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In many fields of nature, a system reacts to sudden changes of an external parameter in the form of two (or
more) cascaded relaxation processes, where the first step depends directly on the external parameter and the
second process, which is connected with the experimental observable, is determined by the state of relaxation
of the first one. It follows from linear-response theory that in this case the experiment yields a behavior
which distinctly deviates from a single-exponential decay, even if each of the processes is linear and follows
an exponential law. The relaxation starts with time derivative zero, which is most pronounced when the two
time constants are of similar magnitude. If the experimental data are fitted with a Kohlrausch-Williams-
Watts (KWW) function, the fit will therefore tend to overestimate the KWW exponentâ. Even â values
larger than one can be obtained. As an example, the diffracted light signal in a photorefractive polymer is
analyzed.

In nature, relaxation processes are often cascaded. This means
that a system contains (at least) two dynamical processes, one
of which reacts directly to an external parameter, whereas the
second one, which is observed or connected with an observable
quantity, depends on the first process. Prominent examples occur
in the fields of photorefractive polymers1 and thermodiffusion
in a liquid (the Ludwig-Soret effect).2

Photorefractive polymers consist of a matrix of low glass
transition temperature (around or below room temperature) and
contain photoconductive moieties and highly anisotropic chro-
mophores (often with nonlinear-optical properties). By irradiat-
ing crossed laser beams, a light intensity grating is formed,
which gives rise to charge separation in the bright areas and, as
a consequence, to the formation of a space charge grating.
Together with a strong homogeneous external electric field, this
leads to a modulated alignment of the chromophores3 and a
refractive-index grating (or phase hologram), which is shifted
with respect to the light intensity grating.4 The amplitude of
the phase hologram is usually measured by its diffraction
efficiency using a third laser beam. When the external field or
one of the writing beams is turned on or off, the space charge
distribution is directly affected and relaxes toward its new
equilibrium. This, in turn, leads to a relaxation of the chro-
mophore alignment, which is observed as a change of the
diffraction efficiency.

Thermodiffusion is a material transport in solutions or
mixtures of liquids driven by a temperature gradient∇Θ. The
concentrationc of a species in the mixture changes with time
according to

whereD is the mass andDΘ is the thermal diffusion coefficient.
An elegant experiment for investigating this effect uses again a
light intensity grating, which gives rise to a temperature grating
in the liquid.5 The concentration grating created by the Ludwig-
Soret effect is probed by its diffraction efficiency. Also in this
case the measured quantity (the concentration grating) reacts
only indirectly (via the temperature grating) to changes of the
external parameter (the light intensity grating).

In this paper, we investigate the general relaxation behavior
of the secondary process, which is related to the experimental
observable, upon a sudden change of the external parameter.
We assume that the whole system is linear; that is, the response
of each single process depends linearly on the amplitude of the
excitation. First we consider a switching-on process att ) 0,
so we can analyze the problem in terms of linear-response
theory.

To this end, we introduce the linear-response functionsg1(t)
andg2(t) for processes 1 and 2, respectively; they are defined
as the answer of the processes to a pulse excitation. Then the
measured signalI(t), which is the response of the whole system
to an arbitrary excitationx(t), can be expressed as

where X denotes temporal convolution. The behavior of the
combined processes is described by a single linear-response
function

In the special case of exponential response functions
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∂c
∂t

) D∆c + DΘ∇[c(1 - c)∇Θ] (1)

I(t) ) g2(t) X [g1(t) X x(t)] ) [g2(t) X g1(t)] X x(t) )
g(t) X x(t) (2)

g(t) ) g2(t) X g1(t) )∫-∞

t
g2(t - τ) g1(τ) dτ (3)

gk(t) ) {(Ak/Tk) exp(-t/Tk) for t g 0
0 for t < 0}k ) 1 and 2 (4)
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it reads

and

Since the linear-response function as given in eqs 5 and 6
describes the answer of the combined system to a pulse
excitation, it is also of great practical importance, e.g., for the
evaluation of fluorescence lifetime measurements. HereT1 is
the fluorescence lifetime to be determined andT2 the time
constant of the detection apparatus.

