values (e.g.0r = r — r¥). u, us, andus are the notations that
space I(,6,5). The reaction path is defined as a zero-kinetic- we will use from this point forward for the respective masses
energy, mass-weighted, steepest-descent path from the transitionf each coordinate. Th@ coordinate associated mags)(is
state (TS) and toward either the reactant (R) or the product evaluated at the TS geometry (see Table 1).
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For both the NM analysis and the reaction-path calculations, (,?2 o o
we require mass- weighted coordinates: these are simply the 0 R2 .
usual coordinates, 6, ands, scaled by the square root of the @2 ro -
appropriate mass; = \/u,r; 0' = \/u,0; S = J/us In all that 0 w3
follows, we will use the mass-weighted coordinates; therefore, 1 R 1 R 1 R
we will suppress the prime symbols. However, we do retain _;Gr,r F"fﬂ \/—"r,S
the Giy notation, to indicate the free-energy derivatives, with ' 1 Hllo f s
respect to the unscaled coordinates. R|— G,R(, —iG(Fjg -—G('js R (3.7)
The Hessian matrix that is associated with eq 3.1 can be ity Mo Vidatts '
diagonalized; i.e., one can find the rotation maRixsuch that 1 R 1 r 1GR
NM frequencies are generatéd: Irs Bos ——G
| ? Vs VHgits H >®
w0 0
0 w20 |= and differs from the TS region matriR*: the identity of the
0 2 +2 various NMs is generally different in the R and TS regions.
w3 3.1.2. Origin of Coordinate Couplings for the NMs.will
() 1G¢ 1 1 = be useful for our subsequent discussion to discuss the nature of
o o rs the couplings between the coordinates that generate the various
e Vit Vit : :
NMs, which result from the cross terms in the free-energy
R¥[— 1 Gf’(, _leo —LGQS (R*)fl (3.2) derivativesG,,. For this purpose, it is convenient to use the
Uty Uy Ugls free-energy surface expression in eq 2, in terms of the occupation
1 Gt 1 G _ 1G* probabilities ¢B)? and €*)? (eq 2.4) for the diabatic stat&i4®A
W rs W o:s #75 s.s in the adiabatic wave function (see eq 2.3). The first
r=s S

At the TS, the Hessian eigenvectors are the three mass-
weighted NMs, which are linear combinations of the coordinates
or, 60, os. Here, the topology of the free-energy surface
corresponds to a saddle point: one metige reactive mode
xi—is unstable, whereas the two other modes, which are the
transverse modez; and x5, are stable. Thesg modes are
defined, with respect to the,(#, s) coordinates, by the rotation
matrix R*

+
X or
X | =R 06 (3.3)
X 0s

and the NM equations of motion are
£ o= ot
% o= —wy (3.4)
£ o= i

A precisely similar analysis can be conducted in the R region,
where the three stable NMs correspond to motion along the
reaction coordinate direction there and the two transverse
vibrations. The equations of motion are

= 0B
B == b (3.5)
B == 0S5

and the relation of these NMs to the original (mass-weighted)
coordinates is

X or

5| =R¥|06 (3.6)
R 0s

3

where theRR matrix is defined by the relation

derivative of G, with respect to any coordinatg varies with
the varying electronic structure, according to

0GB

dy

20G"

+(c ey

G_ 8 _ 5BAB
% (c®) 2cc* oy (3.8)
where we have also used eq 2.4. This general expression for
the gradients of5, which govern the reaction path itself, can
be used to gain some insight on Besecond-derivative factors
that determine the NMs in the R and TS regions.

In the R region, ¢¢)2 = 1 and €*)2 = 0; therefore, with egs
2.25-2.27 for the diabatic free energi@®* and eq 2.24 for
the couplingg, we conclude that, in the R region,

9G ~ M = a function ofr only
or or
aG VB
20~ 00 0
G VB

so that there is negligible coupling between coordinates. Thus,
the NMs will correspond to the coordinates €, s).

The situation is quite different in the TS region. There, the
electronic structure is changing rapidlgB)? =~ (c*)2 and are
rapidly varying with assorted coordinates (as we will see); thus,
a coupling between the coordinates will result, such that the
NMs will be various combinations of the basicé,s) coordi-
nates NMs. Even in the special case of the wag angle, where
the two first terms of eq 3.8 become independent of the
electronic structurebecause the derivativeé&B+/00 = ks are
equal and )2 + (c*)?2 = 1—the term that involves the
derivative of the angle-dependent electronic coupling remains
electronic structure-dependent,

G _ _ 5BAP
5 = K0 —2c CA80 (3.10)

thus inducing, generally, a coupling betwe@rand the other
coordinates viaBch.
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(a)

V / keal.mol™

(b)

0 / degrees

2 21

r/A

Figure 1. Gas-phase potential energy surface for f[8B—Cl]e~ with

ko = 28 calldeg (a) three-dimensional (3D) representation and (b)
contour plot wih a 2 kcal spacing between two successive contour
lines. (Note that the actual well i for larger values should be softer

in 0, because we assumed tkeforce constant to be independent of

r.)

2.2

3.2. Reaction Path.We now turn to the calculation of the
[CN—®—ClIJe~ dissociation reaction paths in the three sol-
vents: water, acetonitrile, and dimethyl formamide (DMF). The
results for acetonitrile are very similar to those of DMF;

J. Phys. Chem. A, Vol. 107, No. 51, 200B1297

(a)

. -20 . 0 B
reaction coordinate / arb. units

(b)

T T
*- charge on Cl
| @& charge on the ring

gand g

-40 20 0

reaction coordinate / arb. units
Figure 2. Dissociation of [CN-®—ClJe~ in dimethyl formamide
(DMF) (case fin I): (a) contribution of each (mass-weighted) coordinate
to the reaction coordinate along the reaction path; and (b) normed
progresst = x/x* (with x =, 0, s, G) of the three coordinates and of
the free energy, together with the charges on the ring and ClI sites,
along the reaction path.

