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A scalable distributed-data parallel analytic gradient algorithm for unrestricted second-order-\rggleset
perturbation theory is presented. Features of the implementation using the Distributed Data Interface are
discussed in detail. Benchmark timing calculations on a parallel cluster system are presented for a variety of
gold cluster molecules. The speedups, parallel efficiencies, and percentage parallelism for these calculations
are reported.

I. Introduction TABLE 1: Distributed Memory Operations
P— . - DDI_SEND synchronous send
Professo_r Schaefer has mad_e many contributions in the field DDI_RECV synchronous receive
of electronic structure theory, including early efforts at paral- DDI_GET get block of distributed array
lelization! We are pleased to be able to present this contribution  pDI_PUT put block of distributed array
in honor of his 60th birthday. DDI_ACC accumulate data into block
Second-order MgllerPlesset (MP2) perturbation the@rig DDI_BCAST broadcast data to all nodes
lated el . hod that i idel d DDI_GSUMF floating point global sum
a correlated electronic structure method that is widely used to  pp|"gsumi integer global sum
calculate molecular energies and geometries since it provides a DDI_CREATE create distributed array
balance between the amount of electron correlation recovered DDI_DESTROY destroy distributed array
and the computational cost of the calculation. The first derivation =~ DDI_DISTRIB obtain distributed matrix distribution

of the MP2 gradient was presented in 1979 by Pople ét al.

Subsequent formulations by Handy et aihd Pulay and Saebg ) ) ) )
eliminated the storage of derivative integrals and three virtual &€ relatively easy to implement and reduce the time require-
molecular orbital integrals, used the Z-vector method of Handy Ments of a calculation, but the size of systems that can be treated
and Schaeférto reduce the number of unknown response with them is I|m|tec_i by the memory on a single node. Distributed
vectors in the coupled perturbed Hartrdeock (CPHF) equa- d_ata implementations are preferred, as these reduc_e both the
tions from N (whereN is the number of nuclei) to 1, and smgle-n.ode memory requirement and the wall clock time for a
eliminated the need to solve the CPHF equations in the c&lculation.

occupied-occupied and virtuatvirtual blocks. Frozen orbitals The computer architecture must also be considered when
were introduced to reduce the computational requirements of designing an algorithm. Currently, clusters of workstations or
the calculations, and an explicit derivation of the MP2 gradient PCs are an attractive alternative to large massively parallel
using frozen orbitals was presented by Lee ef dlhe processor (MPP) platforms due to a good performance/price
implementation of the first direct MP2 gradient algoritfrim ratio. Individual research groups and departments do not
which the two-electron repulsion integrals are recomputed as normally have enough resources to purchase large computer
needed instead of stored on disk or in memory, allowed much Systems. Cluster computing also has the advantages that
larger calculations than were previously possible, although this Commodity parts can be used, installation is relatively easy,
came at a greater computational cost. Semidirect algorithms werescalability can be attained in principle, and the computational
also developed in order to minimize computation depending on resources are controlled locally. However, cluster computing
available memory and disk Spa%aecenﬂy’ Head-Gordon also has some disadvantages that must be addressed. In
developed an improved semidirect MP2 gradient algorithm, Particular, the slow-speed interconnection between nodes in
which reduces the required memory and disk storage to that ofclusters can be a source of poor performance and scalability of
a semidirect MP2 energy calculation, eliminates disk-based algorithms designed for MPP systems. In addition, not all
sorting and transposition steps, and accounts for frozen orffitals. Parallel programming tools are available or optimized for cluster

For the MP2 methods, the time requirements for a calculation €0MPUting. o
grow as Off) with the number of basis functions while the Fletcher et al. developed the Distributed Data Interface
memory requirements can increase by as much as)O( (DDI)11.12 to provide a set of tools for distributed memory
depending on the algorithm. As these methods are applied toProgramming that is useful on both large parallel machines and
increasingly larger molecules with reliable basis sets, the clusters. It allows storage of large data arrays over the aggregate
requirements of the calculation quickly outgrow the capabilities Memory of distributed memory architectures. Like the global

of a single-processor computer. Replicated data parallel scheme&ay (GA) toolsi® DDI represents a global memory access
model that is based on a data-passing model. It includes a set

