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An algorithm to produce acceptably accurate Fourier transform NMR spectra using many fewer transients
than commonly obtained is introduced and applied to13C chemical shift and one-dimensional INADEQUATE
Lorentzian type spectra. The algorithm supplies criteria to recognize when to stop transient collection at a
time too early for an acceptable spectrum to be produced by Fourier signal processing but not by harmonic
inversion signal processing.

1. Introduction

In NMR spectroscopy the main method of signal processing
is that of the Fourier transform (FT). In most experimental NMR
studies noise is sufficiently prominent in the measured free
induction decay (FID) time signal so as to make the Fourier
processed spectrum unacceptable in the sense that the underlying
spectrum cannot be extracted from the noisy one. The problem
of reducing the noise level is approached in several ways. The
most used method is the ubiquitous signal averaging over many
transients or scans. In signal averaging the signal grows relative
to noise quite slowly asxNtr, Ntr being the number of
measured transients. Moreover, there are often other consider-
ations, such as sample concentration, field strength, and NMR
machine design, that affect the signal intensity and cause the
needed number of transients to be very highsso high in fact
that some experiments are just not done. Additionally, when
high spectral resolution is required, the Fourier methods need
longer signals. As the ideal noiseless FID decays in time, the
signal samples at longer times contain larger noise components
and using them can be counterproductive.

Many NMR data processing methods1,2 try to improve this
situation by attempting to maximize the extraction of signal
information from noisy data using a priori knowledge regarding
the underlying signal model. One general method, which is used
in this paper, is the harmonic inversion method. This method
comes in many versions3-10 and appears under such names as
linear prediction,3,11Pade approximation,4 filter diagonalization,5-8

regularized resolvent transform,9 and filter diagonalization
method version 2000.10 The harmonic inversion method achieves
a higher spectral resolution for a given signal lengthN than
Fourier transform. This is due to the fact that the a priori
information used here is that a linear combination of complex
decaying exponentials is assumed to be a good model for an
FID signal. The equations that relate the measured signal to
the model when solved yield directly the position, width, and
intensity (area under the line) of each resonance, and from them
a spectrum can be reconstructed. The said equations are
generically ill-conditioned, which means any solutions are
extremly sensitive to small noise perturbations. To fix this,
various regularization techniques are used11,12 which enable a

stable solution and spectrum to be found. When noise is not
present or there is little noise, all these harmonic inversion and
regularization methods work well and give similar results.
However, there is a noise threshold above which they can give
differing results, sometimes producing spectra with false or
missing lines if a signal is “too” noisy; as such the method
should not be used above this noise threshold. Thus, the problem
is how to formulate such a harmonic inversion based signal
processing scheme which will be able to produce acceptable
spectra from noise reduced signals created by averaging a
smaller number of transients than will be required by the Fourier
method to get the same quality spectrum. Here, “acceptable”
means, simultaneously, no fake or missing features, no unde-
termined “regularization” parameters, and small enough errors
in the predicted Lorentzian parameters.

This paper suggests a windowed signal processing noise
reduction strategy which is based on an eigenvector type signal
processing theory to devise a conceptually simple and unde-
manding computational scheme to greatly reduce the number
of measured transients (scans) required to obtain a Lorentzian
type spectrum reconstructed from originally noisy data that have
an acceptable level of errors in the Lorentzian parameters such
as frequency position, width, and area under the Lorentzian.
Our aim is to greatly reduce the machine time used to measure
a spectrum or to enable new experiments to be done which
presently require unacceptable amounts of machine time.

The strategy defines two qualitative criteria that depend on a
signal constructed by averaging measured transients. The first
criterion (section 2.2) is mathematical and uses the signal to
construct a correlation matrix, the graph of whose eigenvalues
(singular values) show a characteristic gap in their values when
the criterion is satisfied. The second criterion (section 3) is the
one common with the signal averaging plus Fourier analysis
method, that is, the acceptance of the spectra when its prominent
features are stable to further measurement. Satisfaction of the
criteria determines when no further noise reducing signal
averaging is needed for it to satisfy a model of the signal plus
noise assumed by a mathematical noise reduction method, that
of Cadzow.13 At this point it is shown that even though the
Fourier transform of the signal will usually give an unacceptably
noisy spectrum, Cadzow’s method can further reduce the noise
so as to produce a “cleaned” signal.

Sections 2 and 3 represent a first application of the noise
reduction methodology to the given systems. Because of this,
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it at first appears that the method will always require for the
experimentalist to work interactively with the measurement in
order to determine the number of transients and ultimately
machine time needed for the convergence of the spectra. That
this is not true is explained in the discussion, section 4, where
experiments are suggested to calibrate our methods so as to give
tables of thresholds for the number of transients needed to satisfy
our criteria in any generic class of experiments.

All examples presented in section 3 were chosen by our
acknowledged colleagues to be challenging. The windowed
noise reduction strategy method is first applied to13C chemical
shift problem and then to the one-dimensional (1D) INAD-
EQUATE experimental test problem. Here the INADEQUATE
experimental example was analyzed because it was the most
noisy spectra we could think of when done in one dimension.
We are aware that it is better to do INADEQUATE in two
dimensions using an algorithm such as perhaps FRED.14 In
section 2, we give some of the mathematical details used in
our signal processing scheme: (i) the windowing technique
(section 2.1); (ii) the noise reduction preprocessor (section 2.2);
and (iii) the harmonic inversion spectral estimator (section 2.3).
Section 4 briefly summarizes our ideas. In the Appendix, we
present results of a statistical error analysis of the parameters
and the confidence spectra for the single Lorentzian obtained
with the suggested noise reduction scheme.

