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Ground-state spin-orbit splittings in V2
+, VNb+, and Nb2+ were investigated with spin-orbit configuration

interaction (SOCI) calculations using the intermediate neglect of differential overlap method for optical
spectroscopy (INDO/S). Splittings found for the X4Σ- ground states of V2+ and VNb+ using a CI treatment
isolating essential correlation of the ground and isoconfigurational a2Σ+ and b2Σ- state wave functions agreed
well with experiment. The size of the splitting for Nb2

+ was predicted. In all three cases the a2Σ+ and b2Σ-

states were found to be strongly coupled by the spin-orbit operator. Several perturbative models for predicting
energies of interacting excited states based on measured splittings were analyzed by comparing to SOCI
results for V2, VNb, and Nb2. Second-order perturbation theory, treating only the isoconfigurational states,
and neglecting overlap and CI in computing couplings was the best choice of approximations due to cancellation
of errors. An empirical model treating the isoconfigurational states of the cations was developed within these
guidelines and agrees well with SOCI calculations for V2

+. The empirical wave functions were divergent for
Nb2

+ due to similar energies of the doublet states. Analysis of correlation effects in the INDO/S model indicates
that a charge-iterative method could be effective for systematically correlated semiempirical calculations on
metal cluster ions.

I. Introduction

Transition metal clusters are an area of active research
because of their relevance to heterogeneous catalysis, but there
are some major difficulties associated with their investigation.
One important problem lies in preparation and characterization,
as bare clusters tend to be highly refractory. Second, application
of theoretical methods to metal clusters is not straightforward
due to the severity of the electron correlation problem for these
molecules. Even the diatomics remain a challenge for accurate
ab initio methods, and detailed application of highly correlated
calculations to clusters larger than just a few atoms is often
impractical. This is unfortunate because clusters of even slightly
larger size are of vital interest as examples of states of matter
intermediate between molecules and bulk aggregates,1 and as
models of metal surfaces.

Clusters of intermediate size are potentially within reach of
efficient semiempirical methods (recent calculations were
reported on nickel clusters of up to 51 atoms in size2), but special
problems are posed by the rather ad hoc treatment of correlation
effects in semiempirical calculations. In these methods, dynamic
correlation is thought to be incorporated in an average,
unsystematic waysa scenario suggested on the basis of the ab
initio effective valence shell Hamiltonian3-14 rather than an
examination of working semiempirical models. An in-depth
understanding of the nature of correlation effects in the models
themselves will be necessary if the methods are to be rationally
applied to transition metal clusters. Recent spin-orbit enhanced
configuration interaction (SOCI) calculations on the neutral
diatomics V2, VNb, and Nb2 using the intermediate neglect of
differential overlap Hamiltonian parametrized for optical spec-
troscopy (INDO/S) showed promise that this method can be

successful with these molecules as long as correlation is handled
carefully.15,16 This paper extends that work to the cations V2

+,
VNb+, and Nb2+ and examines several outstanding issues left
by previous work on the neutral molecules.

The ground states of V2, VNb, and Nb2 have unusually large
spin-orbit splittings,15-20 75 cm-1 for V2,17 230 cm-1 for
VNb,18 and 410 cm-1 for Nb2.21 (These experimentally deter-
mined splittings are henceforth referred to as∆.) All three
molecules have X3Σ- ground states with valence electron
configuration (dπu)4(1σg)2(2σg)2(δg)2, as established by both
experimental17-20,22-24 and theoretical15,16,25-31 investigations.
The splitting has been attributed to second-order spin-orbit
interaction of theΩ′′ ) 0 component of the ground state with
the isoconfigurational1Σ+ state (henceforth referred to as a1Σ+)
in each case.15-19,22 The splittings are large because the a1Σg

+

state has a very low energy, as is often the case with transition
metal clusters due to near degeneracy and orbital localization
effects.30,32

Several electronic transitions to excited states have been
observed for V2 and Nb2 as well. Empirical models for
predicting the energies of the interacting a1Σg

+ states have been
proposed18,22,24and used to assign some of the transitions. In
these empirical models, an approach such as second-order
perturbation theory is used to treat the interaction of the two
states, with their spin-orbit matrix element taken as a linear
combination of atomic spin-orbit radial integrals. The resulting
expression for the perturbation of the ground state is set equal
to the experimental value of∆, and rearrangement yields an
expression for the excited-state energy. Estimates of 182122 and
1196 cm-1 18 have been made for the energy of the a1Σg

+ state
of V2, depending on how the coupling matrix element is
calculated. On the basis of the former, an excited state observed
at 1860 cm-1 in matrix isolated resonance Raman work33 was
assigned as a1Σg

+ 22 (the spin selection rule was assumed to be
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relaxed due to triplet contamination of the excited singlet state).
A similar situation holds for Nb2, where the energy of the
interacting a1Σg

+ state has been empirically estimated as
237518 or 2834 cm-1,19 and a resonance Raman transition has
been observed at 2445 cm-1.34

Several theoretical investigations on V2 and Nb2 have been
reported.15,16,25-31 Semiempirical spin-orbit enhanced config-
uration interaction (SOCI) calculations using the INDO/S model
on V2 showed close agreement with∆ ) 75 cm-1 and the
empirical prediction of 1196 cm-1 for E(a1Σg

+). These results
cast doubt on the assignment of the state observed at 1860 cm-1

as a1Σg
+. In the case of Nb2, however, both INDO/S SOCI

calculations16 and empirical models giveE(a1Σg
+) in reason-

able agreement with the observed transition energy (2445 cm-1).
The calculations did not indicate the presence of any other low-
lying states for the two molecules. It is thus difficult to
distinguish between the two hypotheses, that the excited states
observed for V2 and Nb2 are the a1Σg

+ states, or are some other
low-lying state the molecules have in common.

More recent complete active space self-consistent field
calculations followed by multireference configuration interaction
(CASSCF/MRCI, ref 35) on Nb2 did not help clarify the
situation.∆ was estimated as 500-1000 cm-1 (experiment 410
cm-1 21) and E(a1Σg

+) as 787-1545 cm-1 depending on the
level of calculation. The CASSCF/MRCI results do not provide
a strong possibility for a low-lying state other than the a1Σg

+

state that could account for the observed transition. Further
experimental and theoretical work is needed to elucidate this
question.

The cations V2+, VNb+, and Nb2+ have X4Σ- ground states
with (dπu)4(1σg)2(2σg)1(δg)2 valence configurations.18,20,27 In
these cases, it has been suggested that spin-orbit interaction
between theΩ ) (1/2 components of the isoconfigurational
X4Σ- and 2Σ+ (henceforth a2Σ+) states causes the splitting of
the ground state,18 measured as∆ ) 20 18 and 21 cm-1 20 for
V2

+ and 82 cm-1 for VNb+.18 ∆ has not been measured for
Nb2

+ but was estimated to be 142 cm-1 using unperturbed state
energies determined with density functional theory.27 A theoreti-
cal prediction made with explicit consideration of spin-orbit
coupling has not been presented, however.