T . T — of basic network communication functions (Table 1) such as
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features for using distributed and globally addressed arrays andtransforming these matrices to the AO basis. The expressions

one-sided communication. These functions are implemented
using TCP/IP socket code or MPI-1 or SHMEM libraries, so
DDl is available for a variety of architectures. The advantages
of one-sided communication include reduced programming
difficulty and increased efficiency due to asynchronous com-
munication. The presence of remote memory adds a new level
to the memory access time hierarchy: registersache(s)<

main memory< remote memory< disk.

Most systems have significantly slower access time to remote
memory than to local memory, so data locality must be
considered in the design of an algorithm. Information on data
locality is also available within DDI.

To date, DDI has been used to implement distributed storage
versions of SCF energié$analytic SCF Hessiari§,multiref-
erence self-consistent field energies and gradi€mesed-shell
MP2 energies and gradierifsZ-averaged perturbation theory
energies; multireference perturbation theory energiésingles
configuration interaction (Cl) energies and gradiéfitsnd full
Cl energieg? Other distributed data tools have been used to
generate distributed memory versions of SCF enefgigs,
analytic SCF Hessiarf§, CPHF equation3? perturbation theory
energie® 36 and gradientd’38 Cl energies?4° and coupled
cluster energie$.+?

In this paper, the parallel implementation of unrestricted MP2
(UMP2) energies and gradients into the quantum chemistry
package GAMESS through the use of DDI is discussed. An

assessment of the speedup and parallel efficiency is reported, yition. sincer

for a series of gold clusters using a cluster architecture.

II. Parallel UMP2 Gradient Algorithm

A distributed data UMP2 gradient algorithm is discussed in
this section. The details of the gradient derivation and serial
implementation may be found elsewhéfeln general, the
analytic derivative of the UMP2 electronic energy may be
expressed as

AO
EX=;

whereH)  are the core Hamiltonian derivative integraﬁv
are the overlap derivative integralgy(1o)* are the derivatives
of the electron repulsion integrals (ERIS), amdv, A, ando
index atomic orbitals. The MP2 density matf¥"?, “energy-
weighted” density matris\y?, and two-particle density ma-
trix T™72 in eq 1 are sums of their corresponding SCF and

second-order correction terms
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is normally divided into the sum of so-called separall€) (
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In practice, eq 1 is usually evaluated by forming the density
matrices P@, W3, and '@ in the MO basis and back

for these matrix elements are shown in the appendix.

A. Implementation Considerations. In the MO basis, the
expressions for the density matrix elements require 18 different
types of integrals, which may be divided into five classes. Using
“v” to denote a virtual MO and “0” to denote an occupied MO,
these integral types may be expressed as:

1. (*0%|0%0%) (0%0%|0f0f) (0Pof|0Pof)

2. (v00%0%) (v*0%|0fof) (VPof|o%o%) (VPof|ofof)

3. (vv¥0%0%) (veve|ofof) (vBvh|o%o®) (vAvP|ofof)

4, (vo%|veo®) (veor|vAoP) (vPoP|vPoPf)

5. (Vvveo®) (vevevEof) (vBvAveo®) (vAve|vEof)

Parallel processor systems with global memories in the terabyte
range are now common, so it is feasible that the smaller integral
classes may be stored in memory even for larger problems. Thus,
global memory on the order af,?n? is assumed, wherg, is

the number of occupied orbitals amds the number of basis
functions and it is assumed thag is much smaller tham. A
different algorithm setup that trades additional computation for
reduced memory requirements could also be envisioned but will
not be discussed here. The first four integral classes fall within
the assumption of @¢?n?) global memory, so these integrals
may be stored in a distributed fashion across the nodes. The
fifth class is closer in size to @§n3). However, this class is
only used in the construction of the Lagrangian, so the terms
involving these integrals will be calculated separately and in a
direct fashion to avoid storage of this larger integral class. In
memory is not assumed, the AO integrals will
be calculated in a direct fashion. The density matrices, MO
coefficients, orbital energies, and other data of ordenr less

are replicated across the nodes.

