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Three-point fluorescence lifetime correlation functions are computed for the fluorescence resonance energy
transfer (FRET) and electron transfer (ET) quenching mechanisms in a single donor-acceptor system of
which the distanceX undergoes anomalous diffusion in a harmonic potential with short-time variance scaling
as ∼tR. The three-point joint probability distribution ofX and its moments are calculated by solving the
fractional Fokker-Planck equation (FFPE). ForR ) 1, the process is stationary and the two- and three-point
joint probability distribution is centered around the time-dependent average donor-acceptor separation,〈X(t)〉.
For R < 1, the distribution slows down, becomes nonstationary, and remains centered at initial separation
X(0) even for times exceeding the bath correlation time scale.

I. Introduction

Single-molecule spectroscopy (SMS) has the capacity to
monitor the entire distributions of various molecular properties,
extracting dynamical information not accessible from bulk
measurements.1-4 The dynamics of, for example, conformational
motions of proteins spans many decades of time scales ranging
from femtoseconds to seconds. While ensemble-averaged
experiments have been used to probe fast conformational
fluctuations compared to some internal clock, for example,
rotational diffusion in fluorescence depolarization or fluores-
cence lifetime in Stokes shift measuremnents,5 it is hard to find
suitable clocks for slow molecular motions (e.g., conformational
fluctuations of large subdomains). Furthermore, bulk measure-
ments cannot tell whether all molecules have the same distribu-
tion or each molecule makes a distinct contribution to that
distribution. SMS allows one to probe slow motions by studying
one molecule at a time.

Much theoretical work has been devoted recently to study of
dynamical disorder on a broad range of time scales at the single-
molecule level.6-12 In probing dynamic disorder using optical
techniques,13 most common observables are autocorrelation
functions of the chromophore absorbing frequency,14 fluores-
cence intensity,13 fluorescence lifetime fluctuations,15 and dura-
tion of on-time events (i.e., time during which a single molecule
is in a fluorescence active state).16,17 The dynamics of correla-
tions of bath variables can also be probed by photon statistics
by examining, for example, the Mandel parameter, which
describes deviations of the distribution of number of emitted
photons from Poissonian.15,18-20

Fluorescence resonance energy transfer (FRET) measurements
between single pairs of donor and acceptor fluorophores provide
information about structure and distance fluctuations of a single
biomolecule (RNA, DNA, enzymes) or between components

of interacting biomolecules (e.g., lifetime of an enzyme-
substrate contact, opening and closing of ion channels in a
membrane).21-24 FRET data reflect conformational states in the
molecular center-of-mass frame and are not complicated by
overall translocations or rotations. FRET measurements on a
single molecule can access conformational subpopulations and
dynamics, ligand binding, kinetics of folding/unfolding and
protein aggregation, and enzyme catalysis. FRET has recently
been used to probe conformational dynamics of staphylococcal
nuclease (SNase) and catalytic turnovers of DNA and RNA
hydrolysis into mono- and dinucleotides.16,21,22,25

Both discrete-jump and continuous models have been used
in recent studies of dynamically fluctuating environments of a
single molecule. Xie and co-workers have studied the distribu-
tion of jump rates by following the closing and opening of
single-stranded DNA hairpins and observed multiexponential
decay of the two-time correlation functions of fluorescence
lifetime fluctuation.26 The overdamped Brownian oscillator is
a widely used model suitable for the interpretation of spectro-
scopic measurements, in which the stochastic bath evolution is
described by a continuous variable.27

For ordinary diffusion with no external potential, the mean-
square fluorophore-quencher distance exhibits linear scaling
in time, 〈X2〉 ≈ Dt, whereD is diffusion coefficient. However,
systems with complex potential energy landscapes, for example,
glasses, supercooled liquids, and biomolecules, have more
elaborate kinetics.17,28,29 In these systems, conformational
relaxation follows anomalous subdiffusive dynamics in which
〈X2〉 ≈ tR with 0 < R < 1 at short times.

Recently, Metzler, Barkai, and Klafter30,31 have studied the
subdiffusive dynamics of a harmonically bound particle using
a fractional Fokker-Planck equation (FFPE) approach, which
uses fractional derivatives.32 They have computed the Green
function,W(X1,t1;X0,t0), of a subdiffusive particle evolving on
the harmonic potential.30,31 Yang and Xie used this Green
function to compute the two-time correlation functions of
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fluorescence lifetime fluctuations〈δτ(t)δτ(0)〉 for FRET and ET
quenching mechanisms for a broad range of subdiffusive model
parameters and compared it with correlators of lifetime fluctua-
tions due to Brownian motion.17 By fitting the short time
limit of Mittag-Leffler-type subdiffusive relaxation of
〈δτ(t)δτ(0)〉 given by a stretched exponential, that is,
〈δτ(t)δτ(0)〉 ≈ exp[-ktR], into correlators obtained from com-
puter simulation of ET quenching, they obtained the stretching
parameterR ) 0.2.

