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Section and Rate Constant
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Using a Chebyshev wave packet method, the initial state-specified (Vi ) 0, j i ) 0) integral cross section and
rate constant are obtained for the title reaction on the latest version of the ab initio potential energy surface.
All partial wave contributions up toJ ) 47 are calculated explicitly within the coupled states (CS)
approximation. The resulting integral reaction cross section in the collision-energy range of 0.0-0.5 eV displays
an oscillatory structure due to numerous long-lived resonances supported by the deep CH2 well. The rate
constant up to 800 K is nearly temperature-independent except for an initial rise below 100 K. The calculated
rate constant at room temperature is in reasonably good agreement with the latest experimental measurement.
In addition, exact calculations including the Coriolis coupling have been carried out for three selected partial
waves,J ) 2, 4, and 10. In these Coriolis-coupled calculations, a more accurate and efficient scheme is
proposed that allows for a significant reduction of the grid size as well as the spectral range. Comparison
with the corresponding CS results indicates that the neglect of the Coriolis coupling leads to the underestimation
of the cross section and the rate constant.

I. Introduction

Reactions between atomic carbon and molecular hydrogen
play an important role in both combustion1 and astrochemistry.2,3

Significant experimental effort has been devoted in the past to
the understanding of both kinetic4-9 and dynamic aspects9-16

of these reactions. Depending on the electronic character of the
carbon atom, the reaction proceeds on different electronic
manifolds.17 In this work, we concentrate on the reaction
dynamics involving the singlet of carbon, namely, C(1D). Its
reaction with H2(X1Σg

+) produces CH(X2Π) and H(2S) and
involves at least the first two singlet (a˜1A1 and b̃1B1) states of
CH2. We note in passing that the reaction between C(3P) and
H2(X1Σg

+) via the triplet manifold has been investigated
theoretically by Schatz and co-workers.18-20

In addition to its practical importance, the title reaction also
serves as a prototype for studying the insertion mechanism, in

which the atomic carbon attacks the hydrogen molecule in the
perpendicular approach. It is well established that for this
reaction there is no barrier for the insertion pathway,21-23 which
leads to the formation of a metastable CH2 complex supported
by a deep potential well. As a result, the reaction dynamics is
subjected to the possibly strong influence of long-lived reso-
nance states. In many aspects, this reaction is similar to the
more extensively studied O(1D) + H2 system,24-39 where the
insertion mechanism also predominates at low energies. How-
ever, the C(1D) + H2 reaction is considered16 to be a “clean”
insertion reaction because of its near thermoneutrality and
because of a relatively large barrier in the collinear abstraction
channel.21,23

Stimulated by a recent crossed molecular beam experiment,16

Launay and co-workers have developed a global potential energy
surface (PES) for the lowest-lying singlet (a˜1A1) state of the
CH2 system from 1748 multireference singles and doubles* Corresponding author. E-mail: hguo@unm.edu.
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configuration interaction (MRSD-CI) points.23 Unlike earlier
near-equilibrium PESs of CH2(ã1A1),40,41this new PES is global
and thus suitable for studying the reaction dynamics of the title
system. It predicts no barrier for the insertion pathway leading
to the CH2 well of ∼4.3 eV. In the collinear approach, however,
a barrier of 0.54 eV essentially blocks the abstraction pathway
at low energies. The only potential shortcoming of this PES is
the neglect of the Renner-Teller interaction42 with the b̃1B1

state and other non-Born-Oppenheimer interactions that are
known to affect the spectroscopy of CH2.43-45 Very recently,
these ab initio points were refit46 using the reproducing kernel
Hilbert space approach.47 The new fit removed some spurious
features and rendered the PES smoother.

The availability of globally accurate ab initio PESs has
stimulated recent theoretical interest in the reaction dynamics.
Launay and co-workers have, for example, carried out time-
independent quantum studies of the title reaction using the
original fit of the PES.23,48 In particular, the total reaction
probability and product internal state distributions for the C(1D)
+ H2(Vi ) 0, ji ) 0) reaction (J ) 0) were reported for collision
energies up to 0.5 eV. The energy dependence of the reaction
probability showed no threshold and a rich resonance structure,
lending strong support to the insertion mechanism. Quantum
integral and differential cross sections were later calculated at
a single energy point.48 More recently, we49 have carried out
dynamic and bound-state calculations on the new fit of the PES46

using a quantum wave packet method. Both reactive and
inelastic probabilities forJ ) 0 were obtained. Consistent with
the time-independent quantum results,23 these probabilities were
found to be strongly affected by long-lived resonances. From
the evolution of the time-dependent wave packet, we also
demonstrated unequivocally that the reaction is insertion-
dominated. In addition to the quantum work, quasi-classical
trajectory calculations have been performed by Banares et al.
on both fits of the PES.46,48The results agree qualitatively with
the averaged quantum mechanical reaction probabilities but lack
the fine structure. Reasonably good agreement was also found
in cross sections and internal state distributions of the products.
Very recently, Manolopoulos and co-workers have analyzed the
title reaction using a statistical coupled-channel model, and
excellent agreement has been obtained with the quantum
differential cross section.50

