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Three-point fluorescence lifetime correlation functions are computed for the fluorescence resonance energy
transfer (FRET) and electron transfer (ET) quenching mechanisms in a single-@dmoeptor system of

which the distanc& undergoes anomalous diffusion in a harmonic potential with short-time variance scaling
as ~t*. The three-point joint probability distribution of and its moments are calculated by solving the
fractional Fokket-Planck equation (FFPE). For= 1, the process is stationary and the two- and three-point
joint probability distribution is centered around the time-dependent average-carm@ptor separatiofiX(t)Cl

For a < 1, the distribution slows down, becomes nonstationary, and remains centered at initial separation
X(0) even for times exceeding the bath correlation time scale.

I. Introduction of interacting biomolecules (e.g., lifetime of an enzyme
substrate contact, opening and closing of ion channels in a
membrane$~24 FRET data reflect conformational states in the

" molecular center-of-mass frame and are not complicated by

measurements4 The dvnamics of. for example. conformational overall translocations or rotations. FRET measurements on a
’ y ’ pie, single molecule can access conformational subpopulations and

motions of proteins spans many decadgs of time scales ranglnijnamics, ligand binding, kinetics of folding/unfolding and
from femtoseconds to seconds. While ensemble-averaged : . .

. . protein aggregation, and enzyme catalysis. FRET has recently
experiments have been used to probe fast conformational

fluctuations compared to some internal clock, for example been used to probe conformati(_)nal dynamics of staphylococcal
rotational diffusion in fluorescence depolarization or fluores- nuclease (SNase) and catalytic turnovers of DNA and RNA

. . . . o . IS | - i i 21,22,25
cence lifetime in Stokes shift measuremnéitds hard to find ~ NYdrolysis into mono- and dinucleotidés’
suitable clocks for slow molecular motions (e.g., conformational ~ Both discrete-jump and continuous models have been used

fluctuations of large subdomains). Furthermore, bulk measure-in recent studies of dynamically fluctuating environments of a
ments cannot tell whether all molecules have the same distribu-single molecule. Xie and co-workers have studied the distribu-
tion or each molecule makes a distinct contribution to that tion of jump rates by following the closing and opening of
distribution. SMS allows one to probe slow motions by studying  single-stranded DNA hairpins and observed multiexponential
one molecule at a time. decay of the two-time correlation functions of fluorescence
Much theoretical work has been devoted recently to study of |ifetime fluctuation?® The overdamped Brownian oscillator is
dynamical disorder on a broad range of time scales at the single-a widely used model suitable for the interpretation of spectro-

molecule leveP™2 In probing dynamic disorder using optical  scopic measurements, in which the stochastic bath evolution is
techniques? most common observables are autocorrelation gescribed by a continuous variaBle.

functions of the chromophore absorbing frequeHcffuores- . o . ]
cence intensity? fluorescence lifetime fluctuatiord8,and dura- For ordinary diffusion with no external potential, the mean-
tion of on-time events (i.e., time during which a single molecule Square fluorophorequencher distance exhibits linear scaling
is in a fluorescence active stafé)l’ The dynamics of correla- in time, (X2~ Dt, whereD is diffusion coefficient. However,
tions of bath variables can also be probed by photon statisticsSystems with complex potential energy landscapes, for example,
by examining, for example, the Mandel parameter, which glasses, supercooled liquids, and biomolecules, have more
describes deviations of the distribution of number of emitted €laborate kinetic¥’282 In these systems, conformational
photons from Poissonia:18-20 relaxation follows anomalous subdiffusive dynamics in which
Fluorescence resonance energy transfer (FRET) measurements<?0~ t* with 0 < a. < 1 at short times.
between single pairs of donor and acceptor fluorophores provide  Recently, Metzler, Barkai, and Klafféd! have studied the
information about structure and distance fluctuations of a single sypdiffusive dynamics of a harmonically bound particle using
biomolecule (RNA, DNA, enzymes) or between components 4 fractional FokkerPlanck equation (FFPE) approach, which
uses fractional derivativé3. They have computed the Green

