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The Zdanovskii-Stokes-Robinson (ZSR) relationship [Stokes and RobinsbriPfys. Chenil966 70, 2126—

2130)] enables the solvent content of a liquid mixture to be estimated, for a specified solvent activity, from
data for pure solutions of each of the individual solutes. There is an analogous relationship for the activity
coefficients of the solutes. The method has been shown to be exact, in the limit of extreme dilution, only for
mixtures containing either all uncharged (neutral) solutes or electrolytes all of the same charge type, and in
practice it is found to be most accurate for such mixtures. Here we derive an addition to the ZSR equations
which removes this limitation by incorporating simple Deby#iickel terms into the equations for solvent
mass and solute activity coefficients. This addition, in its simplest form, does not involve any new fitted
parameters or require any further thermodynamic information. The relationship is general, and not limited to

particular Debye-Hiickel expressions. Application of the revised model to activity and osmotic coefficient
data for the system Na€Na,SO,—H,0 at 298.15 K shows that errors are reduced, compared to predictions
of the standard model, by up to a factor of 2. Solubilities of NaCl(cry3@a- 10H,O(cr), and NaSOy(cr) in

that system are similarly better predicted. Activity coefficients of uncharged solutes in salt solutions calculated
using the revised model are now largely consistent with the empirically observed Setchenow relationship.

1. Introduction a significant limitation in the practical application of the model.
These observations are consistent with the analysis of MikR&ilov
who showed that, for extremely dilute solutions, the ZSR
relationship is exact only for mixtures of electrolytes of the same
charge type, or for mixtures of nonelectrolytes.

In this work we derive simple correction terms, not involving
any new parameters, for ZSR expressions for both solvent
content and solute activity coefficients in indefinitely complex
mixtures. Expressions for the terms corresponding to the
different model cases treated by Clegg et‘are given. The
effects of the new terms are explored in a number of examples,
including osmotic coefficients and salt solubilities in NaCl
NaSO,—H,0 at 298.15 K and activity coefficients of uncharged
solutes in aqueous salt solutions.

The Zdanovskii-Stokes-Robinson (ZSR) relationship, or
linear isopiestic relation, enables the solvent content of a liquid
mixture to be estimated, for a specified solvent activity, from
data for pure solutions of the individual solutes. This ap-
proximate relationship was first discovered empirically by
Zdanovskit and later derived independently by Stokes and
Robinsor? Some of the underlying theory has been reviewed
by Frolov? and other recent studies include a number of
practical application$:” The ZSR relationship has also been
applied to the estimation of volumetric and thermal properties
of mixtures8? the speed of soun¥,and freezing point depres-
sion!! In addition to the expression for solvent content,
corresponding ZSR equations exist for solute activity coef-
ficients? and the method has been extended to include ternary , +eor

, X . y
(two solute, single solvent) mixture parameters whose values
are determined from experimental d&al4 Clegg et a4 have 2.1. Solvent PropertiesThe water activity é,) and osmotic
demonstrated the application of the extended model to reciprocalcoefficient ¢) of an aqueous solution are related by the standard
salt and other systems, and have also derived expressions foequation’
cases in which a subset of solutes within a mixture have their
osmotic and activity coefficients described by some other model In(a,) = — MW¢Zm (1)
within the overall ZSR expression. [

Solution water content (hence osmotic coefficient) and solute ) ]
activity coefficients predicted by the ZSR relationship are least WhereMy (0.0180152 kg) is the molar mass of water, ands
accurate for aqueous mixtures containing electrolytes of different the molality of each individual solute species (ion or uncharged
charge types and for mixtures containing both electrolytes and Molecule) in the mixture. The ZSR relationship is expressed in
nonelectrolytes. In the latter case, for example, predicted activity terms of the properties of solutions of individual salts, or
coefficients of the nonelectrolyte in salt solutions are not uncharged molecules. For a mixture containing just two solutes,

consistent with the Setchenow relationsHip This represents 1 and 2, we have
* Corresponding author. lim= Xllmi + lems (2)
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wherem s the total molality of the solutes in the mixture, and Hiuickel coefficient (0.3915 at 298.15 Kj,b is a constant that
m{ andmj are the molalities of pure solutions of solutes 1 and usually takes the value 1.2, ahds the molal ionic strength of
2, respectively, at the solvent activity of the mixture. Quantity the mixture. This is given by = 0.5y mz?, wherez is the

X is the mole fractiomy/(ny + ny), and similarly forx,, where

charge on ion. The value of an osmotic coefficient calculated

n; and n, are the numbers of moles of each species present.from eq 7 is the same for all solutions containing only

For this system of two solutes, eq 1 can be written as

In(a,) = =My (M, + myy)e (3a)

or

In(a,) = ~M M, +X,,)¢ (3b)
wherev; is the number of moles of particles produced by the
dissociation in water of solute For exampley; would be 2
for the salt NaCl, 3 for Ng5Oy, and unity for a nondissociating
molecule. Rearranging eq 3b, we obtain

1/m= —(M,/In(a,)) (X1 + Xv ;)¢ 4)
and for pure aqueous solutions of each solute
1= —(M,/In(a,))vié7 5)

where superscript indicates that the quantity is for a pure
aqueous solution dfat the same water activity as the mixture.
Finally, multiplying eq 5 for each solute by and substituting
into eq 4 yield