As an extension of our recent work,49 we in this paper report
quantum wave packet calculations of the integral cross section
and rate constant for the title reaction on the same PES.46 The
wave packet approach is well suited for computing reaction rates
because a single propagation yields the reaction probability at
all energies without necessarily the S-matrix elements.51 In
contrast, the traditional time-independent methods will have to
repeat the calculation at every energy point. The former is
particularly advantageous for reactions that are affected by long-
lived resonances, such as the title reaction, in which a fine
energy grid is needed. As before, we use in this work the
Chebyshev propagator, which bears many similarities to the time
propagator. It is accurate and efficient because no approximation
of the propagator is needed and because the propagation can
be carried out in real space. To obtain the integral cross section,
all partial wave contributions spanning fromJ ) 0 to 47 were
calculated explicitly within the coupled states (CS) approxima-
tion. In addition, exact calculations including the Coriolis
coupling were carried out for three selectedJ () 2, 4, and 10)
values to check the accuracy of the CS approximation. The exact
calculations were made more efficient and accurate by using a
number of novel schemes. Finally, the thermal rate constant

over the temperature range ofT ) 0-800 K was calculated
with both the CS and estimated exact cross sections and
compared with the latest experimental measurement. This paper
is organized as follows. In the next section (section II), the
relevant theoretical methods and their numerical implementation
are outlined. In section III, the calculated results are presented
and discussed. Finally in section IV, conclusions are made.
Atomic units are used throughout this paper unless otherwise
stated.

II. Theory

Following our earlierJ ) 0 work,49 we use the reactant (C
+ H2) Jacobi coordinates (R, r, γ) in our calculations. Such a
coordinate system allows for the adaptation of the exchange
symmetry between the two hydrogen atoms, resulting in
reduction of the grid/basis size. The Hamiltonian is expressed
as

wherer andRare respectively the diatomic (H-H) and atom-
diatom (C-H2) distances withµr andµR as the corresponding
reduced masses.V(R, r, γ) is the PES.ĵ denotes the diatomic
rotational angular momentum operator, andl̂ denotes the orbital
angular momentum operator.l̂2 can be further expressed as

in which Ĵ and ĵ are respectively the total and diatomic angular
momentum operators withĴz and ĵz as their projections onto
the body-fixed (BF)z axis. Ĵ+(Ĵ-) and ĵ+(ĵ-) are the corre-
sponding raising (lowering) operators. In the CS approxima-
tion,52,53 the last two terms in eq 2 will be ignored.

The Chebyshev approach propagates a wave packet using the
three-term recursion relationship for the Chebyshev poly-
nomials.54-63 For scattering problems, the recursion relation is
modified by a damping term (D) to enforce the outgoing
boundary condition:57,58

where|ψ1〉 ) DĤnorm|ψ0〉. The initial wave packet is chosen as
the product of a well-defined rovibrational eigenfunction|æi〉
and a 1D Gaussian-shaped wave packet along the translational
coordinate. In particular, the following form is used:64

wherek0, Ri, andδ are its central momentum, central position,
and width, respectively, andN is the normalization constant.
The damping functionD is given as a Gaussian-shaped function
placed at the edge of theR (and r) grid:

whereRd is the onset of the damping anddR controls the extent
of damping. We note in passing that the propagation in eq 3
can be carried out entirely with real algebra, which represents
significant savings over the complex time propagation. The
above approach is closely related to the “real wave packet”
method of Gray and Balint-Kurti.64
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D(R) ) {1 for R e Rd
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In eq 3, the Hamiltonian is properly normalized to avoid
divergence in the Chebyshev propagation:Ĥnorm ) (Ĥ - H+)/
H- , whereH( ) (Hmax ( Hmin)/2 with Hmax (Hmin) as the upper
(lower) spectral bound.54 This is necessary because of the
nonlinear albeit one-to-one mapping between the Chebyshev
angle (θ) and the total energyE: cos θ ≡ (E - H+)/H-.
Interestingly, this nonlinear mapping allows more interpolation
points near both ends of the spectral range, which can be
advantageous for the convergence of low-energy spectra or
dynamics.65,66

Because only final-state-summed information about the
reaction is of interest in this work, we take advantage of a flux-
based approach that avoids the calculation of S-matrix ele-
ments.67,68 To this end, the initial state-specified total reaction
probability is calculated using the following flux-based formula
for the Chebyshev propagation:49,69

wherer ) rf defines the dividing surface in the product channel.
In the above equation,ai(E) represents the amplitude of a
stationary state at energyE in the initial wave packet, and its
value is given by70

wherehΛ
(2)(kiR) is the spherical Hankel function of the second

kind.71 Here,Λ is given byΛ(Λ + 1) ) J(J + 1) + j i(ji + 1)
- 2Ω2 in the CS approximation andl in the Coriolis-coupled
scheme. The use of Hankel functions allows the placement of
the initial wave packet at a sufficiently smallR as long as the
interaction potential is zero, without concerning the long-range
centrifugal terms. (See eq 9 below.)

In the exact calculations, the off-diagonal Coriolis coupling
terms decay slowly withRand couple wave packets in different
helicity (Ω) channels even at very largeRwhere the interaction
potential has long vanished. It is thus advantageous to define
the initial wave packet in the space-fixed (SF) frame in which
the orbital angular momentum operator is diagonal.70,72For exact
calculations, therefore, we employ (ji, l)-specified initial wave
packets rather than (ji, Ω)-specified ones as used in the CS
calculations. The SF wave packets are then expanded in terms
of the BF basis. Such a choice leads to (ji, l)-specified reaction
probabilities. The same equation forai(E) can be used with the
substitution ofΛ by l. By averaging this probability over all
possiblel values (l ) |J - ji|, ..., J + ji), one can obtain the
j-specified reaction probabilities, which can then be compared
with the corresponding CS results. Our approach is thus different
from that of Goldfield, Gray, and Meijer,73,74 who prepared
multiple initial wave packets with differentΩ values followed
by averaging. Our approach allows the initial wave packet to
be placed in relatively smallR by using the spherical Hankel
functions, as discussed above.

