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A scalable distributed-data parallel analytic gradient algorithm for unrestricted second-order Møller-Plesset
perturbation theory is presented. Features of the implementation using the Distributed Data Interface are
discussed in detail. Benchmark timing calculations on a parallel cluster system are presented for a variety of
gold cluster molecules. The speedups, parallel efficiencies, and percentage parallelism for these calculations
are reported.

I. Introduction

Professor Schaefer has made many contributions in the field
of electronic structure theory, including early efforts at paral-
lelization.1 We are pleased to be able to present this contribution
in honor of his 60th birthday.

Second-order Møller-Plesset (MP2) perturbation theory2 is
a correlated electronic structure method that is widely used to
calculate molecular energies and geometries since it provides a
balance between the amount of electron correlation recovered
and the computational cost of the calculation. The first derivation
of the MP2 gradient was presented in 1979 by Pople et al.3

Subsequent formulations by Handy et al.4 and Pulay and Saebø5

eliminated the storage of derivative integrals and three virtual
molecular orbital integrals, used the Z-vector method of Handy
and Schaefer6 to reduce the number of unknown response
vectors in the coupled perturbed Hartree-Fock (CPHF) equa-
tions from 3N (where N is the number of nuclei) to 1, and
eliminated the need to solve the CPHF equations in the
occupied-occupied and virtual-virtual blocks. Frozen orbitals
were introduced to reduce the computational requirements of
the calculations, and an explicit derivation of the MP2 gradient
using frozen orbitals was presented by Lee et al.7 The
implementation of the first direct MP2 gradient algorithm,8 in
which the two-electron repulsion integrals are recomputed as
needed instead of stored on disk or in memory, allowed much
larger calculations than were previously possible, although this
came at a greater computational cost. Semidirect algorithms were
also developed in order to minimize computation depending on
available memory and disk space.9 Recently, Head-Gordon
developed an improved semidirect MP2 gradient algorithm,
which reduces the required memory and disk storage to that of
a semidirect MP2 energy calculation, eliminates disk-based
sorting and transposition steps, and accounts for frozen orbitals.10

For the MP2 methods, the time requirements for a calculation
grow as O(n5) with the number of basis functionsn, while the
memory requirements can increase by as much as O(n3),
depending on the algorithm. As these methods are applied to
increasingly larger molecules with reliable basis sets, the
requirements of the calculation quickly outgrow the capabilities
of a single-processor computer. Replicated data parallel schemes

are relatively easy to implement and reduce the time require-
ments of a calculation, but the size of systems that can be treated
with them is limited by the memory on a single node. Distributed
data implementations are preferred, as these reduce both the
single-node memory requirement and the wall clock time for a
calculation.

The computer architecture must also be considered when
designing an algorithm. Currently, clusters of workstations or
PCs are an attractive alternative to large massively parallel
processor (MPP) platforms due to a good performance/price
ratio. Individual research groups and departments do not
normally have enough resources to purchase large computer
systems. Cluster computing also has the advantages that
commodity parts can be used, installation is relatively easy,
scalability can be attained in principle, and the computational
resources are controlled locally. However, cluster computing
also has some disadvantages that must be addressed. In
particular, the slow-speed interconnection between nodes in
clusters can be a source of poor performance and scalability of
algorithms designed for MPP systems. In addition, not all
parallel programming tools are available or optimized for cluster
computing.

