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Saving Measurement Time in'3C NMR Spectroscopy
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An algorithm to produce acceptably accurate Fourier transform NMR spectra using many fewer transients
than commonly obtained is introduced and applietf@chemical shift and one-dimensional INADEQUATE
Lorentzian type spectra. The algorithm supplies criteria to recognize when to stop transient collection at a
time too early for an acceptable spectrum to be produced by Fourier signal processing but not by harmonic
inversion signal processing.

1. Introduction stable solution and spectrum to be found. When noise is not

) ] ~ present or there is little noise, all these harmonic inversion and
In NMR spectroscopy the main method of signal processing regylarization methods work well and give similar results.

is that of the Fourier transform (FT). In most experimental NMR - y5\vever, there is a noise threshold above which they can give
studies noise is sufficiently prominent in the measured free gitfering results, sometimes producing spectra with false or
induction decay (FID) time signal so as to make the Fourier missing lines if a signal is “too” noisy; as such the method

processed spectrum unacceptable in the sense that the underlying, o4 not be used above this noise threshold. Thus, the problem
spectrum cannot be extracted from the noisy one. The problemijg o\ to formulate such a harmonic inversion based signal

of reducing the noise level is approached in several ways. The ,5cessing scheme which will be able to produce acceptable
most used method is the ubiquitous signal averaging over manygpecira from noise reduced signals created by averaging a
transients or scans. In signal averaging the signal grows relativegyajier number of transients than will be required by the Fourier

to noise quite slowly asy/N,, Ny being the number of  method to get the same quality spectrum. Here, “acceptable”
measured transients. Moreover, there are often other considermeans, simultaneously, no fake or missing features, no unde-
ations, such as sample concentration, field strength, and NMR termined “regularization” parameters, and small enough errors

machine design, that affect the signal intensity and cause thejn the predicted Lorentzian parameters.

needed number of transients to be very kigl high in fact

. . L This paper suggests a windowed signal processing noise
that some experiments are just not done. Additionally, when bap 99 9 P 9

high tral lution i ired. the Fouri thod dreduction strategy which is based on an eigenvector type signal
Igh Spectral resoiution IS required, the Fourier methods nee processing theory to devise a conceptually simple and unde-

Io_nger signals. As the ide_al noiseles_s FID deca_ys in time, the manding computational scheme to greatly reduce the number
signal samples at longer times contain I_arger NOISe COMPONeNtSy¢ neasured transients (scans) required to obtain a Lorentzian
and using them can be counterproductive. . type spectrum reconstructed from originally noisy data that have

_Many NMR data processing methddstry to improve this  an acceptable level of errors in the Lorentzian parameters such
situation by attempting to maximize the extraction of signal 54 frequency position, width, and area under the Lorentzian.
information from noisy data using a priori knowledge regarding o aim is to greatly reduce the machine time used to measure
the underlying signal model. One general method, which is used 5 spectrum or to enable new experiments to be done which
in this paper, is the harmonic inversion method. This method presently require unacceptable amounts of machine time.

i i 10
ﬁg;?s rl(ra] d?;{?%lﬁr;%ﬁ: ?ggrggt?o%%:;;Jgigeglf;"c;aggggs S The strategy defines two qualitative criteria that depend on a
P ' pp g ! signal constructed by averaging measured transients. The first

:ﬁgyr:ggf/?e?si:)isg(l)\:)%;lfl'r:;ar?::r?g?\i:niﬂvgIrtsei(r)ndr:qaeq(ﬁgzlZ(?r::g\r;es criterion (section 2.2) is mathematical and uses the signal to
a higher spectral reéolution for a given signal lendtithan construct a correlation matrix, the graph of whose eigenvalues
Fourier transform. This is due to the fact that the a priori (smgu_lar_vall_Jes) s_hc_)wacharacterlsuc gapin thelr\_/alues_when
information used Here is that a linear combination of complex the criterion is s_atlsﬁed. The second criterion (sect|_on 3)is th_e
decaying exponentials is assumed to be a good model for an2he common with the signal averaging plus Fourl_er anaIyS|s
method, that is, the acceptance of the spectra when its prominent

FID signal. The equations that relate the measured signal tOfeatures are stable to further measurement. Satisfaction of the
the model when solved yield directly the position, width, and .. : o . .
criteria determines when no further noise reducing signal

intensity (area under the line) of each resonance, and from themaveraging is needed for it to satisfy a model of the signal plus

a spectrum can be reconstructed. The said equations arenoise assumed by a mathematical noise reduction method, that
generically ill-conditioned, which means any solutions are y ’

3 . o
extremly sensitive to small noise perturbations. To fix this, of Cadzow:* At this point it is shown that even though the

various regularization techniques are udédlwhich enable a Fo_urler transform of the s!gnal will usually give an unacceptabl_y
noisy spectrum, Cadzow’s method can further reduce the noise