In this paper, we consider both FRET quenching mechanism
in which the rate varies as∼X-6 and ET quenching with the
rate varying as exp(-X). We study the multitime correlations
of the fluorescence lifetime by computing the three-point joint
distribution of the donor-acceptor distance and the three-time
correlation function〈τ(t2)τ(t1)τ(t0)〉 of the fluorescence lifetime
τ using the overdamped Brownian-oscillator model for the
donor-acceptor distanceX. This readily available experimental
observable reflects fluctuations ofX that determine the fluo-
rescence quenching rate. Higher-order correlations of dynamical
variables contain increasingly more detailed information about
the dynamics of the environment variables and thus provide
critical tests for theoretical models.27,33

The model is presented in section II. In section III, we derive
expressions for the forward and backward propagators for the
fractional Fokker-Planck equation and compute the two-point
conditional probability and the three-point joint probability of
the separation coordinateX for R ) 0.5 andR ) 1. The three-
point joint distributions are computed in section IV, and the
three-time correlation function of the fluorescence lifetime for
FRET and ET quenching mechanisms is computed in section
V. Technical details are given in the appendices.

II. The Model

We consider a fluorophore (donor chromophore) and fluo-
rescence quencher (acceptor) attached to a polymer. The
fluorescence lifetime isτ ) (γ0 + γq)-1, whereγ0 is the intrinsic
(radiative and nonradiative) fluorescence decay rate of the donor
andγq is the quenching rate. Conformational fluctuations alter
γq by varying the donor-acceptor distanceX(t), and the
fluorescence lifetimeτ(t) ) [γ0 + γq

j (X(t))]-1 (j ) FRET or
ET) becomes a stochastic quantity. We assume that the
conformational fluctuations are slower than the average fluo-
rescence lifetime.

In FRET, the time-dependent quenching rate is34,35

where R0 is the Foerster radius. Another mechanism of
fluorescence quenching is photoinduced ET in which the
quenching rate depends exponentially on the donor-acceptor
distance, that is,

The two-time correlation function of fluorescence lifetime,

where the angular bracket,〈...〉, denotes ensemble average, may

be computed as

whereFeq(X) is the equilibrium distribution ofX defined in eq
21 andW(X1,t1;X0,t0) is the conditional probability to find the
coordinate inX1 at time t1 given that it was inX0 at an earlier
time t0 < t1. It connects the probability distribution ofX, P(X,t),
at these two times, that is,

In many systems with complex free-energy landscapes, the
mean-square fluorophore-quencher displacement deviates from
linear scaling, and conformational relaxation undergoes anoma-
lous subdiffusion in which〈∆X2〉 ≈ tR, where 0< R < 1.17,28,29

Subdiffusive dynamics of an overdamped coordinate can be
described using a fractional Fokker-Planck equation for
Ornstein-Uhlenbeck process, developed by Metzler, Barkai,
and Klafter.30,31,32The one-dimensional FFPE for the distribution
WR(X1,t1;X0,0) subject to the initial conditionWR(X1,0;X0,0) )
δ(X1 - X0) is given by

where the Fokker-Planck differential operator,

depends on the generalized diffusionKR ) kBT/(mηR) and
friction ηR constants andV′(X) is the gradient of the external
potentialV(X) ) mω2X2/2.

The Riemann-Liouville fractional integro-differential opera-
tor appearing on the right-hand side of eq 6 is32

where we suppressed the initial state variablesX0 and t0 in
WR. This operator introduces a convolution integral with a
power-law kernel 1/(t - t′)1-R typical for memory effects in
condensed phases with complex potentials. WhenR ) 1, the
FFPE reduces to the standard Fokker-Plank equation (FPE)
and the evolution ofX is described by the Langevin equation,
Ẋ(t) ) -λ1X(t) + f(t), whereλ1 ) ω2/η1 is the drift coefficient,
the inverse of which determines the time scale of correlation of
X, and the random forcef(t) is assumed to be a Gaussian white
noise,〈f(t)f(t′)〉 ) 2λ1θδ(t - t′), whereθ ≡ kBT/(mω2) is the
magnitude of fluctuations with zero mean. For more insight on
the physical origin of the parametersKR and ηR appearing in
eqs 6 and 7, we refer the reader to ref 36.