TABLE 2: Frequencies in the Reactant along the
Coordinatesr, 6, s, Normal-Mode Frequencies in the
Reactant (R) and at the Transition State (TS), and
Activation Free Energy (AG") in the Three Solvents

therefore, we do not present explicit results for it. (\Clgg ra) ('\C/I:S%Ne) (Ea“QeF f)
To calculate the reaction path, the first step is to locate the R 1
TS on the reactive surface, which is accomplished in a standard ‘“I'R (ps™) 4 4 4
fashion. Topologically, the TS is a saddle point; i.e., all the @5 (PS™) 10 10 10
free-energy first derivatives, with respect to the different N () 45 8
coordinates, are zero, and it is a minimum along all coordinates ;% (ps-2) 10 8
except one. After the TS has been located, two trajectories are oF, (psY) 45 10 10
calculated, both of which start along the unstable mode but in El .
opposite directions: one leads to the reactant and the other to @22 (PS™) & “ “
the product. Each trajectory is calculated as a zero-kinetic- @ (ps™) 75 70 70
energy, mass-weighted, steepest-descent path from the TS and w, (ps%) 14 14 14
toward either the reactant or the product state. oty (psY) 46 9 8
The reaction path is determined on Besurface with three AGF (kcal/mol) 9.7 10.2 9.9
coordinatesr(, 6, s); therefore, it is difficult to plot it in any
aSee eq 4.3.

intuitive way. To address this situation, we will present the
calculated contribution of each of the three coordinates to the region, the solvent begins to reorganize first, and then the wag
reaction coordinate, i.e., the contribution to the reaction path. angle starts to change, again so that the conical intersection point
We supplement this with calculations of the various reactive will eventually be avoided, and ultimately the CCI bond
and nonreactive NM frequencies in the R region and at the TS stretches; the reaction coordinate at the bent TS is almost
to give some further insight. exclusively the bond stretch, just as it is in the vacuum (see
Itis useful, for perspective, to first recall the potential energy Figure 1). These basic characteristics are also displayed in a
surface for the dissociation in a vacuum (see Figure 4 of 1), different way in Figure 2b, where the progress of the system
reproduced here for convenience as Figur& The basic free energy is also shown.
character of the reaction path is obvious from this figure:  Important general aspects of this path follow from a consid-
starting from R, the CCl angle will first bend to avoid the conical eration of characteristic time scales, determined by the inverse
intersection point, followed by significant motion in the CCl  of the frequencies that are associated with coordinate motions.
stretch, which is the reaction coordinate at the bent TS. In the R region, the coordinate frequencies are given in Table
Figure 2 shows the calculated results for the anion dissociation2 in the DMF solvent; these also coincide with the R-region
in the DMF solvent. Panel (a) shows that, starting from the R NM frequencies, as is to be expected from our discussion in
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Section 3.1, which indicates small coupling between the
coordinates, 6, ands. On the basis of these frequencies, in
the DMF solvent, the solvent coordinate is the slowest, followed
by the angle and the bond stretch, which is, by far, the fastest
coordinate. This, of course, is consistent with the time sequence
pattern of Figure 2 when one realizes that to ultimately cross
the TS, which is a rapid process, slow coordinates must
reorganize first; there will be no time to do this in the TS passage
itself. Of course, the frequency values used for this argument
were those in the R region, and this is not the complete story.
Electronic structure variation issues are also key, as implied by
our discussion in Section 3.1 and now discussed.

Figure 2b shows the radical anion electronic structure
variation along the reaction path in DMF as the charge is
adiabatically transferred from the ring (designatedipyto the
Cl atom. This information is presented in terms of the charges
associated with the adiabatic wave functi@(from eq 2.3)
along the reaction path:

Go = (®)05 + ()

o1 = (CB)2Q(B:| + (CA)zqg

o)
0.9

g3 = —0.60

() = 0.28— 3.2 exp(—

—0.12

CkB:l

@) =-1+3.2 expé— (3.11)

_r
0.9
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Figure 3. Dissociation of [CN-®—Cl]e~ in water (case a in ): (a)
contribution of each (mass-weighted) coordinate to the reaction
coordinate along the reaction path; and (b) normed progress/x*

(with x =, 6, s, G) of the three coordinates and of the free energy,
together with the charges on the ring and Cl sites, along the reaction
path.

region is in the wag angle. The solvent then rearranges

In approximately half of the progress displayed from the R to somewhat, the ECI bond stretches, and the TS is crossed along
the TS, the electronic structure remains essentially that of the a mixture of the bond stretch and solvent coordinates. This is
R, and the aforementioned frequency arguments still apply. not only in significant contrast to the DMF case, but it also
Figure 2b shows that most of the electronic structure variation contrasts with the vacuum reaction in the identity of the TS

is concentrated in the TS neighborhood, and that, very impor-
tantly, the changes thatand 6 are going to make on the way
to the TS arealready completed. The solvent coordinate has
preorganized to be appropriate to the approximately 50/50
charge distribution at the TBeforethat charge distribution is
established, and the wag angle has increased to provide th
electronic coupling, allowing that charge distribution (and, of
course, avoiding the conical intersection point). As the system
heads into the neighborhood of the T8and 6 are no longer
involved, leaving only the most rapid coordinate notice in
Figure 2a that, in the region of rapid increase in contribution
of r to the reaction coordinats,and 6 drop out rapidly. The
fact that the basic ordering of time scales still applies in the TS
region is further confirmed by examination of the NM frequen-

e

reaction coordinate.