The initial state-specified cross section can be obtained in
the CS approximation by assembling the initial state-specified

(Vi, ji, Ω) reaction probabilities for variousJ,

whereki
2 ) 2µREc, Ec is the collision energy, andPVij iΩ

Jp (Ec) is
the initial state (Vij iΩ) -specified total reaction probability for
the partial waveJ and parityp. A similar equation exists for
averaging in the SF frame. The initial state-specified rate
constant is then given by

where kB is the Boltzmann constant andf is the electronic
degeneracy factor, which is1/5 for the title reaction.17

The major computational task in our approach is the matrix-
vector multiplication (namely,Ĥψ) entailed by eq 3. In this
work, a mixed representation is employed to discretize the
Hamiltonian and wave packet. In the CS approximation, the
Coriolis coupling terms in eq 2 are ignored, rendering the
conservation ofĴz and ĵz. Hence, their common eigenvalue,
denoted byΩ, is a good quantum number. Such an approxima-
tion greatly simplifiesJ > 0 calculations both in view of the
computational effort and numerical implementation and provides
reasonably accurate results for many reactions. To that end, the
only additional term in the Hamiltonian forJ > 0 is in the form
of a centrifugal potential:

As a result, the numerical implementation is essentially the same
as that ofJ ) 0. As in our previous work,49 a direct product
discrete variable representation (DVR)75 is used for the three
internal degrees of freedom (R, r, γ). The overall rotation is
represented by the Wigner rotation matrix76 (DΩ,M

J ) with the
adaptation of parity (p):

where

In the CS approximation, the angular kinetic energy operators
(KEOs) are diagonal with respect toJ, Ω, andM, which appear
only as parameters. Without the loss of generality,M ) 0 is
taken. In this case, the Wigner rotation matrix is reduced to an
associate Legendre function.

In the Coriolis-coupled treatment, however,Ω is no longer a
good quantum number. The coupling between differentΩ
channels represents an additional degree of freedom at nonzero
Js and results in increased computational effort that is propor-
tional to J. As in the CS model, the two radial degrees of
freedom (R, r) are discretized in a direct product DVR. However,
a finite basis representation (FBR) is used for the angular
degrees of freedom. In particular, the wave packet is expanded
in the mixed DVR/FBR representation,

P(E) ) 1

2πµr|ai(E)|2(H -)2 sin2 θ
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× ∑
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kVij i
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kBT( 8
πµRkBT)1/2∫0

∞
σVij i

(Ec)e
-Ec/kBTEc dEc (8)

ĤJ ) ĤJ)0 +
J(J + 1) - 2Ω2

2µRR2
(9)

|JMΩp〉 ) (2 + 2δΩ,0)
-1/2(|JMΩ〉 + p(-1)J+Ω|JM - Ω〉)

(10)

|JMΩ〉 ) x2J+1

8π2
DΩ,M

J*

|ψ〉Jp ) ∑ψR1R2jΩ
Jp |R1R2〉|jΩ; Jp〉 (11)
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where R1 and R2 denote the grid indices along theR and r
coordinates, respectively. The angular FBR in the above
equation is defined as follows:

where |jΩ〉 ≡ ΘjΩ(γ, 0) are normalized associated Legendre
functions with the Condon-Shortley phase convention77 and
Ω is restricted to nonnegative values. In this basis, all KEOs
are diagonal except for the Coriolis coupling term, which is
tri-diagonal. In particular,

where λjm
( ) xj(j + 1) - m(m ( 1). BecauseΩ and Ω′ are

restricted to nonnegative values, the term associated with parity
in eq 13b survives only forΩ ) 0, 1.

The use of FBR simplifies the rotational KEOs but compli-
cates the calculation of the action of the potential energy
operator. However, the latter can be performed efficiently using
the following pseudo-spectral transformation:78,79

whereâ denotes the index of the Gauss-Legendre quadrature
points for the internal angular coordinate andwâ is the
corresponding weight.

Because of the insertion nature of the title reaction, the wave
packet can easily access regions nearR ) 0. Even without the
explicit inclusion of the singularity, population near it can result
in a very large spectral range. To alleviate this problem, we
use a scheme to restrict the spectral range of the rotational KEOs
at smallR. In particular, the BF-FBR|jΩ; Jp〉 is first transformed
to the SF-FBR|jl ; Jp〉 using the following equation,51,72

where (:::) denotes the 3-j symbol. Because the rotational KEOs
are diagonal in the SF-FBR, the spectral range can be easily
controlled by truncating the rotational energy. After applying
the truncated rotational KEOs, the wave function is transformed
back to the original BF-FBR. The drawback of this method is
that it is slightly more expensive to compute the matrix-vector
multiplication.

III. Results and Discussion

As in our earlier work,49 equidistant grids withNR ) 188
andNr ) 79 points were used for the two radial coordinates in
the ranges ofR ∈ [0,16.0]a0 andr ∈ [0.5,12.0]a0, respectively.
The fast sine Fourier transform was used to calculate the action
of the radial KEOs on the propagating wave packet.80 For the
Jacobi angle, 25 Gauss-Legendre quadrature points were taken
betweenγ ) π/2 andπ, which corresponds tojmax ) 48. Only
para-H2 was considered in this work, and thus only evenj states

were included. Both the potential and the angular KEOs81 were
truncated at 0.5 hartree to minimize the spectral range.

