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The Zdanovskii-Stokes-Robinson (ZSR) relationship [Stokes and Robinson (J. Phys. Chem.1966, 70, 2126-
2130)] enables the solvent content of a liquid mixture to be estimated, for a specified solvent activity, from
data for pure solutions of each of the individual solutes. There is an analogous relationship for the activity
coefficients of the solutes. The method has been shown to be exact, in the limit of extreme dilution, only for
mixtures containing either all uncharged (neutral) solutes or electrolytes all of the same charge type, and in
practice it is found to be most accurate for such mixtures. Here we derive an addition to the ZSR equations
which removes this limitation by incorporating simple Debye-Hückel terms into the equations for solvent
mass and solute activity coefficients. This addition, in its simplest form, does not involve any new fitted
parameters or require any further thermodynamic information. The relationship is general, and not limited to
particular Debye-Hückel expressions. Application of the revised model to activity and osmotic coefficient
data for the system NaCl-Na2SO4-H2O at 298.15 K shows that errors are reduced, compared to predictions
of the standard model, by up to a factor of 2. Solubilities of NaCl(cr), Na2SO4‚10H2O(cr), and Na2SO4(cr) in
that system are similarly better predicted. Activity coefficients of uncharged solutes in salt solutions calculated
using the revised model are now largely consistent with the empirically observed Setchenow relationship.

1. Introduction

The Zdanovskii-Stokes-Robinson (ZSR) relationship, or
linear isopiestic relation, enables the solvent content of a liquid
mixture to be estimated, for a specified solvent activity, from
data for pure solutions of the individual solutes. This ap-
proximate relationship was first discovered empirically by
Zdanovskii1 and later derived independently by Stokes and
Robinson.2 Some of the underlying theory has been reviewed
by Frolov,3 and other recent studies include a number of
practical applications.4-7 The ZSR relationship has also been
applied to the estimation of volumetric and thermal properties
of mixtures,8,9 the speed of sound,10 and freezing point depres-
sion.11 In addition to the expression for solvent content,
corresponding ZSR equations exist for solute activity coef-
ficients,2 and the method has been extended to include ternary
(two solute, single solvent) mixture parameters whose values
are determined from experimental data.12-14 Clegg et al.14 have
demonstrated the application of the extended model to reciprocal
salt and other systems, and have also derived expressions for
cases in which a subset of solutes within a mixture have their
osmotic and activity coefficients described by some other model
within the overall ZSR expression.

Solution water content (hence osmotic coefficient) and solute
activity coefficients predicted by the ZSR relationship are least
accurate for aqueous mixtures containing electrolytes of different
charge types and for mixtures containing both electrolytes and
nonelectrolytes. In the latter case, for example, predicted activity
coefficients of the nonelectrolyte in salt solutions are not
consistent with the Setchenow relationship.14,15This represents

a significant limitation in the practical application of the model.
These observations are consistent with the analysis of Mikhailov16

who showed that, for extremely dilute solutions, the ZSR
relationship is exact only for mixtures of electrolytes of the same
charge type, or for mixtures of nonelectrolytes.

In this work we derive simple correction terms, not involving
any new parameters, for ZSR expressions for both solvent
content and solute activity coefficients in indefinitely complex
mixtures. Expressions for the terms corresponding to the
different model cases treated by Clegg et al.14 are given. The
effects of the new terms are explored in a number of examples,
including osmotic coefficients and salt solubilities in NaCl-
Na2SO4-H2O at 298.15 K and activity coefficients of uncharged
solutes in aqueous salt solutions.

2. Theory

2.1. Solvent Properties.The water activity (aw) and osmotic
coefficient (φ) of an aqueous solution are related by the standard
equation17

whereMw (0.0180152 kg) is the molar mass of water, andmi is
the molality of each individual solute species (ion or uncharged
molecule) in the mixture. The ZSR relationship is expressed in
terms of the properties of solutions of individual salts, or
uncharged molecules. For a mixture containing just two solutes,
1 and 2, we have

* Corresponding author.

ln(aw) ) - Mwφ∑
i

mi (1)

1/m ) x1/m°1 + x2/m°2 (2)
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wherem is the total molality of the solutes in the mixture, and
m°1 andm°2 are the molalities of pure solutions of solutes 1 and
2, respectively, at the solvent activity of the mixture. Quantity
x1 is the mole fractionn1/(n1 + n2), and similarly forx2, where
n1 and n2 are the numbers of moles of each species present.
For this system of two solutes, eq 1 can be written as

or

whereνi is the number of moles of particles produced by the
dissociation in water of solutei. For example,νi would be 2
for the salt NaCl, 3 for Na2SO4, and unity for a nondissociating
molecule. Rearranging eq 3b, we obtain

and for pure aqueous solutions of each solutei:

where superscript° indicates that the quantity is for a pure
aqueous solution ofi at the same water activity as the mixture.
Finally, multiplying eq 5 for each solute byxi and substituting
into eq 4 yield

The ZSR relationship, eq 2, is obtained from eq 6 by assuming
that the final term in 1/ln(aw) is negligibleshence (x1ν1 + x2ν2)φ
≈ (x1ν1φ°1 + x2ν2φ°2). Mikhailov16 has shown that this is indeed
true for very dilute solutions containing solutes of the same
charge type, for whichφ ≈ φ°1 ≈ φ°2 at constant water activity.
This can be understood intuitively, as for salts in such solutions
the osmotic coefficients will all have values close to the Debye-
Hückel limiting slope (which is a function of ionic strength
only), or in the case of a mixture of uncharged solutes the
osmotic coefficients will all be very close to unity. However,
this is not true for mixtures containing solutes of different charge
types (i.e., 1:1, 2:1, and 2:2 electrolytes, etc.), and this can have
a significant effect on solute activity coefficients estimated using
ZSR.