Again, time-scale considerations are critical here. The fre-
guency entries in Table 2 for the R region show that, in water,
the solvent is much faster than the wag angle (the opposite of
the DMF situation) and is, in turn, slower than the bond stretch,
which accounts for the basic ordering of the motions in Figure
3a. The fast time-scale character of water, which is directly
reflected in the very short inertial time scalec();l) that is
observed experimentally, results from the water librational
(hindered rotational) motions. The librational motions of the
light H atoms have a high frequency, and, therefore, the water
dipole moments can rearrange very quickly; in the present
continuum description, the water orientational polarization can

cies at the TS (see Table 2). The highest of these, the parallel2djust rapidly.

frequencywﬁ, is obviously mainly associated with the bond
stretchr, though now this is an unstable motion in the barrier
region. The frequencies of the two transverse modtﬁsand
sz, which are essentially the angle and the solvent respec-
tively, both have frequencies lower than that pdnd are again

in the order angle higher than solvent.

As noted previously, the picture for the reaction in acetonitrile

Beyond the feature that the wag angle is the slowest
coordinate for the reaction in water, its central role in establish-
ing the electronic coupling and avoiding the conical intersection
point is much the same as that in DMF, and we do not consider
it further. The continued significant involvement of the solvent
coordinate in the reaction coordinate motion all the way to the
bent TS is striking (Figure 3a). This aspect is also associated

is essentially the same as that in DMF, as should be evidentwith the rapidity of the water motions. Although not as fast as

from the comparison of their characteristic frequencies in Table
2.

For the [CN-®—ClJe~ dissociation in the water solvent,
however, the reaction path is noticeably different (see Figure
3). Panel (a) shows that the initial motion away from the R

ther-coordinate, the water solvent coordinate is sufficiently fast
to at least partially adjust to the changing electronic structure
and charge distribution as the reaction proceeds (Figure 3b).
Finally, the fact that the ordering of the time scales we have
used in our discussion remains the same in the TS region is
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TABLE 3: Frequencies in the Reactant along ther, 0, s
Coordinates, Normal-Mode Frequencies in the Reactant (R)
and at the Transition State (TS), in the Three Solvents, in
the ES Picture?

water MeCN DMF

(case a) (case e) (casef)
ofes (s 74 74 74
whes(PSY) 10 10 10
wles(ps ) 45 8 7
ofes (s 10 10 10
AN () 74 74 74
wfes (s 45 8 7
oes (PSY) 97 92 89
ohes (pSY 14 14 14
wies(ps™?) 36 7 6

aSee eq 4.10.

confirmed by the TS reactive and transverse nonreactive NM
frequencies in Table 2.

3.3. Equilibrium Solvation Reaction Path.We can compare
the reaction paths just discussed with those that would follow
from the most common view of chemical reactions in solution.
The latter adopts a different view from that previously used, in
that an equilibrium solvation (ES) perspective is assumed: the

solvent is considered to be always equilibrated, at each value
of the reacting molecule coordinates. This is also the assumption

of various calculational methods that involve quantum chemistry
in solutior?® and has been used in some studies of radical anion
dissociatior?*

For the anion dissociation, the equilibrium solvent coordinate
Seqfor a given molecular geometry is defined such that the free
energy is minimized at each point of thef) surface,

aG(r,0,9)

o (3.12)

r,é),seq
such that the solvent coordinate, which is defined as a function
Sdr,0) of the remaining coordinates, is then a nonreactive
transverse coordinate.

To calculate the reaction path in the ES perspective, we use
the same NM analysis as that used previously, where the solven

coordinate was explicit, with the exception that only thend
6 modes remain, the solvent coordinate always being a

transverse, nonreactive coordinate. The counterpart of eq 3.3 ig

(3.13)

|

(Xﬂ{,Es) R (5I’
¥ | T Rgs
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Figure 4. Dissociation of [CN-®—ClJe~ in water (case a in I) in the

ES picture: (a) contribution of each (mass-weighted) coordinate to the
reaction coordinate along the reaction path; and (b) normed profress
= x/X* (with X =1, 0, Sq G) of the three coordinates and of the free
energy, together with the charges on the ring and ClI sites, along the
ES reaction path.

the charges change rapidly. In contrast, along the correct reaction
path (Figure 2), considerable solvent rearrangement has occurred
long before the TS region is reached, and the solvent coordinate
motion in the TS region itself is far less.

There is a remaining important comparison to make: the ES
reaction paths for reaction in DMF and water in Figure 5a and
4a, versus the full paths for these two solvents in Figure 5b
and 4b. For the ES description, the two paths are very similar
to each other, with very small differences that are due only to
the different dielectric constants of the two solvents; the
dynamical properties of the solvents have no role, because the

Solvent is assumed to be instantly equilibrated. In strong contrast,

the true reaction paths (with the explicit solvent coordinate)
differ quite considerably for the two solvents, reflecting their
mportant dynamical differences.

4. Transition State Theory Rate Constants

4.1. Rate ConstantWe now present and discuss the radical
anion dissociation rate constant in solution, using transition state

The comparison of the reaction coordinate frequencies in the theory (TST) and the normal-mode (NM) perspective that we

full 3D picture and in the equilibrium solvation approach shows

introduced in Section 3.1. Although the result can be derived

that the ES picture strongly sharpens the apparent barrier. Thusfom flux time correlation formula&; we follow a simpler route

for example, from Tables 2 and 3, the barrier frequeng¢yn
water is 75 pstin the 3D picture, whereas in the ES description,
there is a marked increase to a value/JﬁfEsz 97 psL. This
effect is due to the very rapid change in the solvent coordinate
around the barrier, which, in the ES description, must “instantly”
equilibrate to the rapidly changing charge distribution. This can
be observed, for example, in the approach to the TS in Figure

4b. The charges on the two sites change very rapidly, and, in

here.
The standard TST rate-constant forn#8far a unimolecular
reaction such as the present one is adapted for our free-energy

surface:
T +
krgr = 2('%) (%) exp(— 4.1)

AG!
RT

the ES picture, the solvent instantly adapts to the evolving chargein which A is Planck’s constantQ¥ is the partition function

distribution. In particular, the change in solvent coordinatg) (
is restricted to the immediate neighborhood of the TS, where

(pf) of the TS speciesQR is the pf of R, and AG* is the
activation free energy, i.e., the free energy of the TS species