2. Windowing

2.1. Windowing. All processing is done here by breaking
the fast Fourier transform (FFT) spectrum into windows of 200-
500 (300 is usual) Fourier grid points. The reasons for
windowing as done here is that for the noise reduction part of
the problem (i) without windowing the so-called singular value
decomposition3 (SVD) graphs, to be discussed below, become
too cluttered with signal and noise singular value points to be
easily analyzed; (ii) certain windows will be much simpler to
process than others and not windowing unnessarily ties all
features to the features most effected by noise; and (iii) without
windowing the dimensionN/2 of a Hermitian matrix arising in
the Cadzow method (section 2.2) would be so large that a needed
diagonalization could become too time-consuming. When
harmonic inversion is used, windowing creates a smaller signal
of length Nd , N, valid only in the window, which in turn
determines the size,Nd/2, of the systems of equations to be
solved. Since these equations have a rank less than their
dimensionNd/2, they are ill-conditioned and unstable and the
results may be very sensitive to small perturbations. For
sufficiently small matrices which windowing ensures, the
problem can be ameliorated by regularization procedures as the
truncated SVD3 used here.

The edges of the windows are at Fourier grid points. Their
placement ideally, based on prior knowledge or hints from the
noisy FFT, surrounds regions of signal and begins and ends in
regions of pure noise. In less than ideal situations a systematic
windowing of the spectrum can be designed for all regions. If
peaks, because of spectral density reasons, unavoidably appear
at window edges where window induced distortions will occur,
an additional window should be chosen so that the edge of the
prior window falls interior to the new window. This is possible
because windows do not know about each other and can overlap.
Choosing windows is generally not a problem and becomes even
less so with experience. Here the region of the spectrum where
13C singlets appear is roughly known as is the fact that the spin-
spin splittings are located about their base. This makes the choice
of windows trivial. It is usually better to work one singlet at a

time, but if singlets are close, several can be studied in one
window. Here for the singlet spectrum and the INADEQUATE
spectrumNd are set to 200 and 300 Fourier grid points,
respectively.

At this point the “decimation” window program takes over
and produces a signal of lengthNd, called cn

bl, “bl” for band
limited, out of the measured signal of lengthN calledcn. This
is inputted into the noise reduction scheme described in section
2.2. The production process, described with formulas in ref 3,
is here discussed in words. In the usual Fourier spectrum of a
signal made of a given number of scans, all intensities outside
the window of Nd Fourier grid points are set to zero. The
window spectrum is then shifted symmetrically about zero
frequency and inverse Fourier transformed to produce a “new”
signal. Since the original bandwidth was 2π/τ (τ is the sampling
or delay time) and now is reduced by the factorNd/N, the new
effective sampling or delay time will beNτ/Nd ≡ τd. Hence the
band limited signal withnth elementcn

bl ≡ cbl(nτd) is just the
“new” signal element numberedn ) 0, 1, ...,Nd - 1. As T ≡
Nτ ) Ndτd, resolution is not affected by this signal length
reduction. After all processing the real part of the frequencies
must be shifted back to the original origin. Results near window
edges are not reliable.

2.2. Noise Reduction Preprocessor.The noise reduction
procedure takes a noisy signal and creates a low noise signal
from it. This involves several steps detailed below, and we mark
those sentences to distinguish them from the associated discus-
sion.

Working with theNd decimated time signal samplescn (we
drop the superscript “bl”), it is noted thatNd - M + 1, where
M is roughly Nd/2 (small variations are not important), and
linearly independent “measured signal” vectorscbn ) (cn, cn+1,
...,cn+M-1) can be created which define anM-dimensional vector
space. The measured signal vectors can be assumed to be the
sum of an “actual” signal vectorxbn and a random noise vector
εbn

The harmonic model that fits much of NMR, and often ICR,
further assumes that the noiseless time signal elementsxn are
created from the sum ofK damped harmonics; i.e., this spectrum
is the sum ofK complex Lorentzians.K is the “rank”, not always
the number of observed spectral peaks as sometimes two or
more Lorentzians underly one spectral peak. The model can be
expressed vectorally and sample by sample respectively as

where (sbk)T ) (1, zk, zk
2, ...,zk

M-1), zk ) exp(-iωkτd), wheredk

is the amplitude andωk is the complex frequency whose
imaginary part is assumed negative.zk is then a damped
exponential in the time domain. The real part ofωk is the
frequency, and the modulus of imaginary part|Im(ωk)| is twice
the width of the Lorentzian of heightdk/|Im(ωk)|. The rank or
dimension of the signal spaceK is not an input and is determined
by the processing. Since the vectorssbk are linearly independent,
they form a basis set for a signal space in which must lie the
signal vectorsxbn. The problem is to now find the signal space
without first finding the vectorssbk. Then the measured vectors
cbn will be projected onto the signal subspace and the projections
taken as the “cleaned” signal vectors. In the field of signal
processing this all is a textbook problem,3,16 and only the

cbn ) xbn + εbn (1)

xbn ) ∑
k)1

K

dkzk
n sbk and xn ) ∑

k)1

K

dkzk
n (2)
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prescription is given here. From thecn the M-by-M Hermitian
covariant correlation matrix is constructed (step 1) as

Using a standard, computationallyO(M3) diagonalization
routine, R is diagonalized (step 2) and the real, nonnegative
eigenvaluessi, also called singular values, and eigenvectorsubi,
i ) 1, ...,M, are obtained and indexed so thatsi > si+1. A plot
of ln si against indexi is then produced. Now ifK were known,
the first K eigenvectorsubi would be associated with the signal
subspace. The compliment space, orthogonal to the signal
subspace, is the noise space. For an ideal white noise problem
the rank K can easily be spotted as the number of lowi
eigenvalues that are widely separated relative to the remaining
M - K noise eigenvalues which are constant and equal to the
mean square noise strength. They form a horizontal “string of
pearls” to the lower right of the smallest “signal” point. The
distance from the first noise point to the signal point is the “gap”.
Figure 1, bottom right, shows an example of a graph of lnsi

versusi for what is a high signal-to-noise (S/N) ratio damped
exponential signal case. Note the “gap” between the noise and
noiseless singular values.K is clearly 1. This “gap” appears
even if the noise eigenvalues are not constant. In fact, they will
be far from constant. Perfect “gaps” and constancy of the noise
eigenvalues would require exclusively white noise, exclusively
Lorentzian lines, and a very largeNd so as to create a
representative ensemble average ofR. This in turn requires a
large number of vectorscbn. The nonconstancy of the higher
indexed eigenvalues is due at a minimum to the finite statistics
and the use of a window which as explained above is generally
necessary; nonwhite noise can also be a cause.