- - S0 as to produce a “cleaned” signal.
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it at first appears that the method will always require for the time, but if singlets are close, several can be studied in one
experimentalist to work interactively with the measurement in window. Here for the singlet spectrum and the INADEQUATE
order to determine the number of transients and ultimately spectrumNy are set to 200 and 300 Fourier grid points,
machine time needed for the convergence of the spectra. Thatespectively.
this is not true is explained in the discussion, section 4, where At this point the “decimation” window program takes over
experiments are suggested to calibrate our methods so as to givand produces a signal of lenghty, calledc®, “bl” for band
tables of thresholds for the number of transients needed to satisfylimited, out of the measured signal of lendthcalledc,. This
our criteria in any generic class of experiments. is inputted into the noise reduction scheme described in section
All examples presented in section 3 were chosen by our 2.2. The production process, described with formulas in ref 3,
acknowledged colleagues to be challenging. The windowed is here discussed in words. In the usual Fourier spectrum of a
noise reduction strategy method is first applied¥® chemical signal made of a given number of scans, all intensities outside
shift problem and then to the one-dimensional (1D) INAD- the window of Ny Fourier grid points are set to zero. The
EQUATE experimental test problem. Here the INADEQUATE window spectrum is then shifted symmetrically about zero
experimental example was analyzed because it was the mosfrequency and inverse Fourier transformed to produce a “new”
noisy spectra we could think of when done in one dimension. signal. Since the original bandwidth was/2 (z is the sampling
We are aware that it is better to do INADEQUATE in two or delay time) and now is reduced by the fadifN, the new
dimensions using an algorithm such as perhaps FRED. effective sampling or delay time will bi7/Ny = 74. Hence the
section 2, we give some of the mathematical details used in band limited signal witmth elementcﬁ' = cP(nzy) is just the
our signal processing scheme: (i) the windowing technique “new” signal element numbered= 0, 1, ...Ng — 1. AsT =
(section 2.1); (i) the noise reduction preprocessor (section 2.2); Nt = Ngrg, resolution is not affected by this signal length
and (i) the harmonic inversion spectral estimator (section 2.3). reduction. After all processing the real part of the frequencies
Section 4 briefly summarizes our ideas. In the Appendix, we must be shifted back to the original origin. Results near window
present results of a statistical error analysis of the parametersedges are not reliable.
and the confidence spectra for the single Lorentzian obtained 2.2. Noise Reduction PreprocessofThe noise reduction

with the suggested noise reduction scheme. procedure takes a noisy signal and creates a low noise signal
from it. This involves several steps detailed below, and we mark

2. Windowing those sentences to distinguish them from the associated discus-
sion.

2.1. Windowing. All processing is done here by breaking
the fast Fourier transform (FFT) spectrum into windows of-200
500 (300 is usual) Fourier grid points. The reasons for
windowing as done here is that for the noise reduction part of
the problem (i) without windowing the so-called singular value

decompositiof (SVD) graphs, to be discussed below, become 50 The measured signal vectors can be assumed to be the

too _cIuttered with __S|gnal a_md noise Slngular value points to be sum of an “actual” signal vectot, and a random noise vector
easily analyzed; (ii) certain windows will be much simpler to z

process than others and not windowing unnessarily ties all
features to the features most effected by noise; and (i) without =% 4% (1)
windowing the dimensioiN/2 of a Hermitian matrix arising in nooonen

the Cadzow method (section 2.2) would be so large '[hataneededl.he harmonic model that fits much of NMR. and often ICR

ﬂlagonalllz'atlon .cogld bedcomed toq tlme-ctonsumlng”. W.henlfurther assumes that the noiseless time signal elemgrase
armonic INversion Is used, windowing creates a smaller Signal .o yraq from the sum d damped harmonics; i.e., this spectrum

gf tlengf[h N t;< N'. g:g on]!yﬂl]n thetW|ndov¥, Wh'cth in tturnb is the sum oK complex Lorentzians is the “rank”, not always
etermines the siz , Of the systems of equations 10 D€ .0 hymper of observed spectral peaks as sometimes two or

solved. Since these equations have a rank less than their .
) . - . more Lorentzians underly one spectral peak. The model can be
dimensionNgy/2, they are ill-conditioned and unstable and the y b P

. i expressed vectorally and sample by sample respectively as
results may be very sensitive to small perturbations. For P y pie by P P y

sufficiently small matrices which windowing ensures, the K K
problem can be ameliorated by regularization procedures as the X, = ;‘dkzkn 3, and x, = dezkn 2
truncated SVB used here. = &

The edges of the windows are at Fourier grid points. Their
placement ideally, based on prior knowledge or hints from the where &)™ = (1, z, 23, ..., zM 1), z = exp(~iwkrd), wheredy
noisy FFT, surrounds regions of signal and begins and ends inis the amplitude andwvi is the complex frequency whose
regions of pure noise. In less than ideal situations a systematicimaginary part is assumed negativa. is then a damped
windowing of the spectrum can be designed for all regions. If exponential in the time domain. The real part ©f is the
peaks, because of spectral density reasons, unavoidably appedrequency, and the modulus of imaginary péam(wy)| is twice
at window edges where window induced distortions will occur, the width of the Lorentzian of heigtti/|Im(wy)|. The rank or
an additional window should be chosen so that the edge of thedimension of the signal spa&eis not an input and is determined
prior window falls interior to the new window. This is possible by the processing. Since the vectgrare linearly independent,
because windows do not know about each other and can overlapthey form a basis set for a signal space in which must lie the
Choosing windows is generally not a problem and becomes evensignal vectorsk,. The problem is to now find the signal space
less so with experience. Here the region of the spectrum wherewithout first finding the vectorSc. Then the measured vectors
13C singlets appear is roughly known as is the fact that the-spin €, will be projected onto the signal subspace and the projections
spin splittings are located about their base. This makes the choiceaken as the “cleaned” signal vectors. In the field of signal
of windows trivial. It is usually better to work one singlet at a processing this all is a textbook problédf and only the

Working with theNy decimated time signal samples (we
drop the superscript “bl”), it is noted thaly — M + 1, where
M is roughly Ng/2 (small variations are not important), and
linearly independent “measured signal” vectogs= (Cn, Cn+1,

..., Cn+m—1) Can be created which define Bfidimensional vector
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prescription is given here. From tleg the M-by-M Hermitian 14 ; : 14 : -
covariant correlation matrix is constructed (step 1) as K=? N=16K K=1 N=4K
N_tr=128 12 + N_tr=128 -
1 Ng—M 0
R = Nd——MJrl 2 Crti—1Cntj—1" 3)