The implementation of the following parallel UMP2 gradient
scheme will be discussed in more detail in the subsequent
sections:

1. Parallel direct transformation to yield MO integrals that
contain at most two virtual orbital indices (stored in global
memory).

2. Evaluation of UMP2 energy and construction of im-
mediately obtainable terms &2, W@, and the Lagrangiah.

3. Computation of the Lagrangian terms involving |(x)
class integrals directly from AO integrals.

4. Solution of the Z-vector equatidhs the MO basis.

5. Completion of one-particle density matrices and the one-
particle contribution to the gradient.

6. Back transformation of integrals to generdt®¥® and
completion of the two-particle contribution to the gradient.

B. Integral Transformation and Storage. First, the 14
distributed arrays that hold the first four classes of transformed
integrals must be created. These are depicted in Figure 1.
Triangular pairings of two occupied or virtual indices are used
wherever possible to reduce the number of integrals stored.
Integral type (#0%vf0f) has no available triangular pairings,
so the full range of each index must be used for this array.
Overall, the limiting storage requirement for the seven two
virtual integral types (and thus for the algorithm) igg{f]? +
[Ne?]2 + no™nef)r2. The “supermatrix” symmetry of integral types
(0*0%0%0%) and (d0f|0P0’) is not used so that the arrays have
a regular rectangular structure. The excess storage cost for this
is not large since this is the smallest integral class. For all
integral types, all pairs of occupied indices are divided among
the available nodes, with the full range of the other indices
located on a given node. The integrals are distributed in this
manner so that the long summations over virtual indices will
be local.
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11 21 22 31 32 33 ... (n,n)T 111112 ... 11n,211 ... (n,n,)™n,
11 1
00100) 21 (voloo) 2
integral arrays 22 integral arrays 3
(n()nO)T rlV
Nodes: 0 1 N-1 Nodes: 0 1 N-1
11 21 22 31 32 33 ... (n,n)" 11 21 22 31 32 33 ... (n,n)™
11 11
vvloo) 21 volvo) 12
integral arrays 22 integral arrays 13
(n n )T n,n,
Nodes: 0 1 N-1 Nodes: 0 1 N-1

* Not triangular for cross term (v®o®lvPoP)
Figure 1. Indices used for integral arrays. Triangular are indices used wherever possible to reduce amount of memory required.

Next, the 14 integral types that correspond to the first four transformed. For example, term 8 of eq A13 may be rearranged
classes must be generated and stored in the distributed arraysas
The general parallel transformation 4-fold loop procedure has