Fletcher et al. developed the Distributed Data Interface
(DDI)11,12 to provide a set of tools for distributed memory
programming that is useful on both large parallel machines and
clusters. It allows storage of large data arrays over the aggregate
memory of distributed memory architectures. Like the global
array (GA) tools,13 DDI represents a global memory access
model that is based on a data-passing model. It includes a set
of basic network communication functions (Table 1) such as
point-to-point operations such as send and receive and collective
operations such as broadcast and global sum. It also includes
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TABLE 1: Distributed Memory Operations

DDI_SEND synchronous send
DDI_RECV synchronous receive
DDI_GET get block of distributed array
DDI_PUT put block of distributed array
DDI_ACC accumulate data into block
DDI_BCAST broadcast data to all nodes
DDI_GSUMF floating point global sum
DDI_GSUMI integer global sum
DDI_CREATE create distributed array
DDI_DESTROY destroy distributed array
DDI_DISTRIB obtain distributed matrix distribution
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features for using distributed and globally addressed arrays and
one-sided communication. These functions are implemented
using TCP/IP socket code or MPI-1 or SHMEM libraries, so
DDI is available for a variety of architectures. The advantages
of one-sided communication include reduced programming
difficulty and increased efficiency due to asynchronous com-
munication. The presence of remote memory adds a new level
to the memory access time hierarchy: registers< cache(s)<
main memory< remote memory< disk.

Most systems have significantly slower access time to remote
memory than to local memory, so data locality must be
considered in the design of an algorithm. Information on data
locality is also available within DDI.

To date, DDI has been used to implement distributed storage
versions of SCF energies,14 analytic SCF Hessians,15 multiref-
erence self-consistent field energies and gradients,16 closed-shell
MP2 energies and gradients,11 Z-averaged perturbation theory
energies,17 multireference perturbation theory energies,18 singles
configuration interaction (CI) energies and gradients,19 and full
CI energies.20 Other distributed data tools have been used to
generate distributed memory versions of SCF energies,21-27

analytic SCF Hessians,28 CPHF equations,29 perturbation theory
energies30-36 and gradients,37,38 CI energies,39,40 and coupled
cluster energies.41,42

In this paper, the parallel implementation of unrestricted MP2
(UMP2) energies and gradients into the quantum chemistry
package GAMESS17 through the use of DDI is discussed. An
assessment of the speedup and parallel efficiency is reported
for a series of gold clusters using a cluster architecture.

II. Parallel UMP2 Gradient Algorithm

A distributed data UMP2 gradient algorithm is discussed in
this section. The details of the gradient derivation and serial
implementation may be found elsewhere.43 In general, the
analytic derivative of the UMP2 electronic energy may be
expressed as

whereHµν
x are the core Hamiltonian derivative integrals,Sµν

x

are the overlap derivative integrals, (µν|λσ)x are the derivatives
of the electron repulsion integrals (ERIs), andµ, ν, λ, andσ
index atomic orbitals. The MP2 density matrixPµν

MP2, “energy-
weighted” density matrixWµν

MP2, and two-particle density ma-
trix Γµνλσ

MP2 in eq 1 are sums of their corresponding SCF and
second-order correction terms

The second-order correction to the two-particle density matrix
is normally divided into the sum of so-called separable (ΓS)
and nonseparable (ΓNS) terms

In practice, eq 1 is usually evaluated by forming the density
matrices P(2), W(2), and Γ(2) in the MO basis and back

transforming these matrices to the AO basis. The expressions
for these matrix elements are shown in the appendix.

A. Implementation Considerations. In the MO basis, the
expressions for the density matrix elements require 18 different
types of integrals, which may be divided into five classes. Using
“v” to denote a virtual MO and “o” to denote an occupied MO,
these integral types may be expressed as:

1. (oRoR|oRoR) (oRoR|oâoâ) (oâoâ|oâoâ)
2. (vRoR|oRoR) (vRoR|oâoâ) (vâoâ|oRoR) (vâoâ|oâoâ)
3. (vRvR|oRoR) (vRvR|oâoâ) (vâvâ|oRoR) (vâvâ|oâoâ)
4. (vRoR|vRoR) (vRoR|vâoâ) (vâoâ|vâoâ)
5. (vRvR|vRoR) (vRvR|vâoâ) (vâvâ|vRoR) (vâvâ|vâoâ)

