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A novel quantum mechanical formulation of time correlation functions is derived, based on Bohmian trajectories
integrated along a forward-backward time contour. The derived expression involves a smooth integrand
amenable to Monte Carlo integration with a readily available position space density. The Bohmian potential
governing the motion of the quantum trajectories is weak and well-behaved, facilitating the computation of
Bohmian trajectories.

I. Introduction

Time correlation functions provide important information on
the dynamics and spectroscopy of chemical systems. For
example, the autocorrelation function of the dipole-moment
operator leads directly to vibrational or electronic spectra, flux
correlation functions provide reaction rate information, and
velocity correlation functions yield diffusion constants in the
bulk. The inclusion of quantum mechanical effects in the
computation of time correlation functions presents a challenging
problem that continues to receive much attention. At present,
the dynamics of small molecules are treatable by a variety of
basis-set or grid-based methods, and low-dimensional sub-
systems coupled to dissipative harmonic baths can be simulated
via numerically exact path integral methods. In recent years,
efforts to devise simulation tools capable of including quantum
mechanical effects to the dynamics of polyatomic systems
dominated by arbitrary anharmonic interactions have moved to
the forefront of theoretical chemistry research. Among the most
successful approaches currently available are the centroid
molecular dynamics scheme, techniques based on surface
hopping, and semiclassical initial value methods.

The semiclassical approximation to quantum mechanics1,2

offers a rigorous and intuitively appealing way of including
quantum effects via classical trajectory input. Semiclassical
theory is based on classical trajectories and their stability
properties, which can be obtained by inexpensive calculations
even for very large systems.3 These characteristics make
semiclassical methods very appealing, as they can account for
important quantum mechanical features of a system, while
offering an intuitive understanding of dynamical processes.4-7

In recent years, the semiclassical method has experienced a
rebirth of interest with the development of semiclassical initial
value representations (IVR),4,8-20 which circumvent the trouble-
some “root-search” problem of the original formulation. Nu-
merical calculations exploiting these advances have demon-
strated the ability of the semiclassical approximation to provide
an accurate description of essentially all types of quantum effects
in chemical dynamics,13,20-22 and a number of successful
applications to polyatomic molecules have been pre-
sented.19,20,23-31 To date, the highly oscillatory character of the
semiclassical integrand remains the main drawback of semiclas-
sical methods, preventing integration by Monte Carlo methods
in condensed phase systems. A significant development in the

past few years has been the formulation of forward-backward
semiclassical dynamics (FBSD) methods,32-48 which circumvent
the problem by combining (and thus partially canceling) the
phases of forward and reverse time trajectories entering the
semiclassical representation of a correlation function, albeit with
the loss of some quantum intereference.

In recent years, an intriguing formulation of quantum dynam-
ics based on “quantum trajectories”49-52 has been pursued by
several groups.53-67 The so-called Bohmian or hydrodynamic
formulation of quantum mechanics49-52 assumes a form very
similar to the semiclassical approximation, and recent work68

has discussed the apparent similarities and fundamental differ-
ences of the two formulations. Even though the wave function
(or propagator) is written as an amplitude multiplied by a phase
in both theories, the semiclassical method relies on cross terms
between distinct trajectories in order to account for quantum
interference, while the Bohmian prescription employs a single
trajectory for each point in space whose motion is governed by
a quantum potential. The neglect of such cross terms lies at the
heart of FBSD13,32-37,40,43,45and quasiclassical methods,44,69-72

making them feasible by avoiding oscillatory phases at the
expense of neglecting quantum interference. In a recent paper
by my group,68 it was shown that the Bohmian expression for
a time-dependent expectation value can take a similar quasi-
classical (initial value) form, free of undesirable phases.
Interestingly, no phase factors enter the Bohmian expectation
value, and yet all quantum effects are fully accounted for!
Provided that the quantum potential can be evaluated reliably
along a quantum trajectory, this quasiclassical expression allows
full quantum mechanical calculations via Monte Carlo sampling
of a readily available initial density. However, accurate deter-
mination of the strong, rugged Bohmian force continues to
present serious difficulties in bound anharmonic systems.
Further, numerical determination of the quantum potential based
on finite-difference or polynomial-fitting procedures requires
the knowledge of trajectory information in the vicinity of the
given phase space point. This interdependence of the Bohmian
trajectories prevents the propagation of a single trajectory by
itself. Recent work in my group has shown that this problem
can be overcome in principle through the determination of the
Bohmian force from the stability properties of a given quantum
trajectory. The Bohmian trajectory stability (BTS) method73