We have found that a worthwhile improvement in the ZSR
relationship can be obtained by approximatingφ, φ°1, andφ°2 in
eq 6 by molality-based expressions for the Debye-Hückel
limiting law. The desirable features of such expressions are,
first, that they reproduce satisfactorily the osmotic coefficients
of both pure electrolyte solutions and mixtures at high dilutions,
including the correct limiting law behavior asm tends to zero.
Second, at moderate to high concentrations the calculated
osmotic coefficient should tend to some small, approximately
constant, value that is greater than zero. This is so that the
principal influence of the term is restricted to very high water
activities. Third, there should be a corresponding analytical
expression for the Debye-Hückel contribution to the activity
coefficient of each solute. The Pitzer activity coefficient model18

contains a suitable expression:

where the summation is as in eq 1,Aφ is the molal Debye-

Hückel coefficient (0.3915 at 298.15 K),19 b is a constant that
usually takes the value 1.2, andI is the molal ionic strength of
the mixture. This is given byI ) 0.5∑imizi

2, wherezi is the
charge on ioni. The value of an osmotic coefficient calculated
from eq 7 is the same for all solutions containing only
electrolyte(s) of the same charge type at the same water activity,
and is unity for all solutions containing only uncharged solute-
(s). For these two cases the terms in square brackets in eq 6
cancel, and the ZSR relationship reverts to its normal form.
Notice that eq 7 does not contain any solute-specific parameters,
so that this extension to the ZSR expression does not require
any additional thermodynamic information. However, other
choices are possible. For example, eq 7 can be extended with
an additional term+ âca

(1)exp(-RI1/2), whereR is a constant
(a value of 2.0 is often used) andâca

(1) is a temperature-
dependent parameter specific to each electrolyteca.18 The effect
of this term is confined to dilute solutions. An alternative, and
probably more flexible, equation can be obtained by replacing
the single value ofb in eq 7 by an individual constantbca for
each electrolyte. The development of this equation is described
in the Appendix.

Figure 1 shows osmotic coefficients (φ°) for aqueous solutions
of eight 1:1 electrolytes, together with values calculated using
eq 7 for a range of parameterb. If only a single value is to be
adopted thenb ) 1.2 is satisfactory. However, the plots also
suggest that some optimization, i.e., individual values ofbca,
may be worthwhile to improve agreement between observed
φ° and eq 7 at very low molality.

A similar comparison for some 1:2 and 2:1 electrolytes is
shown in Figure 2. Here, calculated osmotic coefficients forb
equal to 1.2 fall below the trueφ° of most of the salts, and
values of 2.0 to 3.0 would yield better agreement. We also note
that for higher charge types such as 2:2 electrolytes it is essential
to adopt a value ofb in eq 7 greater than 1.2, to avoid negative
osmotic coefficients being predicted at high molalities.

Denoting osmotic coefficients calculated using eq 7 with a
prime, we generalize the modified ZSR relationship by writing
eq 6 for an indefinite number of solutes s:

Multiplying through by the total moles of solutes (∑sns) in the
mixture, eq 8 can be rewritten for the total mass of water (Wtotal,
in kg):

where w°s is the mass of water associated withns moles of
solute s in a pure solution ofs at the water activity of the
mixture, andw°′s is the same quantity but calculated using eq 7
to obtain the Debye-Hückel approximation to the osmotic
coefficient φ°′s . Similarly W′total is the approximation to the
total mass of water in the mixture calculated using eq 7 to obtain
φ′.

Equation 9 can be compared to eq 7 of Clegg et al.14 which,
in addition to the first term in eq 9, contains a summation
involving solute-solute mixture parameters. That reference
should be consulted for details.