1im= x,/m} + x/m§ — (M /In(a, )[(Xv, + %) —
X V167 — X 3] (6)

electrolyte(s) of the same charge type at the same water activity,
and is unity for all solutions containing only uncharged solute-
(s). For these two cases the terms in square brackets in eq 6
cancel, and the ZSR relationship reverts to its normal form.
Notice that eq 7 does not contain any solute-specific parameters,
so that this extension to the ZSR expression does not require
any additional thermodynamic information. However, other
choices are possible. For example, eq 7 can be extended with
an additional termt B Vexp(al’?), wherea is a constant
(a value of 2.0 is often used) ang Y is a temperature-
dependent parameter specific to each electralgfs The effect
of this term is confined to dilute solutions. An alternative, and
probably more flexible, equation can be obtained by replacing
the single value ob in eq 7 by an individual constat, for
each electrolyte. The development of this equation is described
in the Appendix.

Figure 1 shows osmotic coefficients’] for aqueous solutions
of eight 1:1 electrolytes, together with values calculated using
eq 7 for a range of parametbr If only a single value is to be
adopted therb = 1.2 is satisfactory. However, the plots also
suggest that some optimization, i.e., individual valuebgf
may be worthwhile to improve agreement between observed
¢° and eq 7 at very low molality.

A similar comparison for some 1:2 and 2:1 electrolytes is
shown in Figure 2. Here, calculated osmotic coefficientsbfor
equal to 1.2 fall below the true° of most of the salts, and

The ZSR relationship, eq 2, is obtained from eq 6 by assuming values of 2.0 to 3.0 would yield better agreement. We also note

that the final term in 1/Irdy) is negligible—hence %v1 + Xov2)¢

~ (X + xova035). Mikhailov'® has shown that this is indeed
true for very dilute solutions containing solutes of the same
charge type, for whiclp ~ ¢7 ~ ¢3 at constant water activity.

that for higher charge types such as 2:2 electrolytes it is essential

to adopt a value db in eq 7 greater than 1.2, to avoid negative

osmotic coefficients being predicted at high molalities.
Denoting osmotic coefficients calculated using eq 7 with a

This can be understood intuitively, as for salts in such solutions prime, we generalize the modified ZSR relationship by writing

the osmotic coefficients will all have values close to the Debye
Huckel limiting slope (which is a function of ionic strength
only), or in the case of a mixture of uncharged solutes the
osmotic coefficients will all be very close to unity. However,
this is not true for mixtures containing solutes of different charge

eq 6 for an indefinite number of solutes s:

1/m= ZXSIm;’ - (MW/In(aW))zXSVS(¢' —9¢J') (8

types (i.e., 1:1, 2:1, and 2:2 electrolytes, etc.), and this can haveyjiiplying through by the total moles of soluteS ) in the

a significant effect on solute activity coefficients estimated using
ZSR.

We have found that a worthwhile improvement in the ZSR
relationship can be obtained by approximatifgs3, ande; in
eq 6 by molality-based expressions for the Deblickel

limiting law. The desirable features of such expressions are,

first, that they reproduce satisfactorily the osmotic coefficients
of both pure electrolyte solutions and mixtures at high dilutions,
including the correct limiting law behavior as tends to zero.

Second, at moderate to high concentrations the calculated

osmotic coefficient should tend to some small, approximately

constant, value that is greater than zero. This is so that the

principal influence of the term is restricted to very high water
activities. Third, there should be a corresponding analytical
expression for the DebyeHuckel contribution to the activity
coefficient of each solute. The Pitzer activity coefficient métlel
contains a suitable expression:

p=1-(1y m)AY1¥%(1 + b1) (7

where the summation is as in eqA? is the molal Debye

mixture, eq 8 can be rewritten for the total mass of walég:§,
in kg):

Vvtotal = ZW; + (Vvtotal - Z\Ng') ()]
S s

where wg is the mass of water associated with moles of
solute s in a pure solution ofs at the water activity of the
mixture, andwg' is the same quantity but calculated using eq 7
to obtain the DebyeHiuckel approximation to the osmotic
coefficient ¢2'. Similarly W, is the approximation to the
total mass of water in the mixture calculated using eq 7 to obtain
@

Equation 9 can be compared to eq 7 of Clegg ét alhich,
in addition to the first term in eq 9, contains a summation
involving solute-solute mixture parameters. That reference
should be consulted for details.

2.2. Solute Activity Coefficients.Values of the molal activity
coefficient, or mean activity coefficient in the case of electro-
lytes, that are thermodynamically consistent with eq 9 are
obtained by applying the McKayPerring equatior? For a
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Figure 1. Molal osmotic coefficientsg) of agueous solutions of eight

1:1 electrolytes at 298.15 K, compared with values calculated using <= o A .
the Debye Hiickel expression (eq 7) for different values of the USing the DebyeHiickel expression (eq 7) for different values of the

parameteb. (a) Forv/m < 1.0 moF2 kg2, wherem is the molality parameteb. (a) For~/m < 1.0 mok? kg=2, wherem is the molality

of the electrolyte. (b) For highev/m. Solid, dashed, and dotted lines: ~ ©f the electrolyte. (b) For highe/m. Solid, dashed, and dotted lines:
a, HCl(aq); b, HNGQ(aq); ¢, NaCl(aq); d, NaNgaq); e, KCl(aq); f, a, NaSOy(aq); b, (NH).SQx(aq); ¢, MgCh(aq); d, CaGi(aq); e, Mg-

