Gas-Phase Reactions between Diborane and Carbon Monoxide: A Theoretical Study

Shao-Wen Hu,* Yi Wang, Xiang-Yun Wang, Ti-Wei Chu, and Xin-Qi Liu

Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China 100871

Received: June 30, 2003; In Final Form: September 23, 2003

Experimentally, gas-phase reactions between diborane (B_2H_6) and carbon monoxide (CO) produce borane carbonyl (BH_3CO) and a less volatile material. To elucidate the unknown part of the products, we investigated the reactions of the B_2H_6 :CO = 1:1 system using ab initio calculations at the MP2/6-311++g** level. Within the energy range of 120 kcal/mol, we located 41 minimum and 35 transition states on the potential energy surface. Among the intermediates and products, BH_2OBHCH_3 is thermodynamically most stable. Its formation releases energy of 64.59 kcal/mol and requires an activation energy of 36.20 kcal/mol at the rate-limiting step. On the contrary, the initially formed $BH_3CO + BH_3$ absorbs 14.75 kcal/mol of energy and requires 19.53 kcal/mol of activation energy. The results indicate that B_2H_6 can act as a reducing agent to hydrogenate CO at thermal equilibrium, whereas the formation of dative complex BH_3CO is kinetically favored. Theoretically, several products containing boron, hydrogen, carbon, and oxygen can be isolated.

I. Introduction

In 1937, Burg and Schlesinger obtained borane carbonyl BH₃CO by heating B₂H₆ in excess CO.¹ When overheated, the yield of BH₃CO decreases whereas an unknown material, heavier and less volatile than BH₃CO, accumulates. As a classical method to prepare BH₃CO and its derivatives,²⁻⁵ the byproduct, so far not well characterized, is undesired. On the other hand, the composition of the byproduct is probably a complicated mixture of several species containing boron, hydrogen, carbon, and oxygen. The pure forms of these species, synthesized in various ways, play important roles in organic synthesis and many related fields.⁶⁻¹³ If the species produced by direct reactions between B₂H₆ and CO are well-defined and the formation mechanisms toward these products are understood, new synthetic routes, separation methods, and relevant catalysts can be developed. The purpose of the present computational work is, therefore, to elucidate pathways of gas-phase reactions starting from the two molecules B₂H₆ and CO to all stoichiomically possible products. The presumed reactant ratio $B_2H_6/CO = 1:1$ in this work, though different from that held in Burg and Schlesinger's experiment, is reasonable for theoretical simplicity and may reveal reaction pathways toward useful products which have never been found experimentally.

II. Calculation Method

The geometry structures were fully optimized at the MP2/ 6-31+G* level. Transition states were located by using synchronous transit-guided quasi-Newton (STQN) methods¹⁴ in combination with stepwise partial optimization along each pathway with one geometric parameter fixed as constant. Frequency calculations were performed following each optimization to obtain the zero point energy (ZPE) and IR spectra data, and to characterize all the stationary points located on the potential energy surface. Intrinsic reaction coordinate (IRC) calculations were performed to confirm the relationship of each transition state with its reactant and product. Single-point calculations at the MP2/6-311++g** level determine the electronic energies. The relative energies finally reported are obtained at this level with MP2/6-31+G* calculated ZPE corrections. The Guassian 98 program package¹⁵ was employed for these calculations.

III. Results and Discussions

Calculated energy, dipole moment, and rotational constants for all the species are listed in Table 1. The kinetic and thermodynamic features for important intermediates and isolable products were summarized in Table 2 and their IR frequencies were given in Table 3. All the species were named according to their structures and numbered to indicate their order of occurrence in the reaction course. Reaction pathways were divided into eleven parts. Each part includes geometry structures of the relevant species and their relative energies (Figures 1-11).

Part I: Formation of BH₃HBH₂CO (3), BH₃CO (4), and $BH_2CH_2OBH_2$ (7) (Figure 1). At the initial stage, B_2H_6 and CO are weakly bonded as shown by molecular complex B₂H₆-CO (1). By providing 19.53 kcal/mol of energy, the system is activated to transition state BH₃HBH₂CO (TS-2), which leads to formation of BH₃HBH₂CO (**3**). This process usually happens when B₂H₆ is attacked by a Lewis base.¹⁶⁻¹⁸ Upon bonding with CO, B₂H₆ breaks one of its hydrogen-bridged bonds B-H-B and polarizes the other. Thus, the species 3 can be regarded as a complex formed between BH₃CO (4) and borane (BH₃), which dissociates with an additional 5.06 kcal/mol of energy. The separated BH₃ can also associate with 4 through a weak O-B bond into BH_3COBH_3 (5). The dative complex 4 is the main product of Burg and Schlesinger's experiment.¹ They demonstrated that the formation of 4 requires elevated temperature as well as large amount of CO. The excess CO can combine without barrier to the transient product BH₃ and increases the yield of 4. Otherwise, the more stable species 3 is likely to exist. For either product, the rate-limiting step is from 1 to 3. It should be noted that the system requires much less energy to form transition state TS-2 than to dissociate B₂H₆ to two BH₃ (36.12 kcal/mol), the formation of **4** is thus likely to proceed along the route

$$1 \rightarrow TS-2 \rightarrow 3 \rightarrow 4 + BH_3$$

instead of

$$B_2H_6 + CO \rightarrow 2BH_3 + CO \rightarrow BH_3CO + BH_3$$

TABLE 1: Electronic Energies, Dipole Moments, and Rotational Constants of the Species