determines the quantum force along a trajectory “on the fly”,
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by solving a set of differential equations for the coordinates of
the quantum trajectory, the quantum force, and the infinite-order
stability properties. In the infinite hierarchy of BTS equations,
the nonlocality of quantum mechanics manifests itself as an
infinite set of quantum potential derivatives at any given point
in space that provide information about the global properties
of this function; thus, the BTS formulation is fully equivalent
to the exact quantum mechanical problem. Under certain
conditions, the BTS hierarchy can be truncated, leading to a
local scheme for determining approximate Bohmian trajectories
that can capture some quantum mechanical features of a
process.73 The possibility of integrating individual quantum
trajectories allows the use of Monte Carlo methods to evaluate
Bohmian initial value representations.

The present paper introduces a forward-backwardquantum
dynamical (FBQD) representation of time correlation functions
based on Bohmian trajectories. The derived expression assumes
an initial value form that contains aslowly Varying phase. In
this sense, the obtained FBQD result enjoys the main advantage
of a smooth integrand characteristic of FBSD methods and yet
is a fully quantum mechanical result that correctly accounts for
quantum interference and tunneling. Another important feature
of the FBQD correlation function is that the underlying quantum
force is weak and well behaved, greatly facilitating the
computation of Bohmian trajectories.

Section II presents the theoretical formulation of FBQD.
Several analytic and numerical examples are given in section
III, and section IV presents some concluding remarks.

II. Theory

For simplicity, the theory that follows is presented for a one-
dimensional system. Extension of the formalism to many
dimensions is straightforward.

For a general (possibly time-dependent) Hamiltonian, the
Bohmian form of the solution to the time-dependent Schro¨dinger
equation

is written in the form

Here, R(x;t) is a real-valued amplitude and the phaseS(x;t)
satisfies the quantum Hamilton-Jacobi equation

The latter differs from the ordinary equation of classical
mechanics through the presence of a quantum potential that is
proportional to the curvature of the amplitude

The initial condition for eq 2.3 is the phaseS0(x0) of the initial
wave function at the coordinatex0, which reaches the position
x at the timet upon integration according to the equations

with an initial momentum

The amplitude obeys the following continuity equation

with

Consider the time correlation function for a pure state

whereF0 ) |Ψ0〉〈Ψ0|. For simplicity, it is assumed throughout
this paper that the operatorsÂ andB̂ are functions of position.
Such correlation functions are of particular importance to the
vibrational spectroscopy of polyatomic molecules, where one
is interested in the autocorrelation function of the dipole moment
operatorµ̂ ) µ(x̂). The procedure that follows can easily be
extended to correlation functions of more general operators and
to mixed states (e.g., finite-temperature correlation functions).

Equation 2.8 can be written as

In principle, each of the time-evolution steps in eq 2.9 can be
evaluated using the Bohmian prescription with an appropriate
initial condition. Specifically, the initial stateΨ0 is propagated
to timet, and a different initial state given byÂΨ0 is propagated
backward in time. However, the quantum potentials governing
these two different dynamics are not the same because the initial
states are different. As a result, forward and backward trajec-
tories must be launched with different initial conditions in order
to reach the same coordinatex. Changing the integration variable
to the initial valuex0

f of the forward trajectory converts the
correlation function to the form

In this, quantum trajectories with initial positionx0
f (and a

momentum derived from the derivative of the phase ofΨ0) must
be integrated forward in time, reaching the coordinatex at time
t under the Bohmian potential mentioned above. However, one
must solve a “root-search” problem to find the appropriate initial
condition of the backward trajectory that reaches the same final
positionx. Solution of the boundary value problem is already
impractical in the context of purely classical propagation and
even more so in the present case where the dynamics is governed
by the Bohmian quantum potential.