Parallel processor systems with global memories in the terabyte
range are now common, so it is feasible that the smaller integral
classes may be stored in memory even for larger problems. Thus,
global memory on the order ofno

2n2 is assumed, whereno is
the number of occupied orbitals andn is the number of basis
functions and it is assumed thatno is much smaller thann. A
different algorithm setup that trades additional computation for
reduced memory requirements could also be envisioned but will
not be discussed here. The first four integral classes fall within
the assumption of O(no

2n2) global memory, so these integrals
may be stored in a distributed fashion across the nodes. The
fifth class is closer in size to O(non3). However, this class is
only used in the construction of the Lagrangian, so the terms
involving these integrals will be calculated separately and in a
direct fashion to avoid storage of this larger integral class. In
addition, sincen4 memory is not assumed, the AO integrals will
be calculated in a direct fashion. The density matrices, MO
coefficients, orbital energies, and other data of ordern2 or less
are replicated across the nodes.

The implementation of the following parallel UMP2 gradient
scheme will be discussed in more detail in the subsequent
sections:

1. Parallel direct transformation to yield MO integrals that
contain at most two virtual orbital indices (stored in global
memory).

2. Evaluation of UMP2 energy and construction of im-
mediately obtainable terms ofP(2), W(2), and the LagrangianL.

3. Computation of the Lagrangian terms involving (vv|vo)
class integrals directly from AO integrals.

4. Solution of the Z-vector equations6 in the MO basis.
5. Completion of one-particle density matrices and the one-

particle contribution to the gradient.
6. Back transformation of integrals to generateΓNS and

completion of the two-particle contribution to the gradient.
B. Integral Transformation and Storage. First, the 14

distributed arrays that hold the first four classes of transformed
integrals must be created. These are depicted in Figure 1.
Triangular pairings of two occupied or virtual indices are used
wherever possible to reduce the number of integrals stored.
Integral type (vRoR|vâoâ) has no available triangular pairings,
so the full range of each index must be used for this array.
Overall, the limiting storage requirement for the seven two
virtual integral types (and thus for the algorithm) is ([n0

R]2 +
[n0

â]2 + n0
Rn0

â)n2. The “supermatrix” symmetry of integral types
(oRoR|oRoR) and (oâoâ|oâoâ) is not used so that the arrays have
a regular rectangular structure. The excess storage cost for this
is not large since this is the smallest integral class. For all
integral types, all pairs of occupied indices are divided among
the available nodes, with the full range of the other indices
located on a given node. The integrals are distributed in this
manner so that the long summations over virtual indices will
be local.

Ex ) ∑
µν

AO

Pµν
MP2 Hµν

x + ∑
µν

AO

Wµν
MP2 Sµν

x + ∑
µνλσ

AO

Γµνλσ
MP2(µν|λσ)x (1)

Pµν
MP2 ) Pµν

RSCF+ Pµν
âSCF+ Pµν

(2)(RR) + Pµν
(2)(ââ) (2)

Wµν
MP2 ) Wµν

RSCF+ Wµν
âSCF+ Wµν

(2)(RR) + Wµν
(2)(ââ) (3)

Γµνλσ
MP2 ) Γµνλσ

SCF + Γµνλσ
(2) (4)

Γµνλσ
(2) ) Γµνλσ

NS + Γµνλσ
S (5)
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Next, the 14 integral types that correspond to the first four
classes must be generated and stored in the distributed arrays.
The general parallel transformation 4-fold loop procedure has
been described previously,11 so the details will not be presented
here. The appropriate alpha and beta MO coefficients are used
in the transformation of each index to generate the required
integral types. The replicated data requirement for this procedure
is l2n(no

R + no
â), wherel is the length of a shell (1 for s, 3 for

p, 6 for Cartesian d, etc.). After the integrals are generated, they
are stored in the appropriate distributed arrays through the use
of the DDI_PUT operation.

