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Reaction Paths of Keto-Enol Tautomerization of f#-Diketones
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Density functional theory calculations were conducted on the title reactions with water molecules.
Malonaldehyde, acetylacetone, and malonic acid were adopted as reactants. A reaction of malonaldehyde
and (2+ 2) water molecules was found to proceed by a small (ca. 7 kcal/mol) activation energy. Two are
reactant and two are catalyst molecules, respectively. The intramolecular hydrogen bond in the enol form is
disrupted by the intermolecular one. Tautomerization transition-state geometries for acetylacetone and malonic
acid are similar to that of malonaldehyde. Without the enhanced reactivity of water hydrogen-bond networks,
tautomerization reactions undergo large activation energies. Various reaction models of (malonaldehyde)

= 2, 3, and 4) have given the energetic result. The ketwl tautomerization has an analogy with the
bimolecular nucleophilic elimination (E2) mechanism.

Introduction relay paths were traced, and the water dimexQ)d was found

Keto—enol tautomerization gf-diketones has been investi- to give relatively small activation energies. At those transition
gated extensively.In Scheme 1, the paremi-diketone is state geometries, hydrogen-bond directionality was attained.

malonaldehyde (MDA, R= H), and the representative one is First, a systematic and computational analysis of participation
acetylacetone (AA, R= CHs).2 Malonic acid (MA, R= OH) of water clusters in the tautomerization will be made by the
is a dicarboxylic acid. use of MDA. Second, the obtained reaction path for MDA
The enol form is more stable than the keto form in the gas Will be applied to those for AA and MA. Third, the proton-
phase, and the equilibrium shifts toward the keto one as the'elay pattern in thes-diketone(HO), reaction model will be
solvent polarity increasésGas-phase geometries of keto and €xtended to theft-diketone) system. Finally, the tautomeriza-
enol forms of AA were determined by electron-diffraction tion will be assigned to a mechanism of organic chemical
measurementsO- -0 distances in keto and enol forms are 2.767 éactions.
and 2.381 A, respectiveRp.
For threes-diketones, MDA AA,5 and MA S many ab initio [l. Calculation Method
calculations were made. In those studies, equilibrium constants
of the keto-enol tautomerism and energy differences of two ~ The geometries malonaldehyde, malonaldehyg®{ki(n =

tautomers were examiné@ieiinsbcéein particular, proton-  1—6), (malonaldehyde)n = 2—4), acetylacetone(}®)s, and
transfer reactions within enol forms #&-+-H—0—C) — (C— malonic amd(l-éO)s were determined by density functional
O—H---0=C) were examined very extensively with interest in theory calculations. B3LYP/6-31G* methdisvere used for
tunneling effect of the double-well potentigiscihlmir.s5a6a geometry optimizations. The solvent effect was taken into

Despite those experimental and theoretical studies, reactionaccount by Onsager’s self-consistent field with the dielectric
paths of the keteenol tautomerization of thé-diketones have ~ constant= 78.39 (water}* B3LYP seems to be a suitable
not been investigated_ Direct proton shift from keto to enol form method because it includes the electron-correlation effect to
seems to be unlikely. The-€H bond energies of keto-form  some extent. B3LYP/6-31G(2d,p) calculations were also
MDA, AA, and MA (R—CO—CH,—CO—R — R—CO—CH*— performed for the key species, namely, keto form, transition
CO-R + H*) are 84.5, 87.6, and 93.0 kcal/mol, respectively. state (TS), and enol form in Figures 1 and 4. Energies of the
Some condition is needed to cleave the tighttCbond in keto ~ keto form, TS, and enol form in Figure 4 and TS in Figure 5
form. Proton relays via auxiliary molecules would be required Wwere refined by B3LYP/6-31G(2d,p) self-consistent re-
to attain the tautomerization with small activation energies. action field (SCRFE-PCM? single-point calculations, which
Water clusters are known to enhance proton relays when theyare free from the dipole-moment approximation of the SCRF
are bound appropriately to substrate molecél&ince the dipole.
tautomeric equilibria in water were examined experimenatiy, TSs were characterized by vibrational analyses, which
reaction models gf-diketones (HO), are adopted in this work.  checked whether the obtained geometries have single imaginary
The suffix n is the number of water molecules. It is of frequenciesi's). From TSs, reaction paths were traced by the

mechanistic interest to investigate how the-I€ bond in IRC (intrinsic reaction coordinate) methiddo confirm that the
the keto form is cleaved to cause the tautomerization (Schemereactants and products are keto and enol forms, respectively.
2). All the calculations were carried out using the Gaussiatf 98

Solvent-assisted tautomerizations of simple carbonyl deriv- program package installed on Compag ES 40 at the Information
ative$2and 2(1H)-pyridon® were studied theoretically. Proton-  Processing Center (Nara University of Education).
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SCHEME 1. Tautomerism of #-Diketones.