The spin-orbit effects observed for the ground states of the
cations could provide a useful analogy for the neutral molecules,
but there is less experimental evidence available about the
interacting excited states. The energies of the a2Σ+ states in V2+

and VNb+ were predicted with the empirical model using the
experimentally determined splittings of the X4Σ- states.18 There
is also a third isoconfigurational state for a (dπu)4(1σg)2(2σg)1-
(δg)2 configuration, referred to here as b2Σ-, which was
presumed to play no role in ref 18. CASSCF/MRCI calculations
on Nb2

+ confirmed that the ground state is X4Σg
- and provided

some predictions about the energies of the various excited states.
These are compared with the results of INDO/S SOCI calcula-
tions below.

Initially it was expected that INDO/S calculations on the
cations would be similar to the earlier efforts with the neutrals,16

giving reasonable agreement with the empirical predictions and
CASSCF calculations,35 but certain discrepancies were found.
These included larger disagreement between empirical and
INDO/S energies than found for the neutrals, and quartet
contamination of both excited doublet states. This unexpected
outcome motivated a more detailed investigation of the two-
state empirical models. In the case of the cations it was
discovered that there is a significant coupling between the a2Σ+

and b2Σ- states that was neglected in ref 18. This coupling can
be quite large because the two states have similar energies. A

new empirical model incorporating the doublet-doublet inter-
action was designed by reexamining the empirical calculations
on the neutral molecules. This also allowed a systematic
examination of the effect of the various approximations used,
which has not been made previously even though these models
are often applied to metal clusters (e.g., see refs 36 and 37).

In summary, this paper presents results of INDO/S SCF/SOCI
calculations on V2+, VNb+, and Nb2+, along with a new
empirical model describing isoconfigurational spin-orbit effects
in the cations that includes coupling between the a2Σ+ and b2Σ-

states. An analysis of the various approximations employed in
previous empirical models has also been made. The paper is
organized as follows. Section II describes the methods of
calculation used, including the INDO/S SOCI calculations and
the empirical models. Section III provides presentation and
discussion of results, including comparisons between results
found with INDO/S and experiment for the cations and neutrals,
as well as with various realizations of the empirical models.
Conclusions are summarized in the fourth and final section.

II. Methods

A. INDO/S SOCI Method. The SOCI calculations on V2+,
VNb+, and Nb2+ were performed using the INDO/S model38-41

implemented in the ZINDO software package.42 The calculations
consist of three steps: a self-consistent field molecular orbital
calculation, a configuration interaction calculation in a basis of
spin-adapted configuration state functions constructed using the
SCF MOs, and the final spin-orbit calculation involving matrix
diagonalization in a basis of components of CI states of
multiplicities linked by the spin-orbit operator. A brief descrip-
tion of each step follows.

Self-consistent field molecular orbitals are obtained in a
valence orbital basis set consisting of the nine valence ns, np,
and (n - 1)d orbitals on each atom. Following previous
work,15,16 SCF calculations were performed using either the
configuration-averaged Hartree-Fock (CAHF, ref 43) or re-
stricted open shell Hartree-Fock (ROHF, ref 44) procedure.
Two ROHF formulations were used, in which the SCF orbitals
are partitioined into a closed shell part and one or more sets of
open shell orbitals. The SCF energy is expressed as

wherei, j, etc. represent closed shell orbitals;m, p, etc. represent
open-shell orbitals;nm is the number of electrons in orbitalm;
hR, JRâ, and KRâ are the usual one-electron, Coulomb, and
exchange integrals, respectively;µ, ν, etc. represent open shells
(i.e., separate groups of open shell orbitals); andaµν and bµν

are the “vector coupling coefficients” that couple the open shell
electrons. The choice of vector coupling coefficients fixes the
configuration or average over configurations used in the
calculation. In the standard ROHF definition, there is one open
shell containing the 2σ andδg MOs, each occupied by anR-spin
electron., andµ ) ν ) 1, a ) 1, b ) 2. A second ROHF ground
state was defined with two separate open shells. The first
included the 1σ and 2σ MOs with coupling coefficients
representing an average over configurations 1σ22σ1 and 1σ12σ2,
and the second consisted of theδg MOs with single occupancy.
The coupling coefficients for this case area11 ) 8/9 ) b11, a12

) 1, b12 ) 4/3, a22 ) 1, b22 ) 2. This second nonstandard
definition was used for VNb+ due to SCF convergence problems
(vide infra).

EROHF ) 2∑
i

hi + ∑
i<j

(2Jij - Kij) +
1

2
∑
i,m

nm(2Jim - Kim) +

∑
m

nmhm +
1

4
∑

µ
∑

ν
∑
m∈µ

∑
p∈ν

nmnp(2aµνJmp - bµνKmp) (1)
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Once a set of self-consistent field MOs has been obtained,
configuration interaction (CI) calculations are carried out for
states of multiplicities linked by the spin-orbit operator. In the
case of the cations with4Σ- ground states, then, this would
typically include doublets and sextets in addition to quartets.
Spin-adapted configuration-state functions (CSFs) are obtained
using a Rumer diagram technique.45,46 The resulting non-
orthogonal valence bond structures are orthogonalized using the
Schmidt procedure prior to diagonalization of the CI matrix.16

In an additional step, matrix elements of the spin-orbit operator
(taken as an effective one electron operator) in the basis of
components of the CI states are computed using only one-center
terms and empirical values for spin-orbit radial integrals.47 The
resulting matrix (H + HS.O.) is diagonalized to yield the
spectroscopic levels,48 and transition probabilities between
selected levels are calculated assuming the dipole length
approximation.47

The bond length of V2+ was set equal to the value ofr0

determined experimentally,20 1.735 Å. In contrast to the neutral
diatomics, where bond lengths have been determined experi-
mentally for V2,17 VNb,23 and Nb2,19 bond lengths for VNb+

and Nb2+ have not been determined experimentally. Values
predicted by DFT calculations on the cations27 are used here,
1.885 and 2.044 Å, respectively. These are likely good estimates,
because the bond length predicted by the DFT calculations for
V2

+ (1.741 Å) agreed with the experimental value (1.735 Å),
and similar calculations19 yielded bond distances of 1.777 Å
for V2 (experiment 1.766 Å17) and 2.08 Å for Nb2 (2.078 Å19).
The DFT value of 2.044 Å for Nb2+ is adopted rather than the
value of 2.151 Å found with CASSCF/MRCI calculations35

because the bond length of Nb2 predicted by these calculations
was∼0.10 Å too long, whereas the DFT calculations estimated
this bond length to within 0.002 Å of experiment.19

B. Empirical Models for Neutral Molecules. In this section
empirical equations similar to those used previously18,22 are
developed to predict the energy of the perturbing a1Σ+ state for
the neutral molecules. A particular goal is to investigate the
various approximations involved in these models. The most
effective combination found for V2, VNb, and Nb2 by comparing
to the more accurate INDO/S SOCI results16 will then be applied
to the cations. This investigation is of general interest, as
empirical models of this sort are often used for predicting state
energies for metal clusters.36,37

The basic strategy of these models is the reverse of the typical
application of perturbation theory, because the size of the
perturbation is known from experiment (∆). Because the
couplings can be approximated, the difference in unperturbed
energies of the ground state and interacting state can be found.
Adding the perturbations of the ground and excited states then
gives the perturbed energy of the excited state. There are three
important approximations made in this procedure, including
neglect of orbital overlap and CI in determining coupling matrix
elements, order at which the perturbation of spin-orbit coupling
is treated, and inclusion of only two states in the model. Each
of these is considered below.