C. Density Matrix Creation. Most of the terms in the one-
particle density matrices and the Lagrangian (eqs A1-A6 and
A13) may be evaluated from the integrals discussed in section
B. The amplitudes for the virtual-virtual blocks ofP(2) (eq A3)
andW(2) (terms 1 and 2 of eq A5) are calculated from (vo|vo)
integrals on the local node and multiplied by (vo|vo) integrals
that are also locally held. Thus, these blocks do not require
remote memory access. The occupied-occupied blocks ofP(2)

(eqs A1 and A2) andW(2) (terms 1 and 2 of eq A4) require
remote DDI_GET operations to obtain a set of (vo|vo) integrals
for a given vv pair. Then, the amplitude generation and integral
multiplication steps may proceed locally. A global sum ofP(2)

is performed so that each node holds the complete occupied-
occupied and virtual-virtual blocks.

The fourth and fifth terms of eq A4 use the (oo|oo) integrals
whenp andq are both occupied indices. Since this is the only
matrix block that requires these integrals, the memory for these
is released after the terms are computed. The (vv|oo) class of
integrals contributes to terms 4 and 5 of eq A4 whenp andq
are both virtual indices. This class is also used to compute the
orbital Hessian in eqs A7 and A8, so it is retained in memory.
The (vo|oo) class of integrals is used in the calculation of terms
1 and 2 of eq A6 and terms 1, 2, 5, and 6 of eq A13. It will
also contribute to the fourth and fifth terms of eq A4 after the
virtual-occupied block ofP(2) is determined, so these integrals
are retained in memory.

D. Three-Virtual Terms for Lagrangian. Terms 3, 4, 7,
and 8 of eq A13 require the (vv|vo) integrals. These terms in
the Lagrangian may be rearranged to form terms in a mixed
MO/AO basis as discussed previously.11,37,38 For the UMP2
gradient, modified integrals instead of amplitudes will be

transformed. For example, term 8 of eq A13 may be rearranged
as

wherei and j index occupied orbitals, a, b, and c index virtual
orbitals, andλ, ν, andσ index atomic orbitals. A mixed MO/
AO Lagrangian is introduced on the left-hand side of eq 6 as

and further rearrangement of eq 6 yields

Thus

where the half-transformed integral is

Term 7 of eq A13 can be represented as a difference of half-
transformed integrals

The half-transformed integrals may be generated from locally

Figure 1. Indices used for integral arrays. Triangular are indices used wherever possible to reduce amount of memory required.
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held (vo|vo) integrals without communication since all gets and
puts are done locally (Figure 2). To save memory at the cost of
extra computation later, the half-transformed integrals replace
the (vo|vo) integrals in memory.

In a similar manner, terms 3 and 4 of eq A13 may be
rearranged to the form

where the virtual-virtual density matrix has been back trans-
formed to the AO basis. Since the required storage for the AO

density matrix is O(n2) and the time required for the back
transformation is trivial, this back transformation is not distrib-
uted.

Representation of these Lagrangian terms in the mixed MO/
AO basis has the benefit that the quarter-transformed ERIs with
one MO and three AO indices may be used as soon as they are
generated. A second 4-fold loop over shells is used to calculate
and quarter transform the ERIs as described previously.11 After
the inner two loops, a DDI_GET operation must be performed
to read in half-transformed integrals such asIiRjâ

σν for a given
σ,ν pair. This requires communication among the processors.
Once the quarter-transformed ERIs are contracted with the
respective half-transformed integrals or AO density matrix
elements and the mixed MO/AO Lagrangian terms are formed,
these terms are transformed to the MO basis and combined with
the other four terms of the Lagrangian. The Lagrangian is
summed globally so each node holds the full matrix.

Once the Lagrangian has been calculated, the (vo|vo) integrals
must be restored. The half-transformed integrals are transformed
with the inverse MO coefficient matrixC-1 ) CTS, whereS is
the overlap matrix over AOs, which restores the virtual MO
indices, and are then multiplied by the appropriate orbital energy
factor (such asDiRjâ

bRcâ
) to recreate the original (vo|vo) integrals.