The time-dependent susceptibilityø(t) is defined as the system
response to a step excitation of amplitude unity starting att )
0

With eqs 5 and 6, the integral yields

and

respectively.
Finally, the dynamical (or frequency-dependent) susceptibility

ø*(ω) is measured in an experiment with oscillatory excitation
x(t) ) x0 exp(-iωt) and the corresponding signalI(t) ) I 0

/(ω)
exp(-iωt). It is related to the complex signal amplitudeI 0

/(ω)
and is the Fourier transform of the linear-response function

According to the convolution theorem, the Fourier transform
of g(t) ) g2(t) X g1(t) for the cascaded processes is the product
of the Fourier transforms ofg1(t) andg2(t)

that is, it is the product of two Lorentzians. The fact that the
product of two Lorentzians isnotLorentzian, but falls off more
rapidly forω f (∞, corresponds to the deviation from a single-
exponential temporal decay.

The response of two cascaded relaxation processes to a
switching-off process is closely related to the time-dependent
susceptibility. In this case the signal of the combined system is
simply given by

If both processes are single-exponential, it reads

and

Equations 8, 9, 13, and 14 describe a behavior which is distinctly
different from a single-exponential decay, since fort f 0 the
time derivative of I(t) is zero. This feature is particularly
pronounced when the relaxation timesT1 and T2 are of
comparable magnitude (see Figure 1). Only forT1 , T2 andT1

. T2 single-exponential laws are approached, but even when
T1 andT2 differ by a factor of 5, the relaxation is clearly non-
single-exponential. This behavior of two cascaded linear systems
is not intuitively obvious. It has unexpected consequences for
the evaluation of experimental data. If the decay curve is fitted
with an exponential, there are deviations at short times and,
moreover, the obtained time constant is too long, as is most
clearly seen from eq 14 and Figure 1. Even more unexpected
results are obtained from fits with a stretched-exponential (or
Kohlrausch-Williams-Watts [KWW]) function

The exponentâ is usually between 0 and 1.â ) 1 corresponds
to one single relaxation time (T), whereas forâ < 1 a
distribution of relaxation times (or relaxation rates) is present,
whose width increases with decreasingâ. In the case ofâ < 1,
the derivative of a stretched exponential tends to infinity fort
f 0. This is in striking contrast to the behavior of eqs 13 and
14. A fit with a stretched exponential therefore yields an
exponentâ aboVe one (and again, in general, an incorrect time
constantT). â > 1 cannot be interpreted in terms of a physically

g(t) )
A1A2

T2 - T1[exp(- t
T2

) - exp(- t
T1

)] for T1 * T2 (5)

g(t) )
A1A2

T2
t exp(- t

T) for T ) T1 ) T2 (6)

ø(t) ) ∫0

t
g(t - τ) dτ ) ∫0

t
g(τ′) dτ′ (7)

ø(t) )
A1A2

T2 - T1
{T2[1 - exp(- t

T2
)] - T1[1 - exp(- t

T1
)]}

for T1 * T2 (8)

ø(t) ) A1A2[1 - (1 + t
T)exp(- t

T)] for T ) T1 ) T2 (9)

I 0
/(ω)

x0
) ø* (ω) ) ø′(ω) - iø′′(ω) )

∫-∞

+∞
g(t) exp(- iωt) dt (10)

ø* (ω) )
A1

1 + iωT1

A2

1 + iωT2
(11)

I(t) ) ø(∞) - ø(t) (12)

Figure 1. Relaxation of two cascaded processes on a linear (a) and a
logarithmic (b) time scale. Curve 2 corresponds to eq 13 withT2 ) 1
andT1 ) 0.2, curve 3 to eq 14 withT ) 1 (A1A2 ) 1). Curve 1 shows
an exponential function with relaxation time 1 for comparison.

I(t) )
A1A2

T2 - T1[T2 exp(- t
T2

) - T1 exp(- t
T1

)] for T1 * T2

(13)

I(t) ) A1A2(1 + t
T)exp(- t

T) for T ) T1 ) T2 (14)

Ifit(t) ) I0 exp[-( t
T)â] (15)
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meaningful distribution of relaxation times. It is a direct
consequence of the fact that one of the exponentials in eq 13
has a negative sign.