To alleviate the root-search problem, the correlation function
is converted to a forward-backward representation. For this
purpose, the initial wave function is propagated sequentially
by the first three operators in the correlation function. Thus,
we define the state

Using this definition, the correlation function becomes

which is readily converted to an initial value form

ip
∂

∂t
Ψ(x;t) ) Ĥ(t)Ψ(x;t) (2.1)

Ψ(x;t) ) R(x;t) eiS(x;t)/p (2.2)

-
∂S(x;t)

∂t
) 1

2m (∂S(x;t)
∂x )2

+ V(x;t) + Q(x;t) (2.3)

Q(x;t) ) -p2

2m
R(x;t)-1 ∂

2R(x;t)

∂x2
(2.4)

x̆(t′) ) m-1p(t′) p̆(t′) ) -V′(x(t′)) - Q′(x(t′)) (2.5)

p0 ) S0′(x0) (2.6)

R(x;t) ) R0(x0)|∂x0

∂x |1/2

(2.7)

R0(x) ) |Ψ0(x)|

CAB(t) ) Tr(F̂0ÂeiĤt/pBe-iĤt/p) (2.8)

C(t) ) ∫dx〈Ψ0|Â eiĤt/p|x〉B(x)〈x|-iĤt/p|Ψ0〉 (2.9)

CAB(t) ) ∫dx0
f | ∂x

∂x0
f |〈Ψ0|A eiĤt/p|x〉B(x)〈x|e-iĤt/p|Ψ0〉 (2.10)

Ψ0rt,B̂,tr0 ≡ eiĤt/p B̂ e-iĤt/pΨ0 (2.11)

CAB(t) ) ∫dx〈Ψ0|Â|x〉〈x|Ψ0rt,B̂,tr0〉 (2.12)
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Because all the dynamics is now included in the propagation
of a single state, a single initial condition is involved, and thus
evaluation of eq 2.13 does not require a root search.

Equation 2.11 involves three propagation steps, which are
performed according to the Bohmian prescription. First, a
trajectory launched from the positionx0 with a momentum
satisfying eq 2.6 is propagated to the timet following the
Bohmian dynamics specified by the Hamiltonian operator and
the given initial state. At the end of this step, the wave function
is given by the expression

wherext is the coordinate reached by the Bohmian trajectory,
and Rf and Sf are the amplitude and action specified by the
dynamics along the forward trajectory. Subsequently, eq 2.14
is multiplied byB(xt), and the resulting function

serves as the “initial” condition for a new Bohmian propagation
in the negative time direction. The initial momentum of the
backward trajectory is given by∂Sf/∂xt ) pt. At the end of this
backward time evolution, i.e., when the time equals zero, the
Bohmian trajectory has reached the coordinatex, and the
corresponding wave function is

whereRb andSb are the amplitude and action specified by the
dynamics along the backward Bohmian trajectory. Use of the
hydrodynamic continuity equation implies that

where the subscript “b” indicates that the derivative is evaluated
at points along the backward trajectory. Recalling that the initial
amplitude of the backward trajectory is

and making use of the continuity relation along the forward
trajectory

leads to the following expression for the correlation function

where S(x) ) Sf(xt;t) + Sb(x;0) - S0(x0) is the net action
accumulated along the forward-backward trajectory. Finally,
the product of stability elements can be simplified, leading to
the expression

Equation 2.21 is the main result of this paper. The correlation
function is obtained from a forward-backward quantum trajec-
tory procedure, which involves a trajectory propagated along
forward and reverse time directions, interrupted by the action
of the operatorB̂. Its attractive features can be summarized as
follows:

(i) The FBQD correlation function represents anexact
quantum mechanical resultand thus leads to an exact description
of tunneling, interference, and zero-point energy effects.