1. EValuation of Coupling Matrix Element with OVerlap.Two
related approximations were made in previous derivations.18,22

The first is neglect of overlap integrals in evaluating spin-
orbit matrix elements, which omits terms proportional to
ú(n-1)dS, where S is the delta-symmetry overlap integral. The
second is neglect of the extensive CI of the (dπu)4(dσg)2(sσg)2-
(dδg)2 and (dπu)4(dσg)2(sσg)2(dδu)2 configurations, which is
known to be large for V2 and Nb2.15,16,29,30,35This CI imparts
local character to the delocalized MO description of theδg

orbitals. It was previously assumed that theδg MOs are
completely local,18,22 but this is only partially true for these
molecules. Even though the two configurations are not coupled
by the one-electron operatorĤS.O., the CI does indirectly affect
the matrix element when overlap is retained. Because the amount
of CI is itself also related to the overlap (greater CI occurs as
the overlap gets smaller), the two approximations just described
are together referred to as “neglect of overlap” throughout this
paper.

The coupling matrix element〈X3Σ-(0+)|ĤS.O.|a1Σ+(0+)〉
developed here includes both overlap integrals and CI between
the configurations with open-shell occupancies dδg

2 and dδu
2.

Spin-adapted linear combinations of Slater determinants rep-
resenting theΩ ) 0 components ofΣ symmetry are

Wave functions for the X3Σ-(0+)and1Σ+(0+) components are
then

The coefficients can be readily obtained with a small CI
calculation.

The spin-orbit coupling can be determined by expanding
the Slater determinants in terms of the atomic orbitals that make
up the molecular orbitals, and evaluating the resulting matrix
elements. All matrix elements listed in this paper are derived
using a more efficient procedure based on Rumer diagrams.48,49

Two important assumptions are used in doing so. First, two-
center radial integrals are neglected (a standard assumption50).
Second, because the X3Σ- and a1Σ+ states are isoconfigurational,
it is reasonable to assume that the extent of localization is similar
in the two states, and therefore3C1 ) 1C1 ≡ C1 and3C2 ) 1C2

≡ C2. With these assumptions the coupling term is given by

whereúhd is ú(n-1)d for V2 and Nb2, and the average ofú3d and
ú4d in the case of VNb.51 The values ofú(n-1)d (145.0 cm-1 for
vanadium and 448.8 cm-1 for niobium) are taken for the
ns1(n - 1)d4 configuration of each metal, which is the diabatic
dissociation limit of the molecules. Equation 8 reduces to the
previously used18,22 value of 2úh(d) when the overlap is zero
but is more general because it is also applicable whenS is
nonzero. Because|C1| is greater than|C2| whenS is nonzero
andS is positive, inclusion of overlap reduces the magnitude
of the coupling and thus decreases the estimate made for
E(a1Σ+).

2. Order of Perturbation Expansion.In second-order pertur-
bation theory, the perturbation of theΩ′′ ) 0 component of

3Φ0 ) 1

x2
(|δg

+Rδg
-â| + |δg

+âδg
-R|) (2)

3Φ′0 ) 1

x2
(|δu

+Rδu
-â| + |δu

+âδu
-R|) (3)

1Φ0 ) 1

x2
(|δg

+Rδg
-â| - |δg

+âδg
-R|) (4)

1Φ′0 ) 1

x2
(|δu

+Rδu
-â| - |δu

+âδu
-R|) (5)

Ψ(X3Σ-(0+)) ) 3C1
3Φ0 + 3C2

3Φ′0 (6)

Ψ(1Σ+(0+)) ) 1C1
1Φ0 + 1C2

1Φ′0 (7)

〈Ψ(X3Σ-(0+))|ĤS.O.|Ψ(1Σ+(0+))〉 )

2úh(d)[ C1
2

(1 + S)
+

C2
2

(1 - S)] (8)
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the ground state is

whereEi
(0) is the unperturbed energy of theith level, andH1i is

the spin-orbit coupling of the ground level and theith excited
level. The number of states considered in the model isn, limited
to two in the previous treatments.18,22 In the following discus-
sion, it is assumed that thei ) 2 level is the a1Σg

+(0g
+) level.

The perturbation of this level is given by

If n is limited to two,∆1 and ∆2 are equal in magnitude but
opposite in sign:

∆ is therefore positive in sign becauseE2
(0) > E1

(0). With these
definitions, the energy of the excited level is then

An analogous expression that is correct through infinite order
can be obtained by diagonalizing a 2× 2 matrix.52 The
appropriate matrix equation is

Solving by means of a secular determinant and rearranging leads
to

(see ref 18 for a more detailed derivation of this), which is
smaller than the second-order expression by∆, the spin-orbit
splitting of the ground state. Extension of the model to infinite
order thus reduces the estimate ofE(a1Σg

+) compared to the
estimate made at second order.

It should be noted that different analytical expressions for∆
are implicitly assumed in eqs 12 and 14, but in each case∆ is
substituted as an empirical parameter to solve for the excited-
state energy. Though it seems apparent that the most exact
expression should be used, this is not necessarily the case due
to cancellation of errors caused by the other approximations
(i.e., limitation to two states and neglect of overlap).

3. Limitation to Two States.It is more difficult to quantify
the impact of including other states in the empirical model.
Additional singlet states could interact with theΩ′′ ) 0 level
of the ground state, lowering its energy and thus increasing the
ground-state splitting. Similarly, additional triplet states could
interact with theΩ′′ ) (1 levels, lowering their energy and
decreasing the splitting. The overall effect would then depend
on the identities of the interacting states and their energies,
which are unknown. If the additional interactions were primarily
with singlet states, however, then their inclusion would increase

the estimate ofE(a1Σg
+). This is true because with two states,

the model assumes that all of the perturbation of theΩ′′ ) 0
level arises from interaction with the a1Σg

+ state. If a part of the
perturbation in caused by other states, however, the perturbation
caused by the a1Σg

+ state is smaller than the observed splitting.
Because the coupling between states is constant, a smaller
perturbation can be obtained only by increasing the energy of
the excited state.

Exactly this situation was found previously for Nb2, in which
the INDO/S SOCI eigenvector for theΩ′′ ) 0 component of
X3Σg

- was found to be contaminated by several singlet CSFs
other than those representing the a1Σg

+ state.16 If the other
molecules behave similarly, then including additional states
should systematically increase the estimate forE(a1Σg

+). Be-
cause higher levels of perturbation theory and including overlap
effects tend to decrease the estimate, the two-state model at
second order with no CI or overlap could benefit from some
cancellation of errors.

