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An artificial neural network, in combination with local optimization, is shown to be an effective approach for
determining unit cell parameters directly from powder diffraction data. The viability of this new approach is
initially demonstrated using simulated powder diffraction data. Subsequently, the successful application of
the method to determine unit cell parameters is illustrated for two materials using experimental powder X-ray
diffraction data recorded on a standard laboratory diffractometer.

1. Introduction

The determination of the unit cell parameters of a crystalline
sample via analysis of the positions of Bragg reflections in a
powder X-ray (or neutron) diffraction pattern, a process com-
monly referred to as “indexing”, is an important first step in
the structural analysis of many materials. However, the process
of indexing can present significant difficulties, and failure to
successfully index a powder diffraction pattern usually prevents
further analysis of the datasfor example, complete structure
determination can be carried out only if the powder diffraction
data have been indexed correctly. Indeed, in our recent work
concerning crystal structure determination from powder X-ray
diffraction data,1,2 we have found that indexing can be the
limiting step in the structure elucidation process.

The position, 2θhkl, of the Bragg reflection with Miller indices
(hkl) in a powder diffraction pattern is related to the unit cell
parameters,{a, b, c, R, â, γ}, by

where

In these equations,dhkl is the interplanar spacing for the (hkl)
set of lattice planes,V is the unit cell volume, andλ is the X-ray
or neutron wavelength. The aim of indexing is to determine
the unit cell parameters that correctly reproduce the set of
reflection positions observed in the experimental powder
diffraction pattern.

Although the indexing process requires the determination of,
at most, only six parameters, there are several features of powder
diffraction data that can significantly limit the chances of
success. Problems of particular importance include the presence
of crystalline impurity phases, significant zero-point error,
systematic errors introduced by peak broadening and peak
overlap and the fact that certain reflections may be weak or

unobserved due to being systematically absent (as a consequence
of symmetry), having intrinsically low structure factor moduli
or being suppressed by the effects of preferred orientation.

In general, current approaches for indexing fall into two main
categories:search(exhaustive or optimization) methods and
deductiVemethods. Search methods tackle the indexing problem
by attempting to locate the optimal set of unit cell parameters
on a hypersurfaceF(a, b, c, R, â, γ) defined by a suitable figure-
of-merit F (such as theM20 function3) that describes the
agreement between the experimentally observed and calculated
peak positions. This basic philosophy is embodied in the popular
DICVOLprogram,4 as well as in several more recent programs.5-8

Deductive methods adopt a different approach, in which possible
unit cell parameters are proposed by recognizing well-defined
relationships between sets of observed peak positions. This
approach forms the basis of programs such asITO9 and
TREOR.10

An alternative approach, proposed in this Letter, is to view
indexing as an exercise inpattern recognition; thus, given a
set of observed peak positions in an experimental powder
diffraction pattern, we wish to predict the likely unit cell
parameters by utilizing knowledge derived from analysis of the
peak positions in powder diffraction patterns corresponding to
known unit cell parameters. Artificial neural networks (ANNs)
are ideally suited to solve such problems, and this Letter reports
the first application of an ANN to tackle the problem of indexing
powder diffraction data.

2. Methodology

ANNs are a class of computer algorithm that, in an elementary
sense, attempt to mimic the logical operation of the human brain.
The potential of ANNs as tools for image recognition, process
control, and feature extraction is considerable, and many
applications in a wide variety of disciplines have been re-
ported.11,12Previous work has included applications in areas of
powder diffraction13,14 that are unrelated to the present work.

In general, the application of an ANN to solve a given
problem involves the following stages: (i) the definition of input
and output variables and the selection of a suitable network
topology linking the input and output, (ii) training the ANN
using data for which both the input variables and the corre-
sponding output variables are known, and (iii) application of
the trained ANN to determine the (unknown) set of output
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2θhkl ) 2 sin-1( λ
2dhkl

) (1)

dhkl ) V [h2b2c2 sin2 R + k2a2c2 sin2 â + l2a2b2 sin2 γ +

2hlab2c(cosR cosγ - cosâ) + 2hkabc2(cosR cosâ -
cosγ) + 2kla2bc(cosâ cosγ - cosR)]-1/2 (2)
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variables corresponding to a particular set of input variables
(e.g., experimental data). In the present context, the input
variables are peak positions in a powder diffraction pattern and
the output variables are the unit cell parameters. We now
elaborate details of each of these stages in the context of the
ANN that we have developed for indexing powder diffraction
data.