been described previoustyso the details will not be presented act virt virt (%% ) _
here. The appropriate alpha and beta MO coefficients are USEd—aoutx Z ; abalJ'BCﬁ) =
in the transformation of each index to generate the required .a,ﬂ
integral types. The replicated data requirement for this procedure ach virt® virth (i*b™ -ﬂcﬂ)
is 12n(ne* + n), wherel is the length of a shell (1 for s, 3 for z cec C (ifviie) ———— (6)
p, 6 for Cartesian d, etc.). After the integrals are generated, they 2,7 raob Fve b*c?
are stored in the appropriate distributed arrays through the use 16
of the DDI_PUT operation. wherei andj index occupied orbitals, a, b, and ¢ index virtual
C. Density Matrix Creation. Most of the terms in the one-  orhitals, andi, v, ando index atomic orbitals. A mixed MO/
particle density matrices and the Lagrangian (eqs-Aé and  AQ Lagrangian is introduced on the left-hand side of eq 6 as
A13) may be evaluated from the integrals discussed in section
B. The amplitudes for the virtualvirtual blocks ofP®@ (eq A3) L3 Z ciLE, (7)
andW® (terms 1 and 2 of eq A5) are calculated from |(xam)
integrals on the local node and multiplied by (vo) integrals
that are also locally held. Thus, these blocks do not require @nd further rearrangement of eq 6 yields
remote memory access. The occupiedcupied blocks oP®? N
(egs Al and A2) andM? (terms 1 and 2 of eq A4) require @8 _ act @ i1 virte vin? abauﬁcﬁ)
remote DDI_GET operations to obtain a set of|{x@) integrals cha Liia = Z Z Cial™v! O) ; Cob buOB
for a given vv pair. Then, the amplitude generation and integral el Diejs
multiplication steps may proceed locally. A global sumP&® (8)
is performed so that each node holds the complete occupied-_l_hus
occupied and virtuatvirtual blocks.
The fourth and fifth terms of eq A4 use the (00) integrals act
whenp andq are both occupied indices. Since this is the only Lgia = z (i v|/1a) e (9)
matrix block that requires these integrals, the memory for these 7 4
is released after the terms are computed. Théo@jvclass of
integrals contributes to terms 4 and 5 of eq A4 wipeandq where the half-transformed integral is

are both virtual indices. This class is also used to compute the

orbital Hessian in eqs A7 and A8, so it is retained in memory. "'"u virt? (labull’gcﬁ)
The (vdoo) class of integrals is used in the calculation of terms I“Jﬂ g ob vc Do’ (10)
1 and 2 of eq A6 and terms 1, 2, 5, and 6 of eq A13. It will mJ/f

also contribute to the fourth and fifth terms of eq A4 after the
virtual—occupied block oP® is determined, so these integrals
are retained in memory.

Term 7 of eq A13 can be represented as a difference of half-
transformed integrals

D. Three-Virtual Terms for Lagrangian. Terms 3, 4, 7, act:
and 8 of eq _A13 require the (Wo) integrals. These terms in LM 2 z i VMU)U.‘:XT“ _ |.V§,7a) (11)
the Lagrangian may be rearranged to form terms in a mixed & G

MO/AO basis as discussed previoush?’-3¢ For the UMP2
gradient, modified integrals instead of amplitudes will be The half-transformed integrals may be generated from locally
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11 21 22...0cc indices...(nn )™
doi=lIn, -
do j=1. 9
if (i,j) in local memory H o
GET I'forallbc «HGET 3
transform: ( ) 1 i 5
ib| jc g
IY=%C,.C,— : o
if Z Ve D,-J; E_
PUT I for all vo PUT g
? Yy @
i :
end if ;

end do =
end do B

0 1 .. nodes... P-1

Figure 2. First half back transformation of the (i) integrals. This
procedure is used in the creation of (wv) integrals and the
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density matrix is Of?) and the time required for the back
transformation is trivial, this back transformation is not distrib-
uted.

Representation of these Lagrangian terms in the mixed MO/
AO basis has the benefit that the quarter-transformed ERIs with
one MO and three AO indices may be used as soon as they are
generated. A second 4-fold loop over shells is used to calculate
and quarter transform the ERIs as described previodgijter
the inner two loops, a DDI_GET operation must be performed
to read in half-transformed integrals suchlﬁ’§ for a given
o,v pair. This requires communication among the processors.
Once the quarter-transformed ERIs are contracted with the
respective half-transformed integrals or AO density matrix
elements and the mixed MO/AO Lagrangian terms are formed,
these terms are transformed to the MO basis and combined with
the other four terms of the Lagrangian. The Lagrangian is
summed globally so each node holds the full matrix.