1 R
R\C _C.__R \C// >~ R=H, malonaldehyde (MDA)
[l [l -— (|) g R=CH,, acetylacetone (AA)
o H R=OH, malonic acid (MA)
keto form enol form
SCHEME 2. Tautomerization of Malonaldehyde Aided proton transfer (i.e., tautomerization). However, it has a nearly
by Water Molecules symmetric structure with respect to the relay network plane.
(H,0)n (H,0)n Solvent effect by catalytic water molecules would be small.
N F J | On the other hand, the = 2 model has a vacant space at the
,' ;o / right side. Catalytic water molecules may be coordinated at the
|T| S H/f space.
H\:" /C\ /H H\C//,"/C\,'LC,,H As for geometric parameters, the distances of thé¢di®ond
,',/C H/ 9 -_— ; ,// that is cleaved (CtH4) are~1.6 A and those of the €C
“ - o’ ) bond (CEC2) are~1.4 A. The O--H lengths at proton relays
0] (0] H--" 0]
depend on the number of water molecule} (
keto form enol form Figure 3_ exhibits TS geometries of malonaldehde_C()j
and catalytic water molecules. For the= 2 + 1 model, a right-
' ' . sided water molecule (H}7016—H18) connects one reactant
lll. Computational Results and Discussions O—H bond (013-H14) with the free aldehyde oxygen (O6).
_ ) Through the connection, the activation energyet = 13.64
Figure 1 shows a direct proton-transfer route, ket@nol, kcal/mol) is as small aAE* (n = 3) = 13.14 kcal/mol. A larger

of malonaldehyde. The TS has a highly strained four-membered catalytic bridge is expected to lower activation energies. As
ring, which leads to a very large activation energy (59.99 kcal/ expected, then = 2 + 2 model has a substantiably small

mol). At the TS, a C-H bond is elongated (1.515 A)  ,chivation energyAE* = 7.39 kcal/mol. Further coordination
substantially. The cis enol form cannot be arrived at becauseOf catalytic water moleculesi(= 2 + 3 andn = 2 + 4) was

g?fe(C:;St;ﬂgnmuerﬂzrt?gs?;*ag?:bzﬁfgange repulsion at TS. Theexamined. Activation energieAE* (n = 2 + 3) = 7.07 kcal/
. -, : . mol andAE* (n = 2 + 4) = 7.16 kcal/mol, are very similar to
e e Seoelies o e JUIOMEAE! (v~ 2+ 2) = 7.3 kealinol.Since exessiv associtr
" of water molecules is entropicably unfavorable, the 2 + 2

involved in proton relays, the strain of the relay network may reaction model is thought to be most likely. Cooperation of two

be relaxed. Af = 1 — 2 — 3, the activation energie\E*) .
decrease (31.16- 20.43— 13.14 kcal/mol). Ah = 4, the size reactant and two catalytic water molecules has brought about a
’ ready tautomerization path.

of the relay network is too large to afford the cis enol form of
an intramolecular hydrogen bond. Also, the activation energy ~ As for geometric parameters, the distances of thédi®ond

AE* (n = 4) = 18.00 kcal/mol is larger thanE* (n = 3) = that is cleaved (CtH4) are~1.4 A. They are smaller than
13.14 kcal/mol. Then = 3 model appears to be best for ready those in Figure 2, which indicates that the reactions in Figure
n=0
40.5°
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Figure 1. A keto—enol tautomerization reaction of malonaldehyde via the direct proton traddférand AE are energies relative to that of the
keto form.v* stands for the sole imaginary frequency, which verifies that the obtained geometry is correctly at a saddle point. Values without and

with parentheses are those of B3LYP/6-31G(d) SERipole and B3LYP/6-311G(2d,p) SCREdipole geometry optimizations. In the enol form,
an intramolecular hydrogen bond is not formed, because the strained TS geometry giv@$ ©1change repulsion in two- bonds cis.
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Figure 2. Transition-state geometries of the ketnol tautomerization of malonaldehyde witlwater molecules. All of them are concerned with

proton relays for the tautomerization.