Single-molecule spectroscopy (SMS) has the capacity to
monitor the entire distributions of various molecular properties
extracting dynamical information not accessible from bulk
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fluorescence lifetime fluctuatiori®z(t)o7(0)for FRET and ET be computed as
quenching mechanisms for a broad range of subdiffusive model
parameters and compared it with correlators of lifetime fluctua-
tions due to Brownian motiof. By fitting the short time [ty 7(t) =
limit of Mittag—Leffler-type subdiffusive relaxation of a7 dX T(O) WXt Xt )T 4
r(t)or(0)D given by a stretched exponential, that is, fm ' ‘ﬁw KPR X o) To)Ped o) (4)
0t(t)ot(0)T~ exp[—kt*], into correlators obtained from com-
puter simulation of ET quenching, they obtained the stretching wherepe(X) is the equilibrium distribution oX defined in eq
parametei. = 0.2. 21 andW(Xy,t1;Xo,to) is the conditional probability to find the

In this paper, we consider both FRET quenching mechanism coordinate inX; at timet; given that it was inX, at an earlier
in which the rate varies asX~® and ET quenching with the  timety < ti. It connects the probability distribution & P(X.t),
rate varying as exp{X). We study the multitime correlations  at these two times, that is,
of the fluorescence lifetime by computing the three-point joint
distribution of the donoracceptor distance and the three-time -
correlation functioriz(t,)z(t1)z(to) Dof the fluorescence lifetime P(Xpt) = f o XWX, t; X0, t) P(Xo o) (5)
7 using the overdamped Brownian-oscillator model for the
donor-acceptor distanck. This readily available experimental
observable reflects fluctuations f that determine the fluo- N many systems with complex free-energy landscapes, the
rescence quenching rate. Higher-order correlations of dynamicalMean-square fluorophoreuencher displacement deviates from
variables contain increasingly more detailed information about linear scaling, and conformational relaxation undergoes anoma-

the dynamics of the environment variables and thus provide lous subdiffusion in whichAX*Ck t*, where O< o < 1.17:2829
critical tests for theoretical modeié33 Subdiffusive dynamics of an overdamped coordinate can be

described using a fractional FokkelPlanck equation for
Ornsteir-Uhlenbeck process, developed by Metzler, Barkai,
and Klafter30-31.32The one-dimensional FFPE for the distribution
W (X1,t1;X0,0) subject to the initial conditioliV,(X1,0;X0,0) =

(X1 — Xy) is given by

The model is presented in section Il. In section Ill, we derive
expressions for the forward and backward propagators for the
fractional FokkerPlanck equation and compute the two-point
conditional probability and the three-point joint probability of
the separation coordinakefor oo = 0.5 ando. = 1. The three-
point joint distributions are computed in section 1V, and the
three-time correlation function of the fluorescence lifetime for ; . _ 1-a .

FRET and ET quenching mechanisms is computed in section Voot %0.0) = oDy LWy X0 0) - (6)
V. Technical details are given in the appendices.

where the FokkerPlanck differential operator,

Il. The Model
We consider a fluorophore (donor chromophore) and fluo- aV'(X 9°
= ~ (7
rescence quencher (acceptor) attached to a polymer. The PP Xy, %ax?

fluorescence lifetime is = (yo + yq) %, whereyq is the intrinsic

(radiative and nonradiative) fluorescence decay rate of the donor

andyq is the quenching rate. Conformational fluctuations alter depends on the generalized diffusity = kgT/(my,) and
yq by varying the donoracceptor distanceX(t), and the friction 5, constants and&/'(X) is the gradient of the external
fluorescence lifetimer(t) = [yo + yL(Xt))I~* (§ = FRET or potential V(X) = mw?2X?/2.

ET) becomes a stochastic quantity. We assume that the 1nq Riemann Liouville fractional integro-differential opera-
conformatlpngl fluctuations are slower than the average fluo- . appearing on the right-hand side of eq & is

rescence lifetime.