(ii) Equation 2.21 is aninitial Value representation. As such,
it does not require numerical generation and storage of the time-
dependent wave function on a grid (as long as the Bohmian
force can be generated by a local or semilocal procedure)73 nor
does it involve a root search problem.

(iii) The correlation function is expressed as the result of a
forward-backward time propagation. In this sense, it enjoys
all the attractive features of forward-backward semiclassical
dynamics (FBSD). Specifically,the phase arising from the
forward-backward action is a smooth function of the integra-
tion Variablesand thus amenable to Monte Carlo procedures.
Unlike FBSD expressions, which cannot account for quantum
interference effects, the present FBQD formulation incorporates
quantum interference results exactly.

(iv) FBQD can also be compared to the full semiclassical
representation of a correlation function expressed in terms of
two separate semiclassical propagators for the forward and
backward evolution parts, usually referred to as “double IVR”.
Such expressions are capable of accounting for nonclassical
interference effects through off-diagonal contributions from
distinct forward and backward classical trajectories, but the
classical nature of the dynamics does not allow for the inclusion
of deep tunneling. As is well-known, the phase arising from
the combined action integrals is a highly oscillatory function
that prevents the use of Monte Carlo methods for the evaluation
of semiclassical correlation functions. By contrast, the FBQD
expression contains the net action along forward-backward
quantum trajectories, which (as argued above) is a smooth
function. Thus, FBQD is not only superior to the full semiclas-
sical (double IVR) correlation function in its ability to describe
strictly quantum mechanical effects but also easier for Monte
Carlo methods.

(v) FBQD is a coordinate-space formulation and thus does
not require the use of coherent states9 or Wigner transforms69

to obtain a sampling function for the initial conditions of the
trajectories. Thus the difficult numerical issue of evaluating these
phase space representations is avoided. An added bonus is the
reduction in the dimension of the integrals compared to
quasiclassical or full semiclassical expressions.

(vi) The FBQD formulation closely resembles FBSD expres-
sions and thuscan be combined with a FBSD treatmentin a
single calculation. As a result, FBQD may be employed to
upgrade a semiclassical forward-backward treatment of a large
system by including important quantum effects (such as
interference and tunneling) originating from a small number of
light particles.

(vii) Finally, the form of eq 2.21greatly facilitates computa-
tion of the quantum potential. The initial density in an
equilibrium correlation function commutes with the system’s
time evolution operator. In the specific case of a pure state, the
forward part of the time evolution involves propagation of an
eigenstate of the Hamiltonian. It can be shown that Bohmian
trajectories remain stationary under the action of the quantum
force arising from eigenstates of the Hamiltonian, and thus
quantum trajectories remain fixed at their initial positions during

CAB(t) ) ∫dx0| ∂x
∂x0

|〈Ψ0|Â|x〉〈Ψ0rt,B̂,tr0〉 (2.13)

Ψtr0(xt) ) Rf(xt;t) eiSf(xt:t)/p (2.14)

ΨB̂,tr0(xt) ) B(xt)Ψtr0(xt) (2.15)

Ψ0rt,B̂,tr0(x) ) Rb(x;0)eiSb(x:0)/p (2.16)

Rb(x;0) ) Rb(xt;t)|∂xt

∂x|b

1/2

(2.17)

Rb(xt;t) ) B(xt)Rf(xt;t) (2.18)

Rf(xt;t) ) Rf(x0;0)|∂x0

∂xt
|
f

1/2

) Ψ0(x0) e-iS0(x0)/p|∂x0

∂xt
|
f

1/2

(2.19)

CAB(t) )

∫dx0| ∂x
∂x0

|〈Ψ0|Â|x〉B(xt)〈x0|Ψ0〉|∂x0

∂xt
|
f

1/2|∂xt

∂x|b

1/2

eiS(x)/p (2.20)

CAB(t) ) ∫dx0|〈Ψ0|Â|x〉B(xt)〈x0|Ψ0〉| ∂x
∂x0

|1/2
eiS(x)/p (2.21)
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the forward part of the dynamics. Subsequently, the eigenstate
is multiplied by the operatorB̂. If the latter is the dipole operator
responsible for vibrational transitions, this process produces a
state that is to a first approximation similar to an excited state
of the same Hamiltonian. Thus, evolution of that state is mild,
leading to asoft, slowlyVarying quantum forcethat is free of
sharp variations, and the dynamics does not suffer from the
instability problems that plague the Bohmian method when
applied to bound anharmonic potentials.