11300 J. Phys. Chem. A, Vol. 107, No. 51, 2003 Burghardt et al.

(a) o\ [w®\[o] *
I o[ P2 AG
v kTST — 2 - _¢ _4; expg— — (43)
2n Omf\@r RT

which is independent of Planck’s constdntas it should be.
This is the formula used in | to calculate the dissociation rate
constants in three solvents. The prefaégy of the exponential

in krstintroduced in | is just

R\[ R R
O Po | Po2

) , , = (4.4)
-20 0 20 Fa 2\ i, \of,
reaction coordinate / arb. units
(b) It is worthwhile to express eq 4.3 in a different way:

T T
*—* charge on Cl
I @-acharge on the ring

R
kegy = 2(%) exp(%t) exp(— AR—GTI) (4.5)

where the termw,'f/(Zn) can be regarded as an “attempt
frequency” along the reaction coordinate in fReegion, and
the activation entropy

gand g

[Beeaageaa8888 1 R R
Wy W
01 %02
AL A | AS =RIn|—/—— (4.6)
- E o+
40 20 0 20 oo w
reaction coordinate / arb. units 01 %02,

Figure 5. Dissociation of [CN-®—Cl]e~ in DMF (case e in |) in the . . .
ES picture: (a) contribution of each (mass-weighted) coordinate to the represents the entropy change that is associated with the two

reaction coordinate along the reaction path; and (b) normed pragress transverse NMs, on going from the R to the TS (and, of course,
= x/x* (with x =1, 0, S, G) of the three coordinates and of the free has no association with any activation entropy that is associated
energy, together with the charges on the ring and Cl sites, along thewith the AG* term that is given in eq 4.3 and carried over to eq
ES reaction path. 4.5). The physical effect represented A is the fact that the
phase space perpendicular to the reaction coordinate at the TS,
minus the free energy &. We include the symmetry factor of  je  at the saddle, does not need to be the same as that
2, because of the two routes around the conical intersection, perpendicular to the reaction coordinate in R.
with symmetrically related but otherwise identical TSs. We first If the transverse NM frequencies are lower at the TS than in
need to stress a point that was made as an example in thehe R, there is more phase space (e.g., less-confining “wells”
Introduction, that ouG has free-energy character, rather than in the NM coordinates) at the TS than at the R and the activation
strictly potential-energy character, because of the fact that all entropyAS' is positive. On examination of Tables 2 and 4, this
the molecular solvent degrees of freedom have been collapseds the case for the solvents that have been examined, although
to the single solvent coordinate. (Thus, for a given valus, of  the identity of the transverse modes differs for water and DMF
many different microscopic solvent molecule configurations are (which is quite similar to MeCN).
possible.) However, otherwise, it acts precisely as a potential We found in | that the prefactokso in eq 4.4 did not vary
energy, from the point of view of the system Hamiltonian, the much for the various solvents. From eqgs 4.4 and 4.6, we see
reaction path, and the rate constant. TIAGY in eq 1 is directly that Aol is
analogous to the potential energy difference between the TS R
and the R in a gas-phase reaction (or, indeed, the vacuum radical on ASF
anion dissociation). Ao = 2(%) exp(?) (4.7)
With this concept being understood, the meaningQbfis . o o
that it is the pf of the system fixed at the TS value of the reaction W& Now see that this lack of variation is due to the similar
coordinate and, thus, exclusively involves the transverse non-attémpt frequenciesaf/(27) ~ 1.1-1.6 ps?), even though

reactive coordinate motions at the TS. In the 3D NM perspec- the relevant coordinate is different, which induces the small
tive, these are the two transverse vibrations with respective variation in the activation entropies, which are themselves small

(Table 4).

It is important to stress that activation entropies always depend
on the perspective adopted. To illustrate this, it is certainly the
case that if one considered the anion dissociation in a more

frequenciesw’,, i, with each individual mode having its
own vibration pfgf,, g’,. In the R region, there are three NM
vibrations—one parallel to the reaction coordinate, and two

. . R R R H
transverse-with frequenciesw; and wr,, wg,, respectively,  yaditional, one-dimensional wasfocused on the bond stretch
and each mode has a vibrational pf. Given these considerations .o rdinate-one would consider the attempt frequency tahe
eq 4.1 becomes (2n) = 12 ps’L, whereas, in fact, it is never this value for the
solvents that have been studied. Because the NM frequencies
keT 1 qu qEZ AGH in the R are essentially those of the coordinates themselves (see
Krst= A RR R " RT. (4.2) Table 2), it is easy to show, from the aforementioned equations,
G A Are that Aso could also be expressed as
In the classical approximation for the various vibrations, each Ay = z(ﬁ)eAsz (4.8)
vibrational pfqg term ig6 q = kg T/(hw), so that we obtain ol 27 '
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TABLE 4: Free Energy of Activation (AG*), Frequency surface and the use of NM ideas (which gave eq 4.3). The ES
Prefactor (Aso, from eq 4.4), Activation Entropies (ASF and TST rate constant is
AS", from egs 4.6 and 4.9, Respectively), and Rate Constant
(Ksook, from eq 4.3) for the Dissociation of [CN-®—Cl]e~ in R R R +
Water, MeCN, and DMF — 5 Wy es|(Poes||PsEs _AG 410
kES_ 21 + + RT ( . )
water MeCN DMF ey \WseE
(case a) (case e) (casef)
AG* (kcal/mol) 9.7 10.2 9.9 where of and a)z are the R and TS solvent frequencies,
Asol (108 578 1.6 1.6 1.6 respectively. In this view, the “attempt frequency” factor,
Tso0kAS (kcal/mol) 0.97 1.05 1.16 whed(27), is modified by the inverse ratios of the transverse
Ta00kAS” (kcal/mol) -0.21 —-0.25 —-0.25 TS and R f g doR velv. The f
Kaoox (10F s79) 15 05 09 g an 1 frequencies;,esandwr es respectively. The factor
wsedwg esis the entropy effect,
Ges / keal.mol™ @) A R
SES
::__:—__’— = EX[{T == (4.11)

i

W
Wiy
A !
R
TR

WsEes

1\
Wi
Wy
SR
N
Nk
kK
n

which accounts for the thermal fluctuations at the TS and R of
the solvent about the respective equilibrium valszgsssqz 0.
This is complemented by the entropic effect of the remaining
transverse coordinate in the overall activation entropy that is
associated with eq 4.10:

;{A$s) _ wE,ESwsR,ES
ex =

R + +
WgeWsEs

W
D
W

S
=

(4.12)

The rate constarisis larger than the full (3D) rate constant
krst, because recrossing of the TS plane, which is due to the
coupling of the solvent coordinatewith the coordinates and
0, is not considered in the ES description. To characterize this
difference, we define the reaction transmission coefficiegt

0 / degrees

Krst
Kes= T — (4.13)
Kes
which, from eqgs 4.3 and 4.10, is given by
R R R * ¥
. A . ) . DWW |[Woess
Figure 6. Free-energy surface, in and 6 coordinates, in the kes= " = =75 = (4.14)
equilibrium solvation perspective, with= s(r,0) at each point, in W) eV eWs [\ PmP e

water (case a in l): (a) 3D representation and (b) contour plot with a
2 kcal spacing between two successive contour lines; the two symmetric This can be simplified via a RedlietTeller-type analys# for

TS regions are indicated by an “X". the R region?®
where now the new activation entropy is wfol R, = ofcwh cwles (4.15)
3 s S, )
o = SR w? whose physical significance is that the product of the coordinate
AS"=RIn oF o (4.9) frequencies is independent of the orientation of the axes, to give
01 *¥02
w* sw*

Table 4 shows that, in contrast to the positivg value,AS" Kgs= D;FE—:"ES (4.16)
is negatie, as indeed it must be to reduce the inappropriately WOy

high attempt frequency in eq 4.8 to agree with Ag value in ) )
eq 4.7, whose correct attempt frequency is almost an order of The calculated values ats for the [CN-®—Cl]«~ dissocia-

magnitude lower. tion in the three solvents are in the range=d#.75-0.78 (see
4.2. Equilibrium Solvation Rate Constant. The NM- Table 5); these values are noticeably, although not dramatically,
perspective TST result (from eq 4.3)ist, in fact, the solution- ~ 1€ss than unity. This is due to recrossing of the TS dividing

phase TST rate constant that would typically be considered in surface that is implicit in the ES view (see below). Equation
the usual perspective found in the literat&té527as noted in 4.16 indicates that it will be the smaller to the extent that the
the Introduction and Section 3.2. The usual conception is, actual transverse frequencied, and w}, exceed their equi-
instead, that of equilibrium solvation (ES), with the solvent librium solvation counterpartsstES andwz. Higher values of
always being equilibrated (eq 3.12). Here, we examine the the former mean that, in the directions transverse to the TS, the
difference between the two TST methods. confining “walls” are more restrictive for passage in the reaction

We have already displayed the ES perspective for the pseudo-coordinate than the ES picture predicts. Indeed, this vision
two-dimensional free-energy surface in Figure 6, and the ES suggests that an entropy of activation effect is involved, and
TST result can be written down simply by examination of the we now pursue this view.
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TABLE 5: Free Energy of Activation (AG), Frequency

Prefactor (Asole9, Activation Entropy (Ais, from eq 4.12),

Rate Constant (55, from eq 4.10), and Transmission

Coefficient (kgs, ?rom eq 4.13) for the Dissociation of

I[D(;Ntu—rteD—CI]-‘ in Water, MeCN, and DMF in the ES
ic

water MeCN DMF
(case a) (case e) (case f)
AG* (kcal/mol) 9.7 10.2 9.9
Asoes(10s7h) 2.1 2.1 2.0
Ta00kASEs (kcal/mol) 1.12 1.10 1.08
kIEOSOK (1P s7Y) 1.8 0.7 1.2
KES 0.78 0.75 0.78

The transmission coefficientzs can be rewritten with eqgs
4.6 and 4.12 as

AS — AS.q
R

+ %
| YmPm

Kes =

(4.17)
R R
WoeWs e

in terms of the difference of the activation entropies for the 3D
NM view (AS") and the ES viewASLy), and the frequencies
for motions transverse to the reaction coordinate irRhiegion

in the two perspectives. Now, in tHe region, the electronic

Burghardt et al.

suggestetto be very important for moat trajectories about a
conical intersection in solution.

The conclusion of the lengthy analysis to follow is that
dissipative frictional effects are negligible.

5.1. Generalized Frictional Forces on the Coordinates,
0, s. We begin with the nondissipative equations of motion in
the TS region (eq 3.1) and supplement each of them with a
simple non-Markovian, i.e., a non-time-local direct friction term
that involves the coordinate velocity:

o1 1 1 ¢ ,\
8r=—=1G,, 0r — —==G, , 00 — —=—G, 0s— [ drt, (z) dr(t - 7)
Hr N ity Nttt L
. 1 1 1 t '
80 = ——==G, , 01 — =G, , 00 — —=—=G, 05 — f drl, o(7) 50(t — 7)
A Uity Ho A Holts 0
. t .
bs= —1G, or - —1-G, 00 — ~G, 05— [t st = 1)
N el N/ Halts Hs 0
(5.1)