Since the entire set of indices for a given occupied-occupied
pair is on the local processor, this step requires no communica-
tion.

E. Solution of Z-Vector Equations.A reduced Lagrangian
and R and â trial vectors containing only symmetry-allowed
elements are used in the solution of the Z-vector equations. In
each step of the iterations, blocks of the orbital Hessian are
constructed from (vo|vo) and (vv|oo) integrals. If the integrals
for a given pair of occupied indices are held locally, the (vo|vo)
and (vv|oo) integrals for theR, â, and mixed-spin terms are
used to form blocks of the orbital Hessian in eqs A7 and A8
(Figure 3). These blocks are multiplied by appropriate sections
of the trial vectors, and the products are globally summed to

Figure 2. First half back transformation of the (vo|vo) integrals. This
procedure is used in the creation of (vv|vo) integrals and the
nonseparable two-particle density matrix. No communication is required
in this step.

Figure 3. Solution of the Z-vector equations. Locally held integrals are used to construct a block of the orbital Hessian. Storage of the full orbital
Hessian is avoided. Interprocessor communication is needed only for the global sum.
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3 ) ∑
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generate theR andâ product vectors. In this way, storage of
the full orbital Hessian is avoided. Alpha and beta error vectors
are calculated. A direct inversion in the iterative subspace
(DIIS)44,45 interpolation method is used to determine the trial
vectors for the next iteration. Since previous trial and error
vectors are needed for DIIS, these are stored in a distributed
manner across the nodes. At convergence, the trial vectors are
the virtual-occupied block of theR andâ one-particle density
matrices. The (vv|oo) integrals are not needed further, so the
memory for these is released.

F. Completion of One-Particle Gradient.After solution of
the Z-vector equations, the one-particle density matrix is
complete. The third term in the virtual-occupied block of the
one-particle energy-weighted density matrix (eq A6) may now
be calculated. In addition, the final contribution to the fourth
and fifth terms of eq A4 can be evaluated using the (vo|oo)
integrals. This contribution may be computed in a distributed
fashion and globally summed to complete the energy-weighted
density matrix. This concludes the use of the (vo|oo) integrals,
so memory for these is released. Finally, the completedR and
â one-particle density matrices and energy-weighted density
matrices are back transformed to the AO basis, added to their
SCF counterparts (eqs 2 and 3), and contracted with the core
Hamiltonian and overlap derivatives (eq 1) to yield the one-
electron portion of the gradient

G. Two-Particle Gradient. The four-index back transforma-
tion of the amplitudes in the nonseparable two-particle density
(eq A14) is similar in essence to the procedure described in
section D. The process begins with the half back transformation
described earlier to generate half-transformed integrals (Figure
2). A third 4-fold loop algorithm is required to generate the
derivative ERIs. Inside the outer two loops, a DDI_GET
operation necessitating communication between the processors
is required to read in the half-transformed integrals with a given
σ,ν pair (Figure 4). These half-transformed integrals are used
to form the half-transformed amplitudes. Inside the third loop
over shells, the half-transformed amplitudes are further back
transformed to all AO indices in one range and to AO indices
over the third-loop shell in the other range. This step is done
locally to avoid further communication. However, since the
nonseparable density is not symmetrized, the derivative ERIs

must be calculated four times more than the minimal list. After
the nonseparable density is calculated, it is combined with the
separable density (eq A15), added to its SCF analog, and
contracted with the derivative ERI’s.

III. Timings/Benchmarks

The parallel UMP2 gradient code described above has been
implemented in GAMESS and has been benchmarked on a
cluster system. The cluster under consideration is comprised of
IBM p640 nodes connected by dual Gigabit Ethernet. Each p640
node has 4 Power3-II processors running at 375 MHz and
contains 16 GB of memory. On 8 nodes, global memory of
128 GB is available.

