

© Copyright 2003 by the American Chemical Society

VOLUME 107, NUMBER 46, NOVEMBER 20, 2003

LETTERS

Ultrafast Reaction between LiH and NH₃ during H₂ Storage in Li₃N

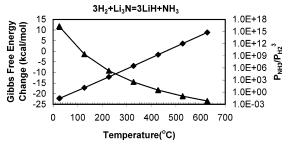
Yun Hang Hu* and Eli Ruckenstein

Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York 14260 Received: August 1, 2003; In Final Form: September 26, 2003

Li₃N is a potential H₂ storage material due to its high theoretical H₂ capacity (10.4 wt %). A critical potential issue regarding this N-based storage material is the generation of NH₃, which consumes some H₂ and also constitutes a poison for the downstream processes. In this Letter, by using the temperature-programmed decomposition of a two-layer material (LiNH₂ and LiH), we demonstrate that NH₃ produced via the decomposition of LiNH₂ is completely captured by LiH even at very short contact times (25 ms) with the carrier gas. This ultrafast reaction between NH₃ and LiH inhibits NH₃ formation during the hydrogenation of Li₃N and also prevents the NH₃ generated during the dehydrogenation of the hydrogenated Li₃N to escape into the H₂ stream. However, if the hydrogenated Li₃N was previously exposed to the atmosphere, some NH₃ could escape into the H₂ stream during the H₂ desorption, due to the partial oxidation of LiH by the water present in air.

Introduction

Hydrogen is a promising clean fuel for vehicles, which can use hydrogen for propulsion either directly, or through fuel cells. In both cases, a suitable hydrogen-storage material is needed to make this source of energy economically viable. There are economical issues with the traditional H₂ storage methods, such as the liquefaction process, because the compression and cooling of the hydrogen to 20 K consumes almost 30% of the hydrogen energy.¹ The H₂ adsorption on activated carbon, which has a very high surface area (1500-2000 m²/g), also requires a low temperature (77 K) and a high pressure (\sim 50 atm).¹ Low H₂ storage capacities and slow desorption kinetics are the drawbacks of the metal hydrides. In recent years, the high, reversible adsorption of H₂ onto carbon nanotubes²⁻⁴ has stimulated both experimental and theoretical work for H₂ storage in carbon nanomaterials.^{2–11} However, it is still unclear how high hydrogen-storage capability can be reached by these nanostructured carbon materials.^{5,6}


As early as 1910, Dafert and Miklauz¹² reported that the reaction between Li_3N and H_2 generated Li_3NH_4 (a mixture of 2LiH and $LiNH_2^{13}$)

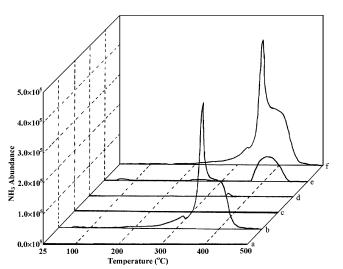
$$Li_3N + 2H_2 = Li_3NH_4$$

Consequently, Li_3N can theoretically store 10.4 wt % hydrogen. Furthermore, they found that Li_3NH_4 can be partially decomposed to release H_2 .¹² Therefore, the hydrogenation of Li_3N and the dehydrogenation of the hydrogenated Li_3N constitute a reversible process, which can be used for H_2 storage.¹⁴ Our experiments have shown that the complete recovery of Li_3N from the hydrogenated compounds is a difficult process that requires high temperatures (above 430 °C) and long times. The use of such high temperatures produces sintering and the recovered Li_3N becomes ineffective. For this reason, the reversible storage capacity of Li_3N is about 5 wt %.

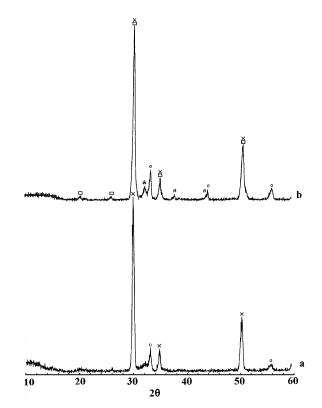
However, one critical issue with this N-based material is the possibility of NH_3 generation during the hydrogenation of Li_3N and during the decomposition of the hydrogenated Li_3N , because the NH_3 formation from H_2 and Li_3N is thermodynamically a

^{*}To whom correspondence should be addressed. Phone: 716-6452911ext.2266. Fax: 716-645-3822. E-mail: yhu@buffalo.edu.