Once the Lagrangian has been calculated, the@yintegrals
must be restored. The half-transformed integrals are transformed
with the inverse MO coefficient matri€ ~* = CTS, whereSis

nonseparable two-particle density matrix. No communication is required the overlap matrix over AOs, which restores the virtual MO

in this step.

held (vgvo) integrals without communication since all gets and

indices, and are then multiplied by the appropriate orbital energy
factor (such aaﬁ)ﬁ:‘f) to recreate the original (yeo) integrals.

puts are done locally (Figure 2). To save memory at the cost of Since the entire set of indices for a given occupiedcupied
extra computation later, the half-transformed integrals replace Pair is on the local processor, this step requires no communica-

the (vdvo) integrals in memory.
In a similar manner, terms 3 and 4 of eq A13 may be
rearranged to the form

L3, = Z (i*v|A0)PP (a0

12)

L4

Vi

= Z (i*v120)P2(BP) (13)

g

where the virtuatvirtual density matrix has been back trans-

tion.

E. Solution of Z-Vector Equations. A reduced Lagrangian
and o and 3 trial vectors containing only symmetry-allowed
elements are used in the solution of the Z-vector equations. In
each step of the iterations, blocks of the orbital Hessian are
constructed from (viwo) and (vJoo) integrals. If the integrals
for a given pair of occupied indices are held locally, theyod
and (vjoo) integrals for then, 8, and mixed-spin terms are
used to form blocks of the orbital Hessian in eqs A7 and A8
(Figure 3). These blocks are multiplied by appropriate sections

formed to the AO basis. Since the required storage for the AO of the trial vectors, and the products are globally summed to

(v*o"lv@o™) integrals (v*v“o"0“) integrals

112122...0cc illdiccsm{nnno_}T 1121 22...0cc indiccs..,(nnno)T
= o
[R%] —
et 3
: L
= E
£ £
T =3
=2 (=
=2 &
a @
= )
\\Zj:' b
S - Block of new  Full new
: \ 01 .. "Odj‘L IR R — o vector a vector
0 1 ...nodes... P-1 r=- [
C | .
GET ' 1 :
i ! Finally
' '+ Global 2
GET (local) i : i sum DIIS used to
(local) X ' — — create new
b T—— a trial vector
] ks -
Orbital Y4 befw’mixed '
Hessian : , spin terms) : ,
E | P |
I L

Figure 3. Solution of the Z-vector equations. Locally held integrals are used to construct a block of the orbital Hessian. Storage of the full orbital
Hessian is avoided. Interprocessor communication is needed only for the global sum.
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1121 22...0cc indices...(n n )T must be calculated four times more than the minimal list. After

00

do v=1 nshell ; - the nonseparable density is calculated, it is combined with the
doo=1.v - separable density (eq A15), added to its SCF analog, and
GET I)7 for all i B contracted with the derivative ERI's.
do _Ul:lffnsht:]] ‘\ GE‘:I‘ . -
partial 3rd and full 4th \Q ( [ll. Timings/Benchmarks
index trinsformations: | | | ~ The parallel UMP2 gradient code described above has been
e - EC;«CA;!F E implemented in GAMESS and has been benchmarked on a
do A=1 nefiell ' 5 cluster system. The cluster under cor?3|de;rat|on is comprised of
compte . g IBM p640 nodes connected by dual Glgab_lt Ethernet. Each p640
St Wi{s}:‘f’t’l _v- node_has 4 Power3-Il processors running at 375 MHz and
end do viar : contams.16 G_B of memory. On 8 nodes, global memory of
sl db = 128 GB is available.
B The smallest molecule under consideration in the benchmarks
end do is AusH,. Two basis sets have been used with this molecule.
end do The smaller of the two consists of the 6-83G**46-48 phasis
set on H and the Steven8asch-Krauss-Jasier-Cundari
0 1 ..nodes.. P-1 (SBKJCY®-51 effective core potential basis set with f polariza-

