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A novel quantum mechanical formulation of time correlation functions is derived, based on Bohmian trajectories
integrated along a forwarebackward time contour. The derived expression involves a smooth integrand
amenable to Monte Carlo integration with a readily available position space density. The Bohmian potential
governing the motion of the quantum trajectories is weak and well-behaved, facilitating the computation of
Bohmian trajectories.

I. Introduction past few years has been the formulation of forwavdckward
. i ) L ) ) semiclassical dynamics (FBSD) methdds'® which circumvent
Time corr_elatlon functions provide |mp0rtant|nformat|on ON the problem by combining (and thus partially canceling) the
the dynamics and spectroscopy of chemical systems. FOryases of forward and reverse time trajectories entering the

example, the aqtocorrelat!on f.unctlon of the Q|pole-moment semiclassical representation of a correlation function, albeit with
operator leads directly to vibrational or electronic spectra, flux the loss of some quantum intereference

correlation functions provide reaction rate information, and | ntriauing f lati f d
velocity correlation functions yield diffusion constants in the . h recent ye?rs, an mtngqmg qrmuzatlon of quantum dynam-
ics based on “quantum trajectorié%™2 has been pursued by

bulk. The inclusion of quantum mechanical effects in the | 8567 Th I hmi h ’
computation of time correlation functions presents a challenging S€V€ra! 9roups: The so-ca ed, Bohmian or hydrodynamic
formulation of quantum mechanf®s®2 assumes a form very

problem that continues to receive much attention. At present, '~'"" - . 9
the dynamics of small molecules are treatable by a variety of SiMilar to the semiclassical approximation, and recent #ork
basis-set or grid-based methods, and low-dimensional sub-Nas discussed the apparent similarities and fundamental differ-
systems coupled to dissipative harmonic baths can be simulateg®nces Of the two formulations. Even though the wave function
via numerically exact path integral methods. In recent years, (OF Propagator) is written as an amplitude multiplied by a phase
efforts to devise simulation tools capable of including quantum in both theories, the semiclassical method relies on cross terms
mechanical effects to the dynamics of polyatomic systems petween dISIInCt. trajectories in order to account for quantum
dominated by arbitrary anharmonic interactions have moved to interference, while the Bohmian prescription employs a single
the forefront of theoretical chemistry research. Among the most trajectory for each point in space whose motion is governed by
successful approaches currently available are the centroid@ quantum potential. The neglect of such cross terms lies at the
molecular dynamics scheme, techniques based on surfacdeart of FBSD?32-3740434%and quasiclassical methotfs;® 72
hopping, and semiclassical initial value methods. making them feasible by avoiding oscillatory phases at the
The semiclassical approximation to quantum mechadics €xPense of neglecting quantum interference. In a recent paper
offers a rigorous and intuitively appealing way of including BY My group?® it was shown that the Bohmian expression for
quantum effects via classical trajectory input. Semiclassical & time-dependent expectation value can take a similar quasi-
theory is based on classical trajectories and their stability classical (initial value) form, free of undesirable phases.
properties, which can be obtained by inexpensive calculations Interestingly, no phase factors enter the Bohmian expectation
even for very large systerdsThese characteristics make Value, and yet all quantum effects are fully accounted for!
semiclassical methods very appealing, as they can account fofProvided that the quantum potential can be evaluated reliably
important quantum mechanical features of a system, while along a quantum trajectory, this quasiclassical expression allows
offering an intuitive understanding of dynamical procegsés.  full quantum mechanical calculations via Monte Carlo sampling
In recent years, the semiclassical method has experienced #®f a readily available initial density. However, accurate deter-
rebirth of interest with the development of semiclassical initial mination of the strong, rugged Bohmian force continues to
value representations (IVR$ 20 which circumvent the trouble- ~ present serious difficulties in bound anharmonic systems.
some “root-search” problem of the original formulation. Nu- Further, numerical determination of the quantum potential based
merical calculations exploiting these advances have demon-on finite-difference or polynomial-fitting procedures requires
strated the ability of the semiclassical approximation to provide the knowledge of trajectory information in the vicinity of the
an accurate description of essentially all types of quantum effectsgiven phase space point. This interdependence of the Bohmian
in chemical dynamic&2%-22 and a number of successful trajectories prevents the propagation of a single trajectory by
applications to polyatomic molecules have been pre- itself. Recent work in my group has shown that this problem
sented®2023-31 Tg date, the highly oscillatory character of the can be overcome in principle through the determination of the
semiclassical integrand remains the main drawback of semiclas-Bohmian force from the stability properties of a given quantum
sical methods, preventing integration by Monte Carlo methods trajectory. The Bohmian trajectory stability (BTS) metfbd
in condensed phase systems. A significant development in thedetermines the quantum force along a trajectory “on the fly”,
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Time Correlation Functions