〈τ(t1)τ(t0)〉 )

∫-∞

∞
dX1 ∫-∞

∞
dX0 τ(X1)W(X1,t1;X0,t0)τ(X0)Feq(X0) (4)

P(X1,t1) ) ∫-∞

∞
dX0 W(X1,t1;X0,t0)P(X0,t0) (5)

ẆR(X1,t1;X0,0) ) 0Dt1

1-RLFP(X2)WR(X1,t1;X0,0) (6)

LFP ) ∂

∂X
V′(X)
mηR

+ KR
∂

2

∂X2
(7)

0Dt1

1-RWR(X1,t1) ≡ 1
Γ(R)

∂

∂t1
∫t0

t1 dt′
WR(X1,t′)

(t1 - t′)1-R (8)

γq
FRET(t) ≈ γ0( R0

X(t))6

(1)

γq
ET(t) ) k0 e-âX(t) (2)

C(t1,t0) ≡ 〈τ(t1)τ(t0)〉 (3)
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III. Forward versus Backward Green Functions for
FFPE

The forward propagatorW+ can be expanded in a complete
set of eigenstates{φn(X)} of the FFPE (t g 0)28,29,31

where here and hereaftertij ≡ ti - tj, and the functions
ψn(X) ) φn(X) exp[Ṽ(X)/2] are related to the eigenfunctions of
LFP, φn(X), through the scaled potentialṼ(X) ) V(X)/[kBT],

{ψn(X)} form an orthonormal basis set, that is,

The eigenvaluesλn,R ) nω2/ηR, n ) 0, 1, 2, etc., are related
to the eigenvaluesλn,1 of the standard Fokker-Planck equation
by a dimensionless rescaling factorλn,R ) [η1/ηR]λn,1.

Substituting eq 10 in eq 9 gives30,31

where X̃ ) X/xθ, t̃ ) t(λR)1/R, and Hn are Hermite poly-
nomials with eigenvaluesλn,R ) nλR. ER is the Mittag-Leffler
function

It crosses over between a stretched exponential at short

Figure 1. The probabilityWR(X2,th2;X1,th1)Feq(X1) vs X1 andX2 (Å) for models M1 (left) and M2 (right) forth1 ) 1.0 ps andth2 ) 1.0 ps (top),th1 )
1.0 ps andth2 ) 10.0 ps (middle), andth1 ) 1.0 ps andth2 ) 100 ps (bottom). Contour plots are shown to the right of 2D surfaces.

WR
+(X1,t1;X0,t0)

) ER(LFP(X1)t10
R )δ(X1 - X0)

) eṼ(X0)∑
n)0

∞

ER(LFP(X1)t
R)φn(X1)φn(X0)

) eṼ(X0)∑
n)0

∞

φn(X1)φn(X0)ER(-λn,Rt10
R )

) eṼ(X0)/2-Ṽ(X1)/2∑
n)0

∞

ψn(X1)ψn(X0)ER(-λn,Rt10
R ) (9)

ψn(X) ) [ 1
2πθ]1/4 1

x2nn!
Hn(X̃/x2) e-X̃2/2 (10)

∫-∞

∞
dX ψn(X)ψm(X) ) ∫-∞

∞
dX eṼ(X)

φn(X)φm(X) ) δnm

(11)

WR
+(X1,t1;X0,t0) )

1

x2πθ
∑
n)0

∞ 1

2nn!
ER(-nt̃10

R )Hn(X̃0/x2)Hn(X̃1/x2) e-X̃1
2/2 (12)

ER(-nt̃R) ) ∑
m)0

∞ (-nt̃R)m

Γ(1 + mR)
(13)
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times compared to (λR)-1/R,

and a power law at long times,

whereΓ(z) ) ∫0
∞ dy yz-1 e-y is the gamma function.

For R ) 1, the Mittag-Leffler function becomes a simple
exponential, and we recover the solution of the ordinary FPE,

where we used the summation formula for the Hermite
polynomials.37,38

Equation 12 can only be used to compute the two-time
correlation functions〈A(X(t))A(X(t0))〉 of various dynamical
quantities when the first time ist0. In the continuous time
random walk (CTRW) approach to Brownian diffusion, the
waiting time distribution function,w(t), for successive jumps
is Poissonian, that is,w(t) ) 〈t〉-1 exp[-t/〈t〉], where〈t〉 is the
average time between successive jumps.39-43 In CTRW, all
walkers have arrived atX0 exactly at timet0. In the fractal time
random walk, the system does not equilibrate and retains

memory of the initial time, which results in the long-tailed
waiting time distribution,w(t) ≈ (〈t〉/t)1+R.30,31 Because of
memory effects (represented by the power-law kernel in the
Riemann-Liouville operator (eq 8)), the distribution of waiting
times underlyingX at time t0 differs from the distribution at
later times t > 0. As a result, the process becomes non-
Markovian, that is, the current distribution ofX alone is not
sufficient to predict the future distribution and more information
is needed. However, the process is Markovian but only for a
special initial timet0, and to compute multitime correlation
functions, we need a general Green functionWR(X2,t2;X1,t1)
for arbitrary timet1 * t0. This function can be constructed if
we go back and forth to this special timet0, that is, by
propagating the system fromX1 at t1 back in time toX0 at
time t0, followed by forward propagation to stateX2 at timet2,
that is,