C. Empirical Model for Cations, Second-Order with No
Overlap. For the cations the results of the next section, that
the best choice of approximations is second-order perturbation
theory with neglect of overlap effects, is anticipated, and the
empirical model is developed accordingly. James et al.18 have
already considered this problem, assuming second-order spin-
orbit interaction between the isoconfigurational X4Σ- and a2Σ+

states. Their analysis is incomplete, however, because they
neglected coupling between the isoconfigurational a2Σ+ and
b2Σ- states. Configuration-state functions for the three spin
components are50

CSFs for theMS ) -1/2 components are analogous to these,
with theR andâ spins exchanged, and have the same coupling
interactions derived below for theMS ) +1/2 components.

Matrix elements between the CSFs are straightforwardly
evaluated using the Rumer diagram method.48,49 Under the
assumption of zeroδ symmetry overlap and neglecting two-
center spin-orbit radial integrals, the matrix elements are

Hereúhd is again taken as the average ofú(n-1)d for configurations
corresponding to the diabatic dissociation products of the

∆1 ) ∑
i)2

n H1i
2

E1
(0) - Ei

(0)
(9)

∆2 ) ∑
i*2

n H2i
2

E2
(0) - Ei

(0)
(10)

∆ ) -∆1 ) ∆2 )
H12

2

E2
(0) - E1

(0)
(11)

E(a1Σ+) ) E2
(0) - E1

(0) + 2∆ )
H12

2 + 2∆2

∆
(12)

[C11 C12

C21 C22]†[E1
(0) H12

H12 E2
(0)][C11 C12

C21 C22] ) [E1 0
0 E2] (13)

E(a1Σ+) ) E2
(0) - E1

(0) + 2∆ )
H12

2 + ∆2

∆
(14)

Ψ(X4Σ-(12)) )

1

x3
[|σgRδg

+Rδg
-â〉 + |σgRδg

+âδg
-R〉 + |σgâδg

+Rδg
-R〉] (15)

Ψ(a2Σ+(12)) ) 1

x2
[|σgRδg

+Rδg
-â〉 - |σgRδg

+âδg
-R〉] (16)

Ψ(b2Σ-(12)) )

1

x6
[2|σgâδg

+Rδg
-R〉 - |σgRδg

+Rδg
-â〉 - |σgRδg

+âδg
-R〉] (17)

〈X4Σ-((1
2)|ĤS.O.|a2Σ+((1

2)〉 )
4úhd

x6
(18)

〈X4Σ-((1
2)|ĤS.O.|b2Σ-((1

2)〉 ) 0 (19)

〈a2Σ+((1
2)|ĤS.O.|b2Σ-((1

2)〉 ) -
2úhd

x3
)

- 1

x2
〈X4Σ-((1

2)|ĤS.O.|a2Σ+((1
2)〉 (20)
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cations. The values are as follows: for V2
+, [Ar]4s13d4, ú3d )

145.0 cm-1 and [Ar]3d4, ú3d )172.5 cm-1; for VNb+, [Ar]3d4,
ú3d ) 172.5 cm-1 and [Kr]5s14d4, ú4d ) 448.8 cm-1; for Nb2

+,
[Kr]4d4, ú4d ) 479.1 cm-1 and [Kr]5s14d4, ú4d ) 448.8 cm-1.
Equation 18 agrees with the previous development of James et
al.18

In evaluating interactions between the states at second order,
the following definitions and equalities are assumed:

where∆ is the experimentally determined splitting of the X4Σ-

state, and∆E is the difference in the unperturbed energies of
the b2Σ- and a2Σ+ states,∆E ) E(0)(b2Σ-) - E(0)(a2Σ+). With
these assumptions the following equations are obtained:

Using Ei ) Ei
(0) + Ei

(2), making substitutions of eqs 21,
rearranging, and taking the appropriate subtractions gives

Equation 25 can be compared to eq 12, which is valid in the
case of two coupled states. The coupling between the excited
states thus changes the energy of the a2Σ+ state according to
the second term on the right side of eq 25.

Equations 25 and 26 require an additional parameter,∆E,
the difference in unperturbed energies of the a2Σ+ and b2Σ-

states. This difference can be obtained from empirical fits to
atomic energy levels. Using eqs 16 and 17 and the Condon-
Slater rules52 for evaluating matrix elements between Slater
determinants,∆E is given by

whereKab is the exchange integral〈ab|ba〉, and the fact that
Kσδ+ ) Kσδ- has been used. In each case, the molecular
exchange integrals are expanded over the atomic basis set. Under
the INDO approximation.53 Equation 27 reduces to

for the homonuclear case, whereøσ is an atomic orbital ofσ
symmetry (either (n - 1)dz2 or ns), andø+ andø- are d orbitals
of δ symmetry. In the case of VNb+, these integrals are replaced
by averages of the integrals for each element.51 Equation 28

can be expressed in terms of the Slater-Condon factors,54 which
have been fit empirically to atomic energy levels for the 3d
metals.55 Two cases are considered, in which the open-shellσ
bonding MO is sσ in character or dσ in character. With the
appropriate substitutions (see ref 40) eq 28 becomes

An alternative approach would be to obtain the molecular
exchange integrals directly from an SCF calculation, but
proceeding in this fashion would sacrifice the empirical aspect
of the treatment.

Care must be exercised in selecting values for the Slater-
Condon integrals of eqs 29 and 30 because their values depend
on charge. For vanadium, for example, different values of
G2(sd) and F4(dd) have been fit on the basis of atomic
spectroscopy55 for V, 3d44s1 and V+, 3d4. Here averages of these
values are used, 26 650 cm-1 for F4(dd) and 7090 cm-1 for
G2(sd). A careful fit of Slater-Condon integrals has not been
performed for the 4d metals, but values forF2(dd) andF4(dd)
can be extracted from the Racah parameters B and C.56 Again
there are different values for neutral and positive niobium, which
give average values of 29 127 cm-1 for F2(dd) and 27 733 cm-1

for F4(dd).
A final point to consider is that the couplings of eqs 18-20

imply that both excited doublet states have partial quartet
character. Though the b2Σ- state does not mix directly with
the quartet ground-state, spin-orbit mixing of the a2Σ+ and b2Σ-

states imparts some quartet character to the b2Σ- state. This
can be seen by considering the wave functions for each state
correct through second order. Assuming intermediate normaliza-
tion and eqs 21, the relevant expressions are52

The magnitude of the contribution of each zeroth-order wave
function to these second-order wave functions can be found by
dividing the square of the coefficient leading the zeroth-order
function by the sum of the squares of all three coefficients.

The fact that both excited doublet states are spin-contaminated
with quartet character is an important point, because spin
contamination was invoked in assigning low-energy excited
states observed for V2 and Nb2 as a1Σg

+.33,34These assignments
have recently come under question.15,16,18 If the observed
transitions are as assigned, however, and if the cations behave
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analogously, it might then be possible to observe two low-energy
resonance Raman transitions in the cations.