Figure 1. Thermodynamics of Li₃N hydrogenation to NH₃: (\blacklozenge) Gibbs free energy change; (\blacktriangle) $P_{NH_3}/P_{H_2}^{-3}$).


very favorable process at temperatures below 400 °C (see Figure 1). In this paper, by using two-layer materials and short contact times between them and the carrier gas (He), we found that the ultrafast reaction between NH_3 and LiH inhibits the NH_3 generation during the hydrogenation of Li₃N and prevents NH_3 to escape into the H_2 stream during dehydrogenation.

Experiments


Two types of two-layer materials were used: in one, denoted TLM-1, LiNH₂ was the first layer and LiH the second one; in the other (TLM-2), the order of the layers was inverted. The mole ratio of LiH to LiNH₂ was in both cases equal to 2. The temperature-programmed decomposition mass spectrum (TP-DMS) of these two-layer materials was performed as follows: A carrier gas (He) was allowed to flow at 1 atm pressure through the two-layer material (0.03 g; with an exception of 0.003 g)for the shortest contact time experiment), which was placed in a fixed bed reactor located in an electric furnace, programmed to heat at a rate of 3 °C/min. The gaseous products of the decomposition of the first layer were passed by the carrier (He) through the second layer, and finally, all the gaseous molecules, including those produced in the second layer, were carried into a mass spectrometer (HP Quadrupole, 5971 series mass selective detector) equipped with a fast response inlet capillary system to detect NH₃. Very high space velocities of the carrier gas were used to achieve very short contact times between the gas molecules and the two-layer materials (as short as 2.4 ms).

Results and Discussion

During the temperature-programmed decomposition of TLM-1, in which the carrier gas (He) has passed first through the LiNH₂ layer and then through the LiH layer, no NH₃ was detected (Figure 2a). In contrast, for the reverse two-layer material (TLM-2), in which the carrier gas (He) has passed first through the LiH layer and then through the LiNH₂ layer, NH₃ was detected in the broad temperature range between 60 and 500 °C (Figure 2b). This means that NH₃ was formed through the decomposition of LiNH₂ but was captured by LiH. To examine how fast LiH has captured the NH3 formed via the LiNH₂ decomposition, millisecond contact times were employed. For a contact time as short as 25 ms, NH₃ was still completely captured by LiH at all temperatures (Figure 2c). Even when the contact time was as short as 2.4 ms, 99.7% of NH₃ resulted from the LiNH₂ decomposition could be captured. Only 0.3% of the NH₃ resulted from LiNH₂ decomposition passed into the gas-phase stream (Figure 2d). This demonstrates that LiH can capture ultrafast the NH₃ formed during the H₂ release process of the hydrogenated Li₃N. Furthermore, in practice, the contact times are much longer than 10³ ms, and hence no NH₃ impurity

Figure 2. Temperature-programmed decomposition mass spectra: (a) TLM-1 with a contact time of 110 ms; (b)TLM-2 with a contact time of 110 ms; (c) TLM-1 with a contact time of 25 ms; (d) TLM-1 with a contact time of 2.4 ms; (e) TLM-1 with a contact time of 110 ms (exposed to air for 24 h before the experiment); (f) the two-layer material, with LiNH₂ as the first layer and Li₂O as the second one.

Figure 3. XRD patterns of TLM-1 after the temperature-programmed decomposition: (a) first layer; (b) second layer (\times) Li₂NH; (\square) LiNH₂; (#) LiH; (*) LiOH; (\bigcirc) Li₂O.

is expected to escape into the H_2 stream when Li_3N is used as storage material.