The backward propagator,0Dt
1-R LFP

† (X), is computed in
Appendix A by solving the backward FFPE. Substituting the
forward WR

+ and backwardWR
- propagators given by eqs 9

and 29 in eq 17, we obtain (t2 g t1)

Figure 2. The joint probabilityPR(X2,th2;X1,th1) vs X1 andX2 (Å) for models M3 (left) and M4 (right) forth1 ) 1.0 ps andth2 ) 1.0 ps (top),th1 ) 1.0
ps andth2 ) 200 ps (middle), andth1 ) 1.0 ps andth2 ) 1.5 ns (bottom). Contour plots are shown to the right of 2D surfaces.

ER(-nt̃R) ≈ exp[-
nλRtR

Γ(1 + R)] (14)

ER(-nt̃R) ≈ [nλRΓ(1 - R)]-1t-R (15)

W1
+(X1,t1;X0,t0) )

1

x2πθ(1 - e-2λ1t10)
exp(-

(X1 - X0 e-λ1t10)2

2θ(1 - e-2λ1t10) ) (16)

WR(X2,t2;X1,t1) ) ∫-∞

∞
dX0 WR

+(X2t2;X0t0)WR
-(X0t0;X1t1)

(17)

WR(X2,t2;X1,t1) )

eṼ(X1)/2-Ṽ(X2)/2∑
n)0

∞

ψn(X2)ψn(X1)ER(-λn,Rt20
R )ER(λn,Rt10

R ) (18)
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Inserting eq 10 and the scaled potentialṼ(X) in the right-hand
side of eq 18, we obtain

For R ) 1, we get

By use of the summation formula for the Hermite polynomi-
als,37,38 it can be brought to a form of eq 16. Note that forR )
1 WR represents a stationary process and it only depends ont21.
For R < 1, the process is nonstationary andWR depends on
both t20 and t10.

In the limit t21 ) t2 - t1 f ∞, we recover the equilibrium
Boltzmann distribution, that is,

where ψ0(X) is the minimum uncertainty coherent state of
the harmonic oscillator, given byψ0(X) ) [1/(2πθ)]1/4

exp[-X̃2/2]. Equations 19 and 20 will be used in the following
calculations.

IV. Conditional and Joint Probabilities

To study the fluctuation statistics, we have computed the two-
point conditional distribution ofX for models M1 and M2, and
the three-point joint distribution ofX for models M3 and M4.
The parameters of these models are summarized in Table 1.
Models M1 and M3 correspond to subdiffusion (R ) 0.5), and
models M2 and M4 represent ordinary Brownian diffusion (R
) 1). We set the diffusion and friction constants forR ) 0.5
andR ) 1 to be equal, that is,K1 ) KR andηR ) η1. In models

Figure 3. The joint probabilityPR(X2,th2;X1,th1) vs X1 andX2 (Å) for models M3 (left) and M4 (right) forth1 ) 50.0 ps andth2 ) 1.0 ps (top),th1 )
50.0 ps andth2 ) 200 ps (middle), andth1 ) 50.0 ps andth2 ) 1.5 ns (bottom). Contour plots are shown to the right of 2D surfaces.

WR(X2,t2;X1,t1) )

1

x2πθ
∑
n)0

∞ 1

2nn!
ER(-nt̃20

R )ER(nt̃10
R )Hn(X̃2/x2)Hn(X̃1/x2) e-X̃2

2/2

(19)

WR)1(X2,t2;X1,t1)

) eṼ(X1)/2-Ṽ(X2)/2∑
n)0

∞

ψn(X2)ψn(X1) e-λn,1t21

)
1

x2πθ
∑
n)0

∞ 1

2nn!
e-nλ1t21Hn(X̃2/x2)Hn(X̃1/x2) e-X̃2

2/2 (20)

Feq(X2) ≡ lim
∆tf∞

WR(X2,t2;X1,t1)

) eṼ(X1)/2-Ṽ(X2)/2

× lim
∆tf∞

∑
n)0

∞

ψn(X2)ψn(X1)ER(-λn,Rt20
R )ER(λn,Rt10

R )

) eṼ(X1)/2-Ṽ(X2)/2 ψ0(X2)ψ0(X1)

) [1/(2πθ)]1/2 e-X2
2/(2θ) (21)
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M3 and M4,X starts off from the nonequilibrium valueX0 )
x0 * 0 at timet0 ) 0.