species	symm ^a	$E_{e}^{b}(au)$	$E_{\rm e}{}^c$ (au)	ZPE ^b (kcal/mol)	dipole ^b	dipole (D) ^c	rotational	constants	^b (GHZ)
$B_2H_6CO(1)$	$C_1(0)$	-166.02736	-166.20886	44.32	0.303	0.372	16.94	1.709	1.598
$BH_3HBH_2CO(TS-2)$	$C_1(1)$	-165.99241	-166.17731	44.05	4.019	4.027	30.72	2.652	2.548
$BH_3HBH_2CO(3)$	$C_{s}(0)$	-166.00883	-166.19373	44.24	3.108	3.104	12.69	4.938	3.780
$BH_3CO(4)$	$C_{3v}(0)$	-139.53256	-139.66718	23.43	2.057	2.102	122.1	8.505	8.505
$BH_3COBH_3(5)$	$C_1(0)$	-166.00048	-166.18081	41.20	1.792	1.827	48.08	2.242	2.221
BH ₃ COBH ₃ (TS-6)	$C_1(1)$	-165.96487	-166.14912	43.03	2.117	2.118	18.74	5.439	4.540
$BH_2CH_2OBH_2(7)$	$C_1(0)$	-166.05699	-166.23412	47.34	1.813	1.757	18.66	5.378	4.673
B ₂ H ₅ CHO (TS-8)	$C_1(1)$	-165.96376	-166.15029	43.72	1.646	1.606	23.94	3.828	3.465
B ₂ H ₅ CHO (9)	$C_1(0)$	-166.02179	-166.20078	47.42	2.697	2.581	19.38	4.377	3.918
BH ₂ HBH ₂ CHO (TS-10)	$C_1(1)$	-165.97374	-166.15269	45.72	1.975	1.931	11.40	6.600	4.531
$c_BH_2HBH_2CH-O(11)$	$C_{s}(0)$	-166.02708	-166.20790	47.21	2.094	2.066	12.33	8.944	5.681
BH ₂ HBH ₂ CHO (TS-12)	$C_1(1)$	-165.97538	-166.15531	45.59	3.081	2.940	16.25	5.136	4.583
c_BH ₂ HBH ₂ CHO (13)	$C_{s}(0)$	-165.99901	-166.17865	47.04	2.158	2.021	13.97	6.567	5.521
BH ₂ HBHCHOH (TS-14)	$C_1(1)$	-165.94783	-166.13490	44.39	2.911	2.911	15.44	6.187	4.691
$BH_2HBHCHOH$ (15)	$C_1(0)$	-165.98933	-166.17492	47.98	1.157	1.170	15.51	5.969	4.785
$BH_2CH_2OBH_2$ (TS-16)	$C_1(1)$	-166.00837	-166.19137	46.00	1.609	1.577	13.59	8.915	5.864
BHHBH ₂ CH ₂ O (TS-17)	$C_1(1)$	-166.05152	-166.23101	47.85	1.028	0.953	13.74	7.647	5.375
$c_BHHBH_2CH_2O(18)$	$C_1(0)$	-166.05370	-166.23535	48.86	0.673	1.449	12.80	9.320	5.901
$c_BHH_2BHCH_2O(TS-19)$	$C_1(1)$	-166.05356	-166.23555	48.75	0.662	0.640	12.65	9.940	6.090
$c_BHH_2BHCH_2O(20)$	$C_{s}(0)$	-166.05904	-166.24173	49.66	1.455	1.370	12.50	11.10	6.388
$BH_2CH_2OBH_2$ (TS-21)	$C_1(1)$	-166.05045	-166.22703	47.51	1.787	1.715	19.74	5.089	4.860
$c_BH_2CH_2OBH_2$ (22)	$C_1(0)$	-166.05147	-166.22795	47.84	1.616	1.543	16.30	6.102	5.435
$c_BH_2HBHCH_2O(18-23)$	$C_1(1)$	-166.04809	-166.22004	48.25	1.430	1.389	14.69	8.204	0.899
$C_{DH_2HDHCH_2O}(24)$	$C_{1}(0)$	-165.07063	-100.23191 -166.15063	49.40	1.004	1.341	15.55	6.020 6.127	6.007
BH_OBHCH_ (26)	$C_{1}(1)$	-166 13081	-16631786	45.17	4.290	4.174	38.02	4.063	3 763
BH ₂ OBHCH ₂ (TS-27)	$C_{s}(0)$	$-166\ 13783$	-16631511	47.86	0.702	0.668	35.92	3 971	3 804
$BH_2OBHCH_3(15-27)$ BH_2OBHCH_2(28)	$C_1(0)$	-16613947	-16631472	48.22	0.607	0.593	30.43	4 080	3 801
BHCH ₂ OBH ₃ (TS-29)	$C_1(1)$	-166.01151	-166.18856	46.52	4.236	4.169	17.13	5.949	5.030
$BHCH_2OBH_3(30)$	$C_1(0)$	-166.01285	-166.18972	46.82	4.418	4.345	17.58	5.978	4.972
c_BHCH ₂ O (31)	$C_s(0)$	-139.53095	-139.66123	26.85	1.556	1.435	31.23	21.47	13.90
$c_BH_3HBCH_2O(32)$	$C_1(0)$	-165.99865	-166.17534	44.99	1.510	1.390	17.07	3.103	2.847
BHCH ₂ OBH ₃ (TS-33)	$C_1(1)$	-165.99846	-166.17651	45.51	1.589	1.486	17.98	3.682	3.342
c_BH ₂ H ₂ BCH ₂ O (34)	$C_{s}(0)$	-166.03160	-166.21240	49.05	1.761	1.636	21.25	5.371	4.573
c_BH ₂ HBCH ₂ OH (TS-35)	$C_1(1)$	-165.94304	-166.12965	46.70	1.022	0.975	11.50	11.17	6.228
c_BHHBHCH ₂ (OH) (36)	$C_1(0)$	-165.98668	-166.17305	49.20	3.527	3.425	11.72	10.65	6.026
c_BH ₂ BHCH ₂ OH (TS-37)	$C_1(1)$	-165.97982	-166.16653	48.16	4.321	4.203	11.80	10.86	6.036
$c_BH_2BHCH_2(OH)_c$ (38)	$C_1(0)$	-165.98868	-166.17515	49.14	4.004	3.873	11.74	10.76	6.059
$c_BH_2BHCH_2(OH)_c$ (TS-39)	$C_1(1)$	-165.98525	-166.17/097	47.94	3.679	3.572	11.36	10.56	5.965
$BH_2BHCH_2OH(40)$	$C_1(0)$	-165.99043	-166.1/410	47.82	3.476	3.379	10.91	9.864	5.678
$C_BH_2BHCH_2(OH)C(18-41)$	$C_1(1)$	-165.98977	-100.1/3214	4/.14	2.804	2.084	11.29	8.489	5.270
$DH_2DHCH_2OH(42)$	$C_{s}(0)$	-165.99300 -165.06138	-100.17003 -16614862	40.95	2.210	2.070	15.50	10.26	4.201
$BH_2BHOCH_3(13-43)$ BH_BHOCH_(44)	$C_{1}(1)$	-166.04541	-166 22263	40.72	1.001	1.390	15.37	5 /01	1 208
$BHOBH_2CH_2(TS-45)$	$C_{s}(0)$	-165,95480	-16613250	47.15	1.050	1.693	14 34	7.065	5 116
$BHOBH_2CH_2(46)$	$C_{-}(0)$	-16609003	-16627011	46.45	3 954	3 904	21.50	3 352	3 029
$BH_{2}CH_{2}(47)$	$C_{2n}(0)$	-65.65177	-65.74525	35.95	0.567	0.545	95.93	21.41	19.58
OBH (48)	$C_{mh}(0)$	-100.43209	-100.51827	9.014	2.735	2.638	0.000	38.30	38.30
BH ₂ BHOCH ₃ (TS-49)	$C_1(1)$	-166.02154	-166.19804	47.32	1.636	1.575	21.07	4.346	3.988
BH ₂ BHOCH ₃ (50)	$C_s(0)$	-166.04765	-166.22468	48.33	1.799	1.734	37.50	3.826	3.656
c_BH ₂ CH ₂ BHOH (TS-51)	$C_1(1)$	-165.97130	-166.15669	47.41	3.479	3.372	12.45	9.176	5.669
$B(OH)HCH_2BH_2(52)$	$C_1(0)$	-166.09762	-166.28236	48.32	1.672	1.574	18.38	4.586	4.344
$c_BH_2H(OH)BCH_2(TS-53)$	$C_1(1)$	-165.99065	-166.17826	46.76	1.351	1.305	10.53	6.852	4.368
$c_BH_2H(OH)BCH_2(54)$	$C_1(0)$	-166.03152	-166.21917	48.90	2.440	2.429	20.85	5.347	4.473
$B(OH)HH_2BCH_2$ (TS-55)	$C_1(1)$	-166.02305	-166.21218	47.40	2.721	2.626	20.94	4.008	3.528
$B(OH)HH_2BCH_2(56)$	$C_{s}(0)$	-166.03167	-166.22157	48.44	2.661	2.562	34.97	3.317	3.171
$B(OH)HH_2BCH_2(1S-57)$	$C_1(1)$	-165.98512	-166.17470	45.64	2.604	2.472	8.921	/.890	4.253
$BH_2B(UH)IUH_3(58)$	$C_{s}(0)$	-100.07822 -165.07740	-100.20303 -166.16056	48.04	1.9/4	1.849	8.727 16.72	1.219	4.188
CH ₂ BHBH(OH). (60)	$C_1(1)$ $C_1(0)$	-166.07812	-166.26316	48.54	2.055	1.204	20.98	3,701	4.000
(00)	-1(0)								2

Relative to 1, the energy is 9.42 kcal/mol for 3 and 14.75 kcal/mol for $4 + BH_3$. Thus, thermodynamically, it is more stable for the system to go back to 1 unless CO is in excess as can be seen by the equilibriums

 $B_2H_6 + CO = BH_3CO + BH_3$ $\Delta E = 14.17$ kcal/mol $B_2H_6 + 2CO = 2BH_3CO$ $\Delta E = -7.78$ kcal/mol

This result is consistent with the observation that BH_3CO decomposes readily to CO and B_2H_6 , and the decomposition is suppressed by an excess of CO.