The initial wave packet was launched atRi ) 8.0a0 with δ
) 0.3a0, and the initial momentum was chosen to give an
averaged collision energy of 0.15 eV. As noted in the previous
section, (ji, Ω)-specified initial wave packets were used in CS
calculations, and (ji, l)-specified ones were used in Coriolis-
coupled calculations. Because of the requirement forji g Ω g
0, Ω is restricted to be zero in the CS calculations because of
ji ) 0. However, in the exact calculations,Ω is a variable
spanning fromΩ ) 0 to J, and becauseji is 0, l has only one
value (l ) J). The onset of damping was placed atRd ) 11.0a0

andrd ) 8.0a0 with the damping coefficientsdR ) 0.0005a0
-1

anddr ) 0.004a0
-1, respectively. The flux was calculated atrf

) 6.9a0. The number of Chebyshev propagation steps that was
found to be sufficient to converge the reaction probabilities up
to 0.5 eV was 50 000. When comparing with the O+ H2

system,25,27,28,30we found that our calculations require a much
larger number of propagation steps to resolve the resonance
structure, although the size of our grid is somewhat smaller.

A. Accuracy of CS Approximation. The CS approximation
has been widely used to study reaction dynamics. In many cases,
it has been shown to be quite accurate. For instance, Carroll
and Goldfield studied the reaction probability of the O(1D) +
H2 reaction and concluded that the errors introduced by the CS
approximation are small.36 However, there is also ample
evidence that the Coriolis coupling can be quite significant in
some other systems. Indeed, Meijer and Goldfield have found
that the neglect of Coriolis coupling results in significant errors
in the H + O2 reaction probabilities.82 Because the results
presented below are mainly from the CS calculations, it is
important to assess the accuracy of the CS approximation for
the C(1D) + H2 reaction.

To this end, we have performed exact Coriolis-coupled
calculations forJ ) 2, 4, and 10. The results are compared
with the CS model in Figure 1. In the left panels, the comparison
between the exact and CS reaction probabilities indicates that
they are in qualitatively good agreement: both show rich
resonance structures with comparable backgrounds and thresh-
olds. However, quantitative differences, such as peak positions,
do exist. Overall, the exact probabilities appear to be larger,
particularly at largeJs. To estimate the error in the CS
approximation in the more averaged rate constant, the following
quantity is compared in the right panels of Figure 1,

wherePJ(Ec) is the reaction probability of theJth partial wave
as defined in eq 6, which is obtainable from both the exact and
CS calculations. Similarly,PJ(T) represents theJth partial wave
contribution to the rate constant. As shown in the figure, the
two results are in reasonable agreement both in absolute
magnitude and temperature dependence. Quantitatively, how-
ever, the CS model consistently underestimates, and the relative
error is larger at largerJs and lower temperatures. ForJ ) 2,
for example, the CS results underestimate by 7.4 and 3.6% at
T ) 300 and 800 K, respectively. ForJ ) 4, the error increases
to 16.9 and 12.3%, respectively. At the highestJ () 10)
calculated, the error are 26.4 and 24.0%, respectively. These
results suggest that the CS approximation should provide a
reasonable rate constant. However, quantitative errors can be
quite significant. This issue will be revisited below when the
integral cross section and rate constant are presented.

B. Reaction Probabilities. The energy dependence of the
total reaction probability obtained from the CS approximation

|jΩ; Jp〉 ) (2 + 2δΩ,0)
-1/2(|JΩ〉|jΩ〉 +

p(-1)J|J - Ω〉|j - Ω〉) (12)

〈j′Ω′; Jp|ĵ2|jΩ; Jp〉 ) j(j + 1)δj′,jδΩ′,Ω (13a)

〈j′Ω′; Jp| l̂2|jΩ; Jp〉 )
[J(J + 1) + j(j + 1) - 2Ω2]δj′,jδΩ′,Ω -

[(1 + δΩ′,0)(1 + δΩ,0)]
-1/2{λJΩ

+ λjΩ
+ δΩ′,Ω+1 +

λJΩ
- λJΩ

- [δΩ′,Ω-1 + p(-1)JδΩ′,-Ω+1]}δj′,j (13b)

Tjâ
(Ω) ) xwâΘjΩ(γâ) (14)

|jΩ; Jp〉 )

∑
l

(-1)j-l+Ωx(2 - δΩ,0)(2l + 1)(j l J
Ω 0 -Ω )|jl ; Jp〉 (15) PJ(T) ) ∫0

∞
PJ(Ec)e

-Ec/kBT dEc (16)
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is displayed in Figure 2 for a number of total angular momentum
quantum numbers (J). Several observations are immediate. First,
the probability forJ ) 0 has no threshold. As discussed in earlier
work,23,49this is consistent with the barrierless insertion pathway
that dominates the reaction. Second, all of the probabilities show
oscillatory structures superimposed on broad backgrounds. The
oscillation is particularly strong near the corresponding reaction
threshold but becomes less pronounced at higher energies,
presumably because of shorter resonance lifetimes. The sharp
peaks can be attributed to long-lived resonances in the CH2 well,
as discussed in the previousJ ) 0 work.23,49Obviously, a better
understanding of these resonances is of great interest and will

be discussed in a future publication. Comparing with the O(1D)
+ H2 reaction,25,30we found that average reaction probabilities
are significantly smaller at allJ values. This can be attributed
to the much smaller exothermicity in the title reaction, which
results in substantial nonreactive (elastic and inelastic) scattering.
The situation here is somewhat similar to the endothermic C(3P)
+ H2 reaction.19

For lowJs, the reaction probability at very low kinetic energy
cannot be accurately determined because of the damping of the
propagating wave packet on a finite grid. Sometimes the reaction
probability can exceed unity, a clearly unphysical outcome.
However, such a deficiency does not affect the cross section
and rate constant in a significant way.