2.2. Solute Activity Coefficients.Values of the molal activity
coefficient, or mean activity coefficient in the case of electro-
lytes, that are thermodynamically consistent with eq 9 are
obtained by applying the McKay-Perring equation.20 For a

ln(aw) ) -Mw(m1ν1 + m2ν2)φ (3a)

ln(aw) ) -Mwm(x1ν1 + x2ν2)φ (3b)

1/m ) -(Mw/ln(aw))(x1ν1 + x2ν 2)φ (4)

1/m°i ) -(Mw/ln(aw))νiφ°i (5)

1/m ) x1/m°1 + x2/m°2 - (Mw/ln(aw))[(x1ν1 + x2ν2)φ -
x1ν1φ°1 - x2ν2φ°2] (6)

φ ) 1 - (2/∑
i

mi)A
φI3/2/(1 + bxI ) (7)

1/m ) ∑
s

xs/m°s - (Mw/ln(aw))∑
s

xsνs(φ′ - φ°′s ) (8)

Wtotal ) ∑
s

w°s + (W′total - ∑
s

w°′s ) (9)
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solution containing two solutes this is

whereγ1 is the activity coefficient of solute 1 in the mixture,
γ°1 is its activity coefficient in a pure aqueous solution of 1 at
the water activity of the mixture,k1 is an arbitrary proportionality
constant for solute 1 (here set the same asν1), andm* is equal
to (k1m1 + k2m2) or (ν1m1 + ν2m2). The ratior2 is equal to
ν2m2/m*, or 1 - r1 wherer1 ) ν1m1/m*. Note that these ratios
can be expressed in terms of the moles of each solute in the
mixture, and so do not vary with water activity. Equation 10

can now be rewritten in the form that is used here:

For the standard ZSR expression for the relationship between
solution water content and solvent activity (eq 2) the integral
above is zero, and the activity coefficient of solute 1 equal to
the first two terms in eq 11.2,14

Next, we obtain expressions for the terms in the McKay-
Perring integral corresponding to the extended ZSR relationship.
Equation 6 is first rewritten in terms of osmotic coefficients:

Figure 1. Molal osmotic coefficients (φ) of aqueous solutions of eight
1:1 electrolytes at 298.15 K, compared with values calculated using
the Debye-Hückel expression (eq 7) for different values of the
parameterb. (a) Forxm e 1.0 mol1/2 kg-1/2, wherem is the molality
of the electrolyte. (b) For higherxm. Solid, dashed, and dotted lines:
a, HCl(aq); b, HNO3(aq); c, NaCl(aq); d, NaNO3(aq); e, KCl(aq); f,
KNO3(aq); g, NH4Cl(aq); h, NH4NO3(aq). Fine dash-dot lines:
calculated using eq 7 with values ofb from 0.5 to 4.0 as shown on the
plot.

ln(γ1) ) ln(γ°1) + ln(k1m°1/m*) + ( 1
Mw

)(k1

ν1
) ×

∫0

ln aw {- ( 1

m*2)( ∂m*
∂ ln r2

)
aw

- 1
m*

+ 1
k1m°1} d ln(aw) (10)

Figure 2. Molal osmotic coefficients (φ) of aqueous solutions of six
2:1 and 1:2 electrolytes at 298.15 K, compared with values calculated
using the Debye-Hückel expression (eq 7) for different values of the
parameterb. (a) Forxm e 1.0 mol1/2 kg-1/2, wherem is the molality
of the electrolyte. (b) For higherxm. Solid, dashed, and dotted lines:
a, Na2SO4(aq); b, (NH4)2SO4(aq); c, MgCl2(aq); d, CaCl2(aq); e, Mg-
(NO3)2(aq); f, Ca(NO3)2(aq). Fine dash-dot lines: calculated using eq
7 with values ofb from 1.0 to 4.0 as shown on the plot.

ln(γ1) ) ln(γ°1) + ln(k1m°1/m*) + ( 1
Mw

)(k1

ν1
) ×

∫o

ln aw{r2(∂1/m*
∂r2

)
aw

- 1
m*

+ 1
k1m°1} d ln(aw) (11)

l/m ) - (Mw/ln(aw))[x1ν1φ°1 + x2ν2φ°2 + (x1ν1 + x2ν2)φ′ -
x1ν1φ°′1 - x2ν2φ°′2 ] (12)
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Multiplying through bym/m* and recognizing thatr i ) νimi/
(ν1m1 + ν2m2) ) νimi/m*, and r1 ) 1 - r2, eq 12 becomes

Differentiating eq 13 with respect tor2 at constant water activity
yields

Finally, inserting eq 13 and eq 14 into the McKay-Perring
equation, and substituting-(Mw/ln(aw))φ°1 for 1/k1m°1, yields

As expected, the only terms remaining within the integral in eq
15 involve the extension to the ZSR expression. The value of
the integral can be obtained by considering a solution containing
the same two solutes, whose osmotic coefficient (φ′) is given
by eq 7. For this solution the McKay-Perring equation yields

where the prime indicates properties calculated using the
simplified Debye-Hückel expression. In this case l/m* ′ is equal
to -(Mw/ln(aw))φ′ and 1/k1m°′1 is equal to-(Mw/ln(aw))φ°′1, so
that

Clearly the integral in eq 17 is identical to that in eq 15. The
values of both ln(γ°1 ) and ln(γ°′1 ) can be calculated directly
from the expression for solute activity coefficients that corre-
sponds to eq 7. Where solute 1 is an electrolyte Mν+Xν- then
we have18

where I is the ionic strength of the solution mixture at the
specified water activity, calculated using eq 7 (forφ′) and eq
1. The value of ln(γ°′1 ) is also calculated using eq 18, except
that in this case the ionic strength is that of a pure aqueous
solution of Mν+Xν- at the water activity of the mixture. For
solutions containing only neutral (uncharged) solutesφ′ is equal
to unity and both ln(γ′1) and ln(γ°′1 ) are equal to zero under all
conditions.