If the temperature is higher, vibration in **5** can activate the system to transition state BH₃COBH₃ (**TS-6**). By providing 36.20 kcal/mol of energy to the system, oxygen can coordinate to boron and carbon can be reduced by abstracting two hydrogen atoms from each boron atom. The product is BH₂CH₂OBH₂ (**7**) with an energy of -12.83 kcal/mol relative to **1**. Although the energy to reach the transition state **TS-6** is sufficient to dissociate B₂H₆ into two BH₃ fragments, the formation of **TS-6** is more likely to happen since the system is thermodynamically favored to form carbon-reduced product **7**. As we can see in

TABLE 1: (Continued)

species	symm ^a	$E_{\rm e}{}^{b}({\rm au})$	$E_{\rm e}{}^c$ (au)	ZPE^{b} (kcal/mol)	$dipole^b$	dipole (D) ^c	rotational	constants ^b	(GHZ)
CH ₃ BHBH(OH) _t (TS-61)	$C_1(1)$	-166.01315	-166.20215	46.73	2.300	2.155	32.81	3.651	3.334
BHH(O)BCH ₃ (TS-62)	$C_1(1)$	-166.11967	-166.30085	48.12	1.879	1.811	27.01	4.774	4.317
BH ₂ H(O)BCH ₃ (63)	$C_s(0)$	-166.12063	-166.30215	48.96	2.771	2.675	23.97	5.012	4.417
BH ₃ OBCH ₃ (TS-64)	$C_1(1)$	-166.09823	-166.27932	46.93	5.199	5.147	19.40	4.142	3.595
BH ₃ OBCH ₃ (65)	$C_3(0)$	-166.10284	-166.28191	47.61	7.008	6.948	68.47	3.018	3.018
OBCH ₃ (66)	$C_{3v}(0)$	-139.62184	-139.75490	27.69	3.625	3.513	159.4	7.817	7.817
c_BHOBCH ₃ H ₂ (TS-67)	$C_1(1)$	-166.03202	-166.21778	46.93	2.166	2.061	19.86	5.317	5.014
$c_BHOBCH3H_2(68)$	$C_1(0)$	-166.06604	-166.24446	42.85	1.079	1.010	17.98	4.466	3.660
c_BHOBCH ₃ (69)	$C_s(0)$	-164.92116	-165.08333	35.53	0.984	0.913	30.13	5.694	4.935
c_BHOBCH ₃ (TS-70)	$C_1(1)$	-165.97047	-166.15700	45.99	0.600	0.526	34.59	3.568	3.308
BH ₂ BHCH ₂ OH (TS-71)	$C_1(1)$	-165.98238	-166.16590	46.84	2.206	2.042	15.65	4.799	4.185
c_BH ₂ BHCH ₂ OH (72)	$C_1(0)$	-165.98756	-166.17099	47.88	2.829	2.709	15.73	5.528	4.958
BH ₂ HBHCHOH (TS-73)	$C_1(1)$	-165.95303	-166.13940	46.28	4.239	4.273	17.53	5.002	4.267
c_BH ₂ HBHCHOH (74)	$C_1(0)$	-165.99794	-166.18319	48.12	0.921	0.888	17.36	5.542	4.915
$BH_2CH(OH)BH_2(TS-75)$	$C_1(1)$	-165.98773	-166.17295	46.02	1.477	1.359	13.81	6.789	5.339
$BH_2CH(OH)BH_2(76)$	$C_1(0)$	-166.00127	-166.18564	46.08	1.811	1.685	9.352	8.368	4.825
H_2	$D_{\infty h}(0)$	-1.14414	-1.16030	6.48	0.000	0.000	0.000	1842	1842
CO	$C_{\infty h}(0)$	-113.02865	-113.11477	3.02	0.196	0.255	0.000	55.61	55.61
BH ₃	$D_{3h}(0)$	-26.46635	-26.51198	17.00	0.000	0.000	235.5	235.5	117.7
B_2H_6	$D_{2h}(0)$	-52.99703	-53.09251	40.90	0.000	0.000	80.66	18.52	17.00

^{*a*} Symmetry of the species, the number of imaginary frequency is in parentheses. ^{*b*} MP2/6-31+G*// MP2/6-31+G* calculations. ^{*c*} MP2/6-31++G**// MP2/6

Figure 1. Species involved in forming BH_3HBH_2CO (3), BH_3CO (4), and $BH_2CH_2OBH_2$ (7); bond lengths are in Å; the species on or under the double arows are transition states or BH3. The relative energy of B_2H_6CO (1) is 0.00 kcal/mol.

Part III, however, compound **7** may only be an intermediate that cannot be isolated due to rapid further reactions.

Part II: Formation of B₂H₅CHO (9), c_BH₂HBH₂CH-O (11), c_BH₂HBH₂CHO (13), and BH₂HBHCHOH (15) (Figure 2). In compound 7, carbon is double-hydrogenated. Starting from 3, carbon can also be monohydrogenated. By providing 36.15 kcal/mol of energy to the system, the carbon atom in 3

Figure 2. Species involved in forming B_2H_5CHO (9), $c_BH_2HBH_2-CH-O$ (11), $c_BH_2HBH_2CHO$ (13), and $BH_2HBHCHOH$ (15); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B_2H_6CO (1) is 0.00 kcal/mol.

abstracts one hydrogen atom from boron while the double B-H-B bond remains or rebuilds as shown by transition state B_2H_5 CHO (**TS-8**) and product B_2H_5 CHO (**9**). Isolation of the