In FRET, the time-dependent quenching raféis

_ 19 e, WalXt)
oDy, W, Xy t) = dtt — (8)

R)® T(o) a6 (¢, —p)te
[ @ 1

va ()~ 7

where R, is the Foerster radius. Another mechanism of Where we suppressed the initial state variabfgsand to in
fluorescence quenching is photoinduced ET in which the W,. This operator introduces a convolution integral with a

quenching rate depends exponentially on the democeptor ~ Power-law kernel 1f(— t')"¢ typical for memory effects in
distance. that is condensed phases with complex potentials. When 1, the

FFPE reduces to the standard FokkBfank equation (FPE)
and the evolution oK is described by the Langevin equation,

ET(p — —BX(t) :
vq (0 =koe @ Xty = —auX(t) + f(t), whereds = w?/ is the drift coefficient,
_ ) _ o the inverse of which determines the time scale of correlation of
The two-time correlation function of fluorescence lifetime, X, and the random forcit) is assumed to be a Gaussian white
noise, (t)f(t)O= 21100(t — t'), wheref = kgT/(mw?) is the
Cltyto) = E(t)(ty)U 3) magnitude of fluctuations with zero mean. For more insight on

the physical origin of the parameteks, and, appearing in
where the angular brackét,.[denotes ensemble average, may eqgs 6 and 7, we refer the reader to ref 36.
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Figure 1. The probabilityWs(Xa,t2;Xa,t) peq(X1) VS X1 and X, (A) for models M1 (left) and M2 (right) fot; = 1.0 ps and, = 1.0 ps (top)s =
1.0 ps and; = 10.0 ps (middle), anth = 1.0 ps and; = 100 ps (bottom). Contour plots are shown to the right of 2D surfaces.

Ill. Forward versus Backward Green Functions for
FFPE

The forward propagatdV" can be expanded in a complete
set of eigenstatefpn(X)} of the FFPE {( = 0)2829.31
W, (Xt Xo.to)
= Ey(LesXDt190(Xy = %)

= &I E (LX) (X)), (Xo)

n=

= e\?(XO) ¢n(xl)¢n(xo) Ea(_ln,at (1%0)

n=

= eV%)’Z*V‘Xﬂ’Zgown(xl)wn(xo)Ea(—ln,at‘fo) ©)

where here and ~hereafte§ =t — t, and the functions
Pn(X) = ¢n(X) expV(X)/2] are related to the eigenfunctions of
Lep, ¢n(X), through the scaled potentisl(X) = V(X)/[ksT],

I IS S
¥ =57 hah (10)

{yn(X)} form an orthonormal basis set, that is,

S Xy 0w = [ dX "™ ¢ (¢(X) = Sy
(11)

The eigenvalues,, = nw¥nq., N =0, 1, 2, etc., are related
to the eigenvalues, ; of the standard FokkerPlanck equation
by a dimensionless rescaling factor, = [71/7«]An 1.

Substituting eq 10 in eq 9 giv&s!
WI(Xlitl;X01t0) =
1 21 - - - g
hZ_Ea<—nt%o)Hn<xo/f2>Hn<x1/fz) &5 (12)
200" 2"l
where X = XIW6, T = t(A,)Y, and H, are Hermite poly-

nomials with eigenvalues, , = niq. E, is the Mittag-Leffler
function

©  (—ntH)™

E(n)=Y——
=1t rrZOF(l‘i‘n‘U.)

(13)

It crosses over between a stretched exponential at short
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Figure 2. The joint probabilityPy(Xz,t2;X1,tz) vs X3 and X (A) for models

Barsegov and Mukamel

M3 (left) and M4 (right) fot; = 1.0 ps and, = 1.0 ps (top)f; = 1.0

ps andt, = 200 ps (middle), anth = 1.0 ps and, = 1.5 ns (bottom). Contour plots are shown to the right of 2D surfaces.

times compared toif) e,

E (—nt* Mol 14
and a power law at long times,
Eu(—nt%) ~ [, (1 — )] 't (15)

whereI'(2) = [, dy y¥*! ¥ is the gamma function.
For o = 1, the Mittag-Leffler function becomes a simple
exponential, and we recover the solution of the ordinary FPE,

o

where we used the summation formula for the Hermite
polynomials37-38

Equation 12 can only be used to compute the two-time
correlation functionsfA(X(t))A(X(to))J of various dynamical
guantities when the first time i%. In the continuous time
random walk (CTRW) approach to Brownian diffusion, the
waiting time distribution functiony(t), for successive jumps
is Poissonian, that isy(t) = T exp[—t/{], where dlis the
average time between successive juf#pé In CTRW, all
walkers have arrived &, exactly at timey. In the fractal time
random walk, the system does not equilibrate and retains