2.1. Network Topology and Parameter Definitions.The
work presented here is focused upon a particular type of ANN
known as a “feed-forward multilayer perceptron network”.11,12

In general, such a network comprises three major components:
(i) a layer of nodes that provide input signals to the network,
referred to as theinput layer, (ii) a number ofhidden layers
containing thehidden unitsof the network, and (iii) a layer of
nodes that interpret the output of the final hidden layer, referred
to as theoutput layer. A schematic illustration of a network of
this type is shown in Figure 1. In our terminology, anodeserves
to provide input or collect output from the network. The key
components of the ANN are the hidden units, which are the
artificial analogues of biological neurons and act in a similar
(though vastly simplified) manner. Thus, a hidden unit operates
by summing the input signals that it receives from other units
(either nodes or other hidden units) to which it is connected,
analogous to the way in which a neuron sums nerve impulses.
Each network connection has an associated weight,wi,j, which
dictates the effective magnitude of the received signal,xi,j. The
actiVation value,aj, produced at unitj by the signals (labeledi
) 1, ...,N) that it receives from the units to which it is connected
is calculated as follows:

To simulate the continuous signal values produced by biological
neurons, the output signalyj produced by activation at unitj is
calculated fromaj via a sigmoid function,

The output signal may then act as an input signal for further
units within the network.

In the present case, each node or hidden unit in a given layer
is connected to every node or hidden unit in the preceding layer,
with each connection being characterized by a weight value.
The network is thus described as being fully connected. We
note that in the present work, the ANN contains only a single
hidden layer, and the input layer includes an additional node
referred to as thebias. This node passes a constant value of 1
to all units in the hidden layer. From eqs 3 and 4, it may be
seen that the effect of this bias signal is to shift the activation
values into a more appropriate range, such that saturation of
the sigmoid function is avoided.

Besides the actual topology of the network, another important
factor is the definition of the input signals, as well as the manner
in which the signals produced at the output layer of the network
are interpreted. In the current work, the input to the ANN
comprises the 2θ positions ofNi peaks in a powder diffraction
pattern (typically the 20-30 peaks at lowest 2θ). The output
signalsFk (0 e Fk e 1) produced by the ANN are interpreted

Figure 1. Schematic illustration of our ANN approach for indexing powder diffraction data. Peak positions 2θ(l) are extracted from the powder
diffraction pattern and are subsequently passed into the input layer of the ANN (after appropriate scaling; see text). The input signals are then
transferred to the hidden layer, which processes the signals to generate the output signals at the output layer. The output signals are then interpreted
to produce a set of unit cell parameters. Note that, for clarity, only a few connection weights are shown, though it should be remembered that each
connection has an associated weight. In the above illustration, the weight values are specified by an extra index, indicating the connection layer,
in comparison to those in eq 3.

aj ) ∑
i)1

N

wi,jxi,j (3)

yj ) 1

1 + e-aj
(4)
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as normalized unit cell parameters, which may be rescaled to
recover each unit cell parameterxk (k ) 1, 2, ..., 6) via,

wherexk
min andxk

max are user-defined minimum and maximum
allowed values of the unit cell parameterxk.

From the above definitions, it should be clear that, if the ANN
has “knowledge” of the relationship connecting the input and
output variables (i.e., eqs 1 and 2 in the present work), the
network will be suitable for predicting unit cell parameters when
presented withNi peak positions from a powder diffraction
pattern. The manner in which such “knowledge” may be
acquired by the ANN is the focus of thetraining process, which
is now outlined.