The above model, which assumes bothg1(t) andg2(t) to be
single exponentials, is often too simple for real systems. A more
realistic description is to choose one of the functions as single-
exponential and the other one in such a form that it comprises
a distribution of relaxation times (e.g., the derivative of a KWW
law). For instance, in photorefractive polymers, the decay of
the space charge field usually follows a single-exponential law,
whereas the reorientation dynamics can be described by a
stretched exponential.6,7 Alternatively, a power-law time de-
pendence was proposed for the reorientation, which corresponds
to a temporal decrease of the rotational diffusion coefficient of
the chromophores asD(t) ) D0/t.8,9 A general analytical solution
of the integrals in eqs 3 and 7 is not possible in this case. We
can, however, express the complicated function (say,g2) by its
inverse Laplace transform and perform the calculation for each
of its exponential components. The result reads

F2(1/T2) is the rate distribution function ofg2(t). Also this
expression has exponential contributions with negative sign.
Hence, a KWW fit will again tend to yield too large aâ value,
in particular, whenT1 falls within the range of theT2 distribution.
For a detailed analysis of experimental data, the integral in eq
16 must be calculated numerically.

We demonstrate our model with the decay of the holographic
grating in a photorefractive polymer.7 The solid lines in Figure
2 represent the diffracted light signal as a function of time after
blocking one of the hologram writing beams. The experiment
was performed at two different temperatures. The amplitude of
the holographic grating was described with our model discussed
above (dashed lines) and, alternatively, with a simple KWW
function with time constantT (dotted curves). Within our model,
we assumed that the first process (the decay of the space charge
field) follows an exponential law, whereas the second step (the
chromophore reorientation) is given by a KWW function. The
grating amplitude could, in principle, be calculated from eq 16,
but since there is no simple analytical formula for the decay
rate distributionF2(1/T2) of a KWW function, a numerical
convolution procedure similar to eqs 3-12 was performed. For

g1(t) an exponential as in eq 4 and forg2(t) the derivative of a
KWW function with time constantT2 was inserted. We took
into account that the diffracted light signal is proportional to
the square ofI(t).

The fit of the data at 43°C with our model yields a KWW
exponentâ ) 1 within the experimental uncertainty. Hence,
we keptâ ) 1 fixed and fitted only the time constantsT1 and
T2 (and the prefactor). The results areT1 ) 140 ms andT2 )
4.10 s, respectively. The fit with the simple KWW function
givesT ) 4.07 s andâ ) 1.13. For the data at 39°C, our model
yields T1 ) 180 ms,T2 ) 13.98 s, andâ ) 0.87, whereas the
KWW fit results in T ) 13.70 s andâ ) 0.92.

The dashed curves represent the experimental data very well.
Also the KWW fits (dotted curves) are quite satisfactory. In
the latter case, however, the KWW exponentâ is larger at both
temperatures and even exceeds 1 at 43°C. This unphysical result
does not occur with the cascaded-step model. The time constants
of the KWW function, on the other hand, are very similar in
the two models. This is due to the fact that the decay time of
the space charge field (T1) is shorter by at least 1.5 orders of
magnitude, and hence, the two processes are largely decoupled.
The glass transition temperature of the photorefractive polymer
is 36°C. Thus, it is reasonable that the reorientation dynamics
at 43°C is well described by a single-exponential law, whereas
it consists of a distribution of relaxation rates (corresponding
to â < 1) at 39°C, which is only 3° above the glass point.

For both fit functions, the residuals are roughly one percent
of the signal amplitude. Our model yields a slightly better fit
than the KWW function; this, however, can be due to the fact
that one more free parameter is used. Residuals on the order of
one percent are quite acceptable and may be due to slight
detector nonlinearities or instabilities of the experimental setup.
The important result is that the fit with our model yields KWW
exponentsâ e 1.

In summary, we have investigated the functional form of the
relaxation dynamics of two cascaded linear processes. Specif-
ically, we have calculated the experimental response function
for a steplike perturbation, when the first process reacts directly
to the external perturbation and the observable depends on the
second process which, in turn, reacts to the first one. The
nonintuitive result is that even in the simplest case, when both
processes follow exponential functions, the relaxation differs
from a single-exponential decay, starting with time derivative
zero. This behavior is most strongly pronounced when the two
relaxation times are of similar magnitude. Analyzing the
experimental relaxation curve with a stretched exponential then
yields an exponentâ > 1 and an incorrect time constantT. The
problem was analyzed within the formal framework of linear-
response theory. It was shown that the experimental signal is
given by the time-dependent susceptibility of the cascaded
processes and that its deviation from a single-exponential form
is also reflected by the dynamical susceptibility. The model was
used to evaluate the decay of the diffracted light intensity in a
photorefractive polymer after turning off one of the writing
beams.
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