3 areearlier than those in Figure 2 according to the Hammond’s
postulatet?

In TS geometries of Figures 2 and 3, the model of
MDA(H ;0),+, has been found to be the best one for tautomer-

is needed to support the tetramer ring network. At enol férm
2H,0O + 2H,0, the tetramer is retained and interrupts formation
of the cis enol intramolecular hydrogen bond (H186). On
account of the great hydrogen-bond capability of the water

ization. Figure 4 shows a reaction course of the model. To the cluster, its formation is blocked (Scheme 4).
keto form, water tetramer is coordinated so that an oxygen atom, Disruption of the cis enol intramolecular hydrogen bond in

010, becomes significantly nucleophilic (Scheme 3). The

water was suggested by calorimetric and NMR spectroscopic

HOMO shape demonstrates that the nucleophilic center is experimentg? The enol intramolecular bond of acetylacetone

perfectly localized at O10 despite the delocalization character.

The HOMO energy is—0.42 au, which is much higher (the
smaller ionization potential) tharr0.50 au of the free water
molecule.

By high nucleophilicity of 010, the CiH4 bond is elongated
(12.124 A) in the keto formt 2H,0O + 2H,0. The cis enol form

was reported to be disrupted by solvents, water, and methanol.
Thus, Figure 4 has demonstrated that cooperation of two reactant
and two catalytic water molecules causes the readifQC1—

H4) bond scission of the keto form and that the newly formed
enol O-H bond patrticipates in the intermolecular hydrogen
bond rather than in the intramolecular one. As for geometric
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Figure 3. Transition-state geometries of the tautomerization wits 2 + (n — 2) water molecules. Two water molecules are concerned with
proton relays, andn(— 2) ones work as catalysts.

parameters, €-H---O and O--H---O bond angles are nearly To examine the role of two catalytic water molecules in the
16C°. Proton relays may occur readily along the almost-linear S-diketones, TS geometries of the tautomerization of a simple
routes. aldehyde, acetaldehyde, were determined and are shown in Fig-

Figure 5 shows TS geometries of the tautomerization of yre 6. A reaction, acetaldehydef®l), — vinyl alcohol(H:O)n,
acetylacetone and malonic acid with= 2 + 2 andn = 2 + was considered. Th@ = 2 reacting system was already
2+ 2 water molecules, respectively. Those are comparable t0jnyestigated with the activation energy, 45.7 kcal/mol (RHF/
that of malonaldehyden(= 2 + 2) shown in Figures 3 and 4. 6-31++G SCRF//RHF/4-316§?OUI‘ energy oh =2 is 33.19

For malonic acid, the last two water molecules= 2 + 2 + kcal/mol (RB3LYP/6-31G* SCREd R )
- pole, in Figure 6). This
2, O24H25H26 and O27H28H29) were adopted to represent, .« is much larger thanE* (n = 2) = 20.43 kcal/mol in

that the two carboxy-OH groups are hydrogen bond&rhe Figure 2. The result of comparison indicates that the second

TS geometries in Figure 5 are similar to those of malonaldehyde - .
(H20)2+2. The result demonstrates that they are insensitive to aldehyde group in MDA works asa catalyst. In the right half
the substituent R in RCO—CH,—CO—R. The calculated of Figure 6, a i = 2 + 2) reaction model was shown. The

activation energiedAE* are in the order of MA(HO)s 21> > shape qf th_e proton-relay network is similar to thatnof 2
AA(H 20),12 > MDA(H0):». For acetylacetone@@®),(H.0),, The activation energyAE* = 24.61 kcal/mol ofn = 2 + 2 is
reaction energies are1.47 and f-1.36] kcal/mol, which are ~ much smaller tham\E* = 33.19 kcal/mol ofn = 2. But, the

in fair agreement with the experimental ore2.7 kcal/mol2° former value is still much larger thahE* = 7.39 kcal/mol in
The high reactivity of two reactant and two catalytic water Figure 4. The comparison of two= 2 + 2 TS models (Figures
molecules f = 2 + 2) has been shown in Figures 4 and 5. 4 and 6) demonstrates the noticeable catalytic role of two water
Without them, proton relays would be difficult. molecules ing-diketones.
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Figure 4. The most likely reaction composed of malonaldehyde and- (2) water molecules. Values without and with square brackets are of
RB3LYP/6-31H-G(2d,p) SCREPCM calculations. For TS, reaction-coordinate vectors corresponding to the sole imaginary freqtient936.81
cm1) are sketched.
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Figure 5. Transition-state geometries of the tautomerization of acetylacetone and malonic acid with water molecules. For malonic acid, two water
molecules (H29027H28 and H25024H26) are attached to two carboxyl groups, respectively.