The equations of motion are then each of a generalized
Langevin form, with each coordinate time-dependent friction,
e.g., ¢i(t), related to the time correlation function of the
fluctuating force on that coordinat@ The non-time-local form
of the frictional terms in eq 5.1 incorporates the important
feature that these force correlations have finite lifetimes, as

structure hardly changes (cf Figures 2b and 3b) and there isopposed to the common Brownian motion Langevin approxima-

negligible coupling between the 6, s coordinates there (see
Sections 3.1 and 3.2). Thus, tReNMs will differ insignificantly
from the coordinates, and the prefactor in eq 4.17 will differ
negligibly from unity, which is an inference borne out by the

calculated frequencies in Tables 2 and 3. Thus, the prefactor in
eq 4.17 is approximately unity and we can interpret the

transmission coefficientzs as a direct reflection of the activation
entropy differences for the 3D NM and ES perspectives:

p(As* - Asgs)
Kes = eXP————

= (4.18)

There is a further interpretation ets!® that focuses on the

tion, in which a time-dependent friction would be assumed to
decay instantly, i.e., to have a delta function time dependence
&r(t) = &o(t), where(; is the friction constant which is the
full time area of¢(t):

&= [y dtg ) (5.2)
For molecular systems, the Langevin approximation is generally
a poor one, and it is particularly unphysical for chemical reaction
problemsS as discussed below.

5.2. Normal-Mode PerspectiveJust as was the case for the

nondissipative problem in Section 3.1, the transformation to the
normal modes in the TS region is especially convenient. The

source of the recrossing as being due to extra solvent barrierstransformationR* (from eq 3.2) is again applied, and this
that arise because the nonequilibrium solvent does not follow produces the NM equations of motion:

the equilibrium solvation path to which the rapidly changing
charge distribution ir is always adjusted. We do not pursue

this here, but refer instead to ref 16, where a closely related

situation for an {2 reaction Ct + CHsCl — CICHsz + CI~

reaction is discussed in detail. For that reaction, there is a rapid

charge shift from the attacking Cl atom to the leaving Cl atom;
in the [CN—-®—Cl]e~ reaction, the rapid charge shift is from
the ring to the departing Cl atof.Just as in the @& reaction,
the equilibrium solvation rate constakis is not numerically
greatly in error fes is not much less than unity), despite the

0= 0% — L et — 1) - L ettt — ) — L et Yielt — 1)

So= —ix, — L et (Ot — 1) — J; et ot — 1) — L et Dt — 1)

= — 0 — fo e — 1) — j; et et — 1) — fo et — 1)
5.3)

In the absence of any dissipational friction effect, this, of
course, reduces to the nondissipative NM equations of motion

strong difference in the actual and ES reaction paths, becausgeq 3.4) and the NM frequencies in eq 5.3 have precisely their

o the basic sharpness of the reaction barrier.

5. Dynamical Recrossing Corrections for Rate Constants

The entire perspective to date has been in terms of the
nondissipative Hamiltonian and equations of motion. However,
as stressed in the Introduction, this ignores any dissipative forcest

same meaning as in eq 3.4. However, now, the direct frictional
terms in the coordinate equations of motion (eq 5.3) have
resulted in three frictional contributions for each of the NMs.
This is because each NM is a linear combination of the
coordinates, 6, s, resulting in a frictional coupling between
he NMs, i.e., motion in one NM induces motion in the other

on any of the coordinates, which could induce dynamical NMs. Mathematically, the friction matrix in the NM representa-

recrossing effects at the TS. In the NM-perspective rdgylt

(eq 4.3), recrossing of the TS will reduce the actual rate constant!" the €, ¢
below krst; TST assumes that every trajectory heading from

the side of the R and crossing the TS toward the product side

is a successful trajectory, whereas a recrossing trajectory will

not be. Here, we assess these effects, which have been

tion is the result of the rotation of the friction matrix expressed
, S) coordinates:

€11 G2 Gz &r 0 0
Co1 G0 Cos|=R|0 &gy 0 [RTH (5.4)
a1 G2 Caz 0 0 G
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The system depicted in eq 5.3, of three coupled differential TABLE 6: Solvent Frequency (ws),2 Correlation Time (zs),
equations for the three normal modes, is formally solved using Friction (&s9,¢ Barrier Frequency (wﬁ), and Grote—Hynes

Laplace transformatich and algebra Correction (k) for the Different Cases Studied in I, with a
Direct Friction on the s Coordinate
f(9= [, dte™f(t) (5.5) case solvent ws(ps) 7s(pS) Css(PSY) wy(psY  «
a water 45 0.2 405 75 0.941
and is explained in Appendix A, with the result that thereisa €  MeCN 8.3 0.26 18 70 1.000
new generalized Langevin equation (GLE) for the reacton f  DMF 7 2.0 98 70 1.000

coordinate, with a time-dependent friction that acts on the aFrom eq 2.23" See ref 38¢ From eq 5.12.

reactive NMx, . .. .
all solvents, we will see that this time is on the order of 200 fs,

O [+ — F2 _rt ol and only the short-time component of(t) is relevant for the
X4(t) = w1%(t) ﬁ)df C(D)Xy(t — 7) (5.6) reaction. This can often be quite differentsually much less
than what would be predicted by imagining that the full effect

?‘“d the Laplace transform of the time-dependent fricOg®) of the long-time response applies, the latter being the ap-

IS proximation of Kramers theor$% For example, a GH approach
& — & 2 & for rate constants of the TICT reaction of DMABN in alcohols
2) = Gy + Ca5(2) + Z 5.7
6@ = bt &A2) T L) ®.7) is in close agreement with the experimental results of Changenet
where the quantitiea;» andays are defined in Appendix A. et al.}! whereas a Kramers approach is in disagreement by

Before proceeding, we briefly discuss the character of this Several orders of magnitude. _ _
result. If there were no coupling between the modes induced Ve do not pursue here all aspects of the analysis, but instead
by the NM rotation (see eq 5.4), then only the first term in eq Festrictour discussion to addressing the impact of the dissipative
5.7 would survive. However, generally the NM rotation induces ffiction on our previous NM TST rate-constant result.

a coupling between the modes and eq 5.7 contains the final 5-2.1. Dissipatie Friction on the Salent CoordinateFirst,
two terms. For example, the second term in eq 5.7, together W€ specialize to the case where there is only a direct friction in
with eq A.3, shows that the coupling frictichi, leads to an ~ €d 5.1 on the solvent coordinae (& = Csp = 0), and,
effect onxy, even if the third modes were absentlbs, Cau, furthermore, we assume the direct time-dependent frictios on
£33 o) = 0): modes 1 and 2 are frictionally coupled, in that [© Pe a delta function in timé&s{t) = L (1), such that its

motion in the NM coordinate; influences the dissipative forces ~-@Place transform is a constant:

that are exerted on the reactive NM. The general web of 2 _ 2
frictional couplings contained in eqs 5.7, A.3, and A.4 can be Csdd) = &ss= 003Ts
analyzed in detail by the methods of refs 6 and 7, but this is
not necessary for our present purposes.