by solving a set of differential equations for the coordinates of

the quantum trajectory, the quantum force, and the infinite-order

stability properties. In the infinite hierarchy of BTS equations,

the nonlocality of quantum mechanics manifests itself as an

infinite set of quantum potential derivatives at any given point
in space that provide information about the global properties
of this function; thus, the BTS formulation is fully equivalent

to the exact quantum mechanical problem. Under certain
conditions, the BTS hierarchy can be truncated, leading to a
local scheme for determining approximate Bohmian trajectories
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The amplitude obeys the following continuity equation

X[ 172
ROGD) = Roeg)| 22 (27)
with
Ry(X) = [P o(X)|

Consider the time correlation function for a pure state

that can capture some quantum mechanical features of a

process? The possibility of integrating individual quantum

trajectories allows the use of Monte Carlo methods to evaluate

Bohmian initial value representations.
The present paper introduces a forwaldickwardquantum
dynamical (FBQD) representation of time correlation functions

based on Bohmian trajectories. The derived expression assume

an initial value form that contains slowly varying phase. In

this sense, the obtained FBQD result enjoys the main advantag
of a smooth integrand characteristic of FBSD methods and yet

is a fully guantum mechanical result that correctly accounts for

quantum interference and tunneling. Another important feature

of the FBQD correlation function is that the underlying quantum
force is weak and well behaved, greatly facilitating the
computation of Bohmian trajectories.

Section Il presents the theoretical formulation of FBQD.

€

Cag(t) = Tr(p,Ac""Be ™) (2.8)
wherepo = |WollWo|. For simplicity, it is assumed throughout
this paper that the operatofsandB are functions of position.
guch correlation functions are of particular importance to the
Vibrational spectroscopy of polyatomic molecules, where one
is interested in the autocorrelation function of the dipole moment
operatoriz = u(X). The procedure that follows can easily be
extended to correlation functions of more general operators and
to mixed states (e.g., finite-temperature correlation functions).
Equation 2.8 can be written as

C(t) = [oxW A "M x B W0 (2.9)

Several analytic and numerical examples are given in section!n principle, each of the time-evolution steps in eq 2.9 can be

Ill, and section IV presents some concluding remarks.

Il. Theory

For simplicity, the theory that follows is presented for a one-
dimensional system. Extension of the formalism to many
dimensions is straightforward.

For a general (possibly time-dependent) Hamiltonian, the
Bohmian form of the solution to the time-dependent Sdhmger
equation

in % W(xt) = O 2.1)
is written in the form
W(x:t) = R(x;t) &S0h (2.2)

Here, R(x;t) is a real-valued amplitude and the pha&g;t)
satisfies the quantum Hamilterdacobi equation

_ St _ 1 (BS(x;t))z

ot 2m

v B V(xt) + Q(x;t)

(2.3)

The latter differs from the ordinary equation of classical

evaluated using the Bohmian prescription with an appropriate
initial condition. Specifically, the initial stat®, is propagated

to timet, and a different initial state given AW, is propagated
backward in time. However, the quantum potentials governing
these two different dynamics are not the same because the initial
states are different. As a result, forward and backward trajec-
tories must be launched with different initial conditions in order
to reach the same coordinateChanging the integration variable

to the initial valuexg of the forward trajectory converts the
correlation function to the form

oX

|l MM B X e MW 0 (2.10)
Xo

Caglt) = [0

In this, quantum trajectories with initial positiox{) (and a
momentum derived from the derivative of the phas®@gf must

be integrated forward in time, reaching the coordinad¢time

t under the Bohmian potential mentioned above. However, one
must solve a “root-search” problem to find the appropriate initial
condition of the backward trajectory that reaches the same final
positionx. Solution of the boundary value problem is already
impractical in the context of purely classical propagation and
even more so in the present case where the dynamics is governed

mechanics through the presence of a quantum potential that ispy the Bohmian quantum potential.