Using a standard, computational®(M3) diagonalization 10 . s 6 : :
routine, R is diagonalized (step 2) and the real, nonnegative 10 20 %0 10 2 80
eigenvalues;, also called singular values, and eigenvectprs 14 ' ‘ 14 ‘ ‘

i =1, ..,M, are obtained and indexed so tisat s+1. A plot N=16K =1 N=4K
of In s against index is then produced. Now i were known, =2 g‘/—h‘l’i:zz 2 N=192 1

the firstK eigenvectorsi; would be associated with the signal
subspace. The compliment space, orthogonal to the signal
subspace, is the noise space. For an ideal white noise problem
the rankK can easily be spotted as the number of low
eigenvalues that are widely separated relative to the remaining 10 . - 6 -
M — K noise eigenvalues which are constant and equal to the 10 2 . 10 2 %
mean square noise strength. They form a horizontal “string of 4 ' ' 14 ‘ ‘
pearls” to the lower right of the smallest “signal” point. The N=16K K=1 N=16K
distance from the first noise point to the signal point is the “gap”. K=1 N_tr=256 |12 L N_tr=2560
Figure 1, bottom right, shows an example of a graph ofIn \ S/N=1.0
versusi for what is a high signal-to-noise (S/N) ratio damped
exponential signal case. Note the “gap” between the noise and
noiseless singular valueK is clearly 1. This “gap” appears -
even if the noise eigenvalues are not constant. In fact, they will 10 ' - 8 : :
be far from constant. Perfect “gaps” and constancy of the noise 10 2 %o 10 2 8
eigenvalues would require exclusively white noise, exclusively Number of SV (i)

Lorentzian lines, and a very larghly so as to create a Figure 1. Distributions of logarithmic singular values fnversusi =
representative ensemble averageRofThis in turn requires a 1, ...,M associated with Figure 2 (carbonyl region, strychnine spectrum)
large number of vectorg,. The nonconstancy of the higher and calculated for the correlation matrix eqh8.> 30 not shownN
indexed eigenvalues is due at a minimum to the finite statistics 1S the number of samples acquirdd; is the number of transients.

and the use of a window which as explained above is generally o o
necessary; nonwhite noise can also be a cause. increased scanning is our tool to get there. Even with increases

The “gap” in real cases can be estimated (step 3) by the saving in scanning relative to pure signal averaging should

recognizing that they always appear at the “elbow” of curves P€ 1arge.

as in Figure 1. When no gap exists, i.e., the method is not An obvious procedure that saves effort is to use any
working because the S/N ratio is too low, one gets pictures asforeknowledge to pick the window with the least intense and/
the two in rows 1 and 2 on the left in Figure 1. The qualitative or the most narrowly separated features. An example is the
change in the eigenvalue density and spacing (low on the left carbonyl region in thé3C singlet spectra. The number of scans
and high on the right) is an indicator of a gap. To understand here will be adequate for all remaining windows except when,
this separation physically, we recall that perturbation theory as will be seen, high resolution is needed to resolve some only
indicates that eigenvalues that are well spaced are much lesslightly less intense features. A most useful strategy is to, in
sensitive to perturbations than those in high-density regions; parallel, process,, n =0, 1, ...,N — 1, and the same, but
hence the identification of the former with signal and the latter stopped anma = N/2 or evenN/4. The advantage of this is
with noise, and the larger the gap the better. Perturbation theorythat there is less noise included in the loweg, case and

says that the noise subspace will have less influence on the signafnay become easier to estimate. When khealue estimated
subspace as the gap, which represents their eigenvalue differfrom the lowernma was used with the full lengtN signal, a
ences, increases. In the worst cases this separation will pin theyetier resolved but most often very similar spectrum was seen
value ofK down to within£1. Taking the+1 case is saferand  ggpecially if the projected signal was subsequently fed into the
often leads to no change in the spectrum. When changes do,,rmonc inversion analyzer. Cutting the signal length decreases
occur or when no “gap” can be clearly estimated, then the both resolution and number @f, vectors that can be formed

number of transients used needs to be increased and the Process i hence the statistics in the averaging of eq 3. Most of the
restartedin fact, it is usually the appearance of the "gafhat time the high-resolution analysis then restores resolution. The

determines the sufficiency of the number of transients for n0|seﬂrst two rows of Figure 1, associated with Figure 2 (section 3),

reduction to be implemented, for K to be estimated, for a local . . .
SIN ratio to be 1, and for transient collection to stop after shows this effect. The bottom left and right graphs authenticate
! the choice ofK = 1.

roughly another 5-10% of the already collected transients are
obtained. The extra number of transients is needed to test For now in this subsection we assuidecan be determined
various conergences. Noise reduction preprocessing followed and proceed to give the projection formula (step 4). In doing
by FFT or harmonic imersion signal processing can now take this we are basically following the wotkwhere this type of
over. Any uncertainty in gap estimation is met by increasing noise reduction method, which we adapted to the damped
the number of transients to test if the resulting spectrum is harmonic signal, was used for noise reduction in signals obtained
robust. Finding a converged spectra is the primary goal, and from human speech. The formula is

12 + S/N=3.3

10 .
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K
cy = Z(Uk*fn)ﬁk 4

k=
where ¢,) denotes the scalar, inner product of two vectors and
the asterisk (*) stands for complex conjugate. Given the
decimated signal vectoi&, we now have an estimate of the
Ng — M + 1 projected signal vectors & = ¢'. Since a
particularx, = ch = c,“]‘R element appears in multiple vectors,

Kunikeev and Taylor

K
X(t) =kdePk(t)eXp(—iwkt) ()

with the amplitude functione,«(t) approximated by &-order
polynomial (5) with coefficientsdy,. Since the data matrix
constructed from the signal (7) has the ragk= K + 3, Py,

the above noise reduction scheme can also be applied to this
type of signal ifK, < M. This might help to clean up those

an arithmetic average is taken (step 5), the result of which types C_Jf non-Lorentzian.spectraI features thf'slt can be well
restores the Hankel structure of the signal matrix as defined by apprOXImatgd by a Fo_uner t.ransfprmec.i funct!onal form (7).
Xam= Xn+m. THis is required by the model eq 1. As this averaging These possible extensions will be invesigated in future papers.

tends to cancel some of the corrections made in the projection,

2.3. The Harmonic Inversion Spectral Estimator. The

starting with the new signal the whole procedure is iterated (step cr“,'R, n=0,...,Ng — 1, which are hopefully very similar to the

6) to convergence several times (here empirically five iterations
are taken) to give the final denoised, cleaned signal.