2.2. Training an ANN. For an ANN to perform a useful
function, the network must be trained. In computational terms,
training represents an exercise in error minimization; when the
ANN is presented with an input data set, which is related to a
known target output, the error between the output calculated
by the ANN and the target output should be minimal. This is
achieved by adjusting the connection weights in the network,
which may thus be viewed as containing the “knowledge” of
the network. In practice, the training process is carried out not
for a single set of input and output data, but for a large number
of such data sets, which are collectively referred to as the
training set. This approach encourages the ANN to learn the
fundamental relationships that connect input and output data
for the type of problem under investigation, rather than learning
specific features of an individual input/output pair. If these
relationships are learned correctly and to a sufficient degree of
accuracy, the trained ANN may then be used to predict the
correct output data when presented with a set of previously
unseen input data. This ability of a trained ANN to successfully
generalizeis obviously a highly desirable quality, and underpins
the predictive capabilities of an ANN.11,12

In the current work, the weights are adjusted during a number
of training epochsto minimize a least-squares error function,

where the training error,Et, is calculated over allNt members
of the training set,xk(m) is the scaled ANN output (eq 5) at the
kth output node (of which there areNo) when input data setm
is presented at the input layer of the ANN andtk(m) is the target
output corresponding to training setm. In the current work, the
error minimization is achieved using a modified version of the
Rpropalgorithm,15 namelyiRprop+.16 In all calculations detailed
below, the training process is allowed to proceed for a fixed
numberNe of training epochs, though we note that other criteria,
such as minimum error values or gradient norms, may be used
to judge when training should be stopped.

2.3. Specification of the ANN for Indexing. Our ANN
approach for indexing powder diffraction data can now be fully
defined. Given the requirement to carry out training using a
large number of data sets for which the unit cell parameters are
known, it is not viable to use experimental powder diffraction
data for this purpose. Instead, the training set is created by
randomly generatingNt sets of unit cell parameters (labeledm
) 1, ...,Nt) and the input data comprise the 2θ positions of the
first Ni lines (labeledl ) 1, ..., Ni) in the powder diffraction
pattern generated for each of these sets of unit cell parameters.
Clearly, the target outputs during the training period are the

sets of unit cell parameters used to generate the input data. At
each input nodel, it is beneficial to use scaled input signals,
sl,m, which are obtained from the peak positions 2θl,m according
to

where the mean input signalµl at each input node is given by

and the standard deviationσl is given by

After construction of the training set, the weights are adjusted
during each of theNe training epochs using theiRprop+

algorithm.
Subsequently, the trained ANN can be applied to index a

previously unseen set of input data (e.g., from an experimental
powder diffraction pattern). The input data comprises the 2θ
positions ofNi peaks in the powder diffraction pattern, scaled
according to eq 7. The unit cell parameters predicted by the
trained ANN are recovered from the network output signals
according to eq 5. A schematic of the overall process is shown
in Figure 1.

2.4. Further Crystallographic Considerations.The ability
of the ANN to deal with previously unseen data may be
enhanced by the introduction of several problem-specific
features. First, although any powder diffraction pattern may be
indexed by a primitive triclinic unit cell, it is beneficial to train
the ANN separately for each different crystal metric symmetry.
This strategy obviously reduces the network complexity and,
consequently, the training difficulty. In the present work, only
ANNs with three output nodes (i.e.,No ) 3 in eq 6), suitable
for indexing orthorhombic unit cells, are considered, though
current developments include the extension to other metric
symmetries. Second, the chances of successfully indexing a
powder diffraction pattern may be increased by explicit con-
sideration of systematic absences. In our ANN approach, this
has been implemented by training a separate ANN (i.e., a
different set of weights is generated) for each of the possible
classes of systematic absences (powder extinction classes) in a
given crystal system.17 When applying the method to index a
previously unseen set of input data, the output from each powder
extinction class-specific ANN may be assessed, providing an
opportunity to establish both the correct unit cell and the correct
powder extinction class. In this way, the ANN can also directly
assist the process of space group assignment. Finally, a small
amount of random “noise” can be introduced to the input data
during training to simulate the effect of random errors in the
peak positions, which are inevitably present in an experimental
powder diffraction pattern. An ANN trained in this way may
thus be more appropriate for subsequent application to real
experimental data. The introduction of noise into the training
set may also improve the generalization abilities of the ANN
by “blurring out” features of the error landscape which could,

xk ) xk
min + Fk(xk

max - xk
min) (5)

Et )
1

Nt
∑
m)1

Nt

∑
k)1

No

(xk(m) - tk(m))2 (6)

sl,m )
2θl,m - µl

σl
(7)

µl )

∑
m)1

Nt

2θl,m

Nt

(8)

σl ) x∑
m)1

Nt

(2θl,m - µl)
2

Nt - 1
(9)
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in certain cases, lead to the error minimization process becoming
trapped in a local minimum.11,12We note that the random noise
is added to the input signalssl,m (eq 7) and not to the input 2θ
values. Becauseσl generally increases with 2θ, this strategy
implicitly includes the fact that errors in peak positions extracted
from a powder diffraction pattern tend to increase with 2θ, due
primarily to increased peak overlap.