Figure 4. Second half back transformation of the fwo) integrals. ~ tion functions and one diffuse sp function on Au, for a total of
This procedure is used in the creation of the nonseparable two-particle170 spherical harmonic basis functions. The larger basis set
density matrix. Communication across the processors is required to consists of the aug-cc-pVPZbasis set on H and the uncon-
retrieve the half-back-transformed integrals. tracted SBKJC basis set with 3f2g polarization functions and
one sp diffuse function on Au, for a total of 380 spherical

generate the and 8 product vectors. In this way, storage of harmonic basis functions. For both basis sets, there are 31
the full orbital Hessian is avoided. Alpha and beta error vectors o-occupied orbitals and 3G-occupied orbitals for AgHa. A
are calculated. A direct inversion in the iterative subspace UMP2 gradient calculation with the smaller basis set requires
(DIIS)*“Sinterpolation method is used to determine the trial 4 Mwords of replicated memory and 116 Mwords of distributed
vectors for the next iteration. Since previous trial and error memory, so it fits in the memory of a single processor on the
vectors are needed for DIIS, these are stored in a distributed|BM cluster. The calculation using the larger basis set requires
manner across the nodes. At convergence, the trial vectors are18 Mwords of replicated memory and 647 Mwords of distributed
the virtual-occupied block of thet and3 one-particle density  memory. This calculation requires the memory allotted to two
matrices. The (vjoo) integrals are not needed further, so the processors on the IBM cluster.
memory for these is released. A larger test case is AD;. The basis set used with this

F. Completion of One-Particle Gradient. After solution of molecule consists of the aug-cc-pV¥23 basis set on O and

the Z-vector equations, the one-particle density matrix is
complete. The third term in the virtuabccupied block of the
one-particle energy-weighted density matrix (eq A6) may now
be calculated. In addition, the final contribution to the fourth
and fifth terms of eq A4 can be evaluated using the|qed
integrals. This contribution may be computed in a distributed

the uncontracted SBKJC basis set with 3f2g polarization
functions and one sp diffuse function on Au, for a total of 472
spherical harmonic basis functions. For this molecule, there are
45 o-occupied orbitals and 44-occupied orbitals. A UMP2
gradient calculation on this molecule requires 41 Mwords of
replicated memory and 2166 Mwords of distributed memory.

fashion and globally summed to complete the energy-weighted This calculation requires the memory allotted to six processors

density matrix. This concludes the use of the|¢@) integrals,
so memory for these is released. Finally, the completeohd

on the IBM cluster.
Table 2 lists the average CPU time in seconds and the

 one-particle density matrices and energy-weighted density associated speedups and parallel efficiencies for a UMP2
matrices are back transformed to the AO basis, added to theirgradient calculation on 1, 2, 4, 8, 16, and 32 processors for the
SCF counterparts (egs 2 and 3), and contracted with the corethree gold clusters benchmarked in this study. Since the second
Hamiltonian and overlap derivatives (eq 1) to yield the one- and third test cases require more than one processor on the IBM
electron portion of the gradient cluster, the single-processor time required for these calculations
G. Two-Particle Gradient. The four-index back transforma-  is determined from runs on two and eight processors, respec-
tion of the amplitudes in the nonseparable two-particle density tively, assuming ideal speedup. The speedups may be visualized
(eq A14) is similar in essence to the procedure described in graphically in Figure 5. A superlinear speedup is exhibited for
section D. The process begins with the half back transformation the smallest test case running on two processors. This may be
described earlier to generate half-transformed integrals (Figuredue to the increased cache capacity available on two processors.
2). A third 4-fold loop algorithm is required to generate the As the number of processors increases, the observed speedup
derivative ERIs. Inside the outer two loops, a DDI_GET is less than the ideal speedup. This may be due to serial portions
operation necessitating communication between the processor®f the code, load balancing issues, or the communication and
is required to read in the half-transformed integrals with a given synchronization costs. On larger numbers of processors, the
o,v pair (Figure 4). These half-transformed integrals are used larger test cases exhibit greater parallel efficiencies than the
to form the half-transformed amplitudes. Inside the third loop smaller test cases. This is expected, since the amount of parallel
over shells, the half-transformed amplitudes are further back computation relative to communication and other costs is higher
transformed to all AO indices in one range and to AO indices for larger runs.
over the third-loop shell in the other range. This step is done Table 3 lists an assessment of the “percentage parallelism”
locally to avoid further communication. However, since the in each calculation. These values are determined by assuming
nonseparable density is not symmetrized, the derivative ERIs Amdahl scaling and fitting an equation of the fot(®) = ts +
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TABLE 2: Wall Clock Time (s), Speedup, and Parallel Efficiency for UMP2 Gradient Step on IBM Cluster