proportional to the curvature of the amplitude

oy = —h? o1 PR
Qxt) = om R(x;t) ) (2.4)
The initial condition for eq 2.3 is the phaSg(Xp) of the initial
wave function at the coordinatg, which reaches the position

x at the timet upon integration according to the equations

Xt)=mpt) pt)=-VXt) - QX)) (25)
with an initial momentum
Po = &' (%) (2.6)

To alleviate the root-search problem, the correlation function
is converted to a forwarebackward representation. For this
purpose, the initial wave function is propagated sequentially
by the first three operators in the correlation function. Thus,
we define the state

Wy 5 o=eBe My (2.11)

Using this definition, the correlation function becomes

Cap(t) = [ IXWIAXIR Wy g ] (2.12)

which is readily converted to an initial value form
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Cas(t) = fdxo‘ ‘Elpo|'°‘|x|]]}lpo~tBt«—oD (2.13)

Because all the dynamics is now included in the propagation
of a single state, a single initial condition is involved, and thus
evaluation of eq 2.13 does not require a root search.

Equation 2.11 involves three propagation steps, which are
performed according to the Bohmian prescription. First, a
trajectory launched from the positioxy with a momentum
satisfying eq 2.6 is propagated to the tirhdollowing the
Bohmian dynamics specified by the Hamiltonian operator and
the given initial state. At the end of this step, the wave function
is given by the expression

Wi o) = R(x;t) €507

wherex; is the coordinate reached by the Bohmian trajectory,
and R and & are the amplitude and action specified by the

(2.14)
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Equation 2.21 is the main result of this paper. The correlation
function is obtained from a forwarebackward quantum trajec-
tory procedure, which involves a trajectory propagated along
forward and reverse time directions, interrupted by the action
of the operatoB. Its attractive features can be summarized as
follows:

(i) The FBQD correlation function represents a@xact
guantum mechanical reswdhd thus leads to an exact description
of tunneling, interference, and zero-point energy effects.

(ii) Equation 2.21 is ainitial value representationAs such,
it does not require numerical generation and storage of the time-
dependent wave function on a grid (as long as the Bohmian
force can be generated by a local or semilocal proceéfumey
does it involve a root search problem.

(iii) The correlation function is expressed as the result of a
forward—backward time propagation. In this sense, it enjoys
all the attractive features of forwardackward semiclassical
dynamics (FBSD). Specificallythe phase arising from the

dynamics along the forward trajectory. Subsequently, eq 2.14 forward—backward action is a smooth function of the integra-

is multiplied byB(x;), and the resulting function
Wa o) = B(x) Wi o(X)

serves as the “initial” condition for a new Bohmian propagation
in the negative time direction. The initial momentum of the
backward trajectory is given b§S/ox; = p:. At the end of this
backward time evolution, i.e., when the time equals zero, the
Bohmian trajectory has reached the coordinateand the
corresponding wave function is

(2.15)

Wo o0 = Ry(x0)e™" (2.16)
whereR, and S, are the amplitude and action specified by the
dynamics along the backward Bohmian trajectory. Use of the

hydrodynamic continuity equation implies that

1/2

ad
R060) = R0 | @17)

where the subscript “b” indicates that the derivative is evaluated
at points along the backward trajectory. Recalling that the initial
amplitude of the backward trajectory is

Ry(xst) = B)Ri(x:1)

and making use of the continuity relation along the forward
trajectory

(2.18)

1/2

(2.19)

) x| 112
ROaD = ROGO | = Wit & o]

leads to the following expression for the correlation function
Cast) =

B A %o
S| | worbaBo w7

1/2 1/2

o dS9h (2.20)

0X|b

where SX) = S(x;t) + S(x0) — S(Xo) is the net action
accumulated along the forwarthackward trajectory. Finally,
the product of stability elements can be simplified, leading to
the expression

R X2 gy
Casl = [ dxo|mfo|A|xEB(xo&o|%EF87xo\ M (2.21)

tion variablesand thus amenable to Monte Carlo procedures.
Unlike FBSD expressions, which cannot account for quantum
interference effects, the present FBQD formulation incorporates
quantum interference results exactly.