Knowing both ln(γ′1) and ln(γ°′1 ) from eq 18 and also the
terms in solute amounts and molalities in eq 17, the value of
the integral in eq 15 and eq 17 is obtained just by subtracting
the first two terms on the right-hand side of eq 17 from ln(γ′1)
on the left. Incorporating the result into eq 15, and rewriting in
terms of water amounts, gives the complete expression for ln-
(γ1) in a two-solute system for the extended model:

Note that the final term in eq 19 can also be written in terms of
molalities; hence,w°1 andw°′1 in this equation are calculated for
an arbitrary (though the same) amount of solute 1, rather than
the amount actually present in the mixture. The distinction is
important where eq 19 is being used to calculate the activity
coefficient of a solute at trace (i.e., zero) molality in a mixture,
for which w°′1 /w°1 (equivalent tom°1 /m°′1 ) has a finite value.
This consideration also applies to other activity coefficient
equations derived below.

In mixture of solutes that are all of the same charge type the
second term in eq 19 is equal to zero (γ′1 ) γ°′1 ) since in such
a solution the activity coefficients given by the Debye-Hückel
expression in eq 18 depend on the ionic strength only. This
would not be the case, though, if different valuesbca were being
used.

The McKay-Perring equation for the activity coefficient of
solute 1 in a two solute mixture can be applied straightforwardly
to a multicomponent mixture by treating the othern - 1 solutes
(n ) 2, 3, ...) as a single combined “solute” in which all they
are present in fixed ratios to one another. Repeating the above
derivation on this basis leaves eq 19 unchanged, thus it can be
applied toall solution mixtures.

2.3. Combining Models within ZSR. In many practical
applications osmotic and activity coefficients of one or more
subgroups of solutes may be either known directly or calculated
by some other method than ZSR. For example, the properties
of the electrolyte components of a mixture might be estimated
with an ion interaction model such as that of Pitzer,18 while the
properties of the uncharged solutes are either determined using
another model such as UNIFAC21 (which is then incorporated
into the ZSR scheme) or are treated individually. It is desirable
to incorporate these submodels into the overall ZSR approach
in order to retain as much accuracy as possible in the prediction
of osmotic and activity coefficients in the mixture. In the
derivation below we follow Clegg et al.14 in a similar analysis
of the use of solute-solute mixture parameters within ZSR.

First consider a solution containing a number of solutess,
subdivided into two groupsr andq. The properties of mixtures
containing only solutesr can be calculated directly by some
arbitrary model, whose predictions we wish to incorporate into
the ZSR framework, while each soluteq is treated as an
individual component. The expression for the total mass of water
in the system is

wherew°,r is the mass of water associated with the group of
solutesr in the mixture, and calculated using the arbitrary model
referred to above, andw°q is the mass of water associated with
each individual soluteq at the water activity of the mixture.
The meaning ofW′total is as given earlier,w°,r′ is also calculated
using eq 7 for the osmotic coefficient, but only for the group
of solutesr, and eachw°′q is calculated using eq 7 for pure
aqueous solutions of each individual soluteq.

The expression for the activity coefficient of solute Q, a
member of groupq, is obtained as follows. Assuming, for
simplicity, that solute groupq has two solutesq1 and q2, the
extended ZSR expression for the water content of the solution
is

l/m* ) - (Mw/ln(aw))[(1 - r2)φ°1 + r2φ°2 + φ′ -
(1 - r2)φ°′1 - r2φ°′2 ] (13)

(∂1/m*
∂r2

)
aw

) - ( Mw

ln(aw))[-φ°1 + φ°2 + (∂φ′
∂r2

)
aw

+ φ°′1 - φ°′2 ]
(14)

ln(γ1) ) ln(γ°1) + ln(k1m°1/m*) +
k1

ν1
∫o

ln(aw) {r2(∂φ′
∂r2

)
aw

+ φ′ - φ°′1 } d ln(aw)

ln(aw)
(15)

ln(γ′1) ) ln(γ°′1 ) + ln(k1m°′1 /m* ′) +

(1/Mw)
k1

ν1
∫o

ln(aw) {r2(∂1/m* ′
∂r2

)
aw

- 1
m* ′ + 1

k1m°′1 }d ln(aw) (16)

ln(γ°1) ) ln(γ°′1 ) + ln(k1m°′1 /m* ′) +
k1

ν1
∫o

ln(aw) {r2(∂φ′
∂r2

)
aw

+ φ′ - φ°′1 } d ln(aw)

ln(aw)
(17)

ln(γ′1) ) - |zMzX|Aφ[xI/(1 + bxI) + (2/b) ln(1 + bxI)]

(18)

ln(γ1) ) ln(γ°1) + ln(γ′1/γ°′1 ) + ln(Wtotal

W′total

w°′1

w°1 ) (19)