The smallest molecule under consideration in the benchmarks
is Au3H4. Two basis sets have been used with this molecule.
The smaller of the two consists of the 6-31++G** 46-48 basis
set on H and the Stevens-Basch-Krauss-Jasien-Cundari
(SBKJC)49-51 effective core potential basis set with f polariza-
tion functions and one diffuse sp function on Au, for a total of
170 spherical harmonic basis functions. The larger basis set
consists of the aug-cc-pVTZ52 basis set on H and the uncon-
tracted SBKJC basis set with 3f2g polarization functions and
one sp diffuse function on Au, for a total of 380 spherical
harmonic basis functions. For both basis sets, there are 31
R-occupied orbitals and 30â-occupied orbitals for Au3H4. A
UMP2 gradient calculation with the smaller basis set requires
4 Mwords of replicated memory and 116 Mwords of distributed
memory, so it fits in the memory of a single processor on the
IBM cluster. The calculation using the larger basis set requires
18 Mwords of replicated memory and 647 Mwords of distributed
memory. This calculation requires the memory allotted to two
processors on the IBM cluster.

A larger test case is Au3O4. The basis set used with this
molecule consists of the aug-cc-pVTZ52,53 basis set on O and
the uncontracted SBKJC basis set with 3f2g polarization
functions and one sp diffuse function on Au, for a total of 472
spherical harmonic basis functions. For this molecule, there are
45 R-occupied orbitals and 44â-occupied orbitals. A UMP2
gradient calculation on this molecule requires 41 Mwords of
replicated memory and 2166 Mwords of distributed memory.
This calculation requires the memory allotted to six processors
on the IBM cluster.

Table 2 lists the average CPU time in seconds and the
associated speedups and parallel efficiencies for a UMP2
gradient calculation on 1, 2, 4, 8, 16, and 32 processors for the
three gold clusters benchmarked in this study. Since the second
and third test cases require more than one processor on the IBM
cluster, the single-processor time required for these calculations
is determined from runs on two and eight processors, respec-
tively, assuming ideal speedup. The speedups may be visualized
graphically in Figure 5. A superlinear speedup is exhibited for
the smallest test case running on two processors. This may be
due to the increased cache capacity available on two processors.
As the number of processors increases, the observed speedup
is less than the ideal speedup. This may be due to serial portions
of the code, load balancing issues, or the communication and
synchronization costs. On larger numbers of processors, the
larger test cases exhibit greater parallel efficiencies than the
smaller test cases. This is expected, since the amount of parallel
computation relative to communication and other costs is higher
for larger runs.

Table 3 lists an assessment of the “percentage parallelism”
in each calculation. These values are determined by assuming
Amdahl scaling and fitting an equation of the formt(P) ) ts +

Figure 4. Second half back transformation of the (vo|vo) integrals.
This procedure is used in the creation of the nonseparable two-particle
density matrix. Communication across the processors is required to
retrieve the half-back-transformed integrals.
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tp/P to the series of wall clock timest(P) on P processors for a
given calculation, as discussed in ref 3. This yieldsts, the amount
of time spent on serial portions of the calculation, andtp, the
total amount of time spent on parallel sections. The parallel
percentage represents the percentage of the calculation that is
scalable. Unlike parallel efficiencies, which only compare two
calculations, this model provides a way to assess the scalability
over a range of processors. It does not consider effects due to
load balancing or communication latencies, but these effects
are usually small. Given the small number of data points in the
analysis, it is not meaningful to quantitatively distinguish the
three parallel % values in the table. However, theR2 values
suggest that the parallel percentage of the UMP2 gradient
calculation is over 90%.