TABLE 2: Kinetic and Equilibrium Energies for Reactions between B₂H₆ and CO^a

reactions	$\Delta E_{\mathrm{a}}{}^{b}$	$\Delta E_{ m e}{}^c$	reaction steps ^d
B ₂ H ₆ +CO→			
$B_2H_6CO(1)$		-0.58	
$BH_{3}HBH_{2}CO(3)$	19.53	9.42	$1 \rightarrow TS-2 \rightarrow 3$
$BH_{3}CO(4) + BH_{3}$	19.53	14.75	$1 \rightarrow TS-2 \rightarrow 3 \rightarrow 4 + BH_3$
$BH_2CH_2OBH_2(7)$	36.20	-12.83	$1 \rightarrow 3 \rightarrow 4 + BH_3 \rightarrow 5 \rightarrow TS-6 \rightarrow 7$
B ₂ H ₅ CHO (9)	36.15	8.17	$1 \rightarrow 3 \rightarrow TS-8 \rightarrow 9$
$c_BH_2HBH_2CH=O(11)$	36.65	3.50	$1 \rightarrow 3 \rightarrow 9 \rightarrow TS-10 \rightarrow 11$
$c_BH_2HBH_2CHO$ (13)	36.15	21.68	$1 \rightarrow 3 \rightarrow \text{TS-8} \rightarrow 9 \rightarrow 13$
$BH_2HBHCHOH(15)$	46.48	24.95	$1 \rightarrow 3 \rightarrow 9 \rightarrow TS-14 \rightarrow 15$
c_BHH ₂ BHCH ₂ O (20)	36.20	-15.28	$1 \rightarrow 3 \rightarrow 4 + BH_3 \rightarrow 5 \rightarrow TS-6 \rightarrow 7 \rightarrow 18 \rightarrow 20$
$BH_2OBHCH_3(26)$	36.20	-64.59	$1 \rightarrow 3 \rightarrow 4 + BH_3 \rightarrow 5 \rightarrow TS-6 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26$
$BHCH_2O(31) + BH_3$	36.20	21.90	$1 \rightarrow 3 \rightarrow 4 + BH_3 \rightarrow 5 \rightarrow TS-6 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 30 \rightarrow 31 + BH_3$
$c_BH_2H_2BCH_2O(34)$	36.20	2.51	$1 \rightarrow 3 \rightarrow 4 + BH_3 \rightarrow 5 \rightarrow TS-6 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 30 \rightarrow 31 + $
			$BH_3 \rightarrow 32 \rightarrow 34$
BH_2BHCH_2OH (42)	46.48	22.84	$1 \rightarrow 3 \rightarrow 9 \rightarrow \text{TS-}14 \rightarrow 15 \rightarrow 42$
$BH_2CH_3(47) + OBH(48)$	50.75	-33.65	$1 \rightarrow 3 \rightarrow 4 + \text{BH}_3 \rightarrow 5 \rightarrow 7 \rightarrow 18 \rightarrow 20 \rightarrow 44 \rightarrow \text{TS-45} \rightarrow 46 \rightarrow$
			47 + 48
$BH_2BHOCH_3(50)$	40.20	-5.91	$1 \rightarrow 3 \rightarrow 4 + \mathrm{BH}_3 \rightarrow 5 \rightarrow 7 \rightarrow 18 \rightarrow 20 \rightarrow \mathrm{TS-43} \rightarrow 44 \rightarrow 50$
$B(OH)HCH_2BH_2(52)$	46.48	-42.12	$1 \rightarrow 3 \rightarrow 9 \rightarrow \text{TS-14} \rightarrow 15 \rightarrow 42 \rightarrow 40 \rightarrow 38 \rightarrow 52$
$c_BH_2H(OH)BCH_2(54)$	46.48	-1.89	$1 \rightarrow 3 \rightarrow 9 \rightarrow \text{TS-14} \rightarrow 15 \rightarrow 42 \rightarrow 40 \rightarrow 38 \rightarrow 52 \rightarrow 54$
$BH(OH)H_2BCH_2(56)$	46.48	-3.85	$1 \rightarrow 3 \rightarrow 9 \rightarrow \text{TS-14} \rightarrow 15 \rightarrow 42 \rightarrow 40 \rightarrow 38 \rightarrow 52 \rightarrow 56$
BH ₂ B(OH)CH ₃ (58)	46.48	-30.27	$1 \rightarrow 3 \rightarrow 9 \rightarrow \text{TS-14} \rightarrow 15 \rightarrow 42 \rightarrow 40 \rightarrow 38 \rightarrow 52 \rightarrow 58$
$BH(OH)BHCH_3(60)$	46.48	-29.85	$1 \rightarrow 3 \rightarrow 9 \rightarrow \text{TS-14} \rightarrow 15 \rightarrow 42 \rightarrow 40 \rightarrow 38 \rightarrow 52 \rightarrow 60$
$OBCH_3(66) + BH_3$	36.20	-36.03	$1 \rightarrow 3 \rightarrow 4 + BH_3 \rightarrow 5 \rightarrow TS-6 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 63 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 65 \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 24 \rightarrow 26 \rightarrow 26 \rightarrow 26 \rightarrow 26$
			$66 + BH_3$
$c_BHOBCH_3(69) + H_2$	36.20	-24.12	$1 \rightarrow 3 \rightarrow 4 + \mathrm{BH}_3 \rightarrow 5 \rightarrow \mathrm{TS-6} \rightarrow 7 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 68 \rightarrow$
			$69 + H_2$
$BH_2CHOHBH_2(76)$	46.48	16.33	$1 \rightarrow 3 \rightarrow 9 \rightarrow TS-14 \rightarrow 15 \rightarrow 74 \rightarrow 76$

^{*a*} Calculation at the MP2/6-311++ $G^{**}/MP2/6-31+G^{*}+ZPE$ level. See relevant figures for the geometry structures and detailed steps for each reaction. ^{*b*} The highest activation energy (kcal/mol) or the energy required to activate the rate-limiting step. ^{*c*} The energy difference (kcal/mol) between reactants and products. ^{*d*} The transition states listed are those with highest energies in the steps.

Figure 3. Species involved in forming $c_BHH_2BHCH_2O$ (20); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B_2H_6CO (1) is 0.00 kcal/mol.

 B_2H_6 -like compound **9** is probably feasible if the heating condition is carefully controlled. Otherwise, the system may not stop at **9** but proceed to the more stable c_BH₂HBH₂CH-O

(11). From 9 to 11, one of the B-H-B bonds breaks, and a five-member ring forms as shown by transition state BH_2HBH_2 -CH-O (**TS-10**). The barrier of the process is 28.48 kcal/mol relative to 9. Compared to 1, the species 9 and 11 are 8.17 and 3.50 kcal/mol less stable, but both are more stable than 3.

Over a barrier of 26.70 kcal/mol, species 9 can transform to another less stable isomer c_BH₂HBH₂CHO (**13**). The energy of **13** is 13.51 kcal/mol relative to **9**. As shown by transition state BH₂HBH₂CHO (**TS-12**), carbon coordinates both boron atoms, leading to a four-member ring with a carbon bridge replacing one of the hydrogen bridges in B₂H₆. Consequently, unlike the usual aldehyde, the carbon in **13** is four coordinated. The formation and relative stability of **9** and **13** imply that either a terminal or a bridge hydrogen atom in B₂H₆ can be substituted by a -CHO group, but the former process is more likely to happen and results in a more stable product.

Over a larger barrier of 38.31 kcal/mol, one of the bridging hydrogen atoms in 9 can transfer to oxygen via transition state BH₂HBHCHOH (**TS-14**), forming an alcohol-like species BH₂-HBHCHOH (**15**). Interestingly, unlike the usual alcohol, the carbon bonded to the OH group in **15** is three coordinated. Relative to **9**, the energy of **15** is 16.78 kcal/mol. The unusual carbon bonding type in **13** and **15** may account for their relative higher energies compared to **9**.

