Investigation of Magnetic Shielding in Xenon Difluoride Using Solid-State NMR Spectroscopy and Relativistic Density Functional Theory

Michelle A. M. Forgeron, Roderick E. Wasylishen,* and Glenn H. Penner[†]

Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received: November 26, 2003; In Final Form: March 2, 2004

The xenon and fluorine magnetic shielding tensors, σ , of XeF₂ are characterized using solid-state ¹²⁹Xe and ¹⁹F NMR spectroscopy and nonrelativistic and spin-orbit relativistic zeroth-order regular approximation density functional theory (ZORA DFT). Analysis of ¹²⁹Xe and ¹⁹F NMR spectra acquired with magic-angle spinning at several spinning rates indicates that the Xe and F magnetic shielding tensors are axially symmetric, as dictated by the crystal symmetry. The isotropic ¹²⁹Xe chemical shift is -1603 ± 5 ppm with respect to OXeF₄ (neat liquid, 24 °C) and the Xe magnetic shielding anisotropy, Ω , is 4245 ± 20 ppm, the first anisotropy measured directly for a xenon compound. The parallel component of the experimentally determined xenon chemical shift tensor, $\delta_{II} = -4433$ ppm differs from δ (Xe(free atom)) by ~1000 ppm, providing the first experimental demonstration that relativistic effects play an important role in the nuclear magnetic shielding for xenon. Both the sign and magnitude of the isotropic indirect ¹²⁹Xe, ¹⁹F nuclear spin-spin coupling constant are determined, -5560 ± 50 Hz. Analysis of the ¹⁹F NMR spectra yield Ω (F) = 150 ± 20 ppm. The ZORA DFT method has been employed to calculate σ (Xe) and σ (F) for isolated XeF₂ and XeF₄ molecules, as well as σ (Kr) and σ (F) for an isolated KrF₂ molecule, at the relativistic and nonrelativistic levels of theory. Spin- orbit relativistic DFT results for Ω (Xe) are in very good agreement with those determined experimentally and highlight the importance of relativistic effects.

1. Introduction

Reports of noble gas-containing molecules are rare; however, compounds involving krypton, xenon, radon, and most recently, argon have been reported.^{1–7} The diversity of molecular systems containing noble gas atoms is limited primarily because the formation of stable bonds is generally confined to highly electronegative elements such as fluorine and oxygen. One of the first xenon-containing molecules that has attracted interest from both an experimental and a theoretical point of view is xenon difluoride, XeF₂, the simplest xenon-containing neutral molecule. Since the discovery of XeF₂ in 1962, the structure and bonding, as well as the thermodynamic and spectroscopic properties of this molecule have been the subject of theoretical⁸⁻¹⁶ and experimental scrutiny.¹⁷⁻²⁷ The linear geometry of this centrosymmetric molecule was deduced from vibrational¹⁷ spectra and confirmed by X-ray18 and neutron diffraction19 studies. More accurate bond lengths, determined from rotational Raman²⁰ and high-resolution infrared²¹ spectra have subsequently been reported.

Numerous ¹²⁹Xe and ¹⁹F nuclear magnetic resonance (NMR) studies of XeF₂ have been undertaken both in solution and in the solid state. The earliest work, carried out by Hindermann and Falconer,²² involved the use of solid-state ¹⁹F NMR spectroscopy to measure the rigid-lattice second moment of XeF₂ at three applied magnetic field strengths, 0.7, 1.4, and 2.35 T, to determine the anisotropy of the ¹⁹F magnetic shielding tensor, Ω . The value obtained, $|\Omega(F)| = 105 \pm 10$ ppm, has been quoted numerous times in the literature and has been used to

estimate $\Omega(Xe)$ indirectly (vide infra). However, given the minimal data and the relatively low applied magnetic fields available for ¹⁹F NMR in 1969, the reported error in $\Omega(F)$, ±10 ppm, seems modest.

Jokisaari et al. investigated the secondary isotope effect of ^{*m*}Xe on the ¹⁹F magnetic shielding of XeF₂ in acetonitrile- d_3 .²³ Xenon difluoride is an excellent candidate for this type of study given that xenon has nine stable isotopes: ¹²⁴Xe (0.10%), ¹²⁶Xe (0.09%), ¹²⁸Xe (1.91%), ¹²⁹Xe (26.4%), ¹³⁰Xe (4.1%), ¹³¹Xe (21.2%), ¹³²Xe (26.9%), ¹³⁴Xe (10.4%), and ¹³⁶Xe (8.9%).²⁸ A linear relationship was found between the one-bond secondary isotope effect on the ¹⁹F magnetic shielding and the relative mass factor for the xenon isotopes.