IV. Conclusions

A scalable parallel gradient algorithm for UMP2 using the
DDI is presented. The purpose of this algorithm is to increase
the speed for a given UMP2 gradient calculation as well as to
permit the evaluation of larger jobs. The transformed molecular
orbital integrals with two virtual indices or fewer are distributed
across the nodes. Data of the ordern2 or less is replicated across
the nodes. The algorithm has been designed to use locally held
data wherever possible, and sections where communication is
required have been identified. Redundant computation of two-
electron integrals and derivative integrals is used in order to
reduce communication and required memory costs.

Benchmark calculations have been run on a series of three
gold cluster molecules using an IBM cluster, and the calculations
scale well. The percentage parallelism for the UMP2 gradient
calculation is above 90%.
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Figure 5. Speedup curves for three gold cluster molecules. The size of the basis set is listed in parentheses.
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Appendix. Density Matrix Expressions

In general, indicesp, q, r, and s represent any molecular
orbital. Occupied orbitals are indexed byi, j, and k; virtual
orbitals are indexed bya, b, andc; core orbitals are indexed by
K. The one-particleR-R density matrix expressions for the
core-active, active-active, and virtual-virtual blocks ofP(2)

in the MO basis are

The one-particleR-R energy-weighted density matrix expres-
sions for the occupied-occupied, virtual-virtual, and virtual-
occupied blocks ofW(2) are

where

The virtual-occupied block ofP(2) is obtained from the iterative
solution of the Z-vector equations due to Handy and Schaefer6

where the orbital Hessian is found by

and theR-R Lagrangian is given by

where

PKRiR
(2) ) PiRKR

(2) )
1

(εi
R - εK

R)

[∑jRactR

∑
aRbR

virtR [(iRaR|jRbR) - (iRbR|jRaR)]

DiRjR
aRbR

(KRaR|jRbR) +

∑
jâ

actâ

∑
aR

virtR

∑
bâ

virtâ (iRaR|jâbâ)

DiRjâ
aRbâ

(KRaR|jâbâ)] (A1)

PiRjR
(2) )

- ∑
kR

actR

∑
aR

virtR

∑
bR

virtR [(iRaR|kRbR) - (iRbR|kRaR)]

DiRkR
aRbR

(jRaR|kRbR)

DjRkR
aRbR

- ∑
kâ

actâ

∑
aR

vactR

∑
bâ

virtâ[(iRaR|kâbâ)]

DiRkâ
aRbâ

[(jRaR|kâbâ)]

DjRkâ
aRbâ

(A2)

PaRbR
(2) ) ∑

iR

actR

∑
jR

actR

∑
cR

virtR [(iRaR|jRcR) - (iRcR|jRaR)]

DiRjR
aRcR

(iRbR|jRcR)

DiRjR
bRcR

+

∑
iR

actR

∑
jâ

actâ

∑
câ

virtâ (iRaR|jâcâ)

DiRjâ
aRcâ

(iRbR|jâcâ)

DiRjâ
bRcâ

(A3)

WiRjR
(2) )

-NiRjR ∑
kR

actR

∑
aRbR

virtR [(iRaR|kRbR) - (iRbR|kRaR)]

DiRkR
aRbR

(jRaR|kRbR) -

NiRjR ∑
kâ

actâ

∑
aR

virtR

∑
bâ

virtâ (iRaR|kâbâ)

DiRkâ
aRbâ

(jRaR|kâbâ) -
1

2
PiRjR

(2) (εi
R + εj

R) -

∑
pRqR

allR

PpRqR
(2) [(pRqR|iRjR) - (pRiR|qRjR)] -

∑
pâqâ

allâ

Ppâqâ
(2) (pâqâ|iRjR) (A4)

NiRjR ≡ {0, for bothi,j ∈core
1, otherwise

WaRbR
(2) ) - ∑

iRjR

actR

∑
cR

virtR [(iRaR|jRcR) - (iRcR|jRaR)]

DiRjR
aRcR

(iRbR|jRcR) -

∑
iR

actR

∑
jâ

actâ

∑
câ

virtâ (iRaR|jâcâ)