The “gap” in real cases can be estimated (step 3) by
recognizing that they always appear at the “elbow” of curves
as in Figure 1. When no gap exists, i.e., the method is not
working because the S/N ratio is too low, one gets pictures as
the two in rows 1 and 2 on the left in Figure 1. The qualitative
change in the eigenvalue density and spacing (low on the left
and high on the right) is an indicator of a gap. To understand
this separation physically, we recall that perturbation theory
indicates that eigenvalues that are well spaced are much less
sensitive to perturbations than those in high-density regions;
hence the identification of the former with signal and the latter
with noise, and the larger the gap the better. Perturbation theory
says that the noise subspace will have less influence on the signal
subspace as the gap, which represents their eigenvalue differ-
ences, increases. In the worst cases this separation will pin the
value ofK down to within(1. Taking the+1 case is safer and
often leads to no change in the spectrum. When changes do
occur or when no “gap” can be clearly estimated, then the
number of transients used needs to be increased and the process
restarted.In fact, it is usually the appearance of the “gap” that
determines the sufficiency of the number of transients for noise
reduction to be implemented, for K to be estimated, for a local
S/N ratio to be 1, and for transient collection to stop after
roughly another 5-10% of the already collected transients are
obtained. The extra number of transients is needed to test
Various conVergences. Noise reduction preprocessing followed
by FFT or harmonic inVersion signal processing can now take
oVer. Any uncertainty in gap estimation is met by increasing
the number of transients to test if the resulting spectrum is
robust. Finding a converged spectra is the primary goal, and

increased scanning is our tool to get there. Even with increases
the saving in scanning relative to pure signal averaging should
be large.

An obvious procedure that saves effort is to use any
foreknowledge to pick the window with the least intense and/
or the most narrowly separated features. An example is the
carbonyl region in the13C singlet spectra. The number of scans
here will be adequate for all remaining windows except when,
as will be seen, high resolution is needed to resolve some only
slightly less intense features. A most useful strategy is to, in
parallel, processcn, n ) 0, 1, ...,N - 1, and the samecn but
stopped atnmax ) N/2 or evenN/4. The advantage of this is
that there is less noise included in the lowernmax case andK
may become easier to estimate. When theK value estimated
from the lowernmax was used with the full lengthN signal, a
better resolved but most often very similar spectrum was seen
especially if the projected signal was subsequently fed into the
harmonic inversion analyzer. Cutting the signal length decreases
both resolution and number ofcbn vectors that can be formed
and hence the statistics in the averaging of eq 3. Most of the
time the high-resolution analysis then restores resolution. The
first two rows of Figure 1, associated with Figure 2 (section 3),
shows this effect. The bottom left and right graphs authenticate
the choice ofK ) 1.

For now in this subsection we assumeK can be determined
and proceed to give the projection formula (step 4). In doing
this we are basically following the work15 where this type of
noise reduction method, which we adapted to the damped
harmonic signal, was used for noise reduction in signals obtained
from human speech. The formula is

Rij )
1

Nd - M + 1
∑
n)0

Nd-M

cn+i-1cn+j-1* (3)

Figure 1. Distributions of logarithmic singular values lnsi versusi )
1, ...,M associated with Figure 2 (carbonyl region, strychnine spectrum)
and calculated for the correlation matrix eq 3.M > 30 not shown.N
is the number of samples acquired;Ntr is the number of transients.
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where (‚,‚) denotes the scalar, inner product of two vectors and
the asterisk (*) stands for complex conjugate. Given the
decimated signal vectorscbn, we now have an estimate of the
Nd - M + 1 projected signal vectors asxbn = cbn

pr. Since a
particularxn ) cn

pr ) cn
NR element appears in multiple vectors,

an arithmetic average is taken (step 5), the result of which
restores the Hankel structure of the signal matrix as defined by
xnm ) xn+m. This is required by the model eq 1. As this averaging
tends to cancel some of the corrections made in the projection,
starting with the new signal the whole procedure is iterated (step
6) to convergence several times (here empirically five iterations
are taken) to give the final denoised, cleaned signal.

Clearly a tradeoff is being made here. The first run of the
SVD can be proven16,17 to give the best, in the least squares
sense, rankK approximation toR (see the discussion of the
minimum principle in refs 13 and 15), but it does not preserve
the Hankel data matrix structure that is consistent with our
model, eq 2. Averaging the projected vectors sacrifices a bit of
the former to restore the latter. By iterating this diagonalization-
projection-averaging procedure several times, we eventually
get aK-rank Hankel matrix approximation to the original full
rank noisy data matrix. Harmonic inversion methods are seen
by us and others18,19to give significantly improved results when
fed signals resulting from the Cadzow iterative scheme. Much
of the past harmonic inversion work omitted this step. This
makes comparisons of our work and past experience with
harmonic inversion method of uncertain value. Our method must
stand on its own comparisons to experiments.

Fundamentally, the noise reduction is done so as to create a
signal that is better represented by eq 2. Another way to look
at the reason the method is effective starts by putting eq 1 into
eq 4. This shows thatcbn

NR still contains noise asεbn is not
orthogonal toubk, k ) 1, ...,K. It also shows that any randomly
oriented noise vector, which would have on the average equal
weights on allM basis vectorsubk, contributes only a factor
proportional toxK/M of its weight in the measuredcn to cn

NR.
Clearly one wantsM as large as possible consistent with the
statistics of eq 3, which improves with smallerM as more terms
will appear in the sum.