Clearly a tradeoff is being made here. The first run of the
SVD can be proveft1”to give the best, in the least squares
sense, rank approximation toR (see the discussion of the
minimum principle in refs 13 and 15), but it does not preserve
the Hankel data matrix structure that is consistent with our

model, eq 2. Averaging the projected vectors sacrifices a bit of

the former to restore the latter. By iterating this diagonalization
projection—averaging procedure several times, we eventually
get aK-rank Hankel matrix approximation to the original full

rank noisy data matrix. Harmonic inversion methods are seen

by us and othet§°to give significantly improved results when

fed signals resulting from the Cadzow iterative scheme. Much
of the past harmonic inversion work omitted this step. This
makes comparisons of our work and past experience with

harmonic inversion method of uncertain value. Our method must

stand on its own comparisons to experiments.
Fundamentally, the noise reduction is done so as to create

at the reason the method is effective starts by putting eq 1 in
eq 4. This shows that\" still contains noise ag, is not
orthogonal tdiy, k =1, ...,K. It also shows that any randomly

oriented noise vector, which would have on the average equal

weights on allM basis vectordl,, contributes only a factor
proportional tov'K/M of its weight in the measured to ¢~
Clearly one wantdVl as large as possible consistent with the
statistics of eq 3, which improves with smalldras more terms
will appear in the sum.

Note that the model, eq 2, for the underlying signal is not
the only one for which the noise reduction scheme could be
applied. For applicability of the method it is sufficient for the
underlying data matrix,m = X,+m = X((n + M)7) to be aK <
M rank matrix. For example, this condition can be fulfilled for
a polynomial function of ordePy < M — 1:

Px

d>) =Y d
k pZO kp

with dyo = dk. Using Newton'’s binomial formula, one can write
a data matrix in a factorizable form:

®)

Py

P
A7Ym= &K + m)7) = d..Co &(n) e, (M) (6)
K K ;JZO; kpp €

whereCy = pl/[(p — 1)!I!] is the binomial coefficient ane(n)

= (nr)'. We wish to find the rank of this matrix. Since the
vectors@, | = 0, ..., Py, with components{a(n)}h, are
linearly independent, the rank of matrix (6)R% + 1. One can

suggest a more general ansatz for the signal:

a

signal that is better represented by eq 2. Another way to look far frgm resonance lines, R@)]. -
to the signal is properly phased, i.e., diis are real), so to get

exact noiseless signal sampbes can be Fourier transformed
or subjected to a harmonic inversion analysis to give the
spectruml(w) which can be presented in absorption, IRe]],

or magnitude, |[I(w)|, form. The infinite discrete Fourier
transform (DFT) (orz-transform) of the signal described by eq
2 is given by

d
l—zk/z_

0 K
(W) =14) X2 "= rdZ
n= k=
K dk
8
Tdkzl 1— exp(i@ — 0ty ®)

wherez = exp(—iwtg). The right-hand side of eq 8 obtained as

a result of summing up an infinite series of signal points is the
harmonic inversion spectral estimator expressed in terms of
harmonic inversion parameters. |lfw — wWtg < 1, eq 8
reduces to a sum of complex Lorentzians. In the spectral regions

(Td/2)3 s de = Tox0/2 (if

zero baseline the constanixy/2 should be subtracted from eq
8.

Let us construct from the signal eq 2 an infinite Hankel matrix
Xnm = Xntm = X((n + M)7), n, m= 0, 1, .... Then the matrix,m
has a finite rankk and there exisK numbersay, oy, ..., 0k
such that

K
= _ =K, K+1,.. 9
Xq kZakxq « (@ ) 9)

(see Vol. I, Chapter XV, Section 10, in ref 20 for proof). The
linear prediction (LP) equations (9) enable one to calculate all
the signal points knowing the fird€ signal points and th&
LP equation coefficients; the LP coefficients in turn can be
obtained as a solution of the systemkoLP equations.

If the infinite matrix x,m is of finite rank, then the DFT of
the signal can be summed up to a rational functioz (fPade
approximant°

(w)=1,)IxZ"=7

P«(2
%@

where Px(2) = S1_; b k1 and Qu(2) = i, az<* are,
respectively, numerator and denominator polynomials whose
coefficients can be calculated from the following system of
relations:

(10)

k—1

bk = a-rxk—l—r

r=

k=1, ...K) (11)
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K
Z)akxq_k= 0 @=KK+1,.,X-1) (12
k=

Settingox = —aw/ag, k=1, ...,K, we can write the relations eq
12 in the form eq 9. Therefore, tha coefficients can be
obtained as a solution of a set of the LP equatfondiereas
the b ones can be obtained from tlegplicit relations eq 11.
The harmonic inversion parametergor wy, can be found,
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128 scans (8 min. 15 sec.)

256 scans (16 min. 30 sec.)

T

N=16K

NS+FFT S/N=0.7

L |

N=16K
S/N=1.0

LT

) i

NS+FFT

NS+MF+FFT T=0.1 sec.

NS+MF+FFT  T=0.1 sec.

if necessary, by rooting the denominator polynomial. This
problem can be effectively reduced to the diagonalization of
the companion Hessenberg matti¥. The parametersl, are

calculated via the residues of the Pade approximant eq 10 at " : 1 }
the positions of the corresponding complex pate$

3. Examples

In this paragraph we first discuss a few “considerations” that
face the user. (i) It is well to remember that higiheflength of . ; ' ‘
signal), because the underlying signal is damped, means a higher
fraction of noise is present in each new sample. As such, the
gap and hencK will be seen first when a low is used. If the JL
signal had, say\l = 32 768 samples, investigatifg= 16 384
incurs no extra experimental cost. Care must be taken when . , R .
using this “helpful” idea. First, if the need to resolve very close 169 168 167 169 168 167
peaks exists, th& gotten from a shoriN, which can fail to
resolve two peaks, may be too small. On the other hand,
lowering noise by noise reduction and not signal shortening Figure 2. 1D 3C NMR absorption spectrum of a 15 mM solution of
always makes resolving close peaks easier. (ii)Nif is strychnine in CDQfor a carbonyl spectral region and with signal after
insufficient, extreme noise singular values can end up on the 128 (first column) and 256 transients (second column) of lehgth
signal side of what appears to be a gap and signal singular valueg-8 384= 16 K computed by, respectively, from top to bottom: NS