(iv) FBQD can also be compared to the full semiclassical
representation of a correlation function expressed in terms of
two separate semiclassical propagators for the forward and
backward evolution parts, usually referred to as “double IVR”.
Such expressions are capable of accounting for nonclassical
interference effects through off-diagonal contributions from
distinct forward and backward classical trajectories, but the
classical nature of the dynamics does not allow for the inclusion
of deep tunneling. As is well-known, the phase arising from
the combined action integrals is a highly oscillatory function
that prevents the use of Monte Carlo methods for the evaluation
of semiclassical correlation functions. By contrast, the FBQD
expression contains the net action along forwardckward
quantum trajectories, which (as argued above) is a smooth
function. Thus, FBQD is not only superior to the full semiclas-
sical (double IVR) correlation function in its ability to describe
strictly quantum mechanical effects but also easier for Monte
Carlo methods.

(v) FBQD is a coordinate-space formulation and thus does
not require the use of coherent stdtes Wigner transfornfs
to obtain a sampling function for the initial conditions of the
trajectories. Thus the difficult numerical issue of evaluating these
phase space representations is avoided. An added bonus is the
reduction in the dimension of the integrals compared to
quasiclassical or full semiclassical expressions.

(vi) The FBQD formulation closely resembles FBSD expres-
sions and thugan be combined with a FBSD treatmenta
single calculation. As a result, FBQD may be employed to
upgrade a semiclassical forwarbackward treatment of a large
system by including important quantum effects (such as
interference and tunneling) originating from a small number of
light particles.

(vii) Finally, the form of eq 2.2Zgreatly facilitates computa-
tion of the quantum potentialThe initial density in an
equilibrium correlation function commutes with the system’s
time evolution operator. In the specific case of a pure state, the
forward part of the time evolution involves propagation of an
eigenstate of the Hamiltonian. It can be shown that Bohmian
trajectories remain stationary under the action of the quantum
force arising from eigenstates of the Hamiltonian, and thus
guantum trajectories remain fixed at their initial positions during
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the forward part of the dynamics. Subsequently, the eigenstate 06 . .
is multiplied by the operatds. If the latter is the dipole operator
responsible for vibrational transitions, this process produces a
state that is to a first approximation similar to an excited state
of the same Hamiltonian. Thus, evolution of that state is mild,
leading to asoft, slowlyvarying quantum forceéhat is free of
sharp variations, and the dynamics does not suffer from the
instability problems that plague the Bohmian method when
applied to bound anharmonic potentials.

The desirable features outlined above make the FBQD
formulation of time correlation functions a very attractive one.
It should be emphasized, however, that numerical evaluation
of the quantum trajectories entering the FBQD expression
requires the concurrent generation of the underlying Bohmian
force. Circumventing the various numerical difficulties sur-
rounding the latter is not within the scopes of the present paper,
but it is hoped that the dramatic smoothing and weakening of
the Bohmian potential achieved through the propagation of
FBQD trajectories corresponding to near eigenstates of the
Hamiltonian will enable this task in a variety of systems of
practical interest.

The next section illustrates these promising features of the
FBQD formulation with analytic and numerical examples.

<x(0)x(t)>

Ill. Examples

The attractive features of the FBQD representation of a time
correlation function are illustrated with two examples. The first
example involves the position autocorrelation functiors B
= X for a system described by a harmonic potential of frequency
o and eigenstate®, at zero temperature. During the forward
part of the dynamics, the ground-state wave function evolves
to timet by acquiring a phase

<x(0)x(t)>

W o(x) = Pg(xp) & (3.1) 06 ' - .