III. Results and Discussion

A. INDO/S SCF/SOCI Calculations, Cations. 1. Self-
Consistent Field Ground States.SCF calculations on the cations
displayed poor convergence behavior similar to that found for
the neutrals.15,16 As done previously, refined orbitals were
obtained using the CAHF formalism.43 The configurational
space used in defining the average was obtained by fixing six
electrons in the closed-shell dπu bonding MOs and lowest lying
σg hybrid MO, and distributing three electrons in the remaining
fifteen MOs in all possible arrangements. These calculations
converged very rapidly for all three cations, and the resulting
orbitals were used as the starting point for subsequent ROHF
calculations. The standard ROHF calculations converged to
stable ground states for V2

+ and Nb2+, but additional problems
were encountered with VNb+.

In the case of VNb+ the starting guesses for the 1σ and 2σ
MOs were considerably more hybridized than they were in the
homonuclear cations. A similar observation was made regarding
the orbitals of VNb and was attributed to much larger s-d σ
overlap.16 This occurs because the bond distance is intermediate
between those of V2 and Nb2 and the vanadium and niobium
orbitals are of different sizes. The same phenomenon occurs in
the case of VNb+. Though in itself this is not problematic, the
starting guesses for the 1σ and 2σ MOs were also very close in
energy, which led to convergence problems because the twoσ
MOs would alternate between the closed shell and open shell
during the course of SCF iterations. As a result, it proved very
difficult to obtain a standard ROHF ground state for VNb+.
This problem was circumvented by adopting the nonstandard
approach described above, in which an average of the occupa-
tions 1σ22σ1 and 1σ12σ2 was used. Oscillation of theσ orbitals
between the closed shell and open shell is thus prevented by
making both orbitals part of a separate open shell. An SCF
calculation on VNb+ using this model converged quickly. The
resulting converged orbitals were much less hybridized and
further apart in energy than the starting orbitals had been.

The ground states just described were fixed to be of4Σ-

symmetry with open-shell configurationσδ2, in accord with the
results of DFT calculations.27 An alternative SCF ground state
of 2∆g symmetry with configurationσ2δ1 that is analogous to
the3∆g, σ1δ1 ground state of Ti2

57-59 was investigated for V2+

but was found to be much higher in energy. The CI calculations
described below confirm that the ground states of all three
cations are of4Σ- symmetry. More recent DFT calculations also
found a4Σg

- ground state for V2+.31

The SCF MOs obtained for V2+, VNb+, and Nb2+ (Table 1)
are similar to those obtained for the neutral molecules.16 As
with the neutrals, the dσg MO is lower in energy than the sσg

MO in V2
+ and VNb+, but higher in energy in Nb2+. Other

differences between the neutral and cation ground states are
found in the hybridizations of theσg orbitals of VNb+ and Nb2+.
In the former case, theσ MOs of VNb were considerably
hybridized,16 whereas those of VNb+ are much less so (Table
1). In VNb the σ bonding MOs are very close in energy
(separated by∼0.24 eV16) whereas in VNb+ they are separated
by ∼0.91 eV, which could explain the different extents of
hybridization in the two molecules.

In the case of diniobium, theσg MOs are considerably more
hybridized for the cation than they are for the neutral molecule,
despite the fact that the orbital energies have a similar (sizable)
separation in the two cases. It is not clear why the hybridizations
are different. An in-depth examination of the two electron
integrals in the two cases might provide an explanation, but
this was not attempted because extensive configurational mixing
occurs in the CI calculations anyway.

2. Spin-Orbit Enhanced Configuration Interaction Results.
The primary goal of this work is to obtain accurate estimates
of the ground-state spin-orbit splittings in the cations. The
magnitude of the splitting depends largely on the difference in
the energies of the ground state and interacting isoconfigura-
tional excited states. Given the highly correlated nature of their
wave functions, that difference cannot be obtained accurately
without a proper treatment of correlation. This is not straight-
forward in a semiempirical scheme like INDO/S, which
incorporates some correlation directly by obtaining parameters
from experiment or fitting parameters to reproduce experimental
results. This implicit correlation is thought to be dynamical in
nature.38-41 Essential correlation is not incorporated in the model
and must be included in cases where there are extensive essential
correlation effects. This must be done without also including a
partial estimation of the dynamic correlation, however, which
leads to the well-known “overcounting problem” and consequent
deterioration of results. This is known from fundamental
considerations3,4,14,60and was clearly demonstrated for neutral
V2, VNb, and Nb2.16

The strategy used here is the same used previously for the
neutrals.16 The general idea is to identify configurations (more
properly, CSFs) making essential correlation contributions to
the X4Σ-, a2Σ+, and b2Σ- wave functions, and then use only
those configurations in an SOCI calculation. The details are as
follows: first, molecular orbitals experiencing significant
localization corrections are identified through populations of
antibonding MOs in ground-state CI wave functions expanded

TABLE 1: Compositions and Orbital Energies of INDO/S Molecular Orbitals from the ROHF Ground States of V2
+, VNb+,

and Nb2
+ a

V2
+ VNb+ Nb2

+

composition (%) composition (%) composition (%)

orbital 3d 4s energy (eV) d s energy (eV) 4d 5s energy (eV)

dπu
b 95 0 -13.87 95 0 -13.16 95 0 -12.65

dσg
c 99 1 -12.81 90 8 -11.98 30 67 -11.63

sσg
c 1 99 -11.04 8 92 -11.09 68 32 -10.91

δg
c 100 0 -12.58 100 0 -12.23 100 0 -11.74

sσu
d 0 96 -6.33 1 85 -6.48 1 83 -6.93

δu
d 100 0 -6.16 100 0 -6.27 100 0 -6.21

dπg
d 67 0 -4.31 38 0 -3.84 47 0 -5.19

dσu
d 100 0 -4.14 97 2 -4.58 99 0 -4.86

a Small contributions from p orbitals are omitted.b The g and u labels serve only to distinguish the bonding and antibonding combinations in the
case of VNb+. c Energies of open-shell ROHF orbitals do not correspond to ionization potentials, so should not be compared directly to the closed-
shell orbital energies.d Orbital energies relative to the energy of the open-shellδg orbitals.
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in active spaces restricted by symmetry (σ, π, or δ). Orbitals
with important localization corrections are those with large
electron populations in the antibonding combinations. The
second step consists of full CI calculations using as active space
the orbitals found to have large essential correlation corrections
in the first step. All CSFs contributing to the X4Σ- and a2Σ+

state wave functions with coefficients greater than 0.01 are then
incorporated in the final, “essential correlation only” SOCI
calculations. The value of 0.01 was chosen on the basis of
careful consideration of the composition of the ground-state
wave function obtained previously for V2

16 and gave satisfactory
results for the ground-state spin-orbit splittings of the neutrals.
Results obtained for each step of the procedure are presented
and discussed below.

Molecular orbital populations obtained for V2
+ from CI wave

functions of the X4Σg
- state expanded in active spaces of each

symmetry are collected in Table 2. It should be emphasized
that these results are obtained from three separate CI calcula-
tions, with active spaces restricted to theσ, π, andδ orbitals
from Table 1, respectively. The dπ, dσ, and dδ MOs behave as
expected on the basis of the previous results for V2 (also found
in Table 2),16 with very limited localization of the dπ orbitals
(less than 0.05 electrons in each antibonding orbital) and more
significant corrections for the dσ and dδ orbitals. The occupation
of the singly occupied sσg orbital of V2

+, in contrast, is virtually
unaffected by configuration interaction.