Part III: Formation of c_BHH₂BHCH₂O (20) (Figure 3). The three-coordinated carbon in **11** has a tendency to attract a second hydrogen atom from boron as shown by the transition state BH₂CH₂OBH₂ (**TS-16**). Accompanying the change, the -H- in B-H-B moves to one boron and **7** forms. The barrier from **11** to **7** is 9.17 kcal/mol relative to **11**. The two boron atoms are separated in **7** only tentatively, over a small barrier (2.46 kcal/mol) they associate again by forming a B-H-B bond into ring structure c_BHHBH₂CH₂O (**18**), which then rearranges almost without barrier into c_BHH₂BHCH₂O (**20**) with a double

TABLE 3: Calculated Vibra	tional Frequency and IR Intensity of the Species Produced by Reaction between B ₂ H ₆ and CO ^a
$B_2H_4CO(1)$	377 (15), 1013 (21), 1235 (74), 1806 (498), 2114 (42), 2675 (154), 2785 (199)
BH ₃ HBH ₂ CO (3)	508 (54), 1007 (124), 1145 (147), 1168 (10), 1567 (94), 2186 (168), 2319 (198), 2571 (20), 2606 (28), 2606 (57), 2670 (08), 2677 (112)
DILCO (4)	2009(57), 2010(98), 2077(112)
	(13 (59), 2147 (220), 2025 (53) 777 (24) 1054 (57) 1065 (56) 1100 (22) 1240 (20) 1274 (26) 1260 (72) 1410 (101) 1404 (46) 2623
$BH_2CH_2OBH_2(7)$	(119), 2675 (79), 2742 (202), 2767 (110), 3067 (28)
B ₂ H ₅ CHO (9)	308 (20), 542 (13), 1185 (24), 1234 (37), 1437 (8), 1690 (64), 1784 (542), 2693 (91), 2710 (38), 2797 (79), 2948 (128)
c_BH ₂ HBH ₂ CHO (11)	749 (41), 828 (26), 952 (15), 1021 (143), 1094 (18), 1096 (6), 1220 (81), 1416 (34), 1630 (68), 1713 (20), 2164 (659), 2602 (38), 2660 (89), 2667 (70), 757 (123), 3170 (29)
c_BH ₂ HBH ₂ CHO (13)	469 (13), 631 (18), 984 (14), 1019 (13), 1072 (24), 1217 (64), 1639 (76), 1917 (163), 2149 (26), 2656 (98), 2787 (108), 3081 (52)
BH ₂ HBHCHOH (15)	168 (24), 300 (16), 594 (89), 647 (23), 765 (13), 891 (22), 905 (65), 939 (21), 993 (26), 1074 (24), 1128 (105), 1233 (59), 1252 (116), 1368 (37), 1460 (121), 1544 (145), 2139 (81), 2667 (96), 2765 (40), 2777 (87), 3686 (57)
c_BHH ₂ BHCH ₂ O (20)	376 (12), 784 (39), 866 (21), 902 (16), 1054 (92), 1080 (11), 1159 (124), 1298 (73), 1334 (34), 1510 (200), 1556 (16), 2144 (25), 2238 (44), 2744 (05), 2757 (102), 3136 (17), 3204 (11)
BH ₂ OBHCH ₃ (26)	(209), 1520 (10), 2144 (25), 2258 (44), 2744 (95), 2107 (102), 5150 (17), 5204 (11) 1028 (44), 1065 (10), 1084 (78), 1106 (82), 1331 (55), 1364 (485), 1412 (422), 1507 (8), 1513 (18), 2648 (74), 2670 (187), 2759 (186), 3199 (12)
$c BHCH_{2}O(31)$	(6, 1), 2010 (10), 219 (10), 100 (10), 100 (10), 100 (10), 1388 (48), 1548 (15), 2828 (79), 3189 (8), 100 (16), 100
$c_BH_2H_2BCH_2O(34)$	561 (22), 636 (19), 781 (54), 1031 (66), 1204 (22), 1213 (28), 1413 (91), 1551 (19), 1734 (544), 2209 (10), 2293 (15), 2688 (60), 2791 (67), 3179 (11)
$BH_2BHCH_2OH~(42)$	125 (27), 315 (116), 349 (23), 469 (19), 656 (13), 837 (14), 992 (23), 1074 (31), 1156 (79), 1216 (34), 1264 (10), 1500 (19), 2642 (91), 2657 (57), 2717 (99), 3028 (39), 3071 (23), 3740 (30)
$BH_2CH_3(47)$	993 (11), 1103 (20), 1127 (72), 1299 (28), 1391 (80), 2653 (114), 2729 (171), 3152 (12), 3203 (13)
	/06 (12), 1802 (34) 575 (10) 779 (22) 056 (14) 082 (27) 1019 (28) 1150 (15) 1220 (58) 1261 (17) 1402 (281) 1557
$D\Pi_2 D\Pi O C\Pi_3 (50)$	(12), 2574 (162), 2646 (63), 2713 (123), 3103 (50), 3205 (21), 3215 (18)
B (OH)HCH ₂ BH ₂ (52)	622 (132), 879 (32), 940 (73), 1071 (56), 1083 (54), 1134 (125), 1149 (45), 1210 (95), 1299 (116), 1385 (289), 1492 (20), 2645 (146), 2658 (144), 2728 (160), 3186 (5), 3762 (90)
c_BH ₂ H (OH)BCH ₂ (54)	473 (22), 566 (12), 690 (17), 733 (92), 782 (14), 820 (39), 890 (115), 1001 (49), 1006 (50), 1052 (48), 1123 (76), 1243 (88), 1588 (51), 1878 (343), 2185 (62), 2680 (94), 2789 (97), 3724 (185)
BH (OH)H ₂ BCH ₂ (56)	375 (116), 720 (128), 775 (73), 838 (10), 985 (23), 1026 (58), 1133 (205), 1278 (347), 1399 (58), 1553 (58), 1680 (17), 1688 (369), 2361 (35), 2710 (102), 3794 (102)
BH ₂ B (OH)CH ₃ (58)	371 (13), 596 (68), 731 (61), 834 (7), 943 (20), 979 (61), 981 (104), 1205 (74), 1261 (96), 1342 (93), 1397 (85), 1506 (10), 2644 (70), 2710 (122), 3068 (8), 3154 (25), 3717 (35)
BH (OH)BHCH ₃ (60)	613 (49), 720 (16), 845 (59), 910 (111), 966 (49), 1032 (18), 1180 (68), 1198 (126), 1372 (72), 1390 (59), 2591 (183), 2632 (129), 3144 (17), 3192 (16), 3751 (74)
OBCH ₃ (66)	356 (12), 948 (24), 1398 (20), 1509 (10), 1986 (133)
c_BHOBCH ₃ (69)	918 (20), 1026 (99), 1175 (81), 1365 (16), 1490 (74), 1507 (41), 1516 (22), 2804 (83)
BH ₂ CH (OH)BH ₂ (76)	237 (74), 298 (58), 383 (12), 695 (15), 770 (28), 836 (11), 900 (37), 1048 (19), 1080 (69), 1118 (95), 1160 (29), 1262 (57), 1267 (52)

^a TheMP2/6-31+G* calculated frequencies (cm⁻¹, not scaled) with intensities (in parentheses) larger than 10 km/mol.

B-H-B bond. The energy drops only 2.45 kcal/mol from 7 to 20. The transition state BHHBH₂CH₂O (TS-17) lies about 2 kcal/mol higher in energy than 7 and 18. The energy of c_BHH₂-BHCH₂O (TS-19) is very close to that of 18. As we will show in later parts, intermediates 7 and 20 are both subject to further reactions. Since the energy difference and barriers between 7, 18, and 20 are small, their mutual transformation is rapid. As a result, the species are conformers but not separable isomers.