Figure 2. Molal osmotic coefficients¢) of agueous solutions of six
2:1 and 1:2 electrolytes at 298.15 K, compared with values calculated

KNOs(aq); g, NHCI(ag): h, NHNOs(aq). Fine dashdot lines: (NO_g)z(aq); f, Ca(NQ)z(aq). Fine dashdot lines: calculated using eq
calculated using eq 7 with values lofrom 0.5 to 4.0 as shown on the 7 With values ofb from 1.0 to 4.0 as shown on the plot.
lot. . . .
po can now be rewritten in the form that is used here:
solution containing two solutes this is 1 \(k
In(yy) = In(y?) + In(kymg/m*) + (M_)(v_) X

1 kl W, 1

In(yy) = In(y9) + In(k;mi/n¥) + (—)(—) x | 1/m* 1, 1
Mo/ \V1 nad () Ly L @) @1
W, j(; 2 8[‘2 a, m* klmo (aw) ( )

&
L[O'”“”{—( 12)( om ) —i*+—in§ din(a,) (10)
me\oInryfy, Mok For the standard ZSR expression for the relationship between
solution water content and solvent activity (eq 2) the integral

wherey, is the activity coefficient of solute 1 in the mixture, ~above is zero, and the acti\{i;[y coefficient of solute 1 equal to
¥ is its activity coefficient in a pure aqueous solution of 1 at the first two terms in eq 13

the water activity of the mixture is an arbitrary proportionality Next, we obtain expressions for the terms in the Mckay
constant for solute 1 (here set the samedsandm? is equal Perring integral corresponding to the extended ZSR relationship.
to (kemy + kemy) or (vimy + vomyp). The ratior, is equal to Equation 6 is first rewritten in terms of osmotic coefficients:

vomp/m*, or 1 — r; wherer; = vymy/m*. Note that these ratios _ o ° .
can be expressed in terms of the moles of each solute in the/™ (Mi/In@uDv¢ + V292 + (v, +6v2)6

mixture, and so do not vary with water activity. Equation 10 X197~ X3 ] (12)
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Multiplying through bymym* and recognizing that; = v;my/
(vaimy + vomp) = vim/m*, andr; = 1 — ry, eq 12 becomes

= (My/In@))I(1 = rp)p1 + 1y + ¢ —
(1= ro)p7'— r¢;'] (13)

Differentiating eq 13 with respect to at constant water activity
yields

al/m* _ M ° a¢’ or__ jor
o]

I/m* =

Finally, inserting eq 13 and eq 14 into the McKsaierring
equation, and substituting(Mw/In(aw))¢s for 1/km, yields

In(y,) = In(y3) + In(kymy/m*) +
ﬁfln(aw) ; 3¢" + o — g dlIn,)
L 2or, a, ‘[ Ina,)

(15)

As expected, the only terms remaining within the integral in eq
15 involve the extension to the ZSR expression. The value of
the integral can be obtained by considering a solution containing

the same two solutes, whose osmotic coefficietif {s given
by eq 7. For this solution the McKayPerring equation yields

In(yy) =

Ki CinGay) al/m’ 1
), p43u)%‘w'

In(y3) + In(kmy'/m*") +

. mz,}d Ina,) (16)
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\Ntotalwzl
In(y,) = In(y3) + In(yy/y7) +In (W —) (19)
total

Note that the final term in eq 19 can also be written in terms of
molalities; henceyw; andw;' in this equation are calculated for
an arbitrary (though the same) amount of solute 1, rather than
the amount actually present in the mixture. The distinction is
important where eq 19 is being used to calculate the activity
coefficient of a solute at trace (i.e., zero) molality in a mixture,
for which wy'/w; (equivalent tom;/m?") has a finite value.
This consideration also applies to other activity coefficient
equations derived below.

In mixture of solutes that are all of the same charge type the
second term in eq 19 is equal to zegq € y3') since in such
a solution the activity coefficients given by the Debydiickel
expression in eq 18 depend on the ionic strength only. This
would not be the case, though, if different vallbggwere being
used.

The McKay—Perring equation for the activity coefficient of
solute 1 in a two solute mixture can be applied straightforwardly
to a multicomponent mixture by treating the other 1 solutes
(n=2, 3, ...) as a single combined “solute” in which all they
are present in fixed ratios to one another. Repeating the above
derivation on this basis leaves eq 19 unchanged, thus it can be
applied toall solution mixtures.

2.3. Combining Models within ZSR. In many practical
applications osmotic and activity coefficients of one or more
subgroups of solutes may be either known directly or calculated
by some other method than ZSR. For example, the properties
of the electrolyte components of a mixture might be estimated

where the prime indicates properties calculated using the with an ion interaction model such as that of Pit¥awrhile the

simplified Debye-Hiickel expression. In this casef’ is equal
to —(Mw/In(aw))¢’ and 1kim;" is equal to—(Mw/In(aw))®3, SO
that

In(y)) = In(yy") + In(kymd'/m*") +

K e [ (3 In@,)
iﬁmﬂ ﬁ% +o - ¢}|()<ﬂ>

Clearly the integral in eq 17 is identical to that in eq 15. The

values of both In¢3) and In3") can be calculated directly

from the expression for solute activity coefficients that corre-

sponds to eq 7. Where solute 1 is an electrolyte)_ then
we haveés

In(y}) = — [zyzA’LVII(L + bV1) + (2/b) In(1 + by/1)]

(18)

where | is the ionic strength of the solution mixture at the
specified water activity, calculated using eq 7 (#) and eq

properties of the uncharged solutes are either determined using
another model such as UNIFAE(which is then incorporated
into the ZSR scheme) or are treated individually. It is desirable
to incorporate these submodels into the overall ZSR approach
in order to retain as much accuracy as possible in the prediction
of osmotic and activity coefficients in the mixture. In the
derivation below we follow Clegg et at.in a similar analysis

of the use of solutesolute mixture parameters within ZSR.