Another clear trend observable in Figure 2 is that the reaction
threshold shifts to higher energy asJ increases. This is due to
the increase in theJ-dependent centrifugal barrier for this
intrinsically barrierless reaction. This shift of the reaction
threshold withJ can be approximately described byJ-shifting83

or capture models.30,84The classical capture model is based on
the premise that all trajectories react if they manage to overcome
the centrifugal barrier along the reaction path. A more sophis-
ticated quantum version proposed by Gray et al. uses the height
of the centrifugal barrier atlh ) Jh - jji to shift the reaction
probability.30 Indeed, such an approach has worked quite well
for the insertion-dominated O(1D) + H2 reaction.

In Figure 3, the effective potential barrier height alongR is
given for different total angular momentum quantum numbers
(J), which in our case is equal tol becauseji ) 0. The barrier
is defined as the highest point on the 1D effective potential in
the R coordinate with optimization in (r, γ) space. It can be
readily seen that there are two regions ofJ dependence. At low
J, the barrier is located somewhere inR ∈ [6, 10]a0. AboveJ
) 25, another barrier at a smallerR (≈ 3 Å) takes over. The
inner barrier originates from a shoulder in the entrance channel
potential, and its smaller C-H2 distance results in a sharperJ
dependence. The barrier height can be used to predict the
classical reaction threshold at the correspondingJ. As shown
in Figure 2 with vertical dashed lines, the predicted thresholds
are reasonably accurate. An anomaly is some sharp peaks below

Figure 1. Comparison of initial state (Vi ) 0, j i ) 0)-specified reaction probabilities (PJ(E)) and contributions to the thermal rate constant (PJ(T))
between the CS (- - -) and exact (s) models.

Figure 2. Initial state (Vi ) 0, ji ) 0) -specified CS reaction probabilities
at different J values. The reaction thresholds calculated from the
classical centrifugal barrier heights are indicated by vertical dashed
lines.
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the classical threshold at largeJ. These isolated peaks are likely
to be the results of long-lived resonances. Their contributions
to reactivity are presumably facilitated by tunneling and/or
smaller zero-point energy near the classical barrier.

C. Integral Cross Section.The integral reaction cross section
is a sum of weighted reaction probabilities over many partial
waves, according to eq 7. At a given energy, the partial wave
contribution usually increases withJ initially because of the
(2J + 1) degeneracy factor and subsequently decreases withJ
because of the shift of the reaction threshold to higher energies.
This is clearly shown in Figure 4 forEc ) 0.08 and 0.498 eV
within the CS approximation. The oscillatory structures in the
J-dependence of partial wave contributions are associated with
the resonances as discussed above. The figure also illustrates
the fact that the higher the collision energy the more partial
waves are needed. Within the CS model, the inclusion of partial
wave contributions up toJ ) 44 is sufficient to converge the
cross section below 0.5 eV. As a result, we have included all
the partial wave contributions up toJ ) 47.

The integral reaction cross section obtained within the CS
approximation is displayed in Figure 5 (dashed line) forEc up
to 0.5 eV. It shows that the cross section has no threshold, as
can be expected from the zero barrier of the PES. The oscillatory
structure notwithstanding, the cross section is very large near
zero collision energy and decreases sharply with the increase
in Ec. Above 0.1 eV, the cross section levels off and eventually
reaches about 5 Å2 at Ec ) 0.5 eV. The energy dependence of
the cross section is very similar to that of the insertion-dominated
O(1D) + H2 reaction.25,29,30

The quantum CS cross section can be compared with previous
classical results using the same PES.46 Despite the absence of

oscillatory structure, the classical cross section also shows an
initial drop at low collision energies and a slower decay at higher
energies. Quantitatively, however, it is generally larger than the
CS cross section over the energy range studied in this work
except for very low energies. AtEc ) 0.08 eV, for example,
the quantum CS cross section is 13.6 Å2, which can be compared
with the classical value of 22.5 Å2. The CS value is also
significantly smaller than the only available exact quantum cross
section of 30.5 Å2 at the same collision energy, obtained using
a time-independent method.48 Of course, the comparison at a
single energy point can be a little misleading because of the
oscillatory quantum cross section. However, even the averaged
CS cross section near 0.08 eV (15.5 Å2) is still much less than
the classical or the exact quantum value. At higher collision
energies, 0.5 eV for example, the CS cross section (5.7 Å2) is
also smaller than the classical one (∼11 Å2).46

We attribute the above discrepancies to the neglect of Coriolis
coupling in the CS model. As shown in Figure 1, reaction
probabilities in the CS model systematically underestimate,
particularly at largeJ. If this trend persists at largerJs, it is not
difficult to understand the underestimation of the cross section
by the CS model atEc ) 0.08 eV because the partial waves
with J g 10 make significant contributions, as shown in Figure
4. To resolve this issue unequivocally, exact calculations at
higherJs need be carried out.

To estimate the exact cross section and its energy dependence,
we adopted a capture model proposed by Gray and co-workers.30

To this end, the reaction probability of a particular total angular
momentumJ is estimated from that of an explicitly calculated
one atJ1 (J g J1):

whereVb
J denotes the classical centrifugal barrier height forJ

as shown in Figure 3. If reaction probabilities for two different
angular momentum quantum numbers (J1 andJ2) are available,
then a more reasonable estimate can be obtained for theJ (J1

< J < J2) values in between by interpolation:72

Figure 3. Dependence of the classical centrifugal barrier height onJ.

Figure 4. Weighted CS partial wave contributions to the integral cross
section atEc ) 0.08 (O) and 0.498 eV (b).