Part IV: Formation of c_BH₂OBHCH₃ (26) (Figure 4). Compound 7 can undergo another change into a three-memberring structure c_BH₂CH₂OBH₂ (22), because the oxygen is attracted by boron as shown by transition state c_BH₂CH₂OBH₂ (**TS-21**). The barrier is small (4.62 kcal/mol). The two boron atoms in 21 are then hydrogen bridged to form c_BH₂-HBHCH₂O (24) over a barrier of 5.60 kcal/mol, as shown by transition state c_BH₂HBHCH₂O (**TS-23**). Relative to 7, the energies are 4.37 kcal/mol for 22 and 3.51 kcal/mol for 24. The energy change of the rearrangement from 7 to 24 is so small that no intermediate species involved can be isolated.

In 24, oxygen not only bridges two boron atoms but also bonds to carbon, showing its strong electron-donating character. By providing 31.75 kcal/mol of energy, the carbon can switch from oxygen bridge to hydrogen bridge as shown by transition state BH₂OBHCH₃ (**TS-25**). The system becomes much more stable as a hydrogen atom transfers from B–H–B to carbon, leading to formation of BH₂OBHCH₃ (**26**). The energy of **26** is -64.59 kcal/mol relative to **1**. Ether-like **26** is the most stable isomer for the total system. Oxygen serves as a strong electron donor bridging two electron-deficient boron atoms and carbon is also satisfied in the four-coordinated $-CH_3$ group. This accounts for its stability. The B-O bond rotates essentially free to transform **26** to its slightly less stable conformer BH₂-OBHCH₃ (**28**) (2.06 kcal/mol relative to **26**). The barrier is only 1.45 kcal/mol as shown by transition state BH₂OBHCH₃ (**TS-27**).

Part V: Formation of c_BHCH₂OH (31) and c_BH₂H₂-CH₂O (34) (Figure 5). The hydrogen-bridge bond B-H-B in 24 is a point to break with a BH₃ group eliminated. Over a barrier of 24.26 kcal/mol, as shown by transition state c_BHCH₂-OBH₃ (TS-29), BH₃ is partially eliminated to form the intermediate c_BHCH₂OBH₃ (30). The full BH₃ elimination can take place with 7.39 kcal/mol more energy. The total energy required for the process is 31.21 kcal/mol, lower than 36.12 kcal/mol, the dissociation energy of B₂H₆. The product c_BHCH₂O (31) can be regarded as a BH₃ derivative with two hydrogen atoms replaced by a -CH_2O- group forming a ring structure. Also, it is a boron-substituted epoxy ethane, an attractive species that may be applicable in asymmetric synthesis.¹⁹ BH₃ and 31 can be weakly bonded as c_BH₃HBCH₂O (**32**), which then associate almost without barrier into another

Figure 4. Species involved in forming BH₂OBHCH₃ (**26**); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B_2H_6CO (**1**) is 0.00 kcal/mol.

 B_2H_6 -like structure c_BH₂H₂BCH₂O (**34**); the energy of **34** falls to 2.51 kcal/mol relative to **1**. The transient existence of intermediate c_BH₃H-BCH₂O (**32**) and transition state c_BH₃-HBCH₂O (**TS-33**) indicates that **31** is a little more stable than BH₃, because there is no evidence that two BH₃ can coexist by such a loose complex. Therefore, besides the more stable **34**, compound **31** is also a possible isolable product if BH₃ is consumed or removed in some way.

It looks like a more compact transition state should mediate 24 and 34 directly. However, such a state was not found. BH₃ dissociating followed by recombination seems the only pathway from 24 to 34.

Part VI: Formation of c_BH₂BHCH₂(OH)_c (38), c_BH₂-BHCH₂OH (40), and BH₂BHCH₂OH (42) (Figure 6). The H in the B-H-B bond is partially positive charged due to bonding with two-electron-deficient boron. It is thus feasible for it to migrate to an electron-rich atom such as oxygen. The process can be realized as the double ring species 20 is activated to the transition state c_BHHBHCH2OH (TS-35). Its formation requires 52.09 kcal/mol of energy relative to 1, the most energy demanding process considered in this work. The direct product of the hydrogen transfer is c_BHHBHCH₂(OH)_t (36), a ring species containing a B-H-B bond and an OH group. The energy of 36 is 27.35 kcal/mol relative to 1. The H in the OH group is trans to the remaining B-H-B bond. Compound 36 can transform to its cis conformer c_BHHBHCH₂(OH)_c (38), 1.37 kcal/mol more stable, overcoming a small barrier of 3.05 kcal/mol through transition state c_BHHBHCH₂OH (TS-37).

Figure 5. Species involved in forming $c_BHCH_2O(31)$ and $c_BH_2H_2-BCH_2O(34)$; bond lengths are in Å; the species on or under the double arrows are transition states or BH₃. The relative energy of $B_2H_6CO(1)$ is 0.00 kcal/mol.

The double-ring structure of **38** is quite easy to disrupt. First, the B-H-B bond breaks through transition state BH₂BHCH₂-OH (**TS-39**), resulting in a four-member-ring structure c_BH_2 -BHCH₂OH (**40**). The weak O-B bond in **40** then breaks with a very small barrier as shown by transition state $c_BH_2BHCH_2$ -OH (**TS-41**), resulting in BH₂BHCH₂OH (**42**). Consequently, the isomerization from the double-ring **38** to the single-ring **40** to the chain structure **42**, although involving bond breaking, encounters almost no barriers. The potential energy surface is so flat along the line from **36** to **42** that the species involved interconvert from each other rapidly and cannot be isolated. Starting from **20**, the H transfer from boron to oxygen is quite difficult. As we will show in Part XI, compound **42** can be produced more easily from **15**.

Part VII: Formation of BH₂CH₃(47), OBH(48), and BH₂BHOCH_{3c}(50) (Figure 7). By providing 40.20 kcal/mol of energy to the system, a hydrogen atom transfers from boron to carbon while the C–B bond breaks as shown by transition state structure c_BH₂BHOCH₃ (TS-43). The barrier for this transfer is 11.89 kcal/mol lower than that encountered from 20 to 36, indicating in such a case that the -H- is easier to transfer to carbon than to oxygen. The formation of the methyl group in BH₂BHOCH₃ (44) marks the complete reduction of carbon. Relative to 1, the energy of 44 is -4.74 kcal/mol. In the most stable isomer 26, oxygen coordinates to both boron atoms, whereas in 44, oxygen bonds to boron and carbon, leaving another electron-deficient boron as the active part. Consequently, the energy of 44 is much higher than that of 26. Compound 44 converts to a slightly more stable cis conformer BH₂BHOCH₃c

Figure 6. Species involved in forming c_BH₂BHCH₂(OH)_c (38), c_BH₂BHCH₂OH (40), and BH₂BHCH₂OH (42); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B₂H₆CO (1) is 0.00 kcal/mol.

(50) over a rotational barrier of 14.53 kcal/mol. The transition state is BH_2BHOCH_3 (TS-49). The energy of 50 is -5.91 kcal/ mol relative to 1. Compounds 44 or 50 are probably isolable.