First consider a solution containing a number of soliges
subdivided into two groupsandg. The properties of mixtures
containing only solutes can be calculated directly by some
arbitrary model, whose predictions we wish to incorporate into
the ZSR framework, while each solutg is treated as an
individual component. The expression for the total mass of water
in the system is

W,

total —

=we" +zw + (W,

otal

W= SWg) (20)
q

1. The value of Ing$") is also calculated using eq 18, except Wherew®" is the mass of water associated with the group of
that in this case the ionic strength is that of a pure aqueoussolutes’ in the mixture, and calculated using the arbitrary model

solution of M,,X,_ at the water activity of the mixture. For
solutions containing only neutral (uncharged) solgtds equal
to unity and both Ing3) and In}") are equal to zero under all
conditions.

Knowing both In§}) and In¢{") from eq 18 and also the

referred to above, and is the mass of water associated with
each individual solute.q at the water activity of the mixture.
The meaning otV is as given earlieny®" is also calculated
using eq 7 for the osmotic coefficient, but only for the group
of solutesr, and eachwy' is calculated using eq 7 for pure

terms in solute amounts and molalities in eq 17, the value of agueous solutions of each individual solate
the integral in eq 15 and eq 17 is obtained just by subtracting The expression for the activity coefficient of solute Q, a

the first two terms on the right-hand side of eq 17 fromyii(

member of groupg, is obtained as follows. Assuming, for

on the left. Incorporating the result into eq 15, and rewriting in  simplicity, that solute groug has two solutes); and g, the
terms of water amounts, gives the complete expression for In- extended ZSR expression for the water content of the solution

(y1) in a two-solute system for the extended model:

is
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I/m= x/mp+ x, /mg + X, /mg — (M,/In(a,)[(xv, +

Xq1Vq1 T ququ)¢’ - Xer(P'?’_ Xq1Vq1¢ai N ququ¢;;] (21)
whereny is the total molality of all solutes, in a solution
containing only these solutes, at the water activity of the mixture.
Osmotic coefficientg;'is calculated using eq 7, also for a
solution containing solutesonly. Note that the use of subscript

r on its own refers to the whole group of solutesogether.
Quantitiesx, andm, are defined below:

x =)y ng
V= (znrvr)/znr

The expression for Infg) is obtained first by converting the
three initial terms in eq 21 to osmotic coefficients, and
multiplying through bym/m* to get the expression for dr:

U = — (M In(@)[r 6F + 1 85 + 1.0, +
d" — Iy :' - rqld)ai - rq2¢g|;] (24)

(22)

(23)

where

(25)

r= (Y)Y g
r S

rq = (ngvy) Z Ny (26)

Assuming that solute Q ig;, then the differential of DA* in
the McKay—Perring equation is with respect to the ratidor
the combined solutesandq (i.e., all solutes except the selected
gy). Definingrc = r, + rg, for these combined solutes, eq 24
can be written as

I/ = — (My/In(@)[r¢7 + (I =g +re ¢ + ¢ —
rge— (1= res — 14931 (27)
The expression for (3 1/m*)/ora, can be obtained straight-

forwardly from eq 27, recognizing thatr ddr. = r/r¢, and
drg/drc = rgfre:

31/m* _ w o__ o o
T

a¢, or or or
rC(aT) = Iy +rc¢q1—rq2¢q2] (28)
a,

C,

Substituting eq 27 and eq 28 into the McKalyerring expres-

sion in the same way as for the two-solute case described earlier

yields essentially the result in eq 16, but with solute Q replacing
solute 1 and replacingr,. The value of the integral is obtained
in the same way as before, yielding the following final result:

]

Q

W2
W) (29)

Q

total

W,
IN(yQ) = IN(y3) + In(yg/rg) + '”(vv;

otal

This expression is similar to eq 19. The only difference is that
the total water content of the systeliV:) is calculated using
eq 20 rather than eq 9.

Second, we determine the equation for the activity coefficient
of a solute R from group. The total amount of water associated
with the mixture is given by eq 20, andrif by eq 24.

Clegg and Seinfeld

Assuming, for simplicity, that group contains two solutes;
andry, and that the selected solute Rristhen we can define
re="rr,+ rq + rg,. The osmotic coefficienty’, ¢r, ande;’ in

eq 24 all have nonzero differentials with respect §oleading

to a relatively lengthy expression foflf/m*)/aor. and more
complex integral. The complete derivation of the equation for
In(yr) from eq 20, eq 24, and the McKayerring equation is
given in the Supporting Information to this paper. Below we
give only the final result:

W 0,11
I = ING/R") + In(rde™) + In(Wi“"'W—) (30)
t

otal W'

This expression differs from that for i) in that the water
amountsa® in the final term are those associated with the entire
group of solutes rather than just the solute of interest. Also,
the activity coefficientyg” is the value (calculated by the
arbitrary model that is being included in the ZSR scheme), for
a solution containing only solutas The activity coefficient
1w is determined using eq 18, also for a solution containing
only solutesr.