Wtotal ) w°,r + ∑
q

w°q + (W′total - w°,r′ - ∑
q

w°′q ) (20)
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where m°r is the total molality of all solutesr, in a solution
containing only these solutes, at the water activity of the mixture.
Osmotic coefficientφ°′r is calculated using eq 7, also for a
solution containing solutesr only. Note that the use of subscript
r on its own refers to the whole group of solutesr together.
Quantitiesxr andmr are defined below:

The expression for ln(γQ) is obtained first by converting the
three initial terms in eq 21 to osmotic coefficients, and
multiplying through bym/m* to get the expression for 1/m*:

where

Assuming that solute Q isq1, then the differential of 1/m* in
the McKay-Perring equation is with respect to the ratior for
the combined solutesr andq2 (i.e., all solutes except the selected
q1). Defining r c ) r r + rq2 for these combined solutes, eq 24
can be written as

The expression forr c[(∂ 1/m*)/∂r c]aw can be obtained straight-
forwardly from eq 27, recognizing that dr r/dr c ) r r/r c, and
drq2/dr c ) rq2/r c:

Substituting eq 27 and eq 28 into the McKay-Perring expres-
sion in the same way as for the two-solute case described earlier
yields essentially the result in eq 16, but with solute Q replacing
solute 1 andr c replacingr2. The value of the integral is obtained
in the same way as before, yielding the following final result:

This expression is similar to eq 19. The only difference is that
the total water content of the system (Wtotal) is calculated using
eq 20 rather than eq 9.

Second, we determine the equation for the activity coefficient
of a solute R from groupr. The total amount of water associated
with the mixture is given by eq 20, and 1/m* by eq 24.

Assuming, for simplicity, that groupr contains two solutesr1

andr2, and that the selected solute R isr1, then we can define
r c ) r r2 + rq1 + rq2. The osmotic coefficientsφ′, φ°r, andφ°′r in
eq 24 all have nonzero differentials with respect tor c, leading
to a relatively lengthy expression for (∂1/m*)/∂r c and more
complex integral. The complete derivation of the equation for
ln(γR) from eq 20, eq 24, and the McKay-Perring equation is
given in the Supporting Information to this paper. Below we
give only the final result:

This expression differs from that for ln(γQ) in that the water
amountsw° in the final term are those associated with the entire
group of solutesr rather than just the solute of interest. Also,
the activity coefficientγ°R

,r is the value (calculated by the
arbitrary model that is being included in the ZSR scheme), for
a solution containing only solutesr. The activity coefficient
γ°,r′R is determined using eq 18, also for a solution containing
only solutesr.

2.4. ZSR Model with Mixture Parameters. Clegg et al.14

have recently derived expressions for additional terms to the
ZSR equations for mixture water content and solute activity
coefficients that take into account interactions between pairs
of solutes. The expressions are based upon earlier work by Chen
et al.13 and in particular by Kirgintsev and Lukyanov,12 and
they include parameters whose values are obtained from
experimental data that yield solute or solvent activities. The
effect of using these additional terms is to increase the accuracy
of model predictions in complex mixtures.

The equations derived by Clegg et al.14 correspond to the
different cases treated above, but do not of course include the
extension that we have derived here. The results of both papers
are straightforwardly combined by adding the mixture expres-
sions of Clegg et al.14 to the equations in sections 2.1-2.3 above.
Thus:

where As,s′
0 , As,s′

1 and Bs,s′ are the interaction parameters for
pairs of solutess ands′, andys,s′ is equal tons′/(ns + ns′). In a
mixture of a number of solutess, all of which are treated as
individual components within ZSR, the activity coefficient of
a solute S is given by

Finally, for the cases where the solution is treated as a containing
a group of solutesr, and a number of individual solutesq

ln(γR) ) ln(γ°R
,r ) + ln(γ′R/γ°,r′R ) + ln(Wtotal

W′total

w°,r′
w°,r ) (30)

Wtotal ) w°,r + ∑
q

w°q + (W′total - w°,r′ - ∑
q

w°′q ) +

(∑
s

ns)∑∑
s < s′

xsxs′(As,s′
0 + As,s′

1 ys,s′ + Bs,s′aw) (31)

ln(γS) ) ln(γ°S) + ln(γ′S/γ°′S ) + ln[(Wtotal/W′total)(w°′S /w°S)] -

(l/(MwνS))(1 - xS)
2[(AS - A′S) ln(aw) -

(BS - B′S)(l - aw)] (32)

ln(γQ) ) ln(γ°Q) + ln(γ′Q/γ°′Q ) + ln[(Wtotal/W′total)(w°′Q /w°Q)] -

(l/(MwνQ))(l - xQ)2[(AQ - A′Q) ln(aw) -
(BQ - B′Q)(l - aw)] (33)

ln(γR) ) ln(γ°,r
R ) + ln(γ′R/γ°,r′R ) + ln[(Wtotal/W′total) ×

(wo,r′/wo,r)] - (l/(MwνR))(l - xR)2[(AR - A′R) ln(aw) -
(BR - B′R)(l - aw)] (34)

l/m ) xr/m°r + xq1
/m°q1

+ xq2
/m°q2

- (Mw/ln(aw))[(xrνr +

xq1
νq1

+ xq2
νq2

)φ′ - xrνrφ°′r - xq1
νq1

φ°′q1
- xq2

νq2
φ°′q2

] (21)

xr ) (∑
r

nr)/∑
s

ns (22)