Over a barrier of 55.49 kcal/mol of energy relative to 44, the methyl group attached to oxygen in 44 can migrate to another boron as shown by transition state BH₂BHOCH₃ (TS-45). This migration results in the break of the B-B bond and the formation of HBOBH₂CH₃ (46), which is a donor-acceptor complex formed between OBH (48) and BH₂CH₃ (47). Despite the large barrier for the process, the products are quite stable. The energy of 46 is -36.30 kcal/mol relative to 1 and 2.65 kcal/mol more energy is needed to dissociate 46 into 48 and 47. It is remarkable that the monomethyl-substituted borane 47 can be produced by direct reaction of B₂H₆ with CO. Another interesting product 48 has been studied as an isoelectronic species of CO.20,21 Because 48 coordinates to 47 in a similar way as CO coordinates to BH₃, the existence of 46 is a theoretical example supporting such an analogy. However, the donating atom is oxygen in 46 and the interaction is considerably weaker than that in 4.

Part VIII: Formation of BH(OH)CH₂BH₂ (52), BH₂H-(OH)BCH₂ (54), and BH(OH)H₂CH₂ (56) (Figure 8). The ring structure of compound 38 plays an important role in intramolecular rearrangement. Since the OH group is not stable as a bridge, bond breaking may take place in two possible ways. The O-B bond breaking results in the formation of 42 as described in Part VI. From 38 to 42, the system's energy drops

Figure 7. Species involved in forming BH₂CH₃ (47), OBH (48), and BH₂BHO(CH₃)_c (50); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B2H6CO (1) is 0.00 kcal/mol.

only slightly. Over a barrier of 8.48 kcal/mol, the C-O bond breaks and a C-B forms as shown by transition state c_BH₂-CH₂BHOH (TS-51). The ring disrupts and a more stable species BH₂CH₂BHOH (52) forms. From 38 to 52, the energy drops to -42.12 kcal/mol relative to 1. Examining the structures of 38 and 52, perhaps the stronger coordination effect of the $-CH_2$ group accounts for the relative stability of the latter. The two boron atoms in 52, being three coordinated, attract each other and have the potential to form a B-H-B bond. Starting from 52, there are four routes leading to different products. First, as the B-H-B bond forms, -OH replaces -CH₂- to become a bridge, as shown by transition state c_BH₂H(OH)BCH₂ (TS-53) and product c_BH₂H(OH)BCH₂ (54). The energy of 54 is 40.23 kcal/mol relative to 52 and the activation energy from **52** to **54** is 63.76 kcal/mol. Compound **54** is a B_2H_6 -like species. Its energy is -1.89 kcal/mol relative to 1, quite close to the B₂H₆ plus CO. The formation and relative stability of **54** implies that the -OH group can act as a bridged hydrogen while one $-CH_2$ group can act as two terminal hydrogen atoms. The second route is similar to the first one albeit with -H- replacing -CH₂- to become a bridge as shown by transition state c_BH-(OH)H₂BCH₂ (TS-55). The barrier for the process is 43.12 kcal/ mol, lower than that encountered in the first route. The product is c_BH(OH)H₂BCH₂ (56), another B₂H₆-like species, with energy of -3.85 kcal/mol relative to **1**. IRC calculations show that both replacing processes are mediated by structures with B-H-B and two -CH₂- bridges. Such structures, however, are not stationary points on the potential energy surface. Also,

Figure 8. Species involved in forming BH(OH)CH₂BH₂ (**52**), BH₂H-(OH)BCH₂ (**54**), and BH(OH)H₂BCH₂ (**56**); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B_2H_6CO (**1**) is 0.00 kcal/mol.

it should be mentioned that in **52**, **55**, and **56**, the -OH group is cis to the adjacent B-H bond. The corresponding trans species (not shown) exist with similar energies. The interconversion between cis and trans conformers, realizable by rotating a B-O bond, requires 6–13 kcal/mol of energy. Compared with **52**, the ring species **38**, **54**, and **56** are much less stable, and the barriers for them to transfer to **52** are small. Therefore, these species are difficult to isolate. The third and forth routes, involving H transfer from boron to carbon, will be discussed in Part IX.

Part IX: Formation of BH₂B(OH)CH₃ (58) and BH(OH)-BHCH₃ (60) (Figure 9). In 52, there are two types of H atoms bonded to boron. For type I, one H atom and one OH group connect with the same boron. For type II, two H connect with the same boron. Because each of the H atoms is potentially able to transfer to carbon, the transition states and products also are of two types. The transition states contain a H atom bridging three atoms, two borons and one carbon. In transition state BH₂B(OH)CH₃ (**TS-61**), the bridging H is type I. In transition state BH(OH)BHCH₃ (TS-57), the bridging H is type II. The products are two types of carbon fully reduced species BH2B-(OH)CH₃ (58) and BH(OH)BHCH₃ (60). The energies of 58 and 60, -30.27 and -29.85 kcal/mol relative to 1, are essentially the same and both are slightly less stable than 52. But from 52, it is relatively easier to obtain 60 than 58, because relative to 52, the barrier through TS-57 to 58 is 64.87 kcal/mol whereas the barrier through TS-61 to 60 is 48.75 kcal/mol.

Figure 9. Species involved in forming $BH_2B(OH)CH_3$ (58) and $BH-(OH)BHCH_3$ (60); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of B_2H_6CO (1) is 0.00 kcal/mol.

Besides formation directly from 52, the two species 58 and 60 can convert to each other by methyl shifting as shown by transition state BHHBOHCH₃ (TS-59), in which a CH₃ group acts as a bridge. The barrier is 59.23 kcal/mol relative to 58. Because of the stability and the large barriers inhibiting further reactions, compounds 52, 58, and 60 are isolable products.

Part X: Formation of OBCH₃ (66) and c_BHOBCH₃ (69) (Figure 10). Two paths lead to decomposition of the most stable species 26. Both are energy rising processes, First, by providing energy more than 28.56 kcal/mol, BH₃ can be eliminated in a stepwise manner. The two separated boron atoms in 26 associate into a four-coordinated ring structure BH2H(O)BCH3 (63) that requires 10.67 kcal/mol energy to reach the transition state BH₂H(O)BCH₃ (TS-62). With additional energy of 12.29 kcal/ mol, BH₃ can be eliminated as shown by the transition state BH₃OBCH₃ (TS-64) and the product BH₃OBCH₃ (65), which is a complex formed between OBCH₃ (66) and BH₃, an analogue structure of 46. The BH₃ in 65 connects more closely to its electron donor 66, a methyl derivative of OBH (48). The full BH₃ elimination takes place when 6.52 kcal/mol more energy is provided. The linear structure of the O-B-CH₃(H) bond in 66 and 48 shows some multiple bonding characteristics, which have been recently documented.²²⁻²⁴ The energy of **65** is -36.03kcal/mol relative to 1, quite stable for the total system. If the transient product BH₃ is consumed, it may be easy for the etherlike species 26 to decompose by modest heating.

Figure 10. Species involved in forming OBCH₃ (66) and c_BHOBCH₃ (69); bond lengths are in Å; the species on or under the double arrows are transition states, BH₃, or H₂. The relative energy of B_2H_6CO (1) is 0.00 kcal/mol.

The second probable fate of **26** is H₂ elimination, as shown by transition state c_BHO(H₂)BCH₃ (**TS-67**), the association of two hydrogen atoms from each boron resulting in the formation of a H–H bond. Compared with the first process, the second one is energy demanding. It requires 61.60 kcal/ mol of energy to activate **26** to **67**. However, the energy of the total system is still lower than that of **1**. Thus, compound c_BHOBCH₃-H₂ (**68**), or its molecular fragments c_BH–O– B–CH₃ (**69**) and H₂, are also possible decomposition products of **26**. The energy of **68** is -23.81 kcal/mol relative to **1**, indicating **69** is a thermodynamically stable species and isolable. This is another boron-substituted epoxy ethane. The three members constituting the ring are two boron atoms and one oxygen atom.