P (no. AuzHg, n =170 AtHg, n= 380 AwO4, n =472
processors) wall time speedup efficiency wall time speedup efficiency wall time speedup efficiency

1 2867 1.0 100.0 166482 1.0 100.0 665392 1.0 100.0
2 1412 2.0 101.5 83241 2.0 100.0 332696 2.0 100.0
4 771 3.7 93.0 42555 3.9 97.8 166348 4.0 100.0
8 596 4.8 60.1 22602 7.4 92.1 83174 8.0 100.0

16 295 9.7 60.7 11980 13.9 86.9 45138 14.7 92.1

32 231 12.4 38.8 7509 22.2 69.3 25205 26.4 82.5

2Value calculated from run using two processors, assuming ideal speedajues calculated from run using eight processors, assuming ideal
speedup.

35

30

25

20

Speedup

15

>e

10 -

o Au304(472)
3 L] A Au3H4 (380)
B Au3H4(170)
m—[dcal

0 5 10 15 20 25 30 35

Number of Processors (P)

Figure 5. Speedup curves for three gold cluster molecules. The size of the basis set is listed in parentheses.

TABLE 3: Serial Time, Parallel Time, and Parallel IV. Conclusions
Percentage for UMP2 Gradient Calculation . . .
g A scalable parallel gradient algorithm for UMP2 using the
AusHs (170)  AwH4(380)  AwO4(472) DDI is presented. The purpose of this algorithm is to increase
ts(s) 150 3270 6187 the speed for a given UMP2 gradient calculation as well as to
t (S)" o %6373 %;559396 8267942 permit the evaluation of larger jobs. The transformed molecular
parallel % . : . ot ; : P Latr
R 0.99542 0.99994 099986 orbital integrals with two virtual indices or fewer are distributed

across the nodes. Data of the ordéor less is replicated across
the nodes. The algorithm has been designed to use locally held
tp/P to the series of wall clock timet§P) on P processors fora  data wherever possible, and sections where communication is
given calculation, as discussed in ref 3. This yieldthe amount required have been identified. Redundant computation of two-
of time spent on serial portions of the calculation, agndhe electron integrals and derivative integrals is used in order to
total amount of time spent on parallel sections. The parallel "educe communication and required memory costs.

percentage represents the percentage of the calculation that is Beénchmark calculations have been run on a series of three
scalable. Unlike parallel efficiencies, which only compare two gold cluster molecules using an IBM cluster, and the calculations

calculations, this model provides a way to assess the scalabilitySCaIe well. The percentage parallelism for the UMP2 gradient

. 1 i 0,
over a range of processors. It does not consider effects due tocalculauon is above 90%.

load balancing or communication latencies, but these effects  acknowledgment. The authors would like to thank Graham
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Appendix. Density Matrix Expressions

In general, indice®, g, r, ands represent any molecular

orbital. Occupied orbitals are indexed byj, andk; virtual

orbitals are indexed bg, b, andc; core orbitals are indexed by
K. The one-particlen—o. density matrix expressions for the

core—active, active-active, and virtuatvirtual blocks ofP@
in the MO basis are

p@ _p2 —_ 1

T @ — e

Kaja joKa
act i [(i"a*b") — (i*0*j%a™)]