This result is rather surprising on naı¨ve comparison to the
neutral diatomic but simply follows the dissociative behavior
of a singly occupied orbital, which does not require an essential
correlation correction to the wave function. If the orbital were
doubly occupied, as it is in V2, then localized orbitals are
obtained via the configurational mixing

where A and B areσ-symmetry atomic orbitals on each center
andâ spin electrons are indicated by the horizontal bars. The
right side of eq 34 is a singlet CSF in which one atomic orbital
on each center is occupied. This is directly analogous to the
well-known dissociation problem of the ground-stateσg

2 con-
figuration of dihydrogen.52 The singly occupiedσg orbital in
V2

+ is then analogous to the ground state of H2
+, which does

dissociate properly without configurational mixing of the form
of eq 34.61 Because the singly occupiedσg orbital does not then
require essential correlation, the active spaces used in subsequent
calculations are limited to the doubly occupiedσg orbital, the
corresponding antibondingσu orbital, and the fourδ symmetry
combinations. This gives rise to modest numbers of CSFs, 120
quartets and 210 doublets.

Tables 3-5 list all configurations contributing to the X4Σ-

and a2Σ+ states of the three cations with coefficients greater

than or equal to 0.01. The essential correlation contribution to
the ground-state wave function is largest for V2

+, intermediate
for VNb+, and smallest for Nb2+, as shown by the respective
increase in size of leading coefficient. This indicates a decrease
in the multireference character of the wave function in the same
order. This follows from the very compact nature of the 3d
orbitals relative to the 4d orbitals, leading to a greater contribu-
tion of local character to the wave function when vanadium is
present. This is known to be true in general when comparing

TABLE 2: Populations of the MOs of V2
+ Listed in Table 1

from Full CI Calculations Using the Orbitals of Each
Symmetry as Active Spacesa

orbital population, V2+ population,V2

dπu 3.93 3.92
dσg 1.88 1.94
sσg 0.97 1.87
dδg 1.65 1.62
dδu 0.35 0.39
sσu 0.01 0.13
dσu 0.12 0.07
dπg 0.07 0.08

a Results for V2
16 shown for comparison.

TABLE 3: Configurations Contributing to the X 4Σg
- and

a2Σg
+ States of V2

+ from Full CI in the d σ and dδ MOs
Listed for V 2

+ in Table 1a

state configuration weightb

X4Σg
- (dπu)4(dσg)2(sσg)1(δg)2 0.811 (0.773c)

(dπu)4(dσg)2(sσg)1(δu)2 0.096
(dπu)4(dσg)1(sσg)1(δg)1(δu)1(dσu)1 0.056
(dπu)4(sσg)1(δg)2(dσu)2 0.034
(dπu)4(sσg)1(δu)2(dσu)2 0.013
(dπu)4(sσg)1(δg)2(δu)2 0.005

a2Σg
+ (dπu)4(dσg)2(sσg)1(δg)2 0.727

(dπu)4(dσg)2(sσg)1(δu)2 0.164
(dπu)4(dσg)1(sσg)1(δg)1(δu)1(dσu)1 0.091
(dπu)4(sσg)1(δg)2(dσu)2 0.035

a All configurations with coefficients of magnitude greater than 0.01
are listed.b Some of these weights are sums of contributions from more
than one CSF derived from the configuation.c Weight of (dπu)4(dσg)2-
(sσg)2(δg)2 configuration in the X3Σg

- wave function of V2, ref 16.

TABLE 4: Configurations Contributing to the X 4Σ- and
a2Σ+ States of VNb+ from Full CI in the d σ and dδ MOs
Listed for VNb + in Table 1a

state configurationb weightc

X4Σ- (dπu)4(dσg)2(sσg)1(δg)2 0.842 (0.778d)
(dπu)4(dσg)2(sσg)1(δu)2 0.070
(dπu)4(dσg)1(sσg)1(δg)1(δu)1(dσu)1 0.049
(dπu)4(sσg)1(δg)2(dσu)2 0.027
(dπu)4(sσg)1(δu)2(dσu)2 0.007
(dπu)4(sσg)1(δg)2(δu)2 0.007
(dπu)4(dσg)2(sσg)1(δg)1(δu)1 0.002
(dπu)4(dσg)1(sσg)1(δg)2(dσu)1 0.001

a2Σ+ (dπu)4(dσg)2(sσg)1(δg)2 0.746
(dπu)4(dσg)2(sσg)1(δu)2 0.137
(dπu)4(dσg)1(sσg)1(δg)1(δu)1(dσu)1 0.088
(dπu)4(sσg)1(δg)2(dσu)2 0.026
(dπu)4(sσg)1(δg)4 0.021

a All Configurations with Coefficients of Magnitude Greater than
0.01 Are Listed.b The g and u labels serve only to distinguish the
bonding and antibonding combinations.c Some of these weights are
sums of contributions from more than one CSF derived from the
configuration.d Weight of (dπu)4(dσg)2(sσg)2(δg)2 configuration in the
X3Σ- wave function of VNb, ref 16.

TABLE 5: Configurations Contributing to the X 4Σg
- and

a2Σg
+ States of Nb2+ from Full CI in the s σg, dσu, and dδ

MOs Listed for Nb2
+ in Table 1a

state configuration weightb

X4Σg
- (dπu)4(dσg)2(sσg)1(δg)2 0.913 (0.864c)

(dπu)4(dσg)2(sσg)1(δu)2 0.058
(dπu)4(dσg)1(sσg)1(δg)1(δu)1(dσu)1 0.017
(dπu)4(sσg)1(δg)2(δu)2 0.005
(dπu)4(sσg)1(δg)2(dσu)2 0.002

a2Σg
+ (dπu)4(dσg)2(sσg)1(δg)2 0.829

(dπu)4(dσg)2(sσg)1(δu)2 0.126
(dπu)4(sσg)1(δg)4 0.014

a All configurations with coefficients of magnitude greater than 0.01
are listed.b Some of these weights are sums of contributions from more
than one CSF derived from the configuation.c Weight of (dπu)4(dσg)2-
(sσg)2(δg)2 configuration in the X3Σg

- wave function of Nb2, ref 16.

1Ψloc
H2 ) 1

x2
(|σgσjg| - |σuσju|) ) 1

x2
(|ABh | - |Ah B|) (34)
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3d and 4d diatomics.30,32 The same trend was observed for the
leading coefficients for the neutral diatomics.16

Results of SOCI calculations using the configurations listed
in Tables 3-5 are shown in Table 6 along with experimental
results. Considering first V2+ and VNb+, for which∆ has been
established spectroscopically, good agreement between calcu-
lated and experimental values of the splittings are obtained. The
agreement is not as close as was obtained for the neutrals,
however. This is not unexpected because the INDO/S model
was parametrized for neutral transition metals.39 It is clear
nonetheless that the calculations are properly accounting for the
second-order spin-orbit coupling in the ground states of V2

+

and VNb+. The spin contamination of the ground state is larger
for VNb+, as expected because spin-orbit effects are larger
for the heavier niobium atom.