: - . . FFT — experimental noisy data; N$ MF + FFT — matched filter
could (or could not) appear on the noise side. Respectively, this, i, exponential envelope, exp/T), followed by using FFT; CSr

gives extra unphysical lines and missing lines. Closely spacedH| method, i.e., windowing, then noise reduction followed by using
lines make everything more difficult. As will be seen in our high-resolution harmonic inversion spectral estimator; €SFFT
examples, since these contrary considerations cannot be sysmethod, i.e., windowed noise reduction followed by using FFT. Pure
tematized and can be recognized as spectral nonconvergencesignal averaging is estimated to use 16 h of scanning for similar results.
we will simply always increasBl; and seek both to open a gap
and to converge the spectrum with respect to incredsingsing

CS+FFT K=1 CS+FFT =1

o

Chemical shift (ppm)

The given foreknowledge was that an amide carbonyl was

the full given values oN. This will be our ultimate test and  in the molecule and that it was expected to give the lowest
strategy. amplitude signal of all the carbons. We knew it must be in the
If software were available, one could work interactively and 161—175 ppm region, so we placed two windows there each
stop the experiment when gaps opened and spectra stabilize®f 512 Fourier grid points (FG pts). Here, 74 FG pts is
for the estimated weakest features. Here we simulated working@pproximately 1 ppm. At 256 transients,(= 256) a converged
interactively by generally obtaining signals that had about 1/25 result was obtained and “the experiment was stopped”. For
of the number of transients that signal averaging alone would Presentation purposes the gap opening and spectral convergence
have required for the case under consideration. The fraction 1/25in this region was easier to view in the window of Figure 2.
was chosen because as will be seen below it was what was! he second column is shown to demonstrate convergence of
needed for the noisest, most difficult to resolve INADEQUATE the processing. The top two (row order) sections of this figure
splitting we worked with. Our transients came in pulses of eight Work with the original noisy signal (NS) and the latter two work
scans, and we processed signals for increasing numbers of pulse¥ith the cleaned signal (CS) obtained after the Cadzow noise
until a gap opened and the spectrum stabilized for the weakestreduction preprocessing (section 2.2). All but the third use the
features or until our transients were consumed (the latter did fast Fourier transform (FFT). The second row entry exemplifies
not occur). the use of the matched filter (MF) variant of Fourier noise
The chemical shift spectra of strychnine is our first test case. reduction processing. The addition of letters such as “CS” or
For the example of a 15 mM solution of strychnine in CRCI ~ “NS + HI” or “FFT" tells which signal and which spectral
a spectrum showing all the chemically shifted singlet lines with €simator is used, respectively. The harmonic inversion spectrum,
the parameters obtained with an acceptable level of accuracy ishot being on a Fourier grid, is drawn on a 1000-point grid in
achieved on a 20-year-old AM-360 MHz machinetwét5 mm  the window of the spectrum in the figures.
diameter tube after 128 and then 256 transients, Mith 16 384 Figure 1 shows the SVD analysis that goes with Figure 2.
samples, are measured and averaged. This represents a tot&8tarting with the full giverN = 16 384 signal, 256 transients
acquisition time of 8 min 15 s and 16 min 30 s, respectively. were needed before the “string of pearls” with no gap obtained
Although times will vary among different machines, tube size, previously for 128 and 192 transients converted to a case with
and concentration it should be noted that all our comparisons K = 1 and a clear gap. At this point the S/N ratio was 1. Most
are between the same machines, tubes, and concentrationsuseful at times is when the first quarter of the signal was used
Relative time savings should then be invariant to changes in for noise reduction at both 128 and 192 transientX A= 1
machine. gap showed up, as these signals had less noise. Now if the full
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Figure 4. Logarithmic SCD curves calculated for experimental data

Figure 3. 1D **C NMR absorption spectrum of 15 nM solution of  presented in left (128 scans) and right (256 scans) columns of Figure
strychnine in CDC for deuterated chloroform triplet peak spectral 3.

region for noisy signal after 128 (left column) and 256 transients (right
column) of length 16 K. The arrangment of plots is similar to that in
Figure 2.

Chemical shift (ppm)

average sample data was used as before. We folf@isinglet
at 77.3 ppm buried in the base of the deuterated chloroform

. . triplet peaks. Figure 3 shows the results for the number of scans
length signal for 128 and 192 transients Was.then. assumed toWhere a gap was evident (see Figure 4) and where the spectra
haveK = 1 and projection was done on the first eigenvector,

; . d (Fi 3) with t to the strychni k. A
Figure 2 shows excellent results were achieved. The quarter-convelrge (Figure 3) with respect to the strychnine peak. An

length signal was too short to use throughout the analysis butimportant point should be made here. When using signal
it was good enough to help in SVD analysis. The added averaging at about eight scans, a gap correspondifig=o3

. 7 ; emerges and the spectrum contains the three solvent peaks. At
information led us o accept the 256 transient res_ult a5 128 scans two more break free and the shift peak appears in

converggd ' Las_t, since the ”?ethOd was new, for conflder!ce the spectrum. To test the convergence of the spectrum, 256 scans
an experiment with 2560 transients, which by signal averaging

: . ; were processed to give a similar result. If lines of greatly
had a ffactor of about 3 higher S/N ratio, was done. Figure 1 different amplitudes exist, one cannot stop at the emergence of
shows it gave the sami¢ = 1 result and the spectrum (not

h L f i - i th tthe first gap. The story is the same as with signal averaging,
fsorolnv n)—eZXSCngoostts di%acl)wl?heeﬁgop\)lggigovxaasn d SV%aterghaasn gea except that for the new method it all happens at many less scans.
PR A The spread of three high and two low singular valueskior
with transients, calculations foy, = 256, 384, 448, and 512 P g g

o ! 5 that can be seen in Figure 4 supports this argument.
were done, and the deviation of the results of the first four from g PP g

the fifth was taken. The average deviation was 0.001 ppm for Another point is illustrated here. The additional increase by
S ) : v two in number of signal singular values does not mean the peaks
the position at 168.646 ppm and 1x810~2 ppm for the width g g b