0 5 10 15 20

During this stage the quantum potential is easily found to be - ot ) ] )
Figure 1. The position autocorrelation function for the quartic oscillator

1 ) 1 described by eq 3.5. Filled circles and hollow squares show real and
Q) =—smw X+ = ho (3.2) imaginary parts, respectively. (a) FBQD results using a basis set method
2 2 to evaluate the quantum potential. (b) FBSD results. The solid and
dashed lines display the real and imaginary parts of the exact results

Because the total (classical plus quantum) force equals zero,obtained by a basis set calculation.

the Bohmian particles remain stationary € Xo, pt = po = 0)

and the forward action i§ = —/-hwt. At the end of the forward the total force acting on the Bohmian particles remained equal
propagation, the position operator acts on the wave function, to zero at all times, and the phase was independent of

changing it to the first excited state of the Hamiltonian coordinates.
The second example involves a one-dimensional oscillator
A with quartic anharmonicity
W o) = meq)l(x) (3.3) .
- A= 4 >mwdé+0.1¢ (3.5)

The backward propagation is governed by the quantum force 2m 2
generated by this wave function, so again trajectories remain o
fixed, such thak = xo, while the backward action is with m= w = 1. The three lowest energy levels in this system

have values equal to 0.559, 1.769, and 3HL39Comparison

3 with the eigenvalues of the corresponding harmonic potential
$= Ehaﬂ (equal to 0.5, 1.5, and Zi) reveals the very significant role
of the anharmonic term in this system. The quantum potential
Substitution of these relations in eq 2.21 gives required to integrate the Bohmian trajectories was calculated
accurately via a basis-set method. The FBQT correlation
Ct) = [@yI% ghitihg efiﬂtmlq)OD: function shown in Figure 1 is seen to be in excellent agreement

with that obtained via a basis-set method. Despite the regularity
h ot _ N ot of the oscillations observed in this figure, it should be
V medx()d)l(x)xod)o(xo) € Tomw® (3.4) emphasized again that the potential in eq 3.5 is a strongly
anharmonic one, and the frequency of the-01 and 1— 2
which is recognized as the exact result. In this idealized model, transitions exceed by 21 and 37%, respectively. The effects
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Figure 2. Total (classical plus quantum) potentials for the quartic oscillator described by eq 3.5. (a) and (b) Forward evolution of a Gaussian
wavepacket displaced by 0.7 units from the potential minimum. (c) and (d) FBQD evolution for the zero-temperature position autocorrelation
function. (The legend measures elapsed time from the beginning of the backward propagation.) Notice the smaller range of FBQD potential axis.

of nonlinearity are strongly felt in the evolution of most relevant sponding to propagation of a Gaussian wave packet in this
trajectories. To further substantiate this claim, Figure 1 also anharmonic system displaced by 0.7 units from the potential
displays the results of the derivative FBSD formulattémhere minimum is shown in parts a and b of Figure 2. Shown in parts
the correlation function takes the form c and d of Figure 2 is the quantum potential arising in the FBQD
calculation of the position autocorrelation function for the same

ChEsP() = fdxo fdpo f\(X0» Po)B(X DY) (3.6) system. (The position operator is again chosen as a rough
approximation of the dipole-moment function for a diatomic

wheref is a complex-valued function related to the initial wave molecule.) Even though this operator does not promote the wave
function and the operatoA. Equation 3.6 is similar in  function of an anharmonic system exclusively to the first excited

appearance to the FBQD expression, as it is also an initial value€igenstate, the wave function generated this way bears close
form lacking an oscillatory phase. The observed dephasing of resemblance to the eigenfunction, such that the resulting
the FBSD result is a consequence of strong quantum interferencejuantum potential is smooth and well behaved. As a result, the
for this system. Bohmian trajectories employed in the calculation of Figure 1
As discussed in recent work, the influence of the strong were integrated with a time step comparable to that for
quartic term in this system leads to a classical dynamics that isintegration of purely classical trajectories, whereas forward wave

dominated by caustic (focal) points. This feature leads to sharp packet propagation for the same system became possible only
variations of the quantum potential corresponding to wave by decreasing the time step by a factor of 200. It is emphasized,
packets undergoing forward time evolution. The resulting however, that the quantum potential employed in the calculation
extremely strong forces render propagation unstéblEhe shown in Figure 1 was obtained by using a nonlocal basis set
guantum potential (calculated via basis set methods) corre-expansion. The dramatic smoothing of the quantum potential
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