2.4. ZSR Model with Mixture Parameters. Clegg et al*
have recently derived expressions for additional terms to the
ZSR equations for mixture water content and solute activity
coefficients that take into account interactions between pairs
of solutes. The expressions are based upon earlier work by Chen
et al’® and in particular by Kirgintsev and Lukyané¥,and
they include parameters whose values are obtained from
experimental data that yield solute or solvent activities. The
effect of using these additional terms is to increase the accuracy
of model predictions in complex mixtures.

The equations derived by Clegg et'alcorrespond to the
different cases treated above, but do not of course include the
extension that we have derived here. The results of both papers
are straightforwardly combined by adding the mixture expres-
sions of Clegg et at*to the equations in sections 2:2.3 above.
Thus:

W,

total

=w' + Zwa + (Wt — W — ZWSI) +
(XHS)ZZXSXS(A(S)S’ + Ai,syss + Byeay) (31)

where AJ;, ALy and Bsg are the interaction parameters for
pairs of solutes ands, andys ¢ is equal tons/(ns + ng). In a
mixture of a number of solutes all of which are treated as
individual components within ZSR, the activity coefficient of
a solute S is given by

IN(y9) = IN(yd + IN(yyy ) + IN[(Wiga/ Wioa) WS W] —
(M, )L — x[(As — A9 In(a,) —
(Bs— BY( — a,)] (32)

Finally, for the cases where the solution is treated as a containing
a group of solutes, and a number of individual soluteg

IN(rq) = IN(rg) + IN(ro/7g) + IN[(Wiptal Wiorad (WS W] —
Mp( = %) [(Ag — AY) Ina,) —
(Bo — BR)(I —a,)] (33)
IN(ye) = INGE") + NGRS ) + IN[(WigrafWigra) X
W] = (M) = %) TT(Ar — AR) In(a,) —
(Bx — BRI — a,)] (34)
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The mixture functionsA, A', B, and B' in eqs 32-34
incorporate the parameteﬁgg, Aig, andBsg. The definitions
of these functions are given in section 2.2 of Clegg ét ahd
are not repeated here.

2.5. Solute Amounts in Multicomponent Electrolyte Solu-
tions. The only further requirement for carrying out calculations
for solutions containing multiple ions is a method of assigning
the mixture composition in terms of electrolytes rather than ions
as components, as required by the ZSR method. A mixing rule
should be adopted as this cannot be done uniquely for mixtures
containing>2 ions of each charge type. Some of the possible
approaches are discussed by Zhong and Friedm@&tegg et
al’* and Clegg and Simons&hhave shown that the mixing
rule of Reilly and Woo#d' gives satisfactory results. The amounts
of each electrolyte are determined from the numbers of
equivalents of each cation and anion presegt(n,|z|). The
equation for the amount of electrolyte,NK,_ (nux) present in
an arbitrarily complex mixture 4

Myx = 2y (Zul 2¢ /() VX(M)))lIZ/(anZC + Znalzal)
C a
(35)

wherevyx) is the number of ions of cation M in one molecule
of electrolyte M_X,_ (and similarly forvxa, and anion X).
The summations are over all catioosnd anionsa.

The amount of each soluggpresent in a solution mixture is S
therefore as follows: for an uncharged (nondissociating) species, ~
such as an organic moleculg,is simply the number of moles £

X
<

of that molecule that are present in the mixture; where saute
is an electrolyte then the amount present is calculated using eq S~ -7

35. Py R
3. Applications

3.1. NaCH—Na,SO,~—H0 at 298.15 K.The thermodynamic (b)
properties of this system, for which extensive data are available, 30k
have recently been critically reviewed by Rard et%Their L
fitted equations for osmotic and activity coefficients are used 0 02 04 06 08 10
here as a reference for comparisons with both standard and XNacl
extended ZSR models. Figure 3a Sh_ows the_‘ percentage dlf-fer'Figure 3. Water content of a mixture containing 1.0 mol of NaCl/
ences between water mas$¥s. predicted using the standard  Na,SQ, calculated using the ZSR model at 298.15 K, shown as the
ZSR relationship (eq 2) and the true values for a range of fixed percentage differenceA{Mioa) from the true value determined from
water activities. Errors are greatest for NaCl fractions of between the model of Rard et &F. (a) Standard ZSR model. (b) Extended ZSR
0.5 and 0.6, reaching just over2.5% fora, = 0.95. Figure _m(:ﬁm (E?qt9)- zesults arel ?'f’tte(;'(agai“ft the dr); ][“Oﬁfr?gltlig”_gf NaCl

H n the mixture , equal ton, n N, or the WI
3b.ShOW.S the corresponding resylts for the extendetii”model e ixed water acti\l\/l?tciles:qa, 0.99%\8; b?ja8.|999;’\la(2:,506).99; d, 0.95; e, 0990; f,
9) in which the value ob (used in eq 7 to calculat¢® and 0.85.
hencewg’ for both salts) is fixed at 1.2. Here maximum
errors only reach about1.75%, and the magnitudes of the is clear from Figure 5b that this error is essentially removed by
errors fora, equal to 0.99 and 0.85 are reduced by a factor of the extended model at NaCl mole fractions close to unity, and
2. While these improvements appear small, they are significant greatly reduced at lower mole fractions.
when expressed in terms of osmotic coefficient which can vary  Clegg et al* have modeled the formation of the solids,Na
steeply with electrolyte concentration particularly for water SOy-10H0O(cr), Na&SOy(cr), and NaCl(cr) in NaCtNaSOy—
activities very close to unity (dilute solutions). H,O mixtures using the standard ZSR model both with and