. - ) increase by two. The convergence of the spectrum also counts.
of 4.8 x 1073 ppm. Such performance is consistent with the y g P

: - In fact, if the number of transients increases by a factor of 10,
confidence spectrum and further analyses shown in the Ap-

dix. The i fline heiah il be add dth H we have seen tha& can change to a value of 11 but the
pendix. The issue of line heights will be addressed there. erespectrum is essentially unchanged. The non-Lorentzian parts
we simply note that, for the type of line in Figure 2, the area is

btained with S £ 2% and ‘b h of the spectrum cause this phenomenon. By non-Lorentzian parts
cl)ozjune with a precision of 2% and accuracy of better than e mean the parts associated with the solvent. These peaks
0.

suffer from concentration and measurement effects and are not
In routine Work, not work aimed at demonstrating the various Lorentzian, especia”y in the over|apping solvent and Samp|e

above ideas, in such cases as here, the user would just stickeak regions and baseline regions. Our calculatian,ahows

with N = 16 384 until a gap opened up arouNg = 256. AK that the chemical shift peak is one pole. The non-Lorentzian

= 1 would be read off. With no extra experimental workMn  solvent peaks require nine poles for representation. One extra

= 8192 or 4096 could be run to see thais still 1. If it was pole is well away under the baseline.

not, the number of transients would be raised. The total spectrum is in Figure 5. For the rest of the spectrum
As a second example, a window was placed about solventusing theNy = 256 signal, windows indicated in Figure 5 were

peaks as in Figure 3, because it was expected that if a chemicaput down and in each window a logarithmic singular value graph

shift existed here it might be difficult to see due to the size and immediately showed a clear gap withkavalue equal to the

baseline of these peaks. The same 128 and 256 scan signatumber of lines in each window as seen in Figure 5. The
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Figure 5. 1D 3C NMR spectrum of 15 mM solution of strychnine i~ Figure 6. 1D INADEQUATE, spin-spin interactiort*C—1*C spectrum

CDCl; with signal after 256 transients of length= 16 K. Vertical of 5% solution of dicyclopentadiene in CDClor the fourth carbon

lines on the top panel show window edges. spectral region for a noisy signal after 2432 and 2560 scans of length
N = 32 K. Pure signal averaging is estimated to use 2 weeks of scanning

. . . for similar results. The arrangement of plots in rows is similar to that
resulting windowed spectra were merged to form Figure 5. All i, Figyre 2.

21 chemical shifts are now seen using 256 transients taken on
our machine in 16 min 30 s. Windows where no signal showed gyp curves. The time used was 12 h as opposed to 2 weeks.
up were recognized by the fact thalt singular values dropped  The matched filter was of no use.
significantly in value, as would be predicted by perturbation  The sixth carbon, Figure 8, our last example (although all
theory, as more transients (and less noise) were used. When &arhons were processed successfully) was confusimi at
window has both signal and noise as in Figures 1, 4, 7, and 9,3712 (our first estimate) becaule= 16 384 andN = 32 768
the signal singular values stabilized and do not consistently andnot only had different rank, 7 and 8, respectively, they also had
significantly drop in value as does the noise. This distinction is gifferent spectra, with a fourth line on the right-hand sideNor
important because what appeared to be a gap With 1 did = 32 768. As such, the number of transients was raised several
appear in one signal-free window. It was recognized as noisetimes until atN;, = 4480 the gap given bl = 16 384 and
because it dropped in value precipitously between 128 and 25632 768 (Figure 9) was clearer and consistéht= 16 384 with
transients. less noise gave us confidence that the galg of 7 was correct

To further demonstrate the method'’s ability to save transients, for N = 32 768. Here, as Figure 8 shows, spectral convergence
an FID signal from a 1D INADEQUATE experiment on 5% was achieved and tested by using 4736 scansNgo+ 4736
dicyclopentadiene in DCglvas studied. Windows surrounding  the gap situation was the sameNs= 4480 (Figure 9).
the fourth carbon at 54.75 ppm (see Figure 6) and the sixth The observed splitting of 28.9, 32.1, and 37.7 Hz is within
carbon at 46.15 ppm (see Figure 8), in a number scheme thatl.5 Hz (at worst) of that in a 95% solution spectra (which of
increases with decreasing ppm, were used as an example of &ourse required quite a few less scans and may have concentra-
“typical” and a “difficult” case, respectively. Our foreknowledge tion effects). It is quite hard to estimate the number of scans
was the position of the singlets and the order of magnitude of and the time needed for signal averaging plus FFT to resolve
the splitting which made the choice of windows easy. We noted the middle line on the left-hand side, but for estimating the time,
the fact thaK could be slightly more than twice the number of  units of weeks would not have been out of place. The matched
splittings (which we pretended we did not know but which is filter on the FFT could not resolve what turned out to be close
not more than four) due to the fact that for the experiment done peaks. It was unsatisfactory in general. This was as difficult an
at our NMR facility the singlet central line was not totally wiped example as we and our colleagues could think of, as it was
out and in fact could appear as several lines. both “extremely noisy” and had lines that were difficult to

To start, we first tried 2176 scans (not shown) and Both resolve.
16 384 and 32 768 for the fourth carbon. The former géve
7; the latter gavé&K = 6. For the purposes of estimatikg we
suspected the less noisy = 7 was correct. To be sure, we The new processing methodology presented here envisions
raised number of transienks to 2432 and 2560. Both gave a  the use of signal averaging of transients until, for the case of
clear K = 7 at both half and full lengths and a converged an individual line or window, a gap appears and most
spectrum as seen in Figure 6. Figure 7 shows the correspondingmportantly a spectrum becomes stable to increases in the

4. Discussion
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Figure 8. 1D INADEQUATE, spin-spin interaction*C—3C absorp-
tion spectrum of 5% solution of dicyclopentadiene in CPfor the
Number of SV (i) sixth carbon spectral region for a noisy signal after 4480 (first column,
N = 32 K) and 4736 scans (second columd,= 32 K). The
arrangement of plots in rows is similar to that in Figure 2.