The final aspect of our methodology concerns the application
of local optimization. Because unit cell parameters predicted
by the ANN will inevitably contain some errors, it is desirable
to refine the unit cell parameters predicted by the ANN to
achieve the best possible agreement with the experimental data.
In the current work, this is achieved by optimizing (maximizing)
the value ofMN, the de Wolff figure-of-merit for theN peaks
in the input data, using the simplex algorithm of Nelder and
Mead.18

3. Application, Results, and Discussion

All calculations were performed on a 1 GHz AMD Athlon
processor (running RedHat Linux 7.3) using our custom-written
ANN programPIANNO.19 An ANN comprising 15 hidden units
(in a single hidden layer), 20 input units, and 3 output units
was trained using a training set of sizeNt ) 1000. The target
outputs (i.e., unit cell parameters with orthorhombic metric
symmetry) of the training set were randomly generated with
minimum and maximum unit cell lengths of 5 and 25 Å,
respectively, and with minimum and maximum allowed unit
cell volumes of 100 and 4000 Å3, respectively. The target unit
cell parameters were ordereda > b > c. No peaks were removed
from the input data due to systematic absences, and thus the
set of optimized weights is specific to theP222 extinction class.
The training was allowed to proceed for 5× 103 training epochs,
and artificial noise was not introduced during training. After
training, the training error (eq 6) was 0.016 Å2, corresponding
to an average error in each unit cell parameter of just 0.042
Å.20

Following training, the ability of the ANN to predict the unit
cell parameters for a specific set of input data was assessed.
The first 20 peak positions in the simulated powder diffraction
pattern of an orthorhombicP222 unit cell witha ) 15.00 Å,b
) 12.00 Å, andc ) 9.00 Å were presented to the trained
network. The initial unit cell parameters predicted by the ANN
werea ) 14.99 Å,b ) 12.02 Å, andc ) 9.02 Å, in excellent
agreement with the correct parameters. The exact unit cell
parameters were obtained following local optimization.

With the successful application of the ANN thus confirmed
for simulated powder diffraction data, the potentially more
difficult case of experimentally recorded powder diffraction data
was considered. The powder diffraction patterns considered were
those of theâ phase ofL-glutamic acid (â-LGA) and the peptide
Piv-LPro-γ-Abu-NHMe (PPAN).21 The crystal structures of both
materials had been solved previously using single-crystal neutron
diffraction (â-LGA22) and powder X-ray diffraction (PPAN23)
respectively, and the unit cell parameters and space group
(P212121 in both cases) were already known.24,25

For these calculations, a network comprising 22 hidden units,
25 input values, and 3 output values was trained. The training
set comprised 1000 randomly generated orthorhombic unit cells,
with minimum and maximum unit cell lengths of 5 and 25 Å,
respectively, and minimum and maximum unit cell volumes of
100 and 2000 Å3, respectively. The input data corresponding
to each member of the training set had the systematic absences
of the P212121 extinction class explicitly removed, such that
the trained set of weights was specific to this extinction class.

As described above, a random noise valueκ ∈ [-0.1, +0.1]
was introduced into the input signalssl,m at the beginning of
each training epoch. After 5× 103 training epochs, the average
error for the members of the training set was 1.052 Å2,
corresponding to an average parameter error of 0.342 Å.26 The
errors reported in this case are larger than those for theP222
case, as a result of the introduction of random noise into the
training data, as well as the explicit removal of systematic
absences, which can affect the input signalssl,m via µl andσl in
eq 7.