Activity coefficients of NaCl, calculated using the standard without fitted mixture parameter&® and B (see their Figure
ZSR model (eq 11, but omitting the integral) and the extended 1a). Here we repeat the calculation, with the same activity
model (eq 19) are compared in Figure 4. The increase in products Ks) of the solids, but using the extended ZSR model
accuracy of the extended model is considerable, with predictedwithout mixture parameters to determine solute activities. The
mean activity coefficients of trace NaCl in aqueous,3&, results are plotted in Figure 6, which shows that the extended
being more accurate by over a factor of 2. The result is similar model vyields a significant improvement in the predicted
for activity coefficients of NaSQs, and is shown in Figure 5. solubilities, particularly for the two sodium sulfate salts,
When calculating the activities of the solutes the mean activity compared to the standard model without mixture parameters.

coefficients are squared (NaCl) and cubed /). Conse- This is consistent with the water content and activity coefficient
quently, the 15% error in the mean activity coefficient of,;Na  comparisons in Figures 4 and 5.
SO, shown in Figure 5a atyaci~ 1.0 anda,, = 0.9 is equivalent 3.2. Activity Coefficients of Uncharged Solutes in Aqueous

to an error in the calculated MN&O, activity of almost 40%. It Salt Solutions.Clegg et al* have shown in their Figure 4 that
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Figure 4. Mean activity coefficients of NaCl in aqueous NaClfNa ) o o ¢ )
SO, at 298.15 K calculated using the ZSR modelsg), shown as the ~ Figure 5. Mean activity coefficients of N&Q, in aqueous NaCl/Na

ratio to the true value determined from the model of Rard & (@ki,). SQ, at 298.15 K calculated using the ZSR modelsg), shown as the

(a) Standard ZSR model. (b) Extended ZSR model (eq 19). Results ratio to the true value determined from the model of Rard & @leiy).

are plotted against the dry mole fraction of NaCl in the mixtutd; (a) Standard ZSR model. (b) Extended ZSR model (eq 19). Results
equal tonyac/(Nnaci + Nasa,) for the following fixed water activi- are plotted against the dry mole fraction of NaCl in the mixtuggd,,

ties: a, 0.9999; b, 0.999; c, 0.99; d, 0.95; e, 0.90; f, 0.85. equal tonac/(Nnaci + Mnasay)) for the following fixed water activi-

ties: a, 0.9999; b, 0.999; c, 0.99; d, 0.95; e, 0.90; f, 0.85.

activity coefficients of uncharged solutes in salt solutions
predicted by the standard ZSR model are not consistent with
the commonly observed Setchenow relationship. particular,

at very low salt molalitiesms, the values of the activity
coefficients are predicted to vary steeply witly and only
gpproach unity at extreme dilutiera feature that is not observed |n(yNtrace) = In(MY/(vemg)) + In(wamyme)) (36)

in real solutions.

One of the principal reasons for extending the ZSR model In this examplemy and nmy are the same at all water
was to address this deficiency, although it is emphasized thatactivities (sincepy and¢y also equal unity for ideal solutions
the model would not be expected to predict quantitatively the of N) and
effects of different salts without the use of fitted parameters.

This is particularly true for solutions in which the uncharged In(yy"*9 = In(mg'/my) (37)
solute is present at very low or trace concentration. We note,

though, that thermodynamic properties of some neutral solute/ Values ofyy"°®are plotted in Figure 7 for several salts. For
electrolyte mixtures have been modeled satisfactorily using the these examples the value lofwas optimized for each salt by
standard ZSR model over limited ranges of mixture composi- fitting to osmotic coefficients at 298.15 K calculated using the
tion.> Pitzer model with published parameté#gor +/m < 0.1 mok?2

Consider a solution containing an uncharged solute N at trace
concentration, and a single salt S. If N behaves ideally in pure
aqueous solutionyg, = yy = vy = 1.0) then eq 19 simplifies
to
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Figure 6. Solid-phase solubilities in aqueous NaCl{8&, mixtures

at 298.15 K. Symbols: cross, b&0,-10H,0(cr); open circle, Na
SQy(cr); solid square, NaCl(cr). Lines: dashed, standard ZSR model
for solution water content and solute activity coefficients; solid,
extended ZSR model. Data are from the compilation of Silé8ck.