Note that forR ) 0.5 the Mittag-Leffler function defined
in eq 13 reduces to en2t̃ erfc(nxt̃). This was used to compute
both conditional and joint probabilities forR ) 0.5 utilizing
series expansion given by eq 19. The series was truncated atn
) 60.

Using WR (eqs 19 and 20), in Figure 1 we compare
the equilibrium-weighted conditional probability
WR(X2,th2;X1,th1)Feq(X1) vs X1 andX2 for a fixed time difference
th1 ) t1 ) 1 ps and a series ofth2 ) t2 - t1 ) 1, 10, and 100 ps
for models M1 and M2 keepingKR andη1 fixed. Feq(X) is given
by eq 21.

Initial correlations betweenX1 and X2 are reflected in the
enhancedX1 ) X2 diagonal feature. This feature gradually
vanishes for longerth2 as the conditional probability becomes a
two-dimensional Gaussian symmetrically distributed with re-
spect toX1 and X2. However, as seen from the contour plots
for longer th2, the variation of probability inX1,X2 space is
considerably slower for model M1. This reflects longer lasting
X1,X2 correlations for subdiffusion compared with ordinary
Brownian motion. Because Brownian diffusion is a Markovian
process,WR)1 depends only on the differencet2 - t1. Subdif-
fusive dynamics is in contrast intrinsically non-Markovian, and
WR)0.5 depends on botht1 and t2.

Using eq 19, we have computed the joint probability to be
in X2 at time t2 given that it was inX1 at time t1 < t2 and in
X0 ) x0 at time t0 ) 0,

Figure 2 displaysPR(X2,th2;X1,th1;x0,0) vs X1 and X2 for fixed
th1 ) 1 ps and a series ofth2 ) 1 ps, 200 ps, and 1.5 ns assum-
ing that X0 is Gaussian-distributed aroundx̃0 ) 2 Å at time
t0 ) 0 for models M3 and M4. TheR ) 0.5 dynamics differs
qualitatively from its Brownian counterpartR ) 1. Although
for both models the probability undergoes diffusion in
X1,X2 space with a finite shift of the most probable con-
figuration (X1

max, X2
max), PR)0.5 is separated into two peaks

while retaining correlations betweenX1 and X2 even for
th2 ) 1.5 ns. These correlations disappear forPR)1 already
at th2 ) 200 ps, where it assumes a two-dimensional
X1,X2-symmetric Gaussian form.

In Figure 3, we repeated these calculations forth1 ) 50 ps.
PR)0.5 remains asymmetric even atth2 ) 200 ps and 1.5 ns
implying X1,X2 correlations, whereasPR)1 is Gaussian. Compar-
ing contour plots ofPR)0.5 and PR)1.0 for short th1 and th2 (top
panels in Figures 2 and 3) with longth1 and th2, we see that a
decay ofX1,X2 correlations is faster for subdiffusion for short
times but slower for long times compared withR ) 1. This can
be understood because the Mittag-Leffler function interpolates
between a faster decaying stretched exponential at short times
and a power law at long times, compared with the exponential
function.

In Figure 4, we displayPR(X2,th2;X1,th1) vs X2 andth2 for fixed
X1 ) 2.0 and 1.0 Å andth1 ) 1 ps and constantth2 sections of
PR)0.5 for th2 ) 8 ps, 200 ps, and 1.5 ns andPR)1.0 for th2 ) 8 ps,
20 ps, and 1.0 ns for models M3 and M4, respectively. Here
again, we find a notable difference betweenR ) 0.5 andR )
1. PR)1.0 diffuses gradually to equilibriumX2 ) 0 retaining a
fixed Gaussianth2 profile, whereasPR)0.5 builds up its density
aroundX2 ) 0 almost immediately by funneling the distribution
from X1. Comparing the magnitude of constantth2 sections of
PR)0.5 andPR)1, we see that asX2 relaxes to zero with increasing

Figure 4. Constantth2 sections ofPR(X2,th2;X1,th1) vs X2 (Å) for X1 )
2.0 Å (upper panels) andX1 ) 1.0 Å (lower panels) for models M3
and M4. For model M3,th2 ) 8.0 ps (‚‚‚), 200 ps (- - -), and 1.5 ns
(s); for model M4,th2 ) 8.0 ps (‚‚‚), 20.0 ps (- - -) and 1.0 ns (s).