Wir(xl’tl;xmto) =
1
276(1 — e oy

(04— X’
- 291(1 - e‘%‘w)) (10

memory of the initial time, which results in the long-tailed
waiting time distribution,w(t) ~ ([t)1+.30.31 Because of
memory effects (represented by the power-law kernel in the
Riemann-Liouville operator (eq 8)), the distribution of waiting
times underlyingX at timeto differs from the distribution at
later timest > 0. As a result, the process becomes non-
Markovian, that is, the current distribution of alone is not
sufficient to predict the future distribution and more information
is needed. However, the process is Markovian but only for a
special initial timety, and to compute multitime correlation
functions, we need a general Green funct(Xz,t2;X1,t1)

for arbitrary timet; = to. This function can be constructed if
we go back and forth to this special tintg that is, by
propagating the system from; at t; back in time toX, at
time t, followed by forward propagation to staXe at timet,

that is,

W, (Xt X3,t)) = f :o dXOW;r(thz;XOtO)W; (Kot Xsty) an

The backward propagatogDi—¢ LLP(X), is computed in
Appendix A by solving the backward FFPE. Substituting the
forward WZ and backwardV , propagators given by eqgs 9
and 29 in eq 17, we obtairix(> t3)

W, (X, t5; X 1) =

[

D2V 4, X)X En At 30 Ealtnalie) (18)

n=



Multipoint Fluorescence Quenching Time Statistics

4

J. Phys. Chem. A, Vol. 108, No. 1, 20049

4

Figure 3. The joint probabilityPy(Xa,tz;X1,tz) vs X1 and X, (A) for models M3 (left) and M4 (right) fot; = 50.0 ps and, = 1.0 ps (top)x =
50.0 ps and, = 200 ps (middle), andh = 50.0 ps and, = 1.5 ns (bottom). Contour plots are shown to the right of 2D surfaces.

Inserting eq 10 and the scaled potentéX) in the right-hand
side of eq 18, we obtain

Wo(Xotoi Xp,ty) =

1 =21 ]
_Ea(_rﬁa Em(rftOL Hn()~( /«/E)Hn(j( /\/E) e—X22/2

van r‘ZOZ"n! 20 1M 1
(19)

Fora = 1, we get

Wi (Xouti Xg,ty)

_ V(Xp)2—V(Xp)2 —Anat;
=€ = 0 wn(XZ)wn(Xl) e

n=

& " H (W 2)H (XY 2) € (20)

B 1 21
Vo nZOZnn!

By use of the summation formula for the Hermite polynomi-
als3738it can be brought to a form of eq 16. Note that éor=
1 W, represents a stationary process and it only dependig.on
For o < 1, the process is nonstationary awgl depends on
both to0 and t10.

In the limit tp; = t; — t; — oo, we recover the equilibrium
Boltzmann distribution, that is,

PedXo) = A"tmw Wo(XatzXp,t)

= VX02-V(x)12

xlim S (K (X)) Eo(—2n o120 Eo(Ain ot 10)
At =

= /PO (X )po(X)
— [1/(2%0)] 1/2 e*XZZ/(Z('}) (2 1)

where yg(X) is the minimum uncertainty coherent state of
the harmonic oscillator, given bywo(X) = [1/(2r0)]V4
exp[—X2/2]. Equations 19 and 20 will be used in the following
calculations.