03

Figure 7. Activity coefficients (a9 of a nondissociating solute N

present at trace concentration in six 1:1 and 2:1 electrolytes at 298.15
K. Solute N is assumed to behave ideally in pure aqueous solution,

andyyejs calculated using the extended ZSR model (eq 37), with
values ofb in eq 7 optimized individually for each electrolyte. Results
are plotted against molalitsn. Lines: a, NaCl(aq); b, NaNsaq); c,
NH.Cl(aq); d, NHNOs(aq); e, NaSQy(aq); f, (NH:)2SO4(aq).

kg~Y2 The values ob are as follows:bnaci = 2.21, bnano, =
1.71,bnn,no; = 1.45,baw,cl = 1.097,bintg,so, = 1.56, bnasso,

= 1.70. We note that ifg'were calculated using eq 7 with a
fixed value ofb, then at a fixed water activityng would be the
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Figure 8. Activity coefficients (n'29 of a nondissociating solute N
present at trace concentration in aqueous NaCl 298.15 K. Solute N is
assumed to behave ideally in pure aqueous solution, afitf® is
calculated using the extended ZSR model (eq 37) for a range of values
of the interaction parameté® (indicated on the graph). The line for

A% equal to zero is the same as the result for NaCl in Figure 7.

of agueous Ng5O, over this molality range. Some optimization
is probably possible using, for example, an additional term in
BD in the equations as noted earlier.

Methods of predicting the salt effect on the activity coef-
ficients of uncharged solutes have been reviewed by Mifiéro.
These methods can be used to estimate salting coeffidignts
at least for dilute salt solutions, and the results used to fit the
ZSR model parameter&® and B for each electrolyte/neutral
solute pair of interest. Figure 8 shows calculated values of In-
(yn'2¢9 in aqueous NaCl for a range of values of the mixture
parameteA®. The predicted behavior ranges from a decrease
in the activity coefficient (salting in) foA® < —0.05, to salting
out for higher values.

Finally, Clegg et ak* have shown that activity coefficients
and solid/liquid equilibria in sucrose/NaCk8 solutions can
be satisfactorily predicted using the standard ZSR model with
mixture parameters. The comparisons shown above suggest that
the extended model will yield some improvement but that
mixture parameters would still be required.

4. Summary

The Zdanovskit-Stokes-Robinson model is one of the
simplest methods of estimating the thermodynamic properties
of solution mixtures, based upon the properties of solutions of
the individual components. We have derived an extension to
the ZSR model which improves its performance for mixtures
containing salts of different charge types or salts and uncharged
solutes. This can be combined with terms including fitted
parameters for the interactions between pairs of solutes,

same for all salts of the same charge type. Hence the activity developed previousl;to produce a more flexible and accurate

coefficientyy"@®would be determined only by k.

The activity coefficients plotted in Figure 7 in most cases
show the expected approximately linear dependence p§ifd
on ms in dilute solutions, a large improvement on the standard
ZSR model (Figure 4 of Clegg et Hl). The results for N8O,
in Figure 7 differ from the other salts, showing valueg gfac®
either side of unity below about 2 mol kgthough the variation
is not very great. This is related to the difference betwggn
obtained from eq 7 and the true value of the osmotic coefficient

model.

The extension to the model involves molality-based Debye
Huckel expressions for osmotic and activity coefficients. In the
examples discussed here, the expressions were taken from the
Pitzer activity coefficient modé although the method is
general and not restricted to a particular equation.

At its simplest, with a fixed value of the parameterthe
extension to ZSR does not require any additional thermodynamic
information to the standard model. However, some improve-
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ments are possible: optimization bfso that calculate@®’,
m°’, and y°' for each electrolyte more closely match its true
thermodynamic properties in dilute solution; the inclusion of
additional terms including the parametgf?) for the same
purpose. We have not explored other possibilities such as the
use of unsymmetrical mixing terms (for solutions containing
electrolytes of different charge types), also developed by Pitzer.
The extended ZSR model, applied to the system Na&Gb-
SO;—H,0 at 298.15 K, yields improved estimates of mixture
water content, NaCl and N80, activity coefficients, and solid
phase solubilities compared to the standard model. For salt
solutions containing trace amounts of nonelectrolytes, the
extended model predicts activity coefficients of the nonelec-
trolytes that are consistent with commonly observed “Setch-
enow” type behavior, thus addressing a deficiency of the
standard model. The use of mixture parameters for the non-
electrolyte/salt interaction allows salting-in or salting-out be-
havior to be reproduced.

Appendix
Clegg and Pitzét have developed expressions for the
Debye-Hiickel contributions to solute and solvent activity
coefficients, based upon mole fractions rather than molalities,
which incorporate the fitted parametey, (see their eqs 39
45). Analogous equations for the molality scale (with parameter
bca) can be obtained starting from the following expression for
the excess Gibbs energy:
G*/(w, RT) = —41(A’b) In(l + bl*?) (A1)
wherew, is the mass of solvent (kgR (8.3144 J mot! K1)
is the gas constant, and(K) is temperature. First we define
Y. = (I/b.) In(l + b 12 (A2)
where the electrolyte specific paramelgg will replaceb in
eq Al. The ionic strength can be expressed as

=3 > mizimz(z + z)(H mizl)  (A3)

wherez is the charge on ion and the summations are over all
cationsc, anionsa, and ionsi.
Equation A1l can now be rewritten

Yed (3 mizl)

GTIW,RT) = — 4A"Y % mzm|z|(z; + Iz])
c a (A4)

and equations for the osmotic coefficiehtaind solute activity
coefficientsy; derived using the following relations:

§— 1=~ (G RNoW,),LSm)  (AS)

1n(y) = (G, RT)/om), (A6)
yielding
¢ — 1=~y mAIEY S mzmlz|(z + |Z)/((1 +

| - oo (3 M) (A7)

and for cation M:

Clegg and Seinfeld
In(yy) = — 42y(ATy MIZDIY MaiZa)(Zy + 120)Yiia —

> > mdzlim1zl G + 1Z)(Yed Y Mz — 2/
(4(1+ b "A19)] (A8)

The equation for anion X is obtained by transposing subscripts
X for M, c for a, anda for c:

In(yx) = =41z (A° Y miz DY Mz (12| + 2)Yex

> > Mzmizl(z + 1z (Yed Y Mzl = 2/
(4(L+ b 1Y) (A9)

Acknowledgment. This work was supported by the Natural
Environment Research Council (Advanced Fellowship GT5/93/
AAPS/2 for S.L.C.), and also the Electric Power Research
Institute (during an extended visit by S.L.C. to the California
Institute of Technology).