Note that the model, eq 2, for the underlying signal is not
the only one for which the noise reduction scheme could be
applied. For applicability of the method it is sufficient for the
underlying data matrixxnm ) xn+m ) x((n + m)τ) to be aK <
M rank matrix. For example, this condition can be fulfilled for
a polynomial function of orderPk < M - 1:

with dk0 ≡ dk. Using Newton’s binomial formula, one can write
a data matrix in a factorizable form:

whereCp
l ) p!/[(p - l)!l!] is the binomial coefficient andel(n)

) (nτ)l. We wish to find the rank of this matrix. Since the
vectors ebl, l ) 0, ..., Pk, with components{el(n)}n)0

M-1 are
linearly independent, the rank of matrix (6) isPk + 1. One can
suggest a more general ansatz for the signal:

with the amplitude functionsdk
Pk(t) approximated by aPk-order

polynomial (5) with coefficientsdkp. Since the data matrix
constructed from the signal (7) has the rankKr ) K + ∑k)1

K Pk,
the above noise reduction scheme can also be applied to this
type of signal ifKr < M. This might help to clean up those
types of non-Lorentzian spectral features that can be well
approximated by a Fourier transformed functional form (7).
These possible extensions will be invesigated in future papers.

2.3. The Harmonic Inversion Spectral Estimator. The
cn

NR, n ) 0, ...,Nd - 1, which are hopefully very similar to the
exact noiseless signal samplesxn, can be Fourier transformed
or subjected to a harmonic inversion analysis to give the
spectrumI(ω) which can be presented in absorption, Re[I(ω)],
or magnitude, |I(ω)|, form. The infinite discrete Fourier
transform (DFT) (orz-transform) of the signal described by eq
2 is given by

wherez ) exp(-iωτd). The right-hand side of eq 8 obtained as
a result of summing up an infinite series of signal points is the
harmonic inversion spectral estimator expressed in terms of
harmonic inversion parameters. If|(ω - ωk)τd| , 1, eq 8
reduces to a sum of complex Lorentzians. In the spectral regions
far from resonance lines, Re[I(ω)] ) (τd/2)∑k)1

K dk ) τdx0/2 (if
the signal is properly phased, i.e., alldk’s are real), so to get
zero baseline the constantτdx0/2 should be subtracted from eq
8.

Let us construct from the signal eq 2 an infinite Hankel matrix
xnm ) xn+m ) x((n + m)τ), n, m ) 0, 1, .... Then the matrixxnm

has a finite rankK and there existK numbersR1, R2, ..., RK

such that

(see Vol. II, Chapter XV, Section 10, in ref 20 for proof). The
linear prediction (LP) equations (9) enable one to calculate all
the signal points knowing the firstK signal points and theK
LP equation coefficients; the LP coefficients in turn can be
obtained as a solution of the system ofK LP equations.

If the infinite matrix xnm is of finite rank, then the DFT of
the signal can be summed up to a rational function ofz (Pade
approximant):20

where PK(z) ) ∑k)1
K bkzK-k+1 and QK(z) ) ∑k)0

K akzK-k are,
respectively, numerator and denominator polynomials whose
coefficients can be calculated from the following system of
relations:

cbn
pr ) ∑

k)1

K

(ubk*, cbn)ubk (4)

dk
Pk(t) ) ∑

p)0

Pk

dkpt
p (5)

(dk
Pk)nm ) dk

Pk((n + m)τ) ) ∑
p)0

Pk

∑
l)0

p

dkpCp
l el(n) ep-l(m) (6)

x(t) )∑
k)1

K

dk
Pk(t)exp(-iωkt) (7)

I(ω) ) τd∑
n)0

∞

xnz
-n ) τd∑

k)1

K dk

1 - zk/z
)

τd∑
k)1

K dk

1 - exp(i(ω - ωk)τd)
(8)

xq ) ∑
k)1

K

Rkxq-k (q ) K, K + 1, ...) (9)

I(ω) ) τd∑
n)0

∞

xnz
-n ) τd

PK(z)

QK(z)
(10)

bk ) ∑
r)0

k-1

arxk-1-r (k ) 1, ...,K) (11)
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SettingRk ) -ak/a0, k ) 1, ...,K, we can write the relations eq
12 in the form eq 9. Therefore, theak coefficients can be
obtained as a solution of a set of the LP equations,3 whereas
the bk ones can be obtained from theexplicit relations eq 11.

The harmonic inversion parameters,zk or ωk, can be found,
if necessary, by rooting the denominator polynomial. This
problem can be effectively reduced to the diagonalization of
the companion Hessenberg matrix.4,17 The parametersdk are
calculated via the residues of the Pade approximant eq 10 at
the positions of the corresponding complex poleszk.4

3. Examples

In this paragraph we first discuss a few “considerations” that
face the user. (i) It is well to remember that higherN (length of
signal), because the underlying signal is damped, means a higher
fraction of noise is present in each new sample. As such, the
gap and henceK will be seen first when a lowN is used. If the
signal had, say,N ) 32 768 samples, investigatingN ) 16 384
incurs no extra experimental cost. Care must be taken when
using this “helpful” idea. First, if the need to resolve very close
peaks exists, theK gotten from a shortN, which can fail to
resolve two peaks, may be too small. On the other hand,
lowering noise by noise reduction and not signal shortening
always makes resolving close peaks easier. (ii) IfNtr is
insufficient, extreme noise singular values can end up on the
signal side of what appears to be a gap and signal singular values
could (or could not) appear on the noise side. Respectively, this
gives extra unphysical lines and missing lines. Closely spaced
lines make everything more difficult. As will be seen in our
examples, since these contrary considerations cannot be sys-
tematized and can be recognized as spectral nonconvergence,
we will simply always increaseNtr and seek both to open a gap
and to converge the spectrum with respect to increasingNtr using
the full given values ofN. This will be our ultimate test and
strategy.