The value of 145 cm-1 reported in Table 6 for Nb2+ is the
first explicit estimate of the splitting of the X4Σg

- ground state
of this cation. This agrees closely with the value of 142 cm-1

found on the basis of a difference of 3895 cm-1 in unperturbed
energies of the X4Σg

- and a2Σg
+ states obtained with DFT

calculations.27 This agreement must be considered somewhat
fortuitous, however, because James et al. did not account for
coupling between the isoconfigurational doublet states. This
coupling is very large between the INDO/S CI wave functions
for the b2Σg

- and a2Σg
+ states, perturbing the energy of the

lower lying a2Σg
+ state to roughly 800 cm-1 below the un-

perturbed energy predicted by DFT. The inversion in the
ordering of the a2Σg

+ and b2Σg
- states in Nb2+ compared to V2+

and VNb+ occurs because of the differingσg orbital occupations
(vide infra).

The SOCI estimate of the energy of the a2Σg
+ state of Nb2+

disagrees sharply with the energy of 13 000 cm-1 predicted
by the CASSCF/MRCI calculations of Balasubramanian and
Zhu.35 The same calculations predicted an energy of 4984 cm-1

for the b2Σg
- state, in much closer agreement with the un-

perturbed INDO/S CI energy of 4742 cm-1 for this state. It is
puzzling that the a2Σg

+ state is estimated to be so high in
energy by the CASSCF/MRCI calculations, because this state
interacts with the ground state to cause the spin-orbit splitting.
Second-order perturbation theory withH12 given by eq 8 and
13 000 cm-1 for E2

(0) - E1
(0) yields only 44 cm-1 for ∆. This

value seems too small given the trends in measured values of
∆ for the neutrals (75 cm-1 for V2,17 230 cm-1 for VNb,18 410
cm-1 for Nb2

21) and cations (V2+ 21 cm-1,20 VNb+ 82 cm-1 18).
It should also be noted from Table 6 that the a2Σg

+ state is
estimated to be very low-lying for both V2+ and VNb+, and
the ground-state spin-orbit splittings of these cations are
accurately estimated by these calculations. It therefore seems
unlikely that the a2Σg

+ state of Nb2+ has such a high energy.

Unfortunately the splitting of the X4Σg
- state of Nb2+ has not

been measured experimentally, which would allow a definitive
discrimination between the varying predictions.

3. Analysis of Correlation Effects in the INDO/S Model.
Comparison of spin-orbit splittings computed at different levels
(Table 6) allows an examination of correlation effects in the
INDO/S model. The results are similar to what was found for
the neutral molecules,16 with splittings from larger active space
full CI calculations much less accurate than those computed
with only essential correlation contributions. This indicates that
the parameters do contain some ad-hoc level of dynamic
correlation. The discrepancies are in fact larger than were found
for the neutrals, an unexpected result because according to the
leading coefficients in the ground-state CI wave functions the
cation ground states are not as highly correlated. The larger
discrepancies in the case of the cations likely arise because the
empirical parameters used by the method are obtained from
spectroscopy of the neutral atoms, as mentioned above. If these
parameters do incorporate some dynamic correlation, this
correlation is appropriate for neutral atoms rather than cations.
This would further complicate the “overcounting” problem. A
systematically correlated semiempirical model might require a
charge iterative Hamiltonian62,63to overcome this complication.

B. Analysis of Empirical Two State Models for Neutral
Diatomics. In this section the various realizations of the
empirical models developed in section II for the neutral
diatomics are analyzed to determine the most effective approach.
The three principal sources of error are neglect of overlap and
CI in evaluating coupling matrix elements, the order at which
the perturbation theory is evaluated, and the consideration of
only one perturbing state. Overlap and CI are incorporated by
using eq 8 for the coupling matrix elementH12, which requires
estimates of theδ symmetry overlap integralS and the
coefficientsC1 andC2 for each molecule. These quantities are
easily obtained with INDO/S CI calculations and are shown in
Table 7 along with the resulting values of H12. The inclusion
of overlap is seen to reduce the coupling in each case, which
will decrease the prediction ofE(a1Σ+). The trend in the other
quantities in Table 7 is as expected, with the overlap increasing
from V2 to VNb to Nb2 due to the greater extent of the 4d
orbitals, and the multireference nature of the ground state
decreasing as the overlap increases.

Table 8 displays values ofE(a1Σ+) computed at second order
(eq 12), at infinite order (eq 14), and at second order with
overlap for the three molecules. The INDO/S results from ref
16 are shown for comparison. All empirical predictions are seen
to be too small. It is interesting to note that the least exact model,
second-order perturbation theory with no overlap, gives the best
results. Because inclusion of overlap and infinite order should
reduceE(a1Σ+) even further, limitation to two states appears to
increaseE(a1Σ+), leading to cancellation of errors. This was
found to be the case for Nb2,16 so it is not unreasonable to
assume that the same is true for the other diatomics. It is
therefore recommended for future applications to similar
molecules that overlap effects be neglected and second-order
perturbation theory be used.

TABLE 6: Results of INDO/S SOCI Calculations of the
Energy Levels of V2

+, VNb+, and Nb2
+ a

level of calculation quantity V2+ VNb+ Nb2
+

“essential correlation
only” CI

∆ 18 (21b) 77 (82c) 145

E(b2Σ-) 3000 2071 6074
E(a2Σ+) 3899 4014 3180
quartet character,

X4Σ- state
0.995 0.971 0.963

restricted active space
full CI

∆ 57 205 244

E(b2Σ-) 1215 1427 4711
E(a2Σ+) 1832 2599 2961

a All energies are in cm-1 and experimental results are shown in
parentheses.∆ is the spin-orbit splitting of the X4Σ- ground state of
each cation.b Reference 20.c Reference 18.

TABLE 7: Matrix Elements H12 )
〈Ψ(X3Σ-(0+))|ĤS.O.|Ψ(1Σ+(0+))〉 Determined with and without
Overlap

molecule
H12, no overlap

(cm-1) S |C1|2
H12, with overlap

(cm-1)

V2 290.0 0.0397 0.8073 283.4
VNb 593.8 0.0490 0.8532 574.6
Nb2 897.6 0.0714 0.9183 848.3
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C. Empirical Three State Model for Cations. In this section
the three-state empirical model developed earlier is applied to
V2

+ and Nb2+. In applying eqs 25 and 26 forE(a2Σg
+) and

E(b2Σg
-), the experimental value of 21 cm-1 is used for∆ for

V2
+ 20 and the calculated value of 145 cm-1 (Table 6) is used

for Nb2
+. H12 is computed with eq 8 usingúh(n-1)d as defined

previously. Because the open-shellσ orbital is of sσ character
in V2

+ and dσ character in Nb2+, eq 29 is used for∆E in the
former case, and eq 30 in the latter. The resulting values are
-697 cm-1 for V2

+ and 1120 cm-1 for Nb2
+. It should be noted

here that this inversion in sign agrees with the order of state
energies found for the two molecules with SOCI calculations
(Table 6).