Wy, 5 )
0 20 40 60 80 100 O 20 40 60 80 100

Figure 7. Logarithmic SVD curves calculated for experimental data
presented in left (2432 scans) and right (2560 scans) columns of Figure

6. — T . T T T
number of transients. This says that the existence of a stable 4, N=32K 111 " N=16K i
spectrum and of a gap will give a result of a quality that signal N_tr=4480 N_tr=4480

averaging would give with many more transients. Nidteeed
not be constant when a Lorentzian line is sought in the presence
of non-Lorentzian ones as our examples show. 9
The “cleaned” spectra reported here look unfamiliar in two
senses. First, there is no baseline noise and, unlike when running
an experiment using signal averaging followed by Fourier 7
transform, no operator interactive way exists to know, based
on the signal-to-noise ratio, when to stop the experiment and
“accept” the spectrum. Second is that when harmonic inversion
is also used (CS- HI in the figures) the lines seem unfamiliarly
high and narrow. These are not real difficulties for the noise
reduction or harmonic inversion methods but simply reflect that L
the information obtained is here obtained in different ways. For 11 N=32K J11 N=16K ]
example, when harmonic inversion is used, the analysis allows | N_tr=4736 I N_tr=4736
the usual parameters of frequency position, width, area, and 3
height of a Lorentzian peak (heigiat amplitude/width; ampli-
tude= areafr) to be read from the spectrum. The method also
computes the frequency, width, and amplitude directly. As
shown in the Appendix, the widths have the biggest error. When
this error undervalues the width, the line height is too big. This 7
is not a problem as the Appendix also shows that the directly
extracted amplitude itself is significantly more accurate than y
the width. The amplitude is what is sought when areas under g ) . . 5 . . Ly
lines and peak intensities are studied. 0 20 40 60 80 O 20 40 60 80
The residual noise in the signal and the effect of artifacts are

in the errors of the parameters and do not appear in the base“m?:igure 9. Logarithmic SVD curves calculated for experimental data

spectra or line shape distortions. These errors are studied in thepresented in first (4480 scard.= 32 K and 16 K) and second (4736
Appendix, where a confidence spectrum is given for the example scansN = 32 K and 16 K) columns of Figure 8.

of Figure 2. Interestingly, in the Fourier signal averaging
methods artifacts are often ameliorated by a process that assumesur method as windowing and adjusting to an “ideal” experi-
a known reference signal and involves some steps common tomental or model Lorentzian or Gaussian sigHal.

In(s(i))

Number of SV (i)
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The methodology used here breaks the spectral bandwidththis occurred as we converged to the sixth carbon in the
into regions of smaller bandwidth (of the order of 2800 INADEQUATE spectrum. The half-length signal fisg, = 3712,
Fourier grid points) called windows and carries out the analysis which was below convergence in CSHI, gave what turned
window by window, reassembling at the end the total or parts out to be almost identical with our final converged spectra, but
of the spectrum as required. This procedure reduces the size othe full-length signal gave an increas&dand an extra line.
matrices encountered in the analysis to at most 25260 so This all went away with increasiniyy.
that their diagonalization takes computing time on the order of It is the open gap and the convergence of the spectrum as a
seconds on today's desktop computers. Our experience is thafunction of signal averaging that matters most. Just as in pure
the order of 30 s is needed per window because of an internalsignal averaging, any uncertainty is met by averaging more
iteration inside the Cadzow procedure. The number of windows transients. Still, big savings are made: no great price is paid if
is on the order of, say, 50 for the total spectrum, so assuming, a factor of 64 is reduced for confidence to a factor of say 50 or
as certainly is possible, software is written to control the even 25. The big difference between how the harmonic inversion
mechanics of applying the windowing procedure, a total analysis model was used in the past and how it is used here is a
should take on the order of 30 min. Even when one considers determination not to stick with the given signal and its S/N ratio
the FFT processing to be essentially instantaneous, the tradeofbut to converge the spectrum with respect to the number of
of using the procedures of this paper, which as the case may béransients once a gap opened; the gap in turn was “forced” to
will be seen to save from hours to weeks of machine time, can open by increased signal averaging and the increasing S/N ratio.

well be considered as favorable. Often, a$’th NMR spectra, ~ Essentially the signal was rejected until it was “cleaned
only one window is studied and the total computing time is a enougfi. The fact remains that with all this increasing of signal
minute or so. averaging done here the spectrum is obtained with many times