Supporting Information Available: Text giving the deriva-
tion of eq 30 and the “mixture” contributions to the activity
coefficient in eq 32. This material is available free of charge
via the Internet at http://pubs.acs.org.

References and Notes

(1) Zdanovskii, A. B.Tr. Solyanoi Lab. Akad. Nauk SS3$B36.

(2) Stokes, R. H.; Robinson, R. A. Phys. Chem1966 70, 2126~
2130.

(3) Frolov, Yu. G.Russ. J. Phys. Cherh981, 50, 429-459.

(4) Tang, |. N.J. Geophys. Re4.997 102, 1883-1893.

(5) Hu, Y. F.J. Chem. Soc., Faraday Trank998 94, 913-914.

(6) Hu, Y. F.; Wang, Z. CJ. Chem. Thermodyrl994 26, 429-
433.

(7) Hu, Y. F.; Wang, Z. CJ. Chem. Soc., Faraday Trank998 94,
3251-3254.

(8) Hu, Y. F.Phys. Chem. Chem. Phy&00Q 2, 2379-2382.

(9) Hu, Y. F.Bull. Chem. Soc. Jpr2001, 74, 47-.

(10) Hu, Y. F.; Fan, S. SFluid Phase Equilib2001, 187—-188 403~
413.

(11) Hu, Y. F.,; Fan, S. SJ. Solution Chem2001, 30, 671-679.

(12) Kirgintsev, A.; Luk’yanov, A. V.Russ. J. Phys. Cherh966 40,
953-956.

(13) Chen, H.; Sangster, J.; Teng, T. T.; Lenzidan. J. Chem. Eng.
1973 51, 234.

(14) Clegg, S. L.; Seinfeld, J. H.; Edney, E. @.Aerosol Sci2003
34, 667-690.

(15) The dissolution of a nondissociating, sparingly soluble, gas into
an electrolyte solution is often described by the Setchenow relatioffship.
This is equivalent, on a molality basis, to the following expression for the
activity coefficient §n) of the nondissociating species?™2€In(yn) = km,
wherems is the electrolyte molality anét is a proportionality constant.
This equation is found to hold approximately for many gases, and for
electrolyte molalities often up to several molRg’:28

(16) Mikhailov, V. A. Russ. J. Phys. Cherfi968 42, 1414-1416.

(17) Robinson, R. A.; Stokes, R. BElectrolyte Solutions2nd (revised)
ed; Butterworth: London, 1965.

(18) Pitzer, K. S. InActivity Coefficients in Electrolyte Solution&nd
ed.; Pitzer, K. S., Ed.; CRC Press: Boca Raton, FL, 1991; pp 75
153.

(19) Archer, D. G.; Wang, Rl. Phys. Chem. Ref. Dati®9Q 19, 371~
411.

(20) McKay, H. A. C.; Perring, J. KTrans. Faraday Socl1953 49,
163-165.

(21) Fredenslund, Aa.; Jones, R. L.; Prausnitz, JAWChE J.1975
21, 1086-1098.

(22) Zhong, E.; Friedman, H. LJ. Phys. Chem199Q 94, 7868-
7872.

(23) Clegg, S. L.; Simonson, J. M. Chem. Thermodyr2001, 31,
1457-1472.



Improvement of ZdanovskiiStokes-Robinson Model J. Phys. Chem. A, Vol. 108, No. 6, 2004017

(24) Reilly, P. J.; Wood, R. HJ. Phys. Chem1969 73, 4292 (28) Millero, F. J. Physical Chemistry of Natural Water&Viley-
4297. ) o Interscience: New York, 2001.

(25) Equation 14 of Clegg et &.for Wia corresponds to eq 20 in this (29) Rard, J. A;; Clegg, S. L.; Platford, R. F.Chem. Thermody2003
work; eq 9 of Clegg et al. for Infs) corresponds to eq 19 for In{) here; 35, 967—1008.
eq 18 of Clegg et al. for Infg) corresponds to eq 29 here; eq 15 of Clegg . .
et al. for Ing/) corresponds to eq 30 here. (30) Pitzer, K. SJ. Sglunon Chem1975 4, 249-265.

(26) Long, F. A.; McDevit, W. FChem. Re. 1952 51, 119-169. (31) Clegg, S. L.; Pitzer, K. SJ. Phys. Chem1992 96, 3513~

(27) Clegg, S. L.; Whitfield, M. InActivity Coefficients in Electrolyte ~ 3520.
Solutions 2nd ed.; Pitzer, K. S., Ed.; CRC Press: Boca Raton, FL, 1991; (32) Silcock, H. L.Solubilities of Inorganic and Organic Compounds
pp 279-434. Pergamon: Oxford, England, 1979; Vol. 3.