Now that we have the GLE (eq 5.6) for the reactive NM, we
can apply GroteHynes (GHY’ theory directly to write the
actual rate constark in the presence of the friction as our
previous nondissipative NM TST resukrst (see eq 4.1)
multiplied times a transmission coefficient

(5.12)

which is derived in the work of van der Zwan and Hyseés.
Here,ws is the solvent frequency discussed in Section 2=&and
the correlation time, is the average time of the spectral response
function, which is available from time-dependent fluorescence
experiments.Application of the aforementioned formalism with
this simple direct friction only o for CN—®—Cl]e~ in DMF,
acetonitrile, and water gives the results collected in Table 6.
(5.8) For DMF and MeCN solvents, Table 6 shows that kier
rate-constant reduction is utterly negligible, because of the very
with « being expressed as the ratio of an effective reactive high barrier f.requerlcw)ﬁ, but also because of the feature
frequency? to the reactive NM frequency; noted in the discussion of the reaction path for DMF in Section
3.2: the NM reactive coordinatg is almost exclusively in the
CCl stretch (MeCN is very similar). The influence of the direct
friction onsinfluences the effective friction oxy only indirectly,
e.g., by the coupling?G/(as ar) (cf eq 3.1) and this influence

and the reactive frequency is determined from the self-consistentS clearly weak.

k= krsre

K= i* (5.9)
wy

relation The effect for water solventc(= 0.8) is finite but not very
large. This influence mainly results from the fact that, as
wﬁZ discussed in Section 3.2 for the reaction path in water, the
A= /H‘—é(l) (5.10) reactive NM coordinate at the T§ has both CCI stretch and
1

solvent coordinate components. Thus, the direct impaét of

is felt. However, even this rather minor effect of reducksgr

by =20% is, itself, an overestimate. Equation 5.12 resulted from

the delta function in time assumption that the full solvent friction

acts instantly; this is physically impossible, given the charac-

teristic time scale for barrier crossings)* = 140 fs), and

the physically relevant friction on these short times will be

N © ot considerably less than that implied by eq 5.12. Thus, we
G() = ﬁ, dte “Cy(1) (5.11) conclude that the impact of any friction on the solvent coordinate

has negligible influence in reducing the rate constant below the

Becausel is on the order ofwﬁ, this means that the time-  krst value, and we pursue it no further.

dependent frictiorty(t) that is relevant for the reaction is that 5.2.2. Friction on the €CI Stretch.We now examine the

on the time scalea(ﬁ)*l. For the radical anion dissociation in  effects of a direct frictiort, ((t) on the CCl stretch (cf eq 5.1),

The content of eqs 5.9 and 5.10 is 2-fold. First, in the presence
of dissipative friction, the actual reactive frequency is less than
or equal to its nondissipative analogm%; and second, the
relevant friction in this reduction is the “frequency-dependent
friction” at the reactive frequency:
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TABLE 7: r-Friction Decay Rate Parameter p),2 Barrier
Frequency (a)ﬁ), and Grote—Hynes Correction (k) for the
Different Cases Studied in |, with a Direct Friction on r
Exclusively

Burghardt et al.

TABLE 8: r-Friction Decay Rate Parameter p),2 Barrier
Frequency (w,’f), and Grote—Hynes Correction (k) for the
Different Cases Studied in |, with a Direct Friction on 6
Exclusively

case solvent p(ps™?) wff (ps) K case solvent o (ps?) w,f (ps)) K
a water 40.0 75 0.947 a water 40.0 75 1.000
e MeCN 40.0 70 0.934 e MeCN 40.0 70 1.000
f DMF 40.0 70 0.934 f DMF 40.0 70 1.000

aFrom eq 5.13.

because motion in the moat around the conical intersection

intimately involves this coordinate. (For the moment, we ignore
any direct frictionZy o(t) on the wag angle.) In all three solvents,
the barrier frequency)ﬁ is high; therefore, the aforementioned

GH considerations indicate that we only need to be concerned

with a form for & (t) at short times. We estimate this friction,
for the case of water solvent, as follows.

aFrom eq 5.13.

are different; in particular, the wag component of the latter is
very small in all solvents.

However, the major point clearly is that, once again, there is
a negligible dissipative frictional correction to the NM TST rate
constants; dissipative frictional effects in the moat are com-
pletely unimportant and the value ofin eq 5.8 is essentially
unity.3* We have confirme® that this conclusion also holds if

To assess the impact of the direct time-dependent friction on pq the direct frictions on the stretch and the wag are included

the CCI stretch, we will assumg ((t) to be equal taSc(t),
where, for a translating Clion in water,{ci-(t) is the time-
dependent friction acting on the ion. This is an approximation

that is consistent with our neglect of any static screening terms

for the Cl species in the dissociation (see Section 4.2.2 of ).
We will use just this friction, for short times, as our estimate

for & ((t). The details of this estimation are given in Appendix

B, with the result

2
o 0- () ol

Thus, the initial value of this friction and its time rate of decay
are governed exclusively by the parametewith p = 40 ps'™.

(5.13)

%)

Thus, we use eq B.4, which is the Laplace transform of eq 5.13,

for the direct frequency-dependent fricti@n,(2), and ignore
any direct friction ons or 6.