(K2 +

J'(x a*h® Dla(f;ga
act" wrt“ virt? (| a IJ
g (K“a*i’t)| (A1)
|ajﬂ

act virte virte (%% K*h*) — (i%b%|k™a™)] (j*a*k*b%)

Z ; ; Da(xba a*h®

joka Djuke

act vact‘virtﬁ'[(iaaa| kﬁbﬁ)] [ aaa| k/ibﬁ)]
(A2)

b acb?
ko at Dmkﬁ D jaks

act act virt® [({%g%|j%c*) — (i%c*|j*a")] (i®b*(j%c™)
+

D D

iO‘ja |Ct](‘,l

act act virt? (| Z\ “ﬁc/j) (|°‘b““ﬁcﬁ)

A3
Da“d* Db“o/)’ ( )

] iajp iajp

The one-particler—o. energy-weighted density matrix expres-

sions for the occupiedoccupied, virtuat-virtual, and virtuat
occupied blocks ofM2 are

e, -
act virt® [(io‘aﬂ|k‘1ba) _

Ny Y

act virt® virt? (|0‘ ‘1

N|(x](1 ; g acxblf (J(la(l|kﬂw) - _PI(E])“(E @ + GJ(X) -

(i°p*|K*a%)]

a*bh«
jaka

(e -

|ukﬁ
all*
> Phal(pa%if) — (p°i%10§)] —
pq*
all®

% PO A1) (A4)

where

N — 0, for bothi,j ecore
i« = | 1, otherwise
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act it [(i%a™j%c®) — (i%c*j"a”)]

i ‘= D
acPl act virth (| a* |J

222 o

) 1
“b"uﬁcﬁ) ; P2 (e + &) (A5)

|uJ/5
act virt® [(j*a|k*b®) — (j*b"|K"a”)]
We, = -2 Z z (i%“b™K*) —
7@ Dj’}f@"
acflacﬁ vnrtﬂ
; ; (1K) — PE). € (AB)

The virtual-occupied block oP@ is obtained from the iterative

solution of the Z-vector equations due to Handy and Schaefer

virt* occ*

Z Z{Aaaiamju + 6ab6ij(6ba - Gju)} Pﬁ}“ +
b(l j(l
virt# ocd
g Z {Aaﬂiﬂbﬁjﬁ} ngj)ﬂ = —Laia (A7)
]
virt? ocd
g_ Z {Aam/w +0 bau(eb ﬁ)} Pgsj)ﬂ
virt® occ*
Z Z {Aaﬁiﬁbuja} Pﬁ}u = —Lai (A8)
b(l J'U.

where the orbital Hessian is found by

Aguras: = 2(Pq%Ir*s) — (p"r*g"s”) — (p"s*g"r") (A9)
Aguqurisr = 2(0°0° IS (A10)
Agapras: = 2007 |rs”) (A11)

Aggus = 2000 1°S) — (010’ — (L1 (A12)

and theo.—a Lagrangian is given by
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I
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2 2
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where
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N* =

{O, fori = core
I

1, fori = active

Expressions for th8—f matrices are direct analogs of the-o
expressions. The two-particle density matrices are given by

ackvint® [(i“a™j“b") — (i°b%j*a”%)]
r,uvlo Czl Cga OL §b +
fEat 6"+ 6% — €, — €
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€ ¢4 e — e — ebﬁ
act virth [(|ﬁaﬁ|]ﬁbﬁ) _ (Iﬁdﬁ“ﬁaﬁ)] . .
; % ) Cl, C; C)y (A14)
i7] eiﬁ-l-ejﬁ—eaﬂ—eb
and
r'm/lo _ P(Z)(aa)P(}.SCF (2)(aa)PaSCF P(z)((l(l) SCF+

POBRIPL" — PABRIPIST + PR(BRIPIST (AL5)
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