The desirable features outlined above make the FBQD
formulation of time correlation functions a very attractive one.
It should be emphasized, however, that numerical evaluation
of the quantum trajectories entering the FBQD expression
requires the concurrent generation of the underlying Bohmian
force. Circumventing the various numerical difficulties sur-
rounding the latter is not within the scopes of the present paper,
but it is hoped that the dramatic smoothing and weakening of
the Bohmian potential achieved through the propagation of
FBQD trajectories corresponding to near eigenstates of the
Hamiltonian will enable this task in a variety of systems of
practical interest.

The next section illustrates these promising features of the
FBQD formulation with analytic and numerical examples.

III. Examples

The attractive features of the FBQD representation of a time
correlation function are illustrated with two examples. The first
example involves the position autocorrelation functionÂ ) B̂
) x̂ for a system described by a harmonic potential of frequency
ω and eigenstatesΦn at zero temperature. During the forward
part of the dynamics, the ground-state wave function evolves
to time t by acquiring a phase

During this stage the quantum potential is easily found to be

Because the total (classical plus quantum) force equals zero,
the Bohmian particles remain stationary (xt ) x0, pt ) p0 ) 0)
and the forward action isSf ) -1/2pωt. At the end of the forward
propagation, the position operator acts on the wave function,
changing it to the first excited state of the Hamiltonian

The backward propagation is governed by the quantum force
generated by this wave function, so again trajectories remain
fixed, such thatx ) x0, while the backward action is

Substitution of these relations in eq 2.21 gives

which is recognized as the exact result. In this idealized model,

the total force acting on the Bohmian particles remained equal
to zero at all times, and the phase was independent of
coordinates.

The second example involves a one-dimensional oscillator
with quartic anharmonicity

with m ) ω ) 1. The three lowest energy levels in this system
have values equal to 0.559, 1.769, and 3.139pω. Comparison
with the eigenvalues of the corresponding harmonic potential
(equal to 0.5, 1.5, and 2.5pω) reveals the very significant role
of the anharmonic term in this system. The quantum potential
required to integrate the Bohmian trajectories was calculated
accurately via a basis-set method. The FBQT correlation
function shown in Figure 1 is seen to be in excellent agreement
with that obtained via a basis-set method. Despite the regularity
of the oscillations observed in this figure, it should be
emphasized again that the potential in eq 3.5 is a strongly
anharmonic one, and the frequency of the 0f 1 and 1f 2
transitions exceedω by 21 and 37%, respectively. The effects

Ψtr0(xt) ) Φ0(x0) e-iωt/2 (3.1)

Qf(x) ) - 1
2

mω2x2 + 1
2

pω (3.2)

Ψ B̂,tr0(x) ) x p
2mω

Φ1(x) (3.3)

Sb ) 3
2

pωt

Cxx(t) ≡ 〈Φ0|x̂ eiĤt/px̂ e-iĤt/p|Φ0〉 )

x p
2mω∫dx0Φ1(x)x0Φ0(x0) eiωt ) p

2mω
eiωt (3.4)

Figure 1. The position autocorrelation function for the quartic oscillator
described by eq 3.5. Filled circles and hollow squares show real and
imaginary parts, respectively. (a) FBQD results using a basis set method
to evaluate the quantum potential. (b) FBSD results. The solid and
dashed lines display the real and imaginary parts of the exact results
obtained by a basis set calculation.

Ĥ ) p̂2

2m
+ 1

2
mω2x2 + 0.1x4 (3.5)
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of nonlinearity are strongly felt in the evolution of most relevant
trajectories. To further substantiate this claim, Figure 1 also
displays the results of the derivative FBSD formulation,36 where
the correlation function takes the form

wherefA is a complex-valued function related to the initial wave
function and the operatorÂ. Equation 3.6 is similar in
appearance to the FBQD expression, as it is also an initial value
form lacking an oscillatory phase. The observed dephasing of
the FBSD result is a consequence of strong quantum interference
for this system.