To simulate the ketoenol tautomerization in water-free, e.g., The methylene €H bond in the keto form cannot be cleaved
chloroform solvent, various reaction models were considered. readily by the other nucleophilic sources than a water molecule
Figure 7 shows a reaction model of (malonaldehydepe keto ~ connected by hydrogen-bond networks (Scheme 3).
and one enol MDAs are involved, where the enol form gets a
proton (H4) and releases one (H10) at TS. Although the proton- V. Concluding Remarks

exchange path does not involve ring strain (16&6d 170.3 In this work, reaction paths of the ketenol tautomerization

at TS), the activation energy is large (28.86 kcal/mol). Other vja water molecules have been investigated systematically. There
TS geometries of (MDA) (n = 2, 3, and 4) with larger  has been a mechanistic question; why is a tightHocovalent
activation energies are shown in the Supporting Information. bond cleaved in the course of the tautomerization? A combina-
The result suggests that the tautomerization without the highly tion of two reactant and two catalytic water molecules<( 2
activated proton relays of water hydrogen bonds is difficult. + 2) has given a significantly nucleophilic oxygen atom (010
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SCHEME 3. A Water Tetramer Makes an Oxygen O10 Highly Nucleophili¢

; i 11
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Figure 6. TS geometries of the tautomerization, acetaldehyg@}H— vinyl alcohol(H:0), with n = 2 and 4.

SCHEME 4. The H15--06 Intramolecular Hydrogen SCHEME 5. A Proton Relay via a Water Dimer
Bond Is Not Completed by Intermolecular Bonds Promoted by the lon-Pair-Like Electronic Charge
' Distribution and a Catalytic Water Dimer
E /H / @ 10
RO R/ HP o
127 14 47 o’ 7 Ha H
o H 77 O O—H..
O/H 13 O """ / Y. K4
15 6 16 I H "’ .IO_H
in Figures 3-5). Ready C-H (C1—H4) bond cleavage has been R ,"’ 1 lH ,,H
attained (Scheme 5). ,\’/\C/C\f' R
The cis enol form is the consequence of proton relays along / @ C
the hydrogen-bond network. The cis enol form can hardly o) /
contain the intramolecular hydrogen bond owing to them. )

Without the enhanced reactivity of those networks, large
activation energies have been calculated (Figure 7). This resultH™ and L~) in E2 is absent in the present reaction via
suggests that the water content is needed for ready tautomerneutralization by proton relays.

ization. In view of TS geometries in Figures 4 and 5, the keto Formation of the intramolecular hydrogen bond in the enol
enol tautomerization may have analogy to the E2 mechanismform would not be a prime factor of the tautomerization.
(Scheme 637 The hydrogen-bond energy of H&H---OH, is only 5 kcal/

A C—H bond is cleaved by a nucleophile (here, O10 in mol. The methylene group gi-diketones is apparently hydro-
Scheme 3). A €C single bond is converted to &€ double phobic. Indeed the water-assisted tautomerization seems to be
bond. The C-L heterolytic scission corresponds to conversion an unlikely process, but the (2 2)H,O cluster can be a highly
of the C=0 bond to the €0 bond. The ion-pair product (Nu reactive reagent. Water clusters may accommodate substrates
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Keto form + Enol form TS Enol + Enol
AE= 0 kcal/mol AE=26.86 kcal/mol AE=-3.26 kcal/mol
[AE= 0 kcal/mol] [AE=23.37 kcal/mol] [AE= -5.98 kcal/mol]

vF =989.36i cm™

Figure 7. A reaction of malonaldehyde dimer. Values without and with square brackets are of RB3LYP/6-31G(dy>&B6E and single-point
RB3LYP/6-31HG(2d,p) SCRFPCM calculations.

SCHEME 6. Analogy between E2 and the Present Path for Tautomerization

L\ H o
= H H
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H H H H H _
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R H _H R \ H H
0 o
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