Figure 5. Initial state (Vi ) 0, j i ) 0) -specified integral cross sections
from the CS (- - -) and exact (s) reaction probabilities estimated from
a capture model.

PJ(E) ) PJ1(E - Vb
J + Vb

J1) (17)

PJ(E) )
J2 - J

J2 - J1
PJ1(E - Vb

J + Vb
J1) +

J - J1

J2 - J1
PJ2(E - Vb

J + Vb
J2) (18)
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As discussed above, the rationale for the capture model is based
on the observation that the reactivity of this barrierless reaction
is primarily determined by the centrifugal barrier in the entrance
channel.

The resulting cross section is plotted in Figure 5 with a solid
line. It is quite clear from the figure that the estimated exact
cross section is larger than the CS cross section throughout the
energy range. AtEc ) 0.08 eV, for example, the estimated exact
cross section is 23.8 Å2, which is in much better agreement
with the previous quantum and classical values (30.5 and 22.5
Å2, respectively). Similarly, atEc ) 0.5 eV, our result (10.8
Å2) is in reasonably good agreement with the classical cross
section (∼11 Å2). Given the importance ofJ > 10 partial waves
as shown in Figure 4, it is conceivable that better agreement
can be reached if the Coriolis-coupled calculations can be
extended to largerJs. However, such a numerically intensive
task is beyond the scope of this work.

Interestingly, the CS approximation has been shown to be
quite accurate in the O(1D) + H2 reaction.36 As extensively
discussed in the literature,25,28,30the O(1D) + H2 reaction has
near-unity reactivity at smallJ values because of its large
exothermicity. The success of the capture model in that system
further indicates that the reactivity is controlled by a long-range
centrifugal barrier in the reactant channel, where the CS
approximation is expected to work well, rather than long-lived
resonances in the deep H2O well. In the C(1D) + H2 system,
however, the insertion of atomic carbon into the hydrogen
molecule leads to significant inelastic scattering and only partial
reaction. In addition, both scattering processes are strongly
affected by long-lived resonances. The CS approximation based
on R embedding is expected to perform poorly in the CH2

complex well and the product channel. Hence, the relatively
large errors in the CS model probably stem from the dominance
of long-lived resonances in the title system.

D. Rate Constant.The initial state (Vi ) 0, ji ) 0) specific
thermal rate constant up to 800 K has been calculated using
both the CS and estimated exact cross sections discussed above.
As displayed in Figure 6, the rate from the CS cross section is
somewhat smaller than that from the estimated exact cross
section based on the capture model. Both rate constants show
a sharp increase at lower temperatures. Above 100 K, however,
the rate becomes nearly temperature-independent. This is
consistent with the barrierless nature of the insertion reaction.
Unfortunately, there is no experimental data on the temperature
dependence of the rate constant.

The calculated rate constants can be compared with experi-
mental measurements at room temperature (300 K). The rates
from the CS and the estimated exact cross sections are 0.7×
10-10 and 1.2× 10-10 cm3 molecule-1 s-1, respectively. They
are in reasonable agreement with the latest experimental value
of (2.0 ( 0.6) × 10-10 cm3 molecule-1 s-1.9 The agreement
with the experimental value should be viewed in the context
that the calculated rate constants are for a particular initial state
(Vi ) 0, ji ) 0). A thermal average over the initial rotational
states may modify the picture. In addition, errors in the PES
and the neglect of nonadiabatic couplings such as the Renner-
Teller effect as well as errors in dynamic treatments represent
other factors that may affect the results.

IV. Conclusions

The major objective of this work is to compute an initial state-
specified integral cross section and rate constant for the C(1D)
+ H2 reaction. To this end, we have explicitly calculated within
the CS approximation reaction probabilities overEc ) 0.0-0.5
eV for J up to 47, which allowed us to compute the reaction
cross section in the same energy range and the thermal rate
constant inT ) 0-800 K. The calculated initial state-specific
rate is shown to be nearly temperature-independent above 100
K. It agrees reasonably well with the measured experimental
rate constant at room temperature.

To assess the accuracy of the CS model in this system, we
have performed exact calculations forJ ) 2, 4, and 10.
Comparisons at these limitedJ values indicate that Coriolis
coupling is quite significant despite the qualitative validity of
the CS model. In particular, the CS model consistently
underestimates the exact cross section and rate. On the basis of
a capture model, we have estimated the integral reaction cross
section and rate constant using the exact reaction probabilities
at limitedJ values. The results show a significant improvement
in agreement with previous classical, exact quantum, and
experimental data. The errors introduced by the CS approxima-
tion are much more significant than those in the O(1D) + H2

reaction, which are attributed to the dominance of the long-
lived resonances in the title system.

The calculations reported in this work were carried out using
an efficient Chebyshev wave packet propagation method. This
system represents a challenge because of the large number of
long-lived resonances that strongly affect the reactivity in this
system. Several novel implementations have been proposed and
used to make the calculation more accurate and efficient. In
particular, an SF-based scheme is used in preparing the initial
wave packet and in its propagation, which allows a smaller grid
and better control of the spectral range in the Coriolis-coupled
calculations.

Acknowledgment. This work was supported by the National
Science Foundation (CHE-0090945). We thank Evi Goldfield,
Stephen Gray, David Manolopoulos, Anthony Meijer, George
Schatz, and John Zhang for useful discussions and Gabriel
Balint-Kurti and David Manolopoulos for sending us their work
prior to publication.

References and Notes

(1) Gaydon, A. G.The Spectroscopy of Flames; Chapman and Hall:
London, 1974.

(2) Flower, D. R.; PineaudesForeˆts, G.Mon. Not. R. Astron. Soc.1998,
297, 1182.