DiRjâ
aRcâ

(iRbR|jâcâ) -
1

2
PaRbR

(2) (εa
R + εb

R) (A5)

WaRiR
(2) ) -2 ∑

jRkR

actR

∑
bR

virtR [(jRaR|kRbR) - (jRbR|kRaR)]

DjRkR
aRbR

(iRjR|bRkR) -

2∑
jR

actR

∑
kâ

actâ

∑
bâ

virtâ (jRaR|kâbâ)

DjRkâ
aRbâ

(iRjR|bâkâ) - PaRiR
(2)

εi
R (A6)

∑
bR

virtR

∑
jR

occR

{AaRiRbRjR + δabδij(εb
R - εj

R)}PbRjR
(2) +

∑
bâ

virtâ

∑
jâ

occâ

{AaRiRbâjâ}Pbâjâ
(2) ) -LaRiR (A7)

∑
bâ

virtâ

∑
jâ

occâ

{Aaâiâbâjâ + δabδij(εb
â - εj

â)}Pbâjâ
(2) +

∑
bR

virtR

∑
jR

occR

{AaâiâbRjR}PbRjR
(2) ) -Laâiâ (A8)

ApRqRrRsR ) 2(pRqR|rRsR) - (pRrR|qRsR) - (pRsR|qRrR) (A9)

ApRqRrâsâ ) 2(pRqR|râsâ) (A10)

ApâqârRsR ) 2(pâqâ|rRsR) (A11)

Apâqârâsâ ) 2(pâqâ|râsâ) - (pârâ|qâsâ) - (pâsâ|qârâ) (A12)

LaRiR ) ∑
jRkR
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PjRkR
(2) AaRiRjRkR + ∑
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Pjâkâ
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∑
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PbRcR
(2) AaRiRbRcR + ∑

bâcâ
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Pbâcâ
(2) AaRiRbâcâ -

2Na
R ∑

jRkR

actR

∑
bR

virtR [(jRaR|kRbR) - (jRbR|kRaR)]

DjRkR
aRbR

(iRjR|bRkR) -

2Na
R ∑

jR

actR

∑
kâ

actâ

∑
bâ

virtâ (jRaR|kâbâ)

DjRkâ
aRbâ

(iRjR|bâkâ) +

2Ni
R ∑

jR

actR

∑
bRcR

virtR [(iRbR|jRcR) - (iRcR|jRbR)]

DiRjR
bRcR

(aRbR|jRcR) +

2Ni
R ∑
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∑
bR

virtR

∑
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virtâ (iRbR|jâcâ)

DiRjâ
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Expressions for theâ-â matrices are direct analogs of theR-R
expressions. The two-particle density matrices are given by

and
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Ni
R ≡ {0, for i ) core

1, for i ) active

Γµνλσ
NS ) ∑

iRjR

actR

∑
aRbR

virtR [(iRaR|jRbR) - (iRbR|jRaR)]

εi
R + εj

R - εa
R - εb

R
Cµi

R Cνa
R Cλj

R Cσb
R +

2 ∑
iR

actR

∑
jâ

actâ

∑
aR

virtR

∑
bâ

virtâ (iRaR|jâbâ)

εi
R + εj

â - εa
R - εb

â
Cµi

R Cνa
R Cλj

â Cσb
â +

∑
iâjâ

actâ

∑
aâbâ

virtâ [(iâaâ|jâbâ) - (iâbâ|jâaâ)]

εi
â + εj

â - εa
â - εb

â
Cµi

â Cνa
â Cλj

â Cσb
â (A14)

Γµνλσ
S ) Pµν

(2)(RR)Pλσ
RSCF- Pµλ

(2)(RR)Pνσ
RSCF+ Pµν

(2)(RR)Pλσ
âSCF+

Pµν
(2)(ââ)Pλσ

âSCF- Pµλ
(2)(ââ)Pνσ

âSCF+ Pµν
(2)(ââ)Pλσ

RSCF (A15)
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