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A new version of the quantum instanton (QI) approach to thermal rate constants of chemical reactions (Miller,
W. H.; Zhao, Y.; Ceotto, M.; Yang, S.J. Chem. Phys.2003, 119, 1329) is presented, namely, thesimplestQI
(SQI) approximation with one dividing surface (DS), referred to here as SQI1. (The SQI approximation
presented originally was applicable only with two DSs.) As with all versions of the QI approach, the rate is
expressed wholly in terms of the (quantum) Boltzmann operator (which, for complex systems, can be evaluated
by Monte Carlo path integral methods). Test calculations on some simple model problems show the SQI1
model to be slightly less accurate than the original version of the QI approach, but it is the easiest version to
implement; it requires only a constrained free-energy calculation, location of the (transition-state) DS so as
to maximize this free energy, and the curvature (second derivative) of the free energy at this maximum.

1. Introduction

A recent paper1 has developed an approximate theoretical
expression for the thermal rate constant of a chemical reaction
that is expressed solely in terms of the quantum Boltzmann
operatore-âĤ. Its derivation was motivated by the earlier2

semiclassical (SC) “instanton”3 approximation for rate constants
and is thus referred to as thequantuminstanton (QI) approxima-
tion. Applications to some standard one- and two-dimensional
model problems showed it to be capable of(10-20% accuracy
over a wide range of temperatures, from low temperatures deep
in the tunneling regime to the high-temperature “over-barrier”
limit. (More recent calculations4 have been carried out for the
H + CH4 f H2 + CH3 reaction in full Cartesian space.) The
potential usefulness of this QI approach is that the quantum
Boltzmann operator can be evaluated for quite complex mo-
lecular systems by Monte Carlo (or molecular dynamics) path
integration methods.5 The QI model is a type of “quantum
transition-state theory”, of which there are many varieties;6-14

its particular attraction is that it is not necessary to assume any
reaction or tunneling path, all necessary information being
contained in the Boltzmann operator.

The purpose of this paper is to develop one further aspect of
the QI model that was not considered initially, namely, the
variant of the model that was referred to as thesimplestquantum
instanton, or SQI approximation for the case that one uses a
single dividing surface (DS). (The SQI given in the original
work1 is only meaningful when one uses two different DSs.)
Since this is the simplest possible version of the QI idea, it is
worthwhile to explore this version of the theory and see how it
performs. Section 2 presents the theoretical development, section
3 presents the generalization to multidimensional systems, and
section 4 shows the results of application to standard test
problems. Though not quite as accurate as the original QI
approximation1 with two DSs, it is by far the easiest of all

versions of the QI approach to implement; as summarized by
eq 2.16, it requires only a constrained free-energy calculation,
location of the DS to maximize this free energy, and determi-
nation of the curvature (second derivative) of the free energy
at this maximum.

2. Theoretical Development

We begin with the quantum instanton (QI) expression1 for
the thermal rate constantk(T) for the case of a single DS, here
for a one-dimensional potential barrier (the multidimensional
generalization will be noted below)

whereQr is the reactant paritition function (per unit volume),
∆H(â) is an energy variance

andx0 is the value ofx for which

The primes on the matrix elements in eq 2.1a denote
differentiation with respect to the coordinate variable in the bra
or ket. To develop the SQI approximation for this case of one
DS, we proceed as before1 and consider the SC limit of eq 2.1;
i.e., we utilize the SC approximation for the matrix elements
of the Boltzmann operator15

where the sum in eq 2.2 is over all trajectories (in pure imaginary
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time or real time on the upside-down potential surface) that go
from x to x′ in (imaginary) timepâ/2. (When using two DSs,
there is only one such trajectory.) Figure 1 indicates that there
will typically be two such trajectories in the present case, one
that moves fromx0 to the left (L) and back tox0, and one that
moves to the right (R) and back, so that

with x′ ) x ) x0. Since

wherepk (pk′) is the initial (final) momentum for trajectoryk )
L or R, one sees that

Thus if x0 is chosen so that

then the RHS of eq 2.5 will be 0 (i.e., eq 2.1c will be satisfied)
since (as seen in Figure 1)pL′ ) -pL ) -pR′ ) pR. For a
symmetric barrier, it is clear thatx0 is at the maximum of the
potentialV(x), the conventional transition state.

Utilizing eqs 2.3-2.5, one thus has the following relations
in the SC limit

whereS) SL(x0,x0) ) SR(x0,x0) andp0 ) pL′ ) -pL ) -pR′ )
pR. For future reference we also note that

Using eqs 2.7a and 2.7b in eq 2.1a thus gives the SC limit of
the QI rate constant as

As before, we now equate this to the original SC instanton rate
expression2

which implies that

solving this equation for∂2S/∂x′ ∂x gives

Finally, substituting this result, eq 2.10b, back into eq 2.8 (and
using eq 2.7a) gives thesimplest quantum instantonfor 1 DS
(SQI1) as

wherez is the dimensionless variable

To complete the SQI1 model, one needs a way to determine
the momentump0, or more specifically,p0

2/2m, the kinetic
energy at the DS (i.e., at the transition state). A simple
prescription for doing so is based on classical conservation of
energy (for the imaginary time trajectory)

whereE(â) is given by

We have indeed used eq 2.12 in eq 2.11b, and the rate constants
obtained are reasonably good. We do not consider this a
satisfactory approach, however, because it does not generalize
to the multidimensional case; eq 2.12 gives thetotal kinetic
energy on the DS, while it is clear (e.g., by considering the
separable limit) it should be only the kinetic energy in the
reaction coordinate. A definition ofp0

2/2m that does generalize

Figure 1. A sketch of a general one-dimensional potential barrier
indicating the two (imaginary time) trajectories that contribute to the
semiclassical approximation to the Boltzmann matrix element in eq
2.3.
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correctly is obtained by averaging eqs 2.7b and 2.7c, which
gives

In the high-temperature limit,S(x′,x) ∝ (x′ - x)2 so that the last
term in eq 2.13 vanishes, and it is negligible compared to the
first term in the low-temperature limit. To complete the SQI1
model we thus choose

Perhaps the most convenient aspect of eq 2.14 is that it can
also be expressed as

where, as eq 2.1c implies,x0 is determined by

i.e., one variesx0 to find the value for which ln [〈x0|e-âĤ/2|x0〉]
is a minimum, andp0

2/2m of eq 2.15a is given in terms of the
curvature at this minimum.