(3) Bucher, M. E.; Glinski, R. J.Mon. Not. R. Astron. Soc.1999, 308,
29.

Figure 6. Initial state (Vi ) 0, ji ) 0)-specified rate constants calculated
from the CS (- - -) and estimated exact (s) cross sections.

Studies of the C(1D) + H2 f CH + H Reaction J. Phys. Chem. A, Vol. 108, No. 12, 20042147



(4) Braun, W.; Bass, A. M.; Davis, D. D.; Simmons, J. D.Proc. Royal
Soc. London, Ser. A1969, 312, 417.

(5) Husain, D.; Kirsch, L. J.Chem. Phys. Lett.1971, 9, 412.
(6) Husain, D.; Norris, P. E.Faraday Discuss.1979, 67, 273.
(7) Becker, K. H.; Engelhardt, B.; Wiesen, P.; Bayes, K. D.Chem.

Phys. Lett.1989, 154, 342.
(8) Dean, A. J.; Davidson, D. F.; Hanson, R. K.J. Phys. Chem.1991,

95, 183.
(9) Sato, K.; Ishida, N.; Kurakata, T.; Iwasaki, A.; Tsuneyuki, S.Chem.

Phys. Lett.1998, 237, 195.
(10) Jursich, G. M.; Wiesenfeld, J. R.Chem. Phys. Lett.1984, 110, 14.
(11) Jursich, G. M.; Wiesenfeld, J. R.J. Chem. Phys.1985, 83, 910.
(12) Fisher, W. H.; Carrington, T.; Sadowski, C. M.; Dugan, C. H.Chem.

Phys.1985, 97, 433.
(13) Scott, D. C.; deJuan, J.; Robie, D. C.; Schwartz-Lavi, D.; Reisler,

H. J. Phys. Chem.1992, 96, 2509.
(14) Mikulecky, K.; Gericke, K.-H.J. Chem. Phys.1993, 98, 1244.
(15) Scholefield, M. R.; Goyal, S.; Choi, J.-H.; Reisler, H.J. Phys. Chem.

1995, 99, 14605.
(16) Bergeat, A.; Cartechini, L.; Balucani, N.; Capozza, G.; Philips, L.

F.; Casavecchia, P.; Volpi, G. G.; Bonnet, L.; Rayez, J.-C.Chem. Phys.
Lett. 2000, 327, 197.

(17) Bearda, R. A.; vanHemert, M. C.; vanDishoeck, E. F.J. Chem.
Phys.1992, 97, 8240.

(18) Harding, L. B.; Guadagnini, R.; Schatz, G. C.J. Phys. Chem.1993,
97, 5472.

(19) Guadagnini, R.; Schatz, G. C.J. Phys. Chem.1993, 100, 5472.
(20) vanHarrevelt, R.; vanHemert, M. C.; Schatz, G. C.J. Chem. Phys.

2002, 116, 6002.
(21) Blint, R. J.; Newton, M. D.Chem. Phys. Lett.1975, 32, 178.
(22) Whitlock, P. A.; Muckerman, J. T.; Kroger, P. M. InPotential

Energy Surfaces and Dynamical Calculations; Truhlar, D. G., Ed.;
Plenum: New York, 1981.

(23) Bussery-Honvault, B.; Honvault, P.; Launay, J.-M.J. Chem. Phys.
2001, 115, 10701.

(24) Ho, T.-S.; Hollebeek, T.; Rabitz, H.; Harding, L. B.; Schatz, G. C.
J. Chem. Phys.1996, 105, 10472.

(25) Peng, T.; Zhang, D. H.; Zhang, J. Z. H.; Schinke, R.Chem. Phys.
Lett. 1996, 248, 37.

(26) Varandas, A. J. C.; Voronin, A. I.; Riganelli, A.; Caridade, P. J. S.
B. Chem. Phys. Lett.1997, 278, 325.

(27) Dai, J.J. Chem. Phys.1997, 107, 4934.
(28) Balint-Kurti, G. G.; Gonzalez, A.; Goldfield, E. M.; Gray, S. K.

Faraday Discuss.1998, 110, 169.
(29) Drukker, K.; Schatz, G. C.J. Chem. Phys.1999, 111, 2451.
(30) Gray, S. K.; Goldfield, E. M.; Schatz, G. C.; Balint-Kurti, G. G.

Phys. Chem. Chem. Phys.1999, 1, 1141.
(31) Gray, S. K.; Petrongolo, C.; Drukker, K.; Schatz, G. C.J. Phys.

Chem. A1999, 103, 9448.
(32) Gray, S. K.; Balint-Kurti, G. G.; Schatz, G. C.; Lin, J. J.; Liu, X.;

Harich, S.; Yang, X.J. Chem. Phys.2000, 113, 7330.
(33) Hankel, M.; Balint-Kurti, G. G.; Gray, S. K.J. Chem. Phys.2000,

113, 9658.
(34) Liu, X.; Lin, J. J.; Harich, S.; Schatz, G. C.; Yang, X.Science

2000, 289, 1536.
(35) Hankel, M.; Balint-Kurti, G. G.; Gray, S. K.J. Phys. Chem. A2001,

105, 2330.
(36) Carroll, T. E.; Goldfield, E. M.J. Phys. Chem. A2001, 105, 2251.
(37) Honvault, P.; Launay, J.-M.J. Chem. Phys.2001, 114, 1057.
(38) Takayanagi, T.J. Chem. Phys.2002, 116, 2439.
(39) Aoiz, F. J.; Banares, L.; Castillo, J. F.; Herrero, V. J.; Martinez-

Haya, B.; Honvault, P.; Launay, J.-M.; Liu, X.; Lin, J. J.; Harich, S.; Wang,
C. C.; Yang, X.J. Chem. Phys.2002, 116, 10692.