IV. Conditional and Joint Probabilities

To study the fluctuation statistics, we have computed the two-
point conditional distribution oK for models M1 and M2, and
the three-point joint distribution oX for models M3 and M4.
The parameters of these models are summarized in Table 1.
Models M1 and M3 correspond to subdiffusian € 0.5), and
models M2 and M4 represent ordinary Brownian diffusion (
= 1). We set the diffusion and friction constants tor= 0.5
ando. = 1 to be equal, that i%; = K, andn, = #1. In models
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Figure 4. Constantt, sections ofPy(Xz,t;X1,t1) vs X2 (A) for X; =
2.0 A (upper panels) an¥; = 1.0 A (lower panels) for models M3
and M4. For model M3, = 8.0 ps ¢-+), 200 ps ¢ — —), and 1.5 ns
(—); for model M4,t, = 8.0 ps €-+), 20.0 ps ¢ — —) and 1.0 ns+).

TABLE 1: Parameters for Models M1—M4 Used in
Calculation of the Two-Point Conditional and Three-Point
Joint Distribution of Donor —Acceptor Distance in Figures
1-4

model Ky x 1 (sY)  #:1(s) a X A  to(ps)
M1 5.0 10.0 0.5
M2 5.0 10.0 1.0
M3 5.0 10.0 0.5 2.0 0
M4 5.0 10.0 1.0 2.0 0

TABLE 2: Parameteﬁrsﬁfor Models M5—M8 Used in
Calculation of CERF'(t,,t) in Figure 5

model Ky x 12 (™) 71(s) a Ro(A) yo(s) % (A) to(ps)

M5 5.0 10.0 0.5 10.0 1.0 2.0 0
M6 5.0 10.0 1.0 10.0 1.0 2.0 0
M7 5.0 10.0 0.5 10.0 1.0 2.0 0
M8 5.0 10.0 1.0 10.0 1.0 2.0 0
TABLE 3: Parameters for Models M9—M12 Used in

Calculation of C5'(t,t) in Figures 6
model K; x 1 (s) 71 (5Y) o k(sY) BAA) xB) to(ps)

M9 5.0 10.0 0.5 10.0 2. 2.0 0
M10 5.0 10.0 1.0 10.0 2.0 2.0 0
M11 5.0 10.0 0.5 10.0 2.0 2.0 0
M12 5.0 10.0 1.0 10.0 2.0 2.0 0

M3 and M4, X starts off from the nonequilibrium valué =
Xo = 0 at timety = 0.
Note that fora. = 0.5 the Mittag-Leffler function defined

in eq 13 reduces to"& erfc(w/t). This was used to compute
both conditional and joint probabilities far = 0.5 utilizing

series expansion given by eq 19. The series was truncated at

= 60.

Using W, (egs 19 and 20), in Figure 1 we compare
the  equilibrium-weighted conditional probability
Wa(Xa,t2; X1,t1) pe(X1) Vs Xy @andX; for a fixed time difference
tp =t = 1 ps and a series ¢ = t, — t; = 1, 10, and 100 ps
for models M1 and M2 keepinlj, andz fixed. peX) is given
by eq 21.

Barsegov and Mukamel

Initial correlations betweeiX; and X, are reflected in the
enhancedX; = X, diagonal feature. This feature gradually
vanishes for longet; as the conditional probability becomes a
two-dimensional Gaussian symmetrically distributed with re-
spect toX; and X,. However, as seen from the contour plots
for longer t,, the variation of probability inX;, X, space is
considerably slower for model M1. This reflects longer lasting
X1,X2 correlations for subdiffusion compared with ordinary
Brownian motion. Because Brownian diffusion is a Markovian
processW,—1 depends only on the different¢g— t;. Subdif-
fusive dynamics is in contrast intrinsically non-Markovian, and
W05 depends on both andt,.

Using eq 19, we have computed the joint probability to be
in X, at timet, given that it was inX; at timet; < t, and in
Xo = Xp at timetg = 0,

Pa(Xaty Xyt Xonto)
= fi, X We (X t: X3, 1) W (X3, 11 X0 o) Ped Xo)
— i e—(X12+x22)/(29)
270

© 1 _ -
x ZDEEQ(—mtJ‘)Hm(xllfszz)m

x zo—l Eo(— N2 By (~NE)H, (/Y 2)H,(%,/v2)
=02"n!
(22)