To summarize, one can also write the final result in
thermodynamic language. Thus if the free energyG(x0) as a
function of the reaction coordinate is defined by

thenx0 is determined by the maximum of this free energy

and the dimensionless variablez (of eq 2.11b) given in terms
of its curvature at the maximum

The SQI1 expression for the rate constant is then

3. Multidimensional Generalization

In light of the previous QI paper,1 the multidimensional
generalization of the SQI1 rate constant is straightforward. For
simplicity, we consider the case that the coordinates of the
system are (x, Q) wherex is the reaction coordinate. In terms
of the thermodynamic language of eqs 2.16, the multidimen-
sional expression for the free energy is

and then eqs 2.16b-d pertain as written. The multidimensional
energy variance∆H is as given before

The generalization of eqs 3.1 and 3.2 to the case of a more
general form of the DS, e.g., specified by some function (the
generalized reaction coordinate)s(q) ) 0, whereq ) (x,Q)
denotes all the (Cartesian) coordinates of the system, has been
given (and implemented) in ref 4.

4. Test Calculations

The first example we consider is the standard one-dimensional
symmetric Eckart potential barrier

with parametersV0 ) 0.425 eV,a ) 1.36 au, andm ) 1060
au, which correspond approximately to the H+ H2 reaction.
For these elementary one-dimensional examples, it is simplest
to evaluate the necessary matrix elements of the Boltzmann
operator by quantum basis-set methods (we used a discrete
variable representation),16 though the practical interest in the
quantum instanton approach is that the Boltzman operator can
be evaluated for very complex systems by Monte Carlo path
integral methods.5

Figure 2a first displays an Arrhenius plot of the rate constant
given by the SQI1 model, i.e., eq 2.11 with 2.14 over the range
T ) 100-2000 K, along with the exact quantum rate, showing
that on this scale the model gives excellent results. (For this
symmetric case, the location of the transition state DSx0 is
always x0 ) 0.) To show the accuracy of the model more
precisely, Figure 2b plots the ratio of the SQI1 rate to the exact
quantum rate as a function of 1/T; it is ∼10-15% too small at
the lowest and highest temperatures, with the greatest deviation
(a factor of∼1.4) at intermediate temperature. By comparison
of these results to the earlier QI model with one DS, the present
SQI1 model is better at the lowest and highest temperature but
not as accurate in the intermediate temperature regime.

The second example is the asymmetric version of the Eckart
potential

with parametersV0 ) 0.425 eV,a ) 1.36 au,R ) 1.25, andm
) 1060 au; the barrier heights are 0.425 and 0.531 eV from
the left and right sides of the barrier, respectively. As above,
we first show in Figure 3a, an Arrhenius plot of the SQI1 rate
constant, for the rangeT ) 150-2000 K, again displaying very
good agreement with the exact quantum rate over this large
range of temperature. Here the location of the DS,x0, as
determined by eq 2.1c or 2.15b, varies with temperature. Figure
3b shows the ratio of the SQI1 rate to the exact quantum value
over this range of temperature. This plot is very similar to the
symmetric case in Figure 2b except at the lowest temperatures
(<200 K) where the SQI1 rate becomes increasingly too large
(off by a factor of∼1.4 at 150 K). Comparing these results to
those given previously by the one DS version of the QI model,
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the deviations of both from the correct quantum values are
qualitatively similar, but those of the present SQI1 model are
larger.

Finally, though it is beyond the scope of this paper, we note
that the deviations of the SQI1 rates from the correct quantum
values (Figures 2b and 3b) are similar if plotted as a function
of the dimensionless variablez of eq 2.11b (with 2.14). The
largest deviation, a factor of∼1.4-1.5, occurs atz ∼ 1. It is
thus possible to introduce an empirical correction factor (i.e., a
function of z) that significantly corrects this generic behavior
of the SQI1 model. For example, if the factor (π)1/2/2 (z + (1
+ z2)1/2) in eq 2.11a and 2.16d is replaced by 5z/4 + ((z - 1)2

+ (1/4)2)1/2, then the SQI1 rate agrees with the exact quantum
value to within a few percent for all temperature in Figure 2
and down to∼250 K in Figure 3. It remains to be seen, of
course, how universal this (or any) empirical correction factor
may be.

5. Concluding Remarks

The analysis presented in section 2 shows that it is indeed
possible to derive a version of the simplest quantum instanton
model that utilizes a single DS, designated here SQI1. The rate
expression is given by eq 2.11 with 2.14, or equivalently by eq
2.16 in thermodynamic language and its multidimensional
generalization by eqs 3.1 and 3.2.

Though not as accurate for these test problems as the original
QI model with two DSs, the SQI1 model is still of useful

accuracy (with empirical corrections being possible to make it
even more accurate), and it is much easier to implement. For
example, eqs 2.16 show that it is necessary only to carry out a
rather standard constrained free-energy calculation, choose the
transition state DS by (an again fairly standard) maximum free-
energy criterion, and then the rate is given by this maximum
free energy and a function of the dimensionless parameterz,
which is expressed in terms of the curvature of the free energy
at its maximum.
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