Importantly when replacing the usual methods of spectral fewer transients than with pure signal averaging.
analysis by the new analysis for the case of experiments repeated The noise reduction method may be able to be extended to
under similar parameters such as sample concentration, signabther signals if a signal vecteisubspace relationship such as
length, and perhaps the experience based specification of theeq 2 can be developed. This can be done for some multiple-
number of transients, user interaction can be altogether avoideddimension basically Lorentzian signals, and further development
after a few initial experiments. The initial experiments would is being pursued in this laboratory. Here, as Mandelshtam and
follow the total algorithm of this paper to determine the number Shaka have showd?;?3the high-resolution feature of harmonic
of transients needed to satisfy the threshold for cutoff criteria inversion can contribute for many reasons with the most obvious
and use it without cycling in future experiments. For example, of them being the ability to resolve frequencies in the “short
the fractional reduction in transients needed relative to the usualacquisition direction”.
analysis using only signal averaging is, f8€ chemical shift The method used here gives the same type of savings in scans
spectra, on the order of 1/60. If now one is willing to accept a and improvements in resolution for proton NMR, but of course
fraction of 1/30, one could assume with certainty that the signal the real time savings are not as spectacular since these
satisfies the criterion for cleaning by Cadzow regularization and experiments do not take such long times in the first place.
thereby avoid user interaction. Similarly, if one knows in  The ability to shorten the time needed to produce a “cleaned”
advance the weakest signal in a spectrum and works first in aspectrum bodes well for carrying out experiments that only scan
window about it as is the case in Figure 2, the number of 3 short time. It also bodes well for observing spectra of those
transients used in this first window to satisfy our criteria is ynstable species that survive the now shortened measurement
guaranteed to be enough in other windows, again avoiding muchtime but do not survive the longer time. A lower “enrichment”
of the cycling. To further eliminate the everyday need for user of isotopes may be needed using the “cleaned” signal plus
interaction, tables df; cutoff threshold that depend on nuclear harmonic inversion method.
isotopes involved, molecular concentration,_ functional group,  Eyen though spectra are Lorentzian, if the Lorentzians overlap
etc. are expected to follow acceptance of this methodology. In significantly, parameter estimation from the spectrum is prob-
our experience, for threshold determination for a class of |ematic. Since the methods of this paper should work in this
experiments, it is better to carry a converged Fourier analysis case, the harmonic inversion method should yield the parameters
and to work backward to determine transient thresholds. directly without viewing the spectra. Some very preliminary
The factor 64 of time saving for thEC case comes from  work on 1’0 —13C splittings attests to thi.
the observation that for single isolated lines, when the gap opens  Clearly the model, eq 2, requiréé < Ng/2. If this is not
and the windowed noise reduction processing begins, thetrye, the number of unknownsi( wi) exceeds the number of
intensity of Ilnes_near true signal Ilne_s, wh_ose position we givens,c,TR. Depending on field strength, this may not be so
eventually know, is roughly 1:1. S/K 8 is desired, hence the  for pig molecules such as proteins, and this could extend the
factor 64 in experimental efficiency relative to any given signal. |imitations of our method to treating Lorentzian spectra for
Is it possible to miss a low-intensity line using the signal molecules with a quite high density of lines. Proteins may be
“cleaning” scheme? The answer is exactly as in signal averagingout, but only further study will make this clear. At least care
and is “yes” if you do not scan enough. Here we have a factor must be taken and experience gained if this method is to be
of roughly 64 advantage and can claim that the method applied to dense spectra. The happy thought is that despite the
introduced here will miss fewer lines than are missed in the enormous current interest in proteins, the large majority of
signal averaging plus FFT processing scheme for a given numbereveryday NMR experiments in chemistry laboratories are of a
of scans. Of course, for a series of lines the above discussiontype we can impact.
holds for the line of smallest expected intensity. The most original aspect of this work is the recognition that
Can “extra” and fake peaks appear as in the past when SVD-using successively the signal averaging and the noise reduction
based methods were used? The answer is “no” when the criterigpreprocessor in conjunction with the “SVD gap” criteria of
for the signal “cleaning” scheme are fulfilled and allow cycling section 2.2 for switching between the two yields an acceptable
to be stopped. This might occur before this point. For example, spectrum with many fewer transients. The individual compo-
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Figure 10. HI confidence spectrum obtained from 2000 independent white noise realizations added to a single Lorentzian peak with parameters
shown in the insert and S/ 1.2.

nents of the algorithm such as windowing, signal averaging, height is Regy)/|Im(wy)|, causes the somewhat large root-mean-
noise reduction preprocessing, and the harmonic inversionsquare (rms) deviations at the line center in Figure 10. The
processing were all separately available. As is often the casedifficulties with the Imgy) relative to those of the residud
for many advances, this advance in shortening the measuremenand position Regy) are generic to all HI methods and also all
time combines the components in a way they have not beenmethods in computational physics which compute for nontrivial
previously combined to produce the reported algorithm. We examples, poles in the complex plane. Such methods include
know of no other algorithm that can achieve this time reduction the direct calculation of resonance contributions to the cross
for real experiments. sections in scattering theory and pure scattering calculations
where resonances are then fit to Lorentzian parameters. What
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S. Prakash for guidance as to where our method could be ofis thatdi, the actual amplitude of the signal, is given to an
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reduction. Dr. E. Atilgan has helped us significantly with the estimates given here may be a bit pessimistic because our results

study in the Appendix. are compared to the exact model parameters and not to
_ _ _ _ parameters obtained by signal averaging. The latter may have
Appendix: Confidence Spectra for the Single Lorentzian canceling leakage and baseline estimation errors.

To model our process of analysis using the same bandwidth Harmonic ipversion used on model signals that have no noise
and signal length as in Figure 2, random white noise perturba- 9ives essentially perfect parameter values. As such, it should
tions were added to a single damped exponential signal to form P& N0 surprise that the rms error decreases with increasing S/N
2000 independent noisy realizations chosen to satisfy threeratio, i.e., more transients. Future studies of this functional
criteria simultaneously. First, a gap as in Figure 1 had to be dependence may suggest the costs involved in terms of
evident: second, the realizations with S#N1.2 had to show increasing numbers of scans needed to obtain various levels of
locally about where we knew the true peak to be, a roughly 1:1 confidence.

“signal peak” to noise peak intensity; third, the resultingdm)( Different confidence levels will be associated with each model
width parameter, had to be below0.5, i.e.I' = 1 Hz, because ~ sSpectrum’s features; e.g., near degenerateoige(nd “small”
when very narrow peaks occasionally occur, a small change inLorentzians at the base of large features will give lower
Ny, something done in practice all the time in this method, wipes confidence levels. In the future extensive confidence studies
them out. That is, a too narrow peak is double checked and itsWill be made of such cases as well of others that are commonly
width (not existence) is almost always not robust. The result encountered.

for harmonic inversion, Figure 10, shows that obtaining the  Testing for confidence by decreasing in successive problems
width is the main source of error and, since the maximum peak a high S/N ratio until the method works does not make sense
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here, because our method essentially gives a threshold of (12) Hanke, M.; Hansen, P. Gurw. Math. Ind.1993 3, 253.

detectability as roughly locally 1:1.
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