Figure 2 displaysPy(Xa,t2;X1,t1;%0,0) vs X1 and X, for fixed

t; = 1 ps and a series @ = 1 ps, 200 ps, and 1.5 ns assum-
ing that Xo is Gaussian-distributed aroudd = 2 A at time

to = 0 for models M3 and M4. The. = 0.5 dynamics differs
qualitatively from its Brownian counterpaet = 1. Although
for both models the probability undergoes diffusion in
X1,X2 space with a finite shift of the most probable con-
figuration X7 X2®), Py—os iS separated into two peaks
while retaining correlations betweeK; and X, even for
t, = 1.5 ns. These correlations disappear Ry, already
at t, = 200 ps, where it assumes a two-dimensional
X1,Xo-symmetric Gaussian form.

In Figure 3, we repeated these calculationstfor 50 ps.
Pu—05 remains asymmetric even &t = 200 ps and 1.5 ns
implying X1,X, correlations, whered®,—; is Gaussian. Compar-
ing contour plots 0fPy—o5 and Pe=1.0 for shortt; andt, (top
panels in Figures 2 and 3) with lortg andt,, we see that a
decay ofX3,X; correlations is faster for subdiffusion for short
times but slower for long times compared with= 1. This can
be understood because the Mittdgeffler function interpolates
between a faster decaying stretched exponential at short times
and a power law at long times, compared with the exponential
function.

In Figure 4, we display(Xo,t2;X1,t1) vs X, andt, for fixed
X1 = 2.0 and 1.0 A and; = 1 ps and constarts sections of
Pu—o.5for t = 8 ps, 200 ps, and 1.5 ns aRg-1 o for t, = 8 ps,

20 ps, and 1.0 ns for models M3 and M4, respectively. Here
again, we find a notable difference betweer= 0.5 ando. =

1. Py=10 diffuses gradually to equilibriunX; = 0O retaining a
fixed Gaussiar; profile, wheread,—o s builds up its density
aroundX; = 0 almost immediately by funneling the distribution
from X;. Comparing the magnitude of constaptsections of
P.—o0sandPy—1, we see that aX%, relaxes to zero with increasing
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(a) M5 (e) 02 M5,M6

(b) 0.5 M7,M8

Mb5,M6

100
(d) 0.5 M7,M8
t,0.25 =
0 0.25 0.5 0 50 100
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Figure 5. CF¥'(t, 1) (ps)) vsty andt (ps) for models (a) M5, (b) M6, (c) M7, and (d) M8, the diagonal sec@fi'(t, t) (bs) vsti =t =t
(ps) for models (e) M5 and M6 and (f) M7 and M8, and constanrt 1 ps section€""5'(t) (ps’) vs t, (ps) for models (g) M5 and M6 and (h)
M7 and M8. Models M5 and M7 (M6 and M8) are denoted by solid (dotted) lines.

t2, P becomes equilibrium distributed for both= 0.5 and functions of the fluorescence lifetime defined by
o = 1.0. HoweverPy=05 shows a residual density positioned
around the originaK; even for larget,. E(ty)(t)(ty)0
Note that because in our calculationsVi(Xz,tz;aXa,tr) peqr = f_“w f_”m f_""m dX, dX; dX, 7(Xo) T(X)T(X,)
(X1) andPgy(Xa,t2;X1,t1) for oo = 0.5 we used a truncated series ] .
X W, (Kot X, t) W (Xt X0, o) e Xo) (23)

expansion (eq 19), these quantities do not exhibit non-
differentiable cusps (see discussion in section 5.4 of G(t2)r(t)(to)is computed by substituting eq 19 far= 0.5

ref 31). and eq 20 form = 1 and eq 1 for FRET and eq 2 for ET into
eq 23. The resulting expression f6f~ (t,,t1) is given by eq

V. Multitime Correlation Function of Fluorescence B2 andCE'(to,ty) is given by eq B7.

Lifetime We have computeti(t,)z(t1)7(to) for eight models: models

M5—M8 are for FRET and models M9M12 are for ET. In
The Green functionWa(Xz,t2;X1,t1), may be used to compute  these models, we varied the diffusion coefficieht,.
n-point correlation functions of arbitrary variables that depend [#(t,)z(t;)z(to) for models M5, M7, M9, and M11 of subdiffu-
on X(t). In this section, we compute the three-time correlation sion (@ = 0.5) is compared with the same quantity computed
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@ 1 | M9,M10