Part XI: Formation of BH₂BHCH₂OH (42), c_BH₂BH-CH₂OH (72), c_BH₂H(CHOH)BH (74), and BH₂CHOHBH₂ (76) (Figure 11). Compound 15 produced in Part II has two active points, the B-H-B bond and the monohydrogenated carbon. Over a barrier of 9.26 kcal/mol relative to 15, the H in B-H-B can transfer to carbon as shown by transition state BH₂BHCH₂OH (TS-70), resulting in BH₂BHCH₂OH (42). As we have shown in Part VI, the structure of 42 is so flexible that it fluctuates between double-ring (38), mono-ring (40), and chain (42) frequently. Also, over a barrier of 6.64 kcal/mol, the oxygen of the OH group can coordinate with boron through transition

Figure 11. Species involved in forming BH_2BHCH_2OH (42), $c_BH_2-BHCH_2OH$ (72), c_BH_2H (CHOH)BH (74), and $BH_2CHOHBH_2$ (76); bond lengths are in Å; the species on or under the double arrows are transition states. The relative energy of $B_2H_6CO(1)$ is 0.00 kcal/mol.

state $c_BH_2BHCH_2OH$ (**TS-72**), forming three-member-ring $c_BH_2BHCH_2OH$ (**72**). The energy of **72** is 27.33 kcal/mol relative to **1**. Again, because of the small barrier between **72** and **42**, they are difficult to isolate as distinct species. On the other hand, from **38**, the system can convert readily to the much more stable species **52** as shown in Part VIII. Therefore, species **42** (or **38**, **40**, **72**) is actually a transient intermediate. Its formation is easier from **15** than from **20** (see Part VI).

Being monohydrogenated, the carbon atom in 15 can coordinate with another boron, forming a loose ring structure $c_BH_2HBHCHOH$ (74). Although the process is realizable through C–B bond rotation, the barrier through transition state $c_BH_2HBHCHOH$ (TS-73) is 20.60 kcal/mol, much larger than the barrier of the usual single bond rotation. Compound 74 is 5.04 kcal/mol more stable than 15 and transfers readily to the slightly more stable (-8.62 kcal/mol relative to 15) species BH₂-CHOHBH₂ (76). As shown by the structure of transition state BH₂CHOHBH₂ (TS-75), the product 76 is formed by breaking the B–H–B bond and strengthening the C–B bond. The barrier for the process is 4.33 kcal/mol relative to 74. Thus, species 76 and 74 may be isolated as mixtures with the production ratio a little favored for 76.

IV. Concluding Remarks

Among the 41 minima located on the potential energy surface, only those trapped between relative deep energy valleys or

fragmented species are isolable. Such potential products and a few crucial intermediates of the reactions between B₂H₆ and CO are summarized in Table 2. Their IR spectral data were listed in Table 3. The number of steps from the initial reactants to each product is different. Among the relative energies of transition states for all the steps, the highest one is approximated as activation energy, since it represents the energy required for the rate-limiting step. It can be seen that the reactants need the smallest activation energy to produce BH₃CO and BH₃, but this is an energy-rising process. By providing higher activation energy, such as heating at higher temperature or for a longer time, the system can reach its thermal equilibrium, several species can be produced, and the system becomes more stable by lowering the total energy. The unknown material obtained in the experiment is probably a mixture of the species predicted in this work. The most stable product is BH_2OBHCH_3 (26), its formation releases 64.59 kcal/mol energy. To isolate a particular product is possible through kinetic, thermal, and polarity control as well as appropriate separation methods.

The limitation of this work lies in three aspects. First, the highest energy for the system is assumed lower than 60 kcal/ mol; at higher energies, a wide range of reactions would certainly occur. Second, the reactions were considered as interaction between two molecules B_2H_6 and CO, the probable third-body assistance were excluded. Third, the products should be regarded as initial ones, because in a real situation, some of them may react with each other or with other reactants rapidly and result in more complicated products.

References and Notes

(1) Burg, A. B.; Schlesinger, H. I. J. Am. Chem. Soc. 1937, 59, 780.

(2) Carter, J. C.; Parry, R. W. J. Am. Chem. Soc. 1965, 87, 2354.

(3) Gmelins Handbuch der Anorganischen Chemie, BorVerbindungen, Teil 10; 1980, 1st Suppl. Vol. 1; 1983, 2nd Suppl. Vol. 1; 1987, 3rd Suppl. Vol. 1; 1994, 4th Suppl. Vol. 1a; 1996, Vol. 1b; Springer-Verlag: Berlin, Heidelberg, New York, 1976; Vol. 37.

(4) Alberto, R.; Ortner, K.; Wheatley, N.; Schibli, R.; Schubiger, A. P. J. Am. Chem. Soc. 2001, 123, 3135.

(5) Finze, M.; Bernhardt, E.; Terheiden, A.; Berkei, M.; Willner, H.; Christen, D.; Oberhammer, H.; Aubke, F.J. Am. Chem. Soc. 2002, 124, 15385.

(6) Carter, C. A. G.; John, K. D.; Mann, G.; Martin, R. L.; Cameron, T. M.; Baker, R. T.; Bishop, K. L.; Broene, R. D.; Westcott, S. A. ACS Sym. Ser. **2002**, 822, 70.

(7) Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 1995, 500, 1.

(8) Brown, H. C.; Ramachandran, P. V. ACS Sym. Ser. 1996, 641, 1.
(9) Abiko, A.; Inoue, T.; Masamune, S. J. Am. Chem. Soc. 2002, 124,

(9) Adiko, A.; moue, 1.; Masamune, S. J. Am. Chem. Soc. 2002, 124, 10759.

(10) Abiko, A.; Liu, J. F.; Masamune, S. J. Am. Chem. Soc. **1997**, 119, 2586.

(11) Keizer, T. S.; De Pue, L. J.; Parkin, S.; Atwood, D. A. J. Am. Chem. Soc. 2002, 124, 1864.

(12) Liu, J. P.; Meyers, E. A.; Shore, S. G. *Inorg. Chem.* 1998, *37*, 496.
(13) DiMare, M. *J. Org. Chem.* 1996, *61*, 8378.

(14) Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. **1996**, 17, 49.

(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

(16) Mckee, M. L. J. Phys. Chem. 1992, 92, 5380.

(17) Mckee, M. L. J. Phys. Chem. 1996, 100, 8260.

(18) Hu, S. W.; Wang, Y.; Wang, X. Y. J. Phys. Chem. A 2003, 107, 1635.

(19) Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org. Lett. 2003, 5, 1789.

(20) Summers, N. L.; Tyrrell, J. J. Am. Chem. Soc. 1977, 99, 3960.

(21) Gole, J. L.; Michels, H. H. J. Chem. Phys. 1995, 103, 7844.

(22) Zhou, M. F.; Tsumori, N.; Li, Z. H.; Fan, K. N.; Andrews, L.; Xu, Q. A. J. Am. Chem. Soc. **2002**, 124, 12936.

(23) Himmel, H. J.; Downs, A. J.; Green, J. C.; Greene, T. M. J. Phys. Chem. A 2000, 104, 3642.

(24) Downs, A. J. Coord. Chem. Rev. 1999, 189, 59.