As discussed in recent work, the influence of the strong
quartic term in this system leads to a classical dynamics that is
dominated by caustic (focal) points. This feature leads to sharp
variations of the quantum potential corresponding to wave
packets undergoing forward time evolution. The resulting
extremely strong forces render propagation unstable.68 The
quantum potential (calculated via basis set methods) corre-

sponding to propagation of a Gaussian wave packet in this
anharmonic system displaced by 0.7 units from the potential
minimum is shown in parts a and b of Figure 2. Shown in parts
c and d of Figure 2 is the quantum potential arising in the FBQD
calculation of the position autocorrelation function for the same
system. (The position operator is again chosen as a rough
approximation of the dipole-moment function for a diatomic
molecule.) Even though this operator does not promote the wave
function of an anharmonic system exclusively to the first excited
eigenstate, the wave function generated this way bears close
resemblance to the eigenfunction, such that the resulting
quantum potential is smooth and well behaved. As a result, the
Bohmian trajectories employed in the calculation of Figure 1
were integrated with a time step comparable to that for
integration of purely classical trajectories, whereas forward wave
packet propagation for the same system became possible only
by decreasing the time step by a factor of 200. It is emphasized,
however, that the quantum potential employed in the calculation
shown in Figure 1 was obtained by using a nonlocal basis set
expansion. The dramatic smoothing of the quantum potential

Figure 2. Total (classical plus quantum) potentials for the quartic oscillator described by eq 3.5. (a) and (b) Forward evolution of a Gaussian
wavepacket displaced by 0.7 units from the potential minimum. (c) and (d) FBQD evolution for the zero-temperature position autocorrelation
function. (The legend measures elapsed time from the beginning of the backward propagation.) Notice the smaller range of FBQD potential axis.

CAB
FBSD(t) ) ∫dx0 ∫dp0 fA(x0, p0)B(xt, pt) (3.6)
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achieved in the FBQD formulation is encouraging and suggests
that its determination by local schemes may become possible
in the near future.

Finally, Figure 3 shows the real and imaginary parts of the
integrand of eq 2.21 at a specific time. The real and imaginary
parts are seen to be smooth functions free of oscillatory
components. This feature is a result of the slow variation of
the net forward-backward action in the FBQD expression. The
absence of a rapid oscillatory phase from the integrand implies
that Monte Carlo methods, which provide the only viable
approach for systems of several degrees of freedom, are suitable
for the evaluation of FBQD correlation functions.

IV. Concluding Remarks

In summary, the FBQD formulation introduced in this paper
offers an attractive, fully quantum mechanical representation
of time correlation functions. Because the FBQD integrand is
a smooth function, the present formulation enjoys the advantages
of forward-backward semiclassical approximations without the
neglect of quantum mechanical features such as phase interfer-
ence and tunneling. Unlike FBSD, which requires the calculation
of an appropriate phase space transform of the density operator,
FBQD is implemented directly in position space with a density
directly obtainable from the raw wave function (or density
matrix) describing the initial condition. Last, a very important
feature of FBQD correlation functions is the smoothness and
small magnitude of the quantum potential governing the
dynamics. Bohmian calculations on bound anharmonic systems
have encountered severe difficulties in the past because of the
strong quantum force and rugged shape of the quantum potential.
The absence of these undesirable features from the present
formulation suggests that the numerical issues surrounding the
evaluation of the quantum force may become sufficiently mild
to make Bohmian calculations with a self-consistent determi-
nation of the quantum force practical. Finally, the attractive
features of FBQD also apply to correlation functions of more
general operators and to systems at thermal equilibrium.74

Given the advantageous features of the FBQD formulation,
the problem of accurate determination of the quantum force is
the single most serious obstacle that currently prevents applica-
tion of this methodology to general multidimensional systems.
Efforts to overcome this problem are currently underway.73,74
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