M11,M12

M?.M10

M11,M12

0 0b5_ 1Lb 0 BFTTTTO
f, i,

Figure 6. Cg'(tz, t1) (ps) vs tz andt, (ps) for models (a) M9, (b) M10, (c) M11, and (d) M12, the diagonal sedigft, t) (ps) vsth =, =t
(ps) for models (e) M9 and M10 and (f) M11 and M12, and constant1 ps sectionQET(tz) (ps’) vst; (ps) for models (g) M9 and M10 and (h)
M11 and M12. Models M9 and M11 (M10 and M12) are denoted by solid (dotted) lines.

for Brownian diffusion models M6, M8, M10, and M12. We for models M5-M8 and constant; = 1 ps sections of

set the diffusion and friction constants for models with= CIRF(t,,ty). Slowly decaying correlations are clearly observed
0.5 anda. = 1 to be equal, that i¥; = K, and#, = 711, and for a = 0.5.

assume a near-equilibrium initial condition sy that is,Xo = The plots show a qualitative difference in the fluorescence
2 A at t|melto = 0. In FRET models, we sd¥ = 10.0 A and lifetime correlations. Because of the absence of memory in
yo= 1.0 s'% In ET models, we usk = 10 st andf = 2.0 for a. = 1, the decay o€! "5 (t,t1) with t; andt, occurs on the

A~%. In FRET models M5 and M6 (M7 and M8K: =71 (K1 same time scale and contour plots@f-; are symmetric with
> 772). In ET models M9 and M10 (M11 and M12K; < 7, respect to interchange < t, for a = 1.0 models. However,
(Ky > #1). Parameters used in FRET and ET models are pecause of non-Markovian evolution Xf this is not the case

summarized in Tables 2 and 3, respectively. for C25H(tt) (a0 = 0.5), which shows longer lasting cor-
Figure 5 compare<C;"'(tt2) vs t, and t, for models relations amond, compared witH;.
M5—M8 (where we varied the magnitude Kf). CF 5 (tz,t) As discussed earlier, the non-Markovian subdiffusive dynam-

is weaker and undergoes a faster decay for larger values ofics follows a faster decay for short & 1/A4, stretched
Ky for both subdiffusion and Brownian diffusion. To highlight exponential behavior) and slower decay at long>(1/41, a
this point, we also display diagontl = t, sections ofC(fLRET power law) time intervals compared with the exponential decay
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in case of the Markovian dynamics. Because of this, contours same eigenvalued,, and orthonormal basis s€tyn(X)}
of CIRSL(t,ty) are intrinsically asymmetric and are more (see eq 11). This allows us to expand the backward propagator
stretched alond. This pattern persists a&/%: is varied. D O‘LJr s(X) (t = 0) as
CE (tz,tl) for models M3-M12 is shown in Figure 6 (where
we varled the magmtude &f;). We also show dlagonai =t B
sections and constaht= 1 ps %oﬂles olCET(G1y) for models  Wa Xyt Xo%=0)
M9—M12. Similar to FRET,C (t2,t1) has smaller amplitude
and follows a faster decayOL 21&1 )is increased forp both =E (L Xt )O(X; ~ Xo)
o= 0.5 anda. = 1, and the interdye distance correlations live N ®
longer for o = 0.5. Because of the absence (presence) of = e"* S E (LL(X)t;")n(XD)ba(%o)

memory in Brownian diffusion (subdiffusion) models, contour =
plots are symmetric (asymmetric) with respecttio— t, for o
Cilio (CElo). Comparison of contour plots, diagonal sec- = VX X E (=1 t.®
tions C,(t,t), and fixedt; = 1 ps profilesCq(t,) for FRET and ZO¢”( VOB naly)

ET shows that because in FRET the fluorescence quenching
rate varies withX as ~X"® and thus follows a slower X=X )2 o
(power-law) decay compared to exponential decay rate for € VX)X Eo(—Analy)

n=

(A6)

ET, CER®T retains correlations of lifetimes for longer times
compared taCE".