(40) Comeau, D. C.; Shavitt, I.; Jensen, P.; Bunker, P. R.J. Chem. Phys.
1989, 90, 6491.

(41) Green, W. H.; Handy, N. C.; Knowles, P. J.; Carter, S.J. Chem.
Phys.1991, 94, 118.

(42) Renner, E.Z. Phys.1934, 92, 172.
(43) Petek, H.; Nesbitt, D. J.; Darwin, D. C.; Ogilby, P. R.; Moore, C.

B. J. Chem. Phys.1989, 91, 6566.
(44) Chang, B.-C.; Wu, M.; Hall, G. E.; Sears, T. J.J. Chem. Phys.

1994, 101, 9236.
(45) Hartland, G. V.; Qin, D.; Dai, H.-L.J. Chem. Phys.1995, 102,

6641.
(46) Banares, L.; Aoiz, F. J.; Vazquez, S. A.; Ho, T.-S.; Rabitz, H.Chem.

Phys. Lett.2003, 374, 243.
(47) Hollebeek, T.; Ho, T.-S.; Rabitz, H.Annu. ReV. Phys. Chem.1999,

50, 537.
(48) Banares, L.; Aoiz, F. J.; Honvault, P.; Bussery-Honvault, B.;

Launay, J.-M.J. Chem. Phys.2003, 118, 565.
(49) Lin, S. Y.; Guo, H.J. Chem. Phys.2003, 119, 11602.
(50) Rackham, E. J.; Gonzalez-Lezana, T.; Manolopoulos, D. E.J. Chem.

Phys.2003, 119, 12895.
(51) Zhang, J. Z. H.Theory and Application of Quantum Molecular

Dynamics; World Scientific: Singapore, 1999.
(52) Pack, R. T.J. Chem. Phys.1974, 60, 633.
(53) McGuire, P.; Kouri, D. J.J. Chem. Phys.1974, 60, 2488.
(54) Tal-Ezer, H.; Kosloff, R.J. Chem. Phys.1984, 81, 3967.
(55) Huang, Y.; Zhu, W.; Kouri, D. J.; Hoffman, D. K.Chem. Phys.

Lett. 1993, 214, 451.
(56) Huang, Y.; Kouri, D. J.; Hoffman, D. K.Chem. Phys. Lett.1994,

225, 37.
(57) Mandelshtam, V. A.; Taylor, H. S.J. Chem. Phys.1995, 102, 7390.
(58) Mandelshtam, V. A.; Taylor, H. S.J. Chem. Phys.1995, 103, 2903.
(59) Chen, R.; Guo, H.J. Chem. Phys.1996, 105, 3569.
(60) Kroes, G.-J.; Neuhauser, D.J. Chem. Phys.1996, 105, 8690.
(61) Althorpe, S. C.; Kouri, D. J.; Hoffman, D. K.J. Chem. Phys.1997,

106, 7629.
(62) Chen, R.; Guo, H.Comput. Phys. Commun.1999, 119, 19.
(63) Lin, S. Y.; Guo, H.J. Chem. Phys.2002, 117, 5183.
(64) Gray, S. K.; Balint-Kurti, G. G.J. Chem. Phys.1998, 108, 950.
(65) Chen, R.; Guo, H.J. Chem. Phys.1998, 108, 6068.
(66) Chen, R.; Guo, H.J. Chem. Phys.2003, 119, 5762.
(67) Neuhauser, D.; Baer, M.; Judson, R. S.; Kouri, D. J.J. Chem. Phys.

1990, 93, 312.
(68) Zhang, D. H.; Zhang, J. Z. H.J. Chem. Phys.1994, 101, 1146.
(69) Meijer, A. J. H. M.; Goldfield, E. M.; Gray, S. K.; Balint-Kurti,

G. G. Chem. Phys. Lett.1998, 293, 270.
(70) Althorpe, S. C.J. Chem. Phys.2001, 114, 1601.
(71) Messiah, A.Quantum Mechanics; Wiley: New York, 1968.
(72) Balint-Kurti, G. G.AdV. Chem. Phys.2004, 128, 249.
(73) Goldfield, E. M.; Gray, S. K.Comput. Phys. Commun.1996, 98,

1.
(74) Meijer, A. J. H. M.; Goldfield, E. M.J. Chem. Phys.1998, 108,

5404.
(75) Light, J. C.; Carrington, T.AdV. Chem. Phys.2000, 114, 263.
(76) Zare, R. N.Angular Momentum; Wiley: New York, 1988.
(77) Condon, E. U.; Shortley, G. H.The Theory of Atomic Spectra;

Cambridge: London, 1964.
(78) Corey, G. C.; Lemoine, D.J. Chem. Phys.1992, 97, 4115.
(79) Corey, G. C.; Tromp, J. W.J. Chem. Phys.1995, 103, 1812.
(80) Kosloff, D.; Kosloff, R.J. Comput. Phys.1983, 52, 35.
(81) Ma, G.; Guo, H.J. Chem. Phys.1999, 111, 4032.
(82) Meijer, A. J. H. M.; Goldfield, E. M.J. Chem. Phys.1999, 110,

870.
(83) Bowman, J. M.J. Phys. Chem.1991, 95, 4960.
(84) Clary, D. C.Mol. Phys.1984, 53, 3.

2148 J. Phys. Chem. A, Vol. 108, No. 12, 2004 Lin and Guo