XRD was used to examine the phase transformations of the two-layer material (TLM-1) after the decomposition reaction. As shown in Figure 3, LiNH₂ of the first layer has decomposed to Li₂NH, whereas LiH of the second layer was transformed to Li₂NH and LiNH₂. The presence of Li₂O and LiOH was a result of the exposure of the sample to the atmosphere during the XRD measurements and the reaction of LiH with the water from the

atmosphere. Consequently, the following transformations occurred:

$$2\text{LiNH}_2 \rightarrow \text{Li}_2\text{NH} + \text{NH}_3$$
$$\text{NH}_3 + \text{LiH} \rightarrow \text{LiNH}_2 + \text{H}_2$$

The complete hydrogenation of Li₃N generated a mixture of 2LiH and LiNH₂ (Li₃N + 2H₂ \rightarrow LiNH₂ + 2LiH).¹²⁻¹⁴ The generation of a LiNH₂ molecule was accompanied by the formation of two LiH molecules. Because LiH reacts quickly with NH₃, the LiH generated via the Li₃N hydrogenation could capture all the NH₃ formed via the LiNH₂ decomposition, and NH₃ could not escape into the H₂ stream during the H₂ release process.

The ultrafast reaction between NH₃ and LiH affected also the product composition and prevented the formation of a NH₃ impurity during the hydrogenation process of Li₃N. Because Li₂NH was detected during the hydrogenation of Li₃N,¹⁴ the hydrogenation of Li₃N is a multistep process: Li₃N was first hydrogenated to Li₂NH and LiH. Further, Li₂NH was hydrogenated to LiNH₂ and LiH, and LiNH₂ was hydrogenated to LiH and NH₃. This means that for each NH₃ molecule generated, three LiH molecules were formed. Because the reaction between LiH and NH₃ to LiNH₂ is ultrafast, all NH₃ was transformed to LiNH₂. Consequently, the products of the complete hydrogenation of Li₃N are LiNH₂ and LiH. In other words, the ultrafast reaction between NH₃ and LiH also inhibits the NH₃ formation during the hydrogenation of Li₃N.

However, for a two-layer TLM-1 that was previously exposed to the atmosphere for 24 h, NH₃ was detected during the TPD (Figure 2e). This occurred because TLM-1 absorbed water from the atmosphere, which oxidized LiH to Li₂O. The Li₂O formed could no longer capture NH₃. Indeed, when LiH in TLM-1 was completely replaced by Li_2O , three NH₃ peaks were identified in the TPD (Figure 2f). This observation indicates that if a hydrogenated Li_3N was previously exposed to the atmosphere, NH₃ is expected to escape into the H₂ stream during the desorption process. Indeed, NH₃ was detected during H₂ desorption from a hydrogenated Li_3N , which was previously exposed to the atmosphere for 24 h.

In conclusion, the ultrafast reaction between LiH and NH_3 prevents a NH_3 impurity to escape into the H_2 flow during the entire H_2 storage process. However, if the hydrogenated Li₃N was previously exposed to the atmosphere, some NH_3 is expected to escape into the H_2 stream during the H_2 desorption, due to the partial oxidation of LiH.

References and Notes

(1) Trudeau, M. L. MRS Bull. 1999, 24, 23.

(2) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethuune, D. S.; Heben, M. J. *Nature* **1997**, *386*, 377.;

(3) Ye, Y.; Ahn, C. C.; Witham, C.; Fultz, B.; Liu, J.; Rinzler, A. G.; Colbert, D.; Smith, K. A.; Smalley, R. E. *Appl. Phys. Lett.* **1999**, *74*, 2307.

(4) Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. *Science* **1999**, *286*, 1127.

- (5) Yang, R. T. Carbon 2000, 38, 623.
- (6) Dagani, R. Chem. Eng. News 2002, 80 (2), 25.
- (7) Chambers, A.; Park, C.; Baker, R. T. J. Phys. Chem. B 1998, 102, 4253.

(8) Hirscher, M.; Becher, M.; Haluska, M.; Dethlaff-Weglikowska, U.; Quintel, A.; Duesberg, G. S. *Appl. Phys. A* **2001**, *72*, 129.

- (9) Cheng, H.; Pez, G. P.; Cooper, A. C. J. Am. Chem. Soc. 2001, 123, 5845.
 - (10) Wang, Q.; Karl Johnson, J. J. Phys. Chem. B 1999, 103, 277.
- (11) Dresselhaus, M. S.; Williams, K. A.; Eklund, P. C. MRS Bull. 1999, 24, 45.
 - (12) Dafert, F. W.; Miklauz, R. Monatsh. Chem. 1910, 31, 981.
 - (13) Ruff, O.; Goeres, H. Chem. Ber. 1910, 44, 502.
 - (14) Hu, Y. H.; Ruckenstein, E. Ind. Eng. Chem. Res. 2003, 42, 5135.