The unit cell parameters determined by the ANN when
presented with 25 extracted peak positions from the experimental
powder X-ray diffraction patterns ofâ-LGA and PPAN are
shown in Tables 1 and 2, respectively. In each case, the unit
cell predicted by the ANN is relatively close to the correct unit
cell, although with a maximum discrepancy of up to ca. 0.6 Å.
However, in both cases, local optimization proceeds in a
straightforward manner to give the correct unit cell parameters,
indicating that the unit cell parameters predicted by the ANN
are in the close vicinity of the global minimum. We note that,
when theâ-LGA input data are presented to a network trained
with P222 unit cells, the predicted unit cell parameters are in
error by up to ca. 7 Å (with anM25 value after local optimization
of 1.97), indicating that the ANN approach has the ability to
discriminate against incorrect extinction classes within a given
crystal system.

Not surprisingly, the results indicate that the accuracy of the
unit cell parameters predicted by the ANN is greater when
simulated data, rather than experimental data, are used. In the
present examples, this situation most likely arises as a result of
two key features of the experimental input data, as illustrated
in Figure 2. First, and most importantly, a number of peaks
predicted by the optimized (and correct) unit cell were not
included in the peak list selected as input to the ANN. These
reflections were excluded either because their intensity is too
weak (but not systematically absent) or because they overlap
significantly with other, more pronounced peaks (we note that
no preferred orientation effects are present in either experimental
powder diffraction pattern). The absence of these peaks
inevitably affects the performance of the ANN, because it is

TABLE 1: Results of the Indexing Calculation for the â
Phase ofL-Glutamic Acida

unit cell parameters

a/Å b/Å c/Å M25

ANN 17.282 7.339 5.128 1.53
optimized 17.369 6.979 5.180 85.16
correct 17.368 6.980 5.180

a The unit cell parameters initially predicted by the ANN are given,
as are the final parameters after local optimization using a simplex
algorithm. The correct unit cell parameters (obtained from Le Bail fitting
of the powder X-ray diffraction pattern) are given for comparison.

TABLE 2: Results of the Indexing Calculation for
Piv-LPro-γ-Abu-NHMea

unit cell parameters

a/Å b/Å c/Å M25

ANN 17.445 10.901 8.593 1.85
optimized 16.996 10.773 9.175 22.84
correct 16.930 10.718 9.142

a The unit cell parameters initially predicted by the ANN are given,
as are the final parameters after local optimization using a simplex
algorithm. The correct unit cell parameters (obtained after Rietveld
refinement of the crystal structure using powder X-ray diffraction data23)
are given for comparison.
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trained with data for whichall of the first Ni peaks of the
simulated powder diffraction pattern are included. However, the
ability of the ANN to successfully determine the correct unit
cell parameters indicates that the information contained in the
input peak list from the experimental data is sufficient to allow
the ANN to predict a unit cell at least within the basin of
attraction of the global minimum on the figure-of-merit hyper-
surface. The second important point concerns the zero-point
error in the powder diffraction pattern. Again, no explicit
information concerning the zero-point error was introduced
during training, though our results suggest that the ANN is not
significantly perturbed by zero-point errors as large as 0.04°,
as in the powder diffraction pattern of PPAN.

4. Conclusions

This Letter has highlighted a new approach for indexing
powder diffraction data using an ANN in combination with local
optimization. This approach, in which the process of indexing
is viewed as a pattern recognition exercise, represents a new
strategy in comparison with current indexing methodologies.
Results obtained using both simulated and experimental powder
diffraction patterns (the latter recorded on a standard laboratory
powder X-ray diffractometer) demonstrate the successful ap-
plication of our new methodology. The calculation times
required are minimal and are of the order of a few minutes for
ANN training and a few seconds for prediction of unit cell
parameters from previously unseen data once the ANN has been
trained.27 Obviously, once a reliable set of weights for a given
metric symmetry and extinction class has been generated, the
ANN requires no further training to index powder diffraction
data for the specified metric symmetry and extinction class. This
strategy therefore offers the possibility of significant gains in
calculation speed compared to many standard indexing algo-
rithms.

Current work is focused upon extending our methodology to
other metric symmetries, as well as developing a more detailed
understanding of the factors affecting the accuracy of the unit
cell parameters predicted by the ANN. Importantly, we note
that, with continued tuning of the training process, as well as
the selection of suitable training data, the ANN approach

described here has the potential to successfully deal with many
of the common problems encountered in indexing, and may
therefore prove to be a reliable, robust and widely applicable
method for tackling the indexing problem.
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