νr ) (∑
r

nrνr)/∑
r

nr (23)

l/m* ) - (Mw/ln(aw))[r rφ°r + rq1
φ°q1

+ rq2
φ°q2

+

φ′ - r rφ°′r - rq1
φ°′q1

- rq2
φ°′q2

] (24)

r r ) (∑
r

nrνr)/∑
s

nsνs (25)

rqi
) (nqi

νqi
)/∑

s

nsνs (26)

l/m* ) - (Mw/ln(aw))[r rφ°r + (l - r c)φ°q1
+ rq2

φ°q2
+ φ′ -

r rφ°′r - (l - r c)φ°′q1
- rq2

φ°′q2
] (27)

r c(∂1/m*
∂r c

)
aw

) - ( Mw

ln(aw))[r rφ°r - r cφ°q1
+ rq2

φ°q2
+

r c(∂φ′
∂r c

)
aw

- r rφ°′r + r cφ°′q1
- rq2

φ°′q2] (28)

ln(γQ) ) ln(γ°Q) + ln(γ′Q/γ°′Q ) + ln(Wtotal

W′total

w°′Q

w°Q ) (29)
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The mixture functionsA, A′, B, and B′ in eqs 32-34
incorporate the parametersAs,s′

0 , As,s′
1 , andBs,s′. The definitions

of these functions are given in section 2.2 of Clegg et al.14 and
are not repeated here.

2.5. Solute Amounts in Multicomponent Electrolyte Solu-
tions. The only further requirement for carrying out calculations
for solutions containing multiple ions is a method of assigning
the mixture composition in terms of electrolytes rather than ions
as components, as required by the ZSR method. A mixing rule
should be adopted as this cannot be done uniquely for mixtures
containing>2 ions of each charge type. Some of the possible
approaches are discussed by Zhong and Friedman.22 Clegg et
al.14 and Clegg and Simonson23 have shown that the mixing
rule of Reilly and Wood24 gives satisfactory results. The amounts
of each electrolyte are determined from the numbers of
equivalents of each cation and anion present (nczc, na|za|). The
equation for the amount of electrolyte Mν+Xν- (nMX) present in
an arbitrarily complex mixture is14

whereνM(X) is the number of ions of cation M in one molecule
of electrolyte Mν+Xν- (and similarly forνX(M) and anion X).
The summations are over all cationsc and anionsa.

The amount of each solutes present in a solution mixture is
therefore as follows: for an uncharged (nondissociating) species,
such as an organic molecule,ns is simply the number of moles
of that molecule that are present in the mixture; where solutes
is an electrolyte then the amount present is calculated using eq
35.

3. Applications

3.1. NaCl)Na2SO4)H2O at 298.15 K.The thermodynamic
properties of this system, for which extensive data are available,
have recently been critically reviewed by Rard et al.29 Their
fitted equations for osmotic and activity coefficients are used
here as a reference for comparisons with both standard and
extended ZSR models. Figure 3a shows the percentage differ-
ences between water massesWtotal predicted using the standard
ZSR relationship (eq 2) and the true values for a range of fixed
water activities. Errors are greatest for NaCl fractions of between
0.5 and 0.6, reaching just over-2.5% for aw ) 0.95. Figure
3b shows the corresponding results for the extended model (eq
9) in which the value ofb (used in eq 7 to calculateφ°′ and
hence w°′s for both salts) is fixed at 1.2. Here maximum
errors only reach about-1.75%, and the magnitudes of the
errors foraw equal to 0.99 and 0.85 are reduced by a factor of
2. While these improvements appear small, they are significant
when expressed in terms of osmotic coefficient which can vary
steeply with electrolyte concentration particularly for water
activities very close to unity (dilute solutions).

Activity coefficients of NaCl, calculated using the standard
ZSR model (eq 11, but omitting the integral) and the extended
model (eq 19) are compared in Figure 4. The increase in
accuracy of the extended model is considerable, with predicted
mean activity coefficients of trace NaCl in aqueous Na2SO4

being more accurate by over a factor of 2. The result is similar
for activity coefficients of Na2SO4, and is shown in Figure 5.
When calculating the activities of the solutes the mean activity
coefficients are squared (NaCl) and cubed (Na2SO4). Conse-
quently, the 15% error in the mean activity coefficient of Na2-
SO4 shown in Figure 5a atxNaCl ≈ 1.0 andaw ) 0.9 is equivalent
to an error in the calculated Na2SO4 activity of almost 40%. It

is clear from Figure 5b that this error is essentially removed by
the extended model at NaCl mole fractions close to unity, and
greatly reduced at lower mole fractions.