TABLE 1: Parameters for Models M1-M4 Used in
Calculation of the Two-Point Conditional and Three-Point
Joint Distribution of Donor -Acceptor Distance in Figures
1-4

model K1 × 102 (s-1) η1 (s-1) R x0 (Å) t0 (ps)

M1 5.0 10.0 0.5
M2 5.0 10.0 1.0
M3 5.0 10.0 0.5 2.0 0
M4 5.0 10.0 1.0 2.0 0

TABLE 2: Parameters for Models M5-M8 Used in
Calculation of CR

FRET(th2,th1) in Figure 5

model K1 × 102 (s-1) η1 (s-1) R R0 (Å) γ0 (s-1) x0 (Å) t0 (ps)

M5 5.0 10.0 0.5 10.0 1.0 2.0 0
M6 5.0 10.0 1.0 10.0 1.0 2.0 0
M7 5.0 10.0 0.5 10.0 1.0 2.0 0
M8 5.0 10.0 1.0 10.0 1.0 2.0 0

TABLE 3: Parameters for Models M9-M12 Used in
Calculation of CR

ET(th2,th1) in Figures 6

model K1 × 102 (s-1) η1 (s-1) R k0 (s-1) â (1/Å) x0 (Å) t0 (ps)

M9 5.0 10.0 0.5 10.0 2.0 2.0 0
M10 5.0 10.0 1.0 10.0 2.0 2.0 0
M11 5.0 10.0 0.5 10.0 2.0 2.0 0
M12 5.0 10.0 1.0 10.0 2.0 2.0 0

PR(X2,t2;X1,t1;x0,t0)

≡ ∫-∞

∞
dX0 WR(X2,t2;X1,t1)WR(X1,t1;X0,t0)Feq(X0)

)
1

2πθ
e-(X1

2+X2
2)/(2θ)

× ∑
m)0

∞ 1

m!
ER(-mth1

R)Hm(X̃1/x2)(x̃0/x2)m

× ∑
n)0

∞ 1

2nn!
ER(-nt̃2

R)ER(-nt̃1
R)Hn(X̃2/x2)Hn(X̃1/x2)

(22)
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th2, PR becomes equilibrium distributed for bothR ) 0.5 and
R ) 1.0. However,PR)0.5 shows a residual density positioned
around the originalX1 even for largeth2.

Note that because in our calculations ofWR(X2,th2;aX1,th1)Feq-
(X1) andPR(X2,th2;X1,th1) for R ) 0.5 we used a truncated series
expansion (eq 19), these quantities do not exhibit non-
differentiable cusps (see discussion in section 5.4 of
ref 31).

V. Multitime Correlation Function of Fluorescence
Lifetime

The Green function,WR(X2,t2;X1,t1), may be used to compute
n-point correlation functions of arbitrary variables that depend
on X(t). In this section, we compute the three-time correlation

functions of the fluorescence lifetime defined by

〈τ(t2)τ(t1)τ(t0)〉 is computed by substituting eq 19 forR ) 0.5
and eq 20 forR ) 1 and eq 1 for FRET and eq 2 for ET into
eq 23. The resulting expression forCR

FRET(t2,t1) is given by eq
B2 andCR

ET(t2,t1) is given by eq B7.
We have computed〈τ(t2)τ(t1)τ(t0)〉 for eight models: models

M5-M8 are for FRET and models M9-M12 are for ET. In
these models, we varied the diffusion coefficientKR.
〈τ(t2)τ(t1)τ(t0)〉 for models M5, M7, M9, and M11 of subdiffu-
sion (R ) 0.5) is compared with the same quantity computed

Figure 5. CR
FRET(th2, th1) (ps3) vs th1 and th2 (ps) for models (a) M5, (b) M6, (c) M7, and (d) M8, the diagonal sectionCR

FRET(th, th) (ps3) vs th1 ) th2 ) th
(ps) for models (e) M5 and M6 and (f) M7 and M8, and constantth1 ) 1 ps sectionsCR

FRET(th2) (ps3) vs th2 (ps) for models (g) M5 and M6 and (h)
M7 and M8. Models M5 and M7 (M6 and M8) are denoted by solid (dotted) lines.

〈τ(t2)τ(t1)τ(t0)〉

≡ ∫-∞

∞ ∫-∞

∞ ∫-∞

∞
dX0 dX1 dX2 τ(X0) τ(X1)τ(X2)

× WR(X2,t2;X1,t1)WR(X1,t1;X0,t0)Feq(X0) (23)
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for Brownian diffusion models M6, M8, M10, and M12. We
set the diffusion and friction constants for models withR )
0.5 andR ) 1 to be equal, that is,K1 ) KR andηR ) η1, and
assume a near-equilibrium initial condition forX, that is,X0 )
2 Å at time t0 ) 0. In FRET models, we setR0 ) 10.0 Å and
γ0 ) 1.0 s-1. In ET models, we usek0 ) 10 s-1 andâ ) 2.0
Å-1. In FRET models M5 and M6 (M7 and M8),K1 ) η1 (K1

> η1). In ET models M9 and M10 (M11 and M12),K1 < η1

(K1 > η1). Parameters used in FRET and ET models are
summarized in Tables 2 and 3, respectively.