The result for the transmission coefficienthat corrects the
NM TST rate constant for the anion dissociation in water solvent
is given in Table 7, where we have included, simply for

simultaneously. Thus, no modifications are required, because
of this source, of the radical anion dissociation rate constants
calculated in I.

The ultimate reason for the unimportance of dissipative
frictional effects for the [CN-®—Cl]e~ dissociation in the
solvents considered is that the TS reactive frequanﬁ:y’s
very high—the TS barrier is “sharp*and dissipative frictional
effects are negligible on the associated short time scale, which
is '—v(cuff)‘l for the barrier crossing. Strong frictional damping
in the “moat”, which is associated with conical intersection
avoidance (as envisioned in ref 5 for a different problem) would
require both a very low barrier and an associated low value of
wﬁ, which, for certain solvents, could allow significant fric-
tional forces to develop on the now long time scale, which is
~(w;)~1 for TS passage.

6. Concluding Remarks

In this paper, we have examined in detdi terms of the

perspective, the predictions for the acetonitrile and DMF solvent CCl stretch, CCI wag, and solvent coordinatéise reaction
cases on the basis of the very rough assumption that the directiorPaths, the normal-mode transition state theory (TST) rate

friction onr is the same as that in water. It is clear that, even
though the TS NM reaction coordinate is composed largely of
rin all cases, the recrossing correction is completely negligible.
Thus, the NM TST rate-constant result is most definitely not

modified because of any extensive recrossing, because of

extensive frictional damping on the stretch coordinate in its
motion in the TS neighborhood.

5.2.3. Friction onf. Finally, we consider the influence of a
direct time-dependent friction on the CCl wagging coordinate
0. Rigorously, this is, within irrelevant constants, the time
correlation function (tcf) of the fluctuating torque (rather than
force) on the wag divided by the effective mass foiThis tcf
involves two factors of the torque. Here, we approximate the
wagging motion as a rectilinear wag, i.e., a translational motion
perpendicular to the fixed bond lengthat the TS. The torque
tcf per mass then will be approximately equaldt(t), which
is the friction for ther-coordinate, because the differing factors
of torque and forcerf) will be canceled by the different mass,
i.e., the moment of inertia, that involves)?, compared to the
translational reduced mass far

With the aforementioned approximatialye(t) is just &, (t)

constants, and dissipative frictional corrections to the latter, for
the [CN—®—Cl]e~ radical anion dissociation in solution, which
is a ground electronic state reaction that involves conical
intersection avoidance.

It has been shown that the solution reaction paths differ
between solvents, e.g., between water and dimethyl formamide
(DMF), as does the composition of the reactive normal mode
by which the bent geometry transition state is crossed. These
effects were shown to be due to the different time scales of the
solvents. It was also shown that the conventional equilibrium
solvation perspective, which assumes that the solvent is always
equilibrated to the other coordinates, gives a quite different and
incorrect description for the paths. The formulation generating
the normal-mode (NM) TST rate constant was described and
contrasted with the perspective following from an equilibrium
solvation assumption. Furthermore, the influence of dissipative
friction effects in reducing the actual anion dissociation rate
constants below our NM TST rate constants was shown to be
negligible, thus supporting the rate-constant estimates that were
made in Part 1 (I}.

Finally, we discussed in | the possibility that the basic

(see eq 5.13), and the results for the transmission coefficientformulation of the free-energy surface for the reaction problem
are shown in Table 8. The minor differences in Table 8, could be extended to include a microscopic description of the
compared to those in Table 7, are due to the fact that the solvent. With such an extension in hand, the reaction path and
couplings of the wag coordinate to the reactive NM coordinate rate-constant issues of the present work could be examined in
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a molecular solvent context via available methods (see, for T T
example, the work of Staib et #.and Gertner et a’).
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Appendix A

Here, we derive the generalized Langevin equation results
that are given in egs 5.6 and 5.7.

" n 1 n 1 1 n
. . . . . 0 0.1 0.2 0.3 0.4 0.5

A detailed analysfs’ requires attention to the various initial time / ps
conditions on the coordinates and their velocities; however, the Figure B1. Translational velocity time correlation function (tcf)

same results follow more rapidly by proceeding purely formally of the CI ion in water, calculated by—) molecular dynamics and

and eliminating all the initial conditions entirely. We follow (— — —) Gaussian fit of the short-time behavior.
the latter route and assume that the system starts at the transition
state (TS) with a zero velocity: The normalized ion velocity time correlation functiod(t),
1
x({t=0)=0 C(t) = O [3(t)v0 (B.1)
x(t=0)=0 (A.1) is obtained from a molecular dynamics computer simulation,

the details of which are described in ref 35 and its short-time

Given that%(2) denotes the Laplace transform gft), the behavior can be well described by a Gaussian decay, as shown

transform of eq 5.3 is in Figure BI,
. e r e o a cty=e """ B.2
7% = a)ile = 20138 — Z81%, — 2815% ® (B2)
7%, =— wng(z — 28 — Zepfo — ZEpsks (A2) with p = 40.0 ps®. The Laplace transfornijc-(t) is?®
~ 2 2 oA PN PN
% == w3%— 2a%y — gy — Zass b= 1 , (8.3)
DT '

The strategy is to express the transforms of the nonreactive
normal modes (NMsk, and%s, in terms of the NM reaction
coordinatex;. This is accomplished by simultaneously solving

the last two members of eq A.2, to find ,
L@ = (%)(ﬁ) ex;{iz) efc>-  (B.4)
o 2223231 -7+ Z€33 + (wz)z) V2p 2p V2p

X2 =z 2 2 2 2 2 x1 . . . . ..
(Z + Zegy+ (0)NZ + Zpy + (03)°) — ZCray which, itself, is the Laplace transform of the Gaussian friction
. in time (see eq 5.13 of the text).
=a,(2 % (A.3)

which, for short times, i.e., for large values, can be ap-
proximated by°-31
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