If software were available, one could work interactively and
stop the experiment when gaps opened and spectra stabilized
for the estimated weakest features. Here we simulated working
interactively by generally obtaining signals that had about 1/25
of the number of transients that signal averaging alone would
have required for the case under consideration. The fraction 1/25
was chosen because as will be seen below it was what was
needed for the noisest, most difficult to resolve INADEQUATE
splitting we worked with. Our transients came in pulses of eight
scans, and we processed signals for increasing numbers of pulses
until a gap opened and the spectrum stabilized for the weakest
features or until our transients were consumed (the latter did
not occur).

The chemical shift spectra of strychnine is our first test case.
For the example of a 15 mM solution of strychnine in CDCl3,
a spectrum showing all the chemically shifted singlet lines with
the parameters obtained with an acceptable level of accuracy is
achieved on a 20-year-old AM-360 MHz machine with a 5 mm
diameter tube after 128 and then 256 transients, withN ) 16 384
samples, are measured and averaged. This represents a total
acquisition time of 8 min 15 s and 16 min 30 s, respectively.
Although times will vary among different machines, tube size,
and concentration it should be noted that all our comparisons
are between the same machines, tubes, and concentrations.
Relative time savings should then be invariant to changes in
machine.

The given foreknowledge was that an amide carbonyl was
in the molecule and that it was expected to give the lowest
amplitude signal of all the carbons. We knew it must be in the
161-175 ppm region, so we placed two windows there each
of 512 Fourier grid points (FG pts). Here, 74 FG pts is
approximately 1 ppm. At 256 transients (Ntr ) 256) a converged
result was obtained and “the experiment was stopped”. For
presentation purposes the gap opening and spectral convergence
in this region was easier to view in the window of Figure 2.
The second column is shown to demonstrate convergence of
the processing. The top two (row order) sections of this figure
work with the original noisy signal (NS) and the latter two work
with the cleaned signal (CS) obtained after the Cadzow noise
reduction preprocessing (section 2.2). All but the third use the
fast Fourier transform (FFT). The second row entry exemplifies
the use of the matched filter (MF) variant of Fourier noise
reduction processing. The addition of letters such as “CS” or
“NS + HI” or “FFT” tells which signal and which spectral
esimator is used, respectively. The harmonic inversion spectrum,
not being on a Fourier grid, is drawn on a 1000-point grid in
the window of the spectrum in the figures.

Figure 1 shows the SVD analysis that goes with Figure 2.
Starting with the full givenN ) 16 384 signal, 256 transients
were needed before the “string of pearls” with no gap obtained
previously for 128 and 192 transients converted to a case with
K ) 1 and a clear gap. At this point the S/N ratio was 1. Most
useful at times is when the first quarter of the signal was used
for noise reduction at both 128 and 192 transients. AK ) 1
gap showed up, as these signals had less noise. Now if the full

∑
k)0

K

akxq-k ) 0 (q ) K, K + 1, ..., 2K - 1) (12)

Figure 2. 1D 13C NMR absorption spectrum of a 15 mM solution of
strychnine in CDCl3 for a carbonyl spectral region and with signal after
128 (first column) and 256 transients (second column) of lengthN )
16 384≡ 16 K computed by, respectively, from top to bottom: NS+
FFT - experimental noisy data; NS+ MF + FFT - matched filter
with exponential envelope, exp(-t/T), followed by using FFT; CS+
HI method, i.e., windowing, then noise reduction followed by using
high-resolution harmonic inversion spectral estimator; CS+ FFT
method, i.e., windowed noise reduction followed by using FFT. Pure
signal averaging is estimated to use 16 h of scanning for similar results.
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length signal for 128 and 192 transients was then assumed to
haveK ) 1 and projection was done on the first eigenvector,
Figure 2 shows excellent results were achieved. The quarter-
length signal was too short to use throughout the analysis, but
it was good enough to help in SVD analysis. The added
information led us to accept the 256 transient result as
“converged”. Last, since the method was new, for confidence
an experiment with 2560 transients, which by signal averaging
had a factor of about 3 higher S/N ratio, was done. Figure 1
shows it gave the sameK ) 1 result and the spectrum (not
shown) except for a small line narrowing was the same as that
for Ntr ) 256. To study how the line position and width change
with transients, calculations forNtr ) 256, 384, 448, and 512
were done, and the deviation of the results of the first four from
the fifth was taken. The average deviation was 0.001 ppm for
the position at 168.646 ppm and 1.8× 10-3 ppm for the width
of 4.8 × 10-3 ppm. Such performance is consistent with the
confidence spectrum and further analyses shown in the Ap-
pendix. The issue of line heights will be addressed there. Here
we simply note that, for the type of line in Figure 2, the area is
obtained with a precision of 2% and accuracy of better than
10%.

In routine work, not work aimed at demonstrating the various
above ideas, in such cases as here, the user would just stick
with N ) 16 384 until a gap opened up aroundNtr ) 256. AK
) 1 would be read off. With no extra experimental work anN
) 8192 or 4096 could be run to see thatK is still 1. If it was
not, the number of transients would be raised.

As a second example, a window was placed about solvent
peaks as in Figure 3, because it was expected that if a chemical
shift existed here it might be difficult to see due to the size and
baseline of these peaks. The same 128 and 256 scan signal

average sample data was used as before. We found a13C singlet
at 77.3 ppm buried in the base of the deuterated chloroform
triplet peaks. Figure 3 shows the results for the number of scans
where a gap was evident (see Figure 4) and where the spectra
converged (Figure 3) with respect to the strychnine peak. An
important point should be made here. When using signal
averaging at about eight scans, a gap corresponding toK ) 3
emerges and the spectrum contains the three solvent peaks. At
128 scans two more break free and the shift peak appears in
the spectrum. To test the convergence of the spectrum, 256 scans
were processed to give a similar result. If lines of greatly
different amplitudes exist, one cannot stop at the emergence of
the first gap. The story is the same as with signal averaging,
except that for the new method it all happens at many less scans.
The spread of three high and two low singular values forK )
5 that can be seen in Figure 4 supports this argument.