The ¹²⁹Xe and ¹⁹F spin-lattice relaxation times, T_1 , of XeF₂ in acetonitrile- d_3 have also been studied as a function of temperature and applied magnetic field strength.²⁴ These data indicate that for both ¹²⁹Xe and ¹⁹F, the nuclear magnetic shielding anisotropy and spin-rotation mechanisms are the dominant T_1 mechanisms, whereas the dipole-dipole mechanism is estimated to be much less than 1%. The ¹²⁹Xe and ¹⁹F T_1 data were further used to investigate the magnetic shielding anisotropy in XeF₂, allowing for the first indirect measurement of Ω (Xe). Two approaches were used, resulting in very different values for Ω (Xe), 2416 and 4722 ppm, and Ω (F), 105²² and Ω (F) remain an unsettled issue in the literature.

The majority of previous experimental and theoretical^{29–31}¹²⁹Xe NMR studies focuses on Xe(g) confined to the cavities and channels of porous materials; several excellent reviews on ¹²⁹Xe NMR are available.^{32–38} In the present study, solid-state ¹²⁹Xe and ¹⁹F NMR spectroscopy, as well as nonrelativistic and relativistic spin—orbit zeroth-order regular approximation density functional theory (ZORA DFT) calculations, are employed

^{*} Corresponding author. Tel: (780)492-4336. Fax: (780)492-8231. E-mail: Roderick.Wasylishen@ualberta.ca.

[†] On sabbatical leave from the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

to directly determine the xenon and fluorine magnetic shielding tensors of XeF₂. We report both the magnitude and sign of ${}^{1}J({}^{129}\text{Xe},{}^{19}\text{F})_{iso}$ for solid XeF₂ and compare this with previous results determined from solution ${}^{129}\text{Xe}$ NMR studies of XeF₂ in various solvents, 23,39 as well as with recent ZORA DFT calculations. 15,16 Additional relativistic and nonrelativistic shielding calculations on XeF₄ and KrF₂ are presented and compared with our results for XeF₂.

2. Background Theory

Nuclear Magnetic Shielding. Nuclear magnetic shielding, σ , arises from small magnetic fields created by the circulation of electrons about a nucleus in an external applied magnetic field, \mathbf{B}_0 . These induced magnetic fields change the NMR resonance condition. The shielding experienced by a nucleus in a molecule depends on the orientation of the molecule with respect to \mathbf{B}_0 and may be described by a second-rank tensor with up to nine unique components. For a linear molecule, such as XeF₂, only two principal components, σ_{\parallel} and σ_{\perp} , are required to characterize the xenon or fluorine shielding, and their shielding tensors are said to be axially symmetric. Here σ_{\parallel} and σ_{\perp} represent the magnetic shielding when the C_{∞} symmetry axis is parallel and perpendicular to \mathbf{B}_0 , respectively. The breadth, also known as the shielding anisotropy or span, of an axially symmetric shielding tensor is defined as $\Omega = \sigma_{\parallel} - \sigma_{\perp}$. The isotropic shielding, σ_{iso} , is simply equal to one-third the trace of the shielding tensor, $\sigma_{iso} = (\sigma_{||} + 2\sigma_{\perp})/3$. Experimentally, one measures the isotropic chemical shift, δ_{iso} , which is the difference in the isotropic nuclear magnetic shielding of a sample with respect to that of a standard reference:

$$\delta_{iso} = \frac{\sigma(\text{ref})_{iso} - \sigma(\text{sample})_{iso}}{1 - \sigma(\text{ref})_{iso}}$$
$$= \frac{\nu(\text{sample})_{iso} - \nu(\text{ref})_{iso}}{\nu(\text{ref})_{iso}} \times 10^{6}$$
(1)

The theory of nuclear magnetic shielding was developed by Ramsey in 1953.40 This theory remains exact in the nonrelativistic limit and, today, is recognized as being among the most influential in 20th century quantum chemistry.⁴¹ According to Ramsey's formalism, σ may be partitioned into diamagnetic, σ^{dia} , and paramagnetic, σ^{para} , components, which depend on the ground electronic state and excited electronic states, respectively, of the molecule. For a linear molecule, the paramagnetic shielding parallel to the bond axis, σ_{ll}^{para} , is exactly zero and $\sigma_{\rm ll}^{\rm dia} \simeq \sigma$ (free atom). Several experimental NMR studies demonstrate that $\sigma_{||}$ remains invariant for linear compounds and is approximately equal to σ (free atom).^{42–44} The perpendicular component of the paramagnetic shielding, σ_1^{para} , is nonzero and difficult to determine accurately. However, Ramsey⁴⁰ and Flygare and Goodisman⁴⁵ derived a convenient connection between the nuclear magnetic shielding constant and the nuclear spin-rotation constant, $c_{\rm I}$, based on nonrelativistic theory. For a linear molecule,

$$\sigma_{\perp} \approx -\left(\frac{m_{\rm p}}{2m_{\rm e}g_{\rm N}}\right)\left(\frac{c_{\rm I}}{B}\right) + \sigma^{\rm dia}$$
(free atom) (2)

where m_p is the proton rest mass, m_e is the electron rest mass, g_N is the *g* value of the nucleus of interest, and *B* is the rotational constant of the molecule. Hence, one can obtain accurate values of σ^{para} indirectly through measurement of the spin-rotation constant using molecular beam or high-resolution microwave experiments.^{44,46} A further important consequence of this