Clegg et al.14 have modeled the formation of the solids Na2-
SO4‚10H2O(cr), Na2SO4(cr), and NaCl(cr) in NaCl-Na2SO4-
H2O mixtures using the standard ZSR model both with and
without fitted mixture parametersA0 and B (see their Figure
1a). Here we repeat the calculation, with the same activity
products (KS) of the solids, but using the extended ZSR model
without mixture parameters to determine solute activities. The
results are plotted in Figure 6, which shows that the extended
model yields a significant improvement in the predicted
solubilities, particularly for the two sodium sulfate salts,
compared to the standard model without mixture parameters.
This is consistent with the water content and activity coefficient
comparisons in Figures 4 and 5.

3.2. Activity Coefficients of Uncharged Solutes in Aqueous
Salt Solutions.Clegg et al.14 have shown in their Figure 4 that

Figure 3. Water content of a mixture containing 1.0 mol of NaCl/
Na2SO4 calculated using the ZSR model at 298.15 K, shown as the
percentage difference (∆Wtotal) from the true value determined from
the model of Rard et al.29 (a) Standard ZSR model. (b) Extended ZSR
model (eq 9). Results are plotted against the dry mole fraction of NaCl
in the mixture (xNaCl, equal tonNaCl/(nNaCl + nNa2SO4)) for the following
fixed water activities: a, 0.9999; b, 0.999; c, 0.99; d, 0.95; e, 0.90; f,
0.85.

nMX ) 2nMnX(zM|zX|/(νM(X)νX(M)))
1/2/(∑

c

nczc + ∑
a

na|za|)
(35)
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activity coefficients of uncharged solutes in salt solutions
predicted by the standard ZSR model are not consistent with
the commonly observed Setchenow relationship.15 In particular,
at very low salt molalitiesmS, the values of the activity
coefficients are predicted to vary steeply withmS and only
approach unity at extreme dilutionsa feature that is not observed
in real solutions.

One of the principal reasons for extending the ZSR model
was to address this deficiency, although it is emphasized that
the model would not be expected to predict quantitatively the
effects of different salts without the use of fitted parameters.
This is particularly true for solutions in which the uncharged
solute is present at very low or trace concentration. We note,
though, that thermodynamic properties of some neutral solute/
electrolyte mixtures have been modeled satisfactorily using the
standard ZSR model over limited ranges of mixture composi-
tion.5

Consider a solution containing an uncharged solute N at trace
concentration, and a single salt S. If N behaves ideally in pure
aqueous solution (γ°N ) γ°′N ) γ′N ) 1.0) then eq 19 simplifies
to

In this examplem°N and m°′N are the same at all water
activities (sinceφ°N andφ°′N also equal unity for ideal solutions
of N) and

Values ofγN
traceare plotted in Figure 7 for several salts. For

these examples the value ofb was optimized for each salt by
fitting to osmotic coefficients at 298.15 K calculated using the
Pitzer model with published parameters,18 for xm e 0.1 mol1/2

Figure 4. Mean activity coefficients of NaCl in aqueous NaCl/Na2-
SO4 at 298.15 K calculated using the ZSR model (γZSR), shown as the
ratio to the true value determined from the model of Rard et al.29 (γPitz).
(a) Standard ZSR model. (b) Extended ZSR model (eq 19). Results
are plotted against the dry mole fraction of NaCl in the mixture (xNaCl,
equal tonNaCl/(nNaCl + nNa2SO4)) for the following fixed water activi-
ties: a, 0.9999; b, 0.999; c, 0.99; d, 0.95; e, 0.90; f, 0.85.

Figure 5. Mean activity coefficients of Na2SO4 in aqueous NaCl/Na2-
SO4 at 298.15 K calculated using the ZSR model (γZSR), shown as the
ratio to the true value determined from the model of Rard et al.29 (γPitz).
(a) Standard ZSR model. (b) Extended ZSR model (eq 19). Results
are plotted against the dry mole fraction of NaCl in the mixture (xNaCl,
equal tonNaCl/(nNaCl + nNa2SO4)) for the following fixed water activi-
ties: a, 0.9999; b, 0.999; c, 0.99; d, 0.95; e, 0.90; f, 0.85.

ln(γN
trace) ) ln(m°N/(νSmS)) + ln(νSm′S/m°′N ) (36)

ln(γN
trace) ) ln(mS′/mS) (37)
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kg-1/2. The values ofb are as follows:bNaCl ) 2.21,bNaNO3 )
1.71,bNH4NO3 ) 1.45,bNH4Cl ) 1.097,b(NH4)2SO4 ) 1.56,bNa2SO4

) 1.70. We note that ifφ°′S were calculated using eq 7 with a
fixed value ofb, then at a fixed water activitym′S would be the
same for all salts of the same charge type. Hence the activity
coefficientγN

trace would be determined only by 1/mS.
The activity coefficients plotted in Figure 7 in most cases

show the expected approximately linear dependence of ln(γN
trace)

on mS in dilute solutions, a large improvement on the standard
ZSR model (Figure 4 of Clegg et al.14). The results for Na2SO4

in Figure 7 differ from the other salts, showing values ofγN
trace

either side of unity below about 2 mol kg-1 though the variation
is not very great. This is related to the difference betweenφ°′S
obtained from eq 7 and the true value of the osmotic coefficient

of aqueous Na2SO4 over this molality range. Some optimization
is probably possible using, for example, an additional term in
â(1) in the equations as noted earlier.