Another point is illustrated here. The additional increase by
two in number of signal singular values does not mean the peaks
increase by two. The convergence of the spectrum also counts.
In fact, if the number of transients increases by a factor of 10,
we have seen thatK can change to a value of 11 but the
spectrum is essentially unchanged. The non-Lorentzian parts
of the spectrum cause this phenomenon. By non-Lorentzian parts
we mean the parts associated with the solvent. These peaks
suffer from concentration and measurement effects and are not
Lorentzian, especially in the overlapping solvent and sample
peak regions and baseline regions. Our calculation ofωk shows
that the chemical shift peak is one pole. The non-Lorentzian
solvent peaks require nine poles for representation. One extra
pole is well away under the baseline.

The total spectrum is in Figure 5. For the rest of the spectrum
using theNtr ) 256 signal, windows indicated in Figure 5 were
put down and in each window a logarithmic singular value graph
immediately showed a clear gap with aK value equal to the
number of lines in each window as seen in Figure 5. The

Figure 3. 1D 13C NMR absorption spectrum of 15 nM solution of
strychnine in CDCl3 for deuterated chloroform triplet peak spectral
region for noisy signal after 128 (left column) and 256 transients (right
column) of length 16 K. The arrangment of plots is similar to that in
Figure 2.

Figure 4. Logarithmic SCD curves calculated for experimental data
presented in left (128 scans) and right (256 scans) columns of Figure
3.
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resulting windowed spectra were merged to form Figure 5. All
21 chemical shifts are now seen using 256 transients taken on
our machine in 16 min 30 s. Windows where no signal showed
up were recognized by the fact thatall singular values dropped
significantly in value, as would be predicted by perturbation
theory, as more transients (and less noise) were used. When a
window has both signal and noise as in Figures 1, 4, 7, and 9,
the signal singular values stabilized and do not consistently and
significantly drop in value as does the noise. This distinction is
important because what appeared to be a gap withK ) 1 did
appear in one signal-free window. It was recognized as noise
because it dropped in value precipitously between 128 and 256
transients.

To further demonstrate the method’s ability to save transients,
an FID signal from a 1D INADEQUATE experiment on 5%
dicyclopentadiene in DCCl3 was studied. Windows surrounding
the fourth carbon at 54.75 ppm (see Figure 6) and the sixth
carbon at 46.15 ppm (see Figure 8), in a number scheme that
increases with decreasing ppm, were used as an example of a
“typical” and a “difficult” case, respectively. Our foreknowledge
was the position of the singlets and the order of magnitude of
the splitting which made the choice of windows easy. We noted
the fact thatK could be slightly more than twice the number of
splittings (which we pretended we did not know but which is
not more than four) due to the fact that for the experiment done
at our NMR facility the singlet central line was not totally wiped
out and in fact could appear as several lines.

To start, we first tried 2176 scans (not shown) and bothN )
16 384 and 32 768 for the fourth carbon. The former gaveK )
7; the latter gaveK ) 6. For the purposes of estimatingK, we
suspected the less noisyK ) 7 was correct. To be sure, we
raised number of transientsNtr to 2432 and 2560. Both gave a
clear K ) 7 at both half and full lengths and a converged
spectrum as seen in Figure 6. Figure 7 shows the corresponding

SVD curves. The time used was 12 h as opposed to 2 weeks.
The matched filter was of no use.

The sixth carbon, Figure 8, our last example (although all
carbons were processed successfully) was confusing atNtr )
3712 (our first estimate) becauseN ) 16 384 andN ) 32 768
not only had different rank, 7 and 8, respectively, they also had
different spectra, with a fourth line on the right-hand side forN
) 32 768. As such, the number of transients was raised several
times until atNtr ) 4480 the gap given byN ) 16 384 and
32 768 (Figure 9) was clearer and consistent.N ) 16 384 with
less noise gave us confidence that the gap ofK ) 7 was correct
for N ) 32 768. Here, as Figure 8 shows, spectral convergence
was achieved and tested by using 4736 scans. ForNtr ) 4736
the gap situation was the same asNtr ) 4480 (Figure 9).

The observed splitting of 28.9, 32.1, and 37.7 Hz is within
1.5 Hz (at worst) of that in a 95% solution spectra (which of
course required quite a few less scans and may have concentra-
tion effects). It is quite hard to estimate the number of scans
and the time needed for signal averaging plus FFT to resolve
the middle line on the left-hand side, but for estimating the time,
units of weeks would not have been out of place. The matched
filter on the FFT could not resolve what turned out to be close
peaks. It was unsatisfactory in general. This was as difficult an
example as we and our colleagues could think of, as it was
both “extremely noisy” and had lines that were difficult to
resolve.

4. Discussion

The new processing methodology presented here envisions
the use of signal averaging of transients until, for the case of
an individual line or window, a gap appears and most
importantly a spectrum becomes stable to increases in the

Figure 5. 1D 13C NMR spectrum of 15 mM solution of strychnine in
CDCl3 with signal after 256 transients of lengthN ) 16 K. Vertical
lines on the top panel show window edges.

Figure 6. 1D INADEQUATE, spin-spin interaction13C-13C spectrum
of 5% solution of dicyclopentadiene in CDCl3 for the fourth carbon
spectral region for a noisy signal after 2432 and 2560 scans of length
N ) 32 K. Pure signal averaging is estimated to use 2 weeks of scanning
for similar results. The arrangement of plots in rows is similar to that
in Figure 2.
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number of transients. This says that the existence of a stable
spectrum and of a gap will give a result of a quality that signal
averaging would give with many more transients. NoteK need
not be constant when a Lorentzian line is sought in the presence
of non-Lorentzian ones as our examples show.