Figure 5 comparesCR
FRET(th2,th1) vs th1 and th2 for models

M5-M8 (where we varied the magnitude ofK1). CR
FRET(th2,th1)

is weaker and undergoes a faster decay for larger values of
K1 for both subdiffusion and Brownian diffusion. To highlight
this point, we also display diagonalth1 ) th2 sections ofCR

FRET

for models M5-M8 and constantth1 ) 1 ps sections of
CR

FRET(th2,th1). Slowly decaying correlations are clearly observed
for R ) 0.5.

The plots show a qualitative difference in the fluorescence
lifetime correlations. Because of the absence of memory inX
for R ) 1, the decay ofCR)1

FRET(th2,th1) with th1 andth2 occurs on the
same time scale and contour plots ofCR)1 are symmetric with
respect to interchangeth1 T th2 for R ) 1.0 models. However,
because of non-Markovian evolution ofX, this is not the case
for CR)0.5

FRET(th2,th1) (R ) 0.5), which shows longer lasting cor-
relations amongth2 compared withth1.

As discussed earlier, the non-Markovian subdiffusive dynam-
ics follows a faster decay for short (th , 1/λ1, stretched
exponential behavior) and slower decay at long (th . 1/λ1, a
power law) time intervals compared with the exponential decay

Figure 6. CR
ET(th2, th1) (ps3) vs th1 and th2 (ps) for models (a) M9, (b) M10, (c) M11, and (d) M12, the diagonal sectionCR

ET(th, th) (ps3) vs th1 ) th2 ) th
(ps) for models (e) M9 and M10 and (f) M11 and M12, and constantth1 ) 1 ps sectionsCR

ET(th2) (ps3) vs th2 (ps) for models (g) M9 and M10 and (h)
M11 and M12. Models M9 and M11 (M10 and M12) are denoted by solid (dotted) lines.
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in case of the Markovian dynamics. Because of this, contours
of CR)0.5

FRET(th2,th1) are intrinsically asymmetric and are more
stretched alongth2. This pattern persists asK1/η1 is varied.

CR
ET(th2,th1) for models M9-M12 is shown in Figure 6 (where

we varied the magnitude ofK1). We also show diagonalth1 ) th2

sections and constantth1 ) 1 ps profiles ofCR
ET(th2,th1) for models

M9-M12. Similar to FRET,CR
ET(th2,th1) has smaller amplitude

and follows a faster decay asK1 is increased for both
R ) 0.5 andR ) 1, and the interdye distance correlations live
longer for R ) 0.5. Because of the absence (presence) of
memory in Brownian diffusion (subdiffusion) models, contour
plots are symmetric (asymmetric) with respect toth1 T th2 for
CR)1.0

ET (CR)0.5
ET ). Comparison of contour plots, diagonal sec-

tions CR(th,th), and fixedth1 ) 1 ps profilesCR(th2) for FRET and
ET shows that because in FRET the fluorescence quenching
rate varies with X as ∼X-6 and thus follows a slower
(power-law) decay compared to exponential decay rate for
ET, CR

FRET retains correlations of lifetimes for longer times
compared toCR

ET.

Acknowledgment. The support of the Division of Chemical
Sciences, Office of Basic Energy Sciences, U.S. Department
of Energy, Grant DE-FG02-01ER 15155, is gratefully acknowl-
edged. We thank Prof. Sunney Xie for sharing ref 17 prior to
publication and Profs. J. Klafter and R. Metzler for useful
discussions.

Appendix A: Backward Propagator for the FFPE

The backward propagator is the solution of the backward
FFPE,

where the backward Fokker-Planck operator isLFP
† , defined

by31

Because0Dt
1-RLFP and 0Dt

1-RLFP
† are not Hermitian conju-

gates, to obtain the eigenfunction expansion for the backward
propagator, we need the adjoint of operator exp[Vh(X)]0Dt

1-RLFP.
It is easy to see that

where in the last line of eq A3 we used the following property,37

The operators exp[Ṽ(X)] LFP(X) and

are now Hermitian. Equation A3 implies that the fractional
operators eṼ(X)

0Dt
1-RLFP(X) and 0Dt

1-R LFP
† (X) eṼ(X) have the

same eigenvaluesλn,R and orthonormal basis set{ψn(X)}
(see eq 11). This allows us to expand the backward propagator
0Dt

1-RLFP
† (X) (t e 0) as

The propagator between arbitrary timest1 andt2 can now be
obtained by substituting eqs 12 and A6 into eq 17, that is,

where in the last line of eq A7 we used eq 11. Equation A7 is
used to compute conditional and joint probabilities in section
IV and the three-time correlation function of fluorescence
lifetime in section V.