Methods of predicting the salt effect on the activity coef-
ficients of uncharged solutes have been reviewed by Millero.24

These methods can be used to estimate salting coefficientskS,
at least for dilute salt solutions, and the results used to fit the
ZSR model parametersA0 and B for each electrolyte/neutral
solute pair of interest. Figure 8 shows calculated values of ln-
(γN

trace) in aqueous NaCl for a range of values of the mixture
parameterA0. The predicted behavior ranges from a decrease
in the activity coefficient (salting in) forA0 < -0.05, to salting
out for higher values.

Finally, Clegg et al.14 have shown that activity coefficients
and solid/liquid equilibria in sucrose/NaCl/H2O solutions can
be satisfactorily predicted using the standard ZSR model with
mixture parameters. The comparisons shown above suggest that
the extended model will yield some improvement but that
mixture parameters would still be required.

4. Summary

The Zdanovskii-Stokes-Robinson model is one of the
simplest methods of estimating the thermodynamic properties
of solution mixtures, based upon the properties of solutions of
the individual components. We have derived an extension to
the ZSR model which improves its performance for mixtures
containing salts of different charge types or salts and uncharged
solutes. This can be combined with terms including fitted
parameters for the interactions between pairs of solutes,
developed previously,14 to produce a more flexible and accurate
model.

The extension to the model involves molality-based Debye-
Hückel expressions for osmotic and activity coefficients. In the
examples discussed here, the expressions were taken from the
Pitzer activity coefficient model,18 although the method is
general and not restricted to a particular equation.

At its simplest, with a fixed value of the parameterb, the
extension to ZSR does not require any additional thermodynamic
information to the standard model. However, some improve-

Figure 6. Solid-phase solubilities in aqueous NaCl/Na2SO4 mixtures
at 298.15 K. Symbols: cross, Na2SO4‚10H2O(cr); open circle, Na2-
SO4(cr); solid square, NaCl(cr). Lines: dashed, standard ZSR model
for solution water content and solute activity coefficients; solid,
extended ZSR model. Data are from the compilation of Silcock.32

Figure 7. Activity coefficients (γN
trace) of a nondissociating solute N

present at trace concentration in six 1:1 and 2:1 electrolytes at 298.15
K. Solute N is assumed to behave ideally in pure aqueous solution,
andγN

trace is calculated using the extended ZSR model (eq 37), with
values ofb in eq 7 optimized individually for each electrolyte. Results
are plotted against molalitym. Lines: a, NaCl(aq); b, NaNO3(aq); c,
NH4Cl(aq); d, NH4NO3(aq); e, Na2SO4(aq); f, (NH4)2SO4(aq).

Figure 8. Activity coefficients (γN
trace) of a nondissociating solute N

present at trace concentration in aqueous NaCl 298.15 K. Solute N is
assumed to behave ideally in pure aqueous solution, andγN

trace is
calculated using the extended ZSR model (eq 37) for a range of values
of the interaction parameterA0 (indicated on the graph). The line for
A0 equal to zero is the same as the result for NaCl in Figure 7.
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ments are possible: optimization ofb so that calculatedφ°′,
m°′, and γ°′ for each electrolyte more closely match its true
thermodynamic properties in dilute solution; the inclusion of
additional terms including the parameterâ(1) for the same
purpose. We have not explored other possibilities such as the
use of unsymmetrical mixing terms (for solutions containing
electrolytes of different charge types), also developed by Pitzer.30

The extended ZSR model, applied to the system NaCl-Na2-
SO4-H2O at 298.15 K, yields improved estimates of mixture
water content, NaCl and Na2SO4 activity coefficients, and solid
phase solubilities compared to the standard model. For salt
solutions containing trace amounts of nonelectrolytes, the
extended model predicts activity coefficients of the nonelec-
trolytes that are consistent with commonly observed “Setch-
enow” type behavior, thus addressing a deficiency of the
standard model. The use of mixture parameters for the non-
electrolyte/salt interaction allows salting-in or salting-out be-
havior to be reproduced.

Appendix

Clegg and Pitzer31 have developed expressions for the
Debye-Hückel contributions to solute and solvent activity
coefficients, based upon mole fractions rather than molalities,
which incorporate the fitted parameterFca (see their eqs 39-
45). Analogous equations for the molality scale (with parameter
bca) can be obtained starting from the following expression for
the excess Gibbs energy:

whereww is the mass of solvent (kg),R (8.3144 J mol-1 K-1)
is the gas constant, andT (K) is temperature. First we define

where the electrolyte specific parameterbca will replace b in
eq A1. The ionic strengthI can be expressed as

wherezi is the charge on ioni, and the summations are over all
cationsc, anionsa, and ionsi.

Equation A1 can now be rewritten

and equations for the osmotic coefficientφ and solute activity
coefficientsγi derived using the following relations:

yielding

and for cation M:

The equation for anion X is obtained by transposing subscripts
X for M, c for a, anda for c:
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