The “cleaned” spectra reported here look unfamiliar in two
senses. First, there is no baseline noise and, unlike when running
an experiment using signal averaging followed by Fourier
transform, no operator interactive way exists to know, based
on the signal-to-noise ratio, when to stop the experiment and
“accept” the spectrum. Second is that when harmonic inversion
is also used (CS+ HI in the figures) the lines seem unfamiliarly
high and narrow. These are not real difficulties for the noise
reduction or harmonic inversion methods but simply reflect that
the information obtained is here obtained in different ways. For
example, when harmonic inversion is used, the analysis allows
the usual parameters of frequency position, width, area, and
height of a Lorentzian peak (height) amplitude/width; ampli-
tude) area/π) to be read from the spectrum. The method also
computes the frequency, width, and amplitude directly. As
shown in the Appendix, the widths have the biggest error. When
this error undervalues the width, the line height is too big. This
is not a problem as the Appendix also shows that the directly
extracted amplitude itself is significantly more accurate than
the width. The amplitude is what is sought when areas under
lines and peak intensities are studied.

The residual noise in the signal and the effect of artifacts are
in the errors of the parameters and do not appear in the baseline
spectra or line shape distortions. These errors are studied in the
Appendix, where a confidence spectrum is given for the example
of Figure 2. Interestingly, in the Fourier signal averaging
methods artifacts are often ameliorated by a process that assumes
a known reference signal and involves some steps common to

our method as windowing and adjusting to an “ideal” experi-
mental or model Lorentzian or Gaussian signal.21

Figure 7. Logarithmic SVD curves calculated for experimental data
presented in left (2432 scans) and right (2560 scans) columns of Figure
6.

Figure 8. 1D INADEQUATE, spin-spin interaction13C-13C absorp-
tion spectrum of 5% solution of dicyclopentadiene in CDCl3 for the
sixth carbon spectral region for a noisy signal after 4480 (first column,
N ) 32 K) and 4736 scans (second column,N ) 32 K). The
arrangement of plots in rows is similar to that in Figure 2.

Figure 9. Logarithmic SVD curves calculated for experimental data
presented in first (4480 scans,N ) 32 K and 16 K) and second (4736
scans,N ) 32 K and 16 K) columns of Figure 8.
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The methodology used here breaks the spectral bandwidth
into regions of smaller bandwidth (of the order of 200-500
Fourier grid points) called windows and carries out the analysis
window by window, reassembling at the end the total or parts
of the spectrum as required. This procedure reduces the size of
matrices encountered in the analysis to at most 250× 250 so
that their diagonalization takes computing time on the order of
seconds on today’s desktop computers. Our experience is that
the order of 30 s is needed per window because of an internal
iteration inside the Cadzow procedure. The number of windows
is on the order of, say, 50 for the total spectrum, so assuming,
as certainly is possible, software is written to control the
mechanics of applying the windowing procedure, a total analysis
should take on the order of 30 min. Even when one considers
the FFT processing to be essentially instantaneous, the tradeoff
of using the procedures of this paper, which as the case may be
will be seen to save from hours to weeks of machine time, can
well be considered as favorable. Often, as in17O NMR spectra,
only one window is studied and the total computing time is a
minute or so.

Importantly when replacing the usual methods of spectral
analysis by the new analysis for the case of experiments repeated
under similar parameters such as sample concentration, signal
length, and perhaps the experience based specification of the
number of transients, user interaction can be altogether avoided
after a few initial experiments. The initial experiments would
follow the total algorithm of this paper to determine the number
of transients needed to satisfy the threshold for cutoff criteria
and use it without cycling in future experiments. For example,
the fractional reduction in transients needed relative to the usual
analysis using only signal averaging is, for13C chemical shift
spectra, on the order of 1/60. If now one is willing to accept a
fraction of 1/30, one could assume with certainty that the signal
satisfies the criterion for cleaning by Cadzow regularization and
thereby avoid user interaction. Similarly, if one knows in
advance the weakest signal in a spectrum and works first in a
window about it as is the case in Figure 2, the number of
transients used in this first window to satisfy our criteria is
guaranteed to be enough in other windows, again avoiding much
of the cycling. To further eliminate the everyday need for user
interaction, tables ofNtr cutoff threshold that depend on nuclear
isotopes involved, molecular concentration, functional group,
etc. are expected to follow acceptance of this methodology. In
our experience, for threshold determination for a class of
experiments, it is better to carry a converged Fourier analysis
and to work backward to determine transient thresholds.

The factor 64 of time saving for the13C case comes from
the observation that for single isolated lines, when the gap opens
and the windowed noise reduction processing begins, the
intensity of lines near true signal lines, whose position we
eventually know, is roughly 1:1. S/N) 8 is desired, hence the
factor 64 in experimental efficiency relative to any given signal.

Is it possible to miss a low-intensity line using the signal
“cleaning” scheme? The answer is exactly as in signal averaging
and is “yes” if you do not scan enough. Here we have a factor
of roughly 64 advantage and can claim that the method
introduced here will miss fewer lines than are missed in the
signal averaging plus FFT processing scheme for a given number
of scans. Of course, for a series of lines the above discussion
holds for the line of smallest expected intensity.

Can “extra” and fake peaks appear as in the past when SVD-
based methods were used? The answer is “no” when the criteria
for the signal “cleaning” scheme are fulfilled and allow cycling
to be stopped. This might occur before this point. For example,

this occurred as we converged to the sixth carbon in the
INADEQUATE spectrum. The half-length signal forNtr ) 3712,
which was below convergence in CS+ HI, gave what turned
out to be almost identical with our final converged spectra, but
the full-length signal gave an increasedK and an extra line.
This all went away with increasingNtr.