Table 9 displays state energies and quartet character computed
according to eqs 25, 26, and 31 for V2

+ and Nb2+. Though the
basic features of the isoconfigurational interactions proposed
to cause the ground-state splittings in the cations are demon-
strated by these results, agreement with the SOCI results of
Table 6 is much poorer than was found with the neutral
molecules (Table 8). The energies and wave functions are very
sensitive to both∆ and∆E, however. If the SOCI value of 18
cm-1 for ∆ of V2

+ is used instead of the experimental value of
21 cm-1, for example, very close agreement is achieved between
the empirical and SOCI results (second row of Table 9). The
energies computed empirically for the a2Σ+ and b2Σ- states of
V2

+ using ∆ ) 21 cm-1 are likely better estimates than the
SOCI energies because of the discrepancy in∆.

The empirical-state energies computed for Nb2
+ have large

errors when compared to the SOCI predictions. In this case it
is likely that the empirical estimate of∆E ) +1120 cm-1 is
too large. When spin-orbit coupling is not included in the
INDO/S calculations, an unperturbed energy of 4441 cm-1 is
obtained for a2Σ+. When spin-orbit interaction with b2Σ- is
included, the a2Σ+ state moves to much lower energy (3180
cm-1, Table 6), indicating that the interaction is very large and
hence that the states are quite close in energy. In fact,∆E from
CI calculations without the spin-orbit interaction is only on
the order of+300 cm-1. Unfortunately, the second-order wave
functions for the a2Σ+ and b2Σ- states of eqs 32 and 33 are
badly divergent with this value of∆E, but clearly reducing the
difference in energies of these coupled states from 1120 to 300
cm-1 will lead to a much larger difference in their energies
predicted by the empirical model, more in accord with the SOCI
results. Matrix diagonalization should be used in cases where
the difference in state energies is smaller than the coupling

matrix element, but it is unclear how to develop such a model
for three states.

4. Conclusions

A. INDO/S SOCI Calculations on V2
+, VNb+, and Nb2

+.
INDO/S SOCI calculations yielded X4Σ- ground states for V2+,
VNb+, and Nb2+ in accord with previous experimental and
theoretical studies.18,20,27,31,35Ground-state spin-orbit splittings
in good agreement with experiment were obtained for V2

+ and
VNb+. The prediction of 145 cm-1 for the splitting in Nb2+

(the first estimate made with a method that explicitly accounts
for spin-orbit coupling) agreed well with a prediction of 142
cm-1 made on the basis of DFT state energies.27 In all three
cases both isoconfigurational a2Σ+ and b2Σ- states were
contaminated with quartet spin character, even though only the
a2Σ+ state interacts directly with the ground state. This occurs
due to second-order spin-orbit coupling between doublet states.

The ground-state spin-orbit splitting depends strongly on the
relative energies of the three isoconfigurational states, and those
energies in turn depend strongly on obtaining a reasonable
approximation of the correlation energy for each state. The
INDO/S SOCI calculations were designed to isolate essential
correlation in the three states to avoid the well-known problem
of “overcounting” the dynamical correlation incorporated into
the semiempirical parameters.3,60 Much better results were
obtained using this method compared to larger restricted active
space full CI calculations that also incorporated some dynamical
correlation. The discrepancies in results were larger for the
cations than for the neutrals, suggesting that semiempirical
parameters fixed for neutral atoms contain an averaged dynamic
correlation contribution that is most appropriate for neutral
species. This complicates the overcounting problem when the
method is used with charged species. Semiempirical methods
that use charge-dependent parameters62,63 might therefore be a
better choice for charged transition metal clusters and com-
plexes.

B. Empirical Models for Predicting Interacting State
Energies.An analysis of approximations involved in empirical
models18,22 for predicting perturbing-state energies given mea-
sured values of spin-orbit splittings was carried out. It was
found that second-order perturbation theory with neglect of
overlap and CI in matrix elements gives the best results. This
arises due to cancellation of the errors incurred by these
approximations with the error incurred by limiting the number
of states. An empirical model treating interactions between the
X4Σ-, a2Σ+, and b2Σ- states of the cations was developed along
these lines, using integrals obtained from atomic energy levels55

to fix the (unperturbed) energy difference between the excited
doublet states. This model gave excellent agreement with the
SOCI results for V2+ if the SOCI value of the ground-state
splitting (18 cm-1 versus experiment 21 cm-1 20) is used in the
model.

The same model did not give good results for Nb2
+. In this

case, however, the difference in the energies of the excited
doublet states was obtained from much less reliable Racah
parameters for niobium. The resulting value of∆E did not agree

TABLE 8: Predictions for E(a1Σ+) Made with Several Empirical Two-State Modelsa

model E(a1Σ+) given by V2 (∆ ) 75 cm-1) VNb (230 cm-1) Nb2 (410 cm-1)

second order, no overlap (H12
2 + 2∆2)/∆ 1271 1993 2785

second order with overlap ((H′12)2 + 2∆2)/∆ 1221 1896 2575
infinite order, no overlap (H12

2 + ∆2)/∆ 1196 1763 2375
INDO/S 1306 (∆ 75 cm-1) 2014 (232 cm-1) 2705 (419 cm-1)

a H12 is the coupling matrix element without overlap, andH′12 is the matrix element with overlap, eq 8.

TABLE 9: Results of Empirical Three-State Model (Details
in Text) for Energy Levels of V2

+ and Nb2
+ a

molecule E(b2Σ-) E(a2Σ+)
quartet character,
X4Σ-(1/2) level

V2
+ (∆ ) 21 cm-1)b 2476 3298 0.993

V2
+ (∆ ) 18 cm-1)c 3006 (3000c) 3826 (3898c) 0.995 (0.995c)

Nb2
+ (∆ ) 145 cm-1)c 5480 (6074c) 4009 (3180c) 0.964 (0.963c)

a All energies are in cm-1 and INDO/S SOCI results from Table 6
are shown in parentheses.∆ is the spin-orbit splitting of the X4Σ-

ground state of each cation.b Experiment, ref 20.c Calculated (Table
6).

5024 J. Phys. Chem. A, Vol. 108, No. 23, 2004 O’Brien



with the unperturbed energy difference found with INDO/S CI
calculations.∆E obtained from the CI calculation was small
enough that the second-order wave functions used in the
empirical model were divergent. Caution is indicated in using
empirical models at this level for cases that have pronounced
near-degeneracy effects.

Acknowledgment. Funding for the calculations carried out
at the Quantum Theory Project was provided by the National
Science Foundation, the Office of Naval Research, and the IBM
corporation. Calculations performed at Indiana University were
funded by National Science Foundation grant CHE-9982415.
Professor Philip Brucat at the University of Florida and Professor
Ernest Davidson and Dr. Feiwu Chen at Indiana University are
acknowledged for meaningful discussion of this work. Professor
Davidson is acknowledged for his critical reading of the
manuscript prior to submission.

References and Notes

(1) Castleman, A. W., Jr.; Bowen, K. H., Jr.J. Phys. Chem.1996,
100, 12911-12944.
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