The propagator between arbitrary timeandt, can now be
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discussions. =/ dxoW+(X21t2;x01O)W;(X@O;xl’tl)
Appendix A: Backward Propagator for the FFPE = f dX,e /0202 P (XY (X)Eo(— A ots")

The backward propagator is the solution of the backward © "~
FFPE, « g/2=V(Xo)/2 wn(xl)wn(XO)Ea(;Ln,atlu)

d : o t : "

d_tlwa(X21t2=X17t1) = _thll aLFP(Xl)Wa(XZtZ’Xl!tl) (A1) _ \7(x1)/(2—\'/(x2)/2)
\l;v;;re the backward FokkePlanck operator it[, defined X Z Eo(—n ot Ean ot1 )V X)W (X)) O

n,m=0
V(X 2
L= m;)% Kaaa—xz (A2) g2 V02 Zf” PR E b Eq (R ots®)
o

(A7)
BecauseoDii *Lgp and oD L[, are not Hermitian conju-
gates, to obtain the eigenfunction expansion for the backward
propagator, we need the adjoint of operator &¥)] oD *Lrp.
It is easy to see that

where in the last line of eq A7 we used eq 11. Equation A7 is
used to compute conditional and joint probabilities in section
IV and the three-time correlation function of fluorescence

Y _ _ y lifetime in section V.
[€700) oD LeeX)]" = [0D! “LepX)] " €

FP(X) Appendix B: Three-Point Correlation Functions for

- ( )at L )1 - Y FRET and ET Quenching

Qa -t

The n-point correlation function of observabkeis defined

— ODtl—O. L P(x) V(X) by
= D, €W LeglX) (A3)
A).. At)A(ty)D

= [ X, [T dX, . T dX, [ dX

where in the last line of eq A3 we used the following propéfty,

[eV(X) L P(X)]T LTP(X) eV(X) — V(X) L P(X) (A4) o A(Xn)W (thn;Xn_l’tn_l)
The operators expfX)] Les(X) and x AW (X1t X2ty 2) -
X AW, (X1t X 0, L) A(Xo) pe(Xo) (B1)

L(X) = V12 LX) e V092 — o002 | t LX) e VX2 (A5)

are now Hermitian. Equation A3 implies that the fractional SettingA(X) = z(X) in the eq B1, we obtain eq 23 for the three-
operators ¥ (DL e(X) and oD LI (X) e¥® have the point correlation function of the fluorescence lifetime.
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For FRET (eq 1), eq B1 gives
Co = (taty)

= Ijr(tz)T(t1)T(0)ﬁRET

5/4 ®

Herely(n) is given by

Npn 1
—1)”’22”F(;)1:£§T+ Z)F(— gg%l) (B3)

2
Eo (=N Eo (Nt *)Ey (=0t )1 A ()1 ()

]
(B2)

2!

(20)"
6 \

Yo

l(n) =

whereF(a.,f3;v;2) is hypergeometric function defined by

1 1 _ g _
Flapiyi = o [ dtt i —ty 7 -t
B(B,y—p)~° (B4)
andB(S,y—p) is beta function, defined by
B(xy) = [, dtt (1 -ty (B5)
I2(n) is given by
_Va2ey(, 27?2 n)?
W= ee Pa—a T Ph—2)
nfl[ I]Z 21 |
- 25 n—1) — 255(2?nl)| (B6)
For ET (eq 2), eq B1 gives
Celltzt)
= () (t,)r(0)F"
5/4 3/2
= = e pmn 2g)mHn+2/2
20 @t P

° 9 ﬁ\/_nm

X —E, (—nt,)E, (n,)E (—mt,)|——
m=n2"n!
x L™ 29)+z E( nt,")E, (nt,*)E,(—mt,%)
m=n2"ml
m—n
V20
! L, "(5%0) (B7)
whereL,"(x) is Laguerre polynomial defined by
L = L gt xm S perem (B8)
n - n! dxn

Equations B2 and B7 were used in section V for computing
the three-time correlation functions for the FRET and ET
quenching mechanisms.

Barsegov and Mukamel
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