It is the open gap and the convergence of the spectrum as a
function of signal averaging that matters most. Just as in pure
signal averaging, any uncertainty is met by averaging more
transients. Still, big savings are made: no great price is paid if
a factor of 64 is reduced for confidence to a factor of say 50 or
even 25. The big difference between how the harmonic inversion
model was used in the past and how it is used here is a
determination not to stick with the given signal and its S/N ratio
but to converge the spectrum with respect to the number of
transients once a gap opened; the gap in turn was “forced” to
open by increased signal averaging and the increasing S/N ratio.
Essentially the signal was rejected until it was “cleaned
enough” . The fact remains that with all this increasing of signal
averaging done here the spectrum is obtained with many times
fewer transients than with pure signal averaging.

The noise reduction method may be able to be extended to
other signals if a signal vector-subspace relationship such as
eq 2 can be developed. This can be done for some multiple-
dimension basically Lorentzian signals, and further development
is being pursued in this laboratory. Here, as Mandelshtam and
Shaka have shown,22,23the high-resolution feature of harmonic
inversion can contribute for many reasons with the most obvious
of them being the ability to resolve frequencies in the “short
acquisition direction”.

The method used here gives the same type of savings in scans
and improvements in resolution for proton NMR, but of course
the real time savings are not as spectacular since these
experiments do not take such long times in the first place.

The ability to shorten the time needed to produce a “cleaned”
spectrum bodes well for carrying out experiments that only scan
a short time. It also bodes well for observing spectra of those
unstable species that survive the now shortened measurement
time but do not survive the longer time. A lower “enrichment”
of isotopes may be needed using the “cleaned” signal plus
harmonic inversion method.

Even though spectra are Lorentzian, if the Lorentzians overlap
significantly, parameter estimation from the spectrum is prob-
lematic. Since the methods of this paper should work in this
case, the harmonic inversion method should yield the parameters
directly without viewing the spectra. Some very preliminary
work on 17O -13C splittings attests to this.24

Clearly the model, eq 2, requiresK e Nd/2. If this is not
true, the number of unknowns (dk, ωk) exceeds the number of
givens,cn

NR. Depending on field strength, this may not be so
for big molecules such as proteins, and this could extend the
limitations of our method to treating Lorentzian spectra for
molecules with a quite high density of lines. Proteins may be
out, but only further study will make this clear. At least care
must be taken and experience gained if this method is to be
applied to dense spectra. The happy thought is that despite the
enormous current interest in proteins, the large majority of
everyday NMR experiments in chemistry laboratories are of a
type we can impact.

The most original aspect of this work is the recognition that
using successively the signal averaging and the noise reduction
preprocessor in conjunction with the “SVD gap” criteria of
section 2.2 for switching between the two yields an acceptable
spectrum with many fewer transients. The individual compo-
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nents of the algorithm such as windowing, signal averaging,
noise reduction preprocessing, and the harmonic inversion
processing were all separately available. As is often the case
for many advances, this advance in shortening the measurement
time combines the components in a way they have not been
previously combined to produce the reported algorithm. We
know of no other algorithm that can achieve this time reduction
for real experiments.
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Appendix: Confidence Spectra for the Single Lorentzian

To model our process of analysis using the same bandwidth
and signal length as in Figure 2, random white noise perturba-
tions were added to a single damped exponential signal to form
2000 independent noisy realizations chosen to satisfy three
criteria simultaneously. First, a gap as in Figure 1 had to be
evident; second, the realizations with S/N≈ 1.2 had to show
locally about where we knew the true peak to be, a roughly 1:1
“signal peak” to noise peak intensity; third, the resulting Im(ωk),
width parameter, had to be below-0.5, i.e.,Γ g 1 Hz, because
when very narrow peaks occasionally occur, a small change in
Ntr, something done in practice all the time in this method, wipes
them out. That is, a too narrow peak is double checked and its
width (not existence) is almost always not robust. The result
for harmonic inversion, Figure 10, shows that obtaining the
width is the main source of error and, since the maximum peak

height is Re(dk)/|Im(ωk)|, causes the somewhat large root-mean-
square (rms) deviations at the line center in Figure 10. The
difficulties with the Im(ωk) relative to those of the residuedk

and position Re(ωk) are generic to all HI methods and also all
methods in computational physics which compute for nontrivial
examples, poles in the complex plane. Such methods include
the direct calculation of resonance contributions to the cross
sections in scattering theory and pure scattering calculations
where resonances are then fit to Lorentzian parameters. What
helps for harmonic inversion, as seen in the insert in Figure 10,
is that dk, the actual amplitude of the signal, is given to an
accuracy of about 4%, albeit with a precision of 20%. Changing
the S/N ratio from 1.2 to 1.7, equivalent to a doubling of the
number of scans, improves these numbers to 1% and 15%,
respectively.

For CS+ FFT again the Re(ωk) frequency is excellent, the
imaginary part is poor, but the amplitudedk, here the area/π,
has an accuracy of 10% and a precision of 2%. The accuracy
estimates given here may be a bit pessimistic because our results
are compared to the exact model parameters and not to
parameters obtained by signal averaging. The latter may have
canceling leakage and baseline estimation errors.

Harmonic inversion used on model signals that have no noise
gives essentially perfect parameter values. As such, it should
be no surprise that the rms error decreases with increasing S/N
ratio, i.e., more transients. Future studies of this functional
dependence may suggest the costs involved in terms of
increasing numbers of scans needed to obtain various levels of
confidence.

Different confidence levels will be associated with each model
spectrum’s features; e.g., near degenerate Re(ωk) and “small”
Lorentzians at the base of large features will give lower
confidence levels. In the future extensive confidence studies
will be made of such cases as well of others that are commonly
encountered.

Testing for confidence by decreasing in successive problems
a high S/N ratio until the method works does not make sense

Figure 10. HI confidence spectrum obtained from 2000 independent white noise realizations added to a single Lorentzian peak with parameters
shown in the insert and S/N) 1.2.
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here, because our method essentially gives a threshold of
detectability as roughly locally 1:1.
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