Appendix B: Three-Point Correlation Functions for
FRET and ET Quenching

The n-point correlation function of observableA is defined
by

SettingA(X) ) τ(X) in the eq B1, we obtain eq 23 for the three-
point correlation function of the fluorescence lifetime.

WR
-(X1,t1;X0,t0)0)

) ER(LFP
† (X0)t1

R)δ(X1 - X0)

) eṼ(X1) ∑
n)0

∞

ER(LFP
† (X0)t1

R)φn(X1)φn(X0)

) eṼ(X1) ∑
n)0

∞

φn(X1)φn(X0)ER(-λn,Rt1
R)

) eṼ(X0)/2-Ṽ(X1)/2 ∑
n)0

∞

ψn(X1)ψn(X0)ER(-λn,Rt1
R) (A6)

WR(X2,t2;X1,t1)

) ∫-∞

∞
dX0 WR

+(X2,t2;X0,0)WR
-(X0,0;X1,t1)

) ∫-∞

∞
dX0 eṼ(X0)/2-Ṽ(X2)/2 ∑

n)0

∞

ψn(X2)ψn(X0)ER(-λn,Rt2
R)

× eṼ(X1)/2-Ṽ(X0)/2∑
n)0

∞

ψn(X1)ψn(X0)ER(λn,Rt1
R)

) eṼ(X1)/(2-Ṽ(X2)/2)

× ∑
n,m)0

∞

ER(-λn,Rt2
R)ER(λn,Rt1

R)ψm(X2)ψn(X1)δnm

) eṼ(X1)/2-Ṽ(X2)/2 ∑
n)0

∞

ψn(X2)ψn(X1)ER(-λn,Rt2
R)ER(λn,Rt1

R)

(A7)

〈A(tn)...A(t1)A(t0)〉

≡ ∫-∞

∞
dXn ∫-∞

∞
dXn-1 ...∫-∞

∞
dX2∫-∞

∞
dX1

× A(Xn)WR(Xn,tn;Xn-1,tn-1)

× A(Xn-1)WR(Xn-1,tn-1;Xn-2,tn-2)...

× A(X1)WR(X1,t1;X0,t0)A(X0)Feq(X0) (B1)

d
dt1

WR(X2,t2;X1,t1) ) -0Dt1

1-RLFP
† (X1)WR(X2,t2;X1,t1) (A1)

LFP
† ) -

V′(X)
mηR

∂

∂X
+ KR

∂
2

∂X2
(A2)

[eṼ(X) 0Dt
1-RLFP(X)]† ≡ [0Dt

1-RLFP(X)]† eṼ(X)

) [ 1
Γ(R)

∂

∂t ∫0

t
dt′

LFP
† (X)

(t - t′)1-R] eṼ(X)

) 0Dt
1-R LFP

† (X) eṼ(X)

) 0Dt
1-R eṼ(X) LFP(X) (A3)

[eṼ(X) LFP(X)]† ≡ LFP
† (X) eṼ(X) ) eṼ(X) LFP(X) (A4)

L(X) ) eṼ(X)/2 LFP(X) e-Ṽ(X)/2 ) e-Ṽ(X)/2 LFP
† (X) eṼ(X)/2 (A5)
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For FRET (eq 1), eq B1 gives

Here I1(n) is given by

whereF(R,â;γ;z) is hypergeometric function defined by

andB(â,γ-â) is beta function, defined by

I2(n) is given by

For ET (eq 2), eq B1 gives

whereLn
m(x) is Laguerre polynomial defined by

Equations B2 and B7 were used in section V for computing
the three-time correlation functions for the FRET and ET
quenching mechanisms.
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CR
FRET(t2,t1)

≡ 〈τ(t2)τ(t1)τ(0)〉FRET

) [ 1

2πθ]5/4

∑
n)0

∞ [ 1

2nn!]
2

ER(-nt̃2
R)ER(nt̃1

R)ER(-nt̃1
R)I1

2(n)I2(n)

(B2)

I1(n) )
(x2θ)7

γ0R0
6

(-1)n/22n
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xπ
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2
,
7
2
;
1
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F(R,â;γ;z) ) 1
B(â,γ-â)

∫0

1
dt tâ-1(1 - t)γ-â-1(1 - tz)-R

(B4)

B(x,y) ) ∫0

1
dt tx-1(1 - t)y-1 (B5)

I2(n) )
xπ(x2θ)7

γ0R0
6 (10

2n-2[n!] 2
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(n - 2)!

- 255
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CR
ET(t2,t1)

) 〈τ(t2)τ(t1)τ(0)〉ET

) [ 1

2πθ]5/4
π3/2

k0
2
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me n

∞ 1

2mn!
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R)(â x2θ

2
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