relationship is that it allows absolute nuclear magnetic shielding scales to be established;^{40,46} however, the shielding scales thus obtained are strictly valid in the nonrelativistic limit. The significance of relativistic effects in calculating nuclear magnetic shielding for heavy nuclei is an important issue that continues to attract a great deal of interest; here we give only a few representative references.^{47–57} One result of relativistic effects on nuclear magnetic shielding is that $\sigma_{\parallel}^{\text{para}} \neq 0$ for linear molecules; this has been recently demonstrated in a series of nonrelativistic and relativistic calculations on the hydrogen halides, HX.^{57,58} Though $\sigma_{II}^{\text{para}}(X) = 0.0$ ppm for the nonrelativistic calculations, analogous relativistic calculations yield nonzero values for $\sigma_{\parallel}^{\text{para}}(X)$ and these values become increasingly significant for the heavier halides. For example, $\sigma_{II}^{para}(F)$ = 3.2 ppm for HF, whereas $\sigma_{\rm H}^{\rm para}({\rm I})$ = 840 ppm for HI.⁵⁸ To our knowledge, no experimental studies of linear molecules have been reported where σ_{\parallel} deviates significantly from σ (free atom).

3. Experimental and Computational Details

3.1. Solid-State ¹²⁹Xe NMR Spectroscopy. A commercial sample of XeF₂, purchased from Aldrich, was powdered and packed into a 4 mm outer diameter zirconia rotor in a nitrogenfilled glovebox and sealed with an airtight Teflon end cap. All ¹²⁹Xe and ¹⁹F NMR experiments were carried out at room temperature using a Chemagnetics CMX Infinity spectrometer $(\mathbf{B}_0 = 4.7 \text{ T})$, operating at spectrometer frequencies of 55.574 and 188.290 MHz for ¹²⁹Xe and ¹⁹F, respectively. The magicangle was set by maximizing the number of rotational echoes in the ⁷⁹Br NMR free-induction decay and spinning sidebands of the ⁷⁹Br NMR spectrum of KBr. One-pulse experiments were employed to acquire ¹²⁹Xe and ¹⁹F NMR spectra. Decoupling parameters for ¹²⁹Xe{¹⁹F} NMR spectra were optimized on a sample of Teflon using cross-polarization (CP) ($^{19}\text{F} \rightarrow {}^{13}\text{C}$) with high-power two-pulse phase modulated⁵⁹ (TPPM) ¹⁹F decoupling. In the case of XeF₂, because $T_1(^{19}\text{F})$ is very long (>100 s) compared to $T_1(^{129}\text{Xe})$, the use of CP from $^{19}\text{F} \rightarrow ^{129}\text{Xe}$ is not beneficial. A one-pulse experiment with TPPM ¹⁹F decoupling is more efficient and, hence, was used in the present study.

Acquisition of ¹²⁹Xe NMR spectra employed a spectral width of 800 kHz, a $\pi/2$ pulse width of 2.0 μ s, a TPPM pulse width of 4.0 μ s, an acquisition time of 10.240 ms, and a pulse delay of 60 s. All ¹⁹F NMR spectra were acquired using a spectral width of 200 kHz, $\pi/2$ pulse width of 2.0 μ s, acquisition time of 10.240 ms, and pulse delay of 1200 s. Simulations of ¹²⁹Xe and ¹⁹F NMR spectra were carried out using WSOLIDS⁶⁰ and/ or SIMPSON.⁶¹ To account for ¹⁹F–¹⁹F dipolar interactions, ¹⁹F NMR spectra were also analyzed using a memory function approach, as outlined by Hirschinger and co-workers.⁶²

The primary reference for ¹²⁹Xe NMR spectroscopy is OXeF₄ (neat liquid, 24 °C), which is not readily available. A secondary reference often used is Xe(g); however, given that the chemical shift of xenon gas is sensitive to pressure and temperature changes, this is not an ideal reference sample. Our ¹²⁹Xe NMR spectra of XeF₂ are referenced with respect to external OXeF₄ (neat liquid, 24 °C) at 0.0 ppm by determining the absolute ¹²⁹Xe frequency for XeF₂. First, the absolute ¹H frequencies and chemical shifts of cyclohexane (ν (¹H) = 200.149 112 MHz, $\delta({}^{1}\mathrm{H})_{iso} = 1.430$ ppm) and tetramethylsilane ($\nu({}^{1}\mathrm{H}) =$ 200.148 826 MHz, $\delta({}^{1}\text{H})_{iso} = 0.0 \text{ ppm}$) were determined. Next, the absolute ¹H frequency of TMS and ¹²⁹Xe frequency of neat, liquid OXeF₄ at 24 °C ($\Xi = 27.810 \ 186 \ \text{MHz}$)⁶³ were used to calculate the absolute ¹²⁹Xe frequency for OXeF₄ on our spectrometer (ν (¹²⁹Xe) = 55.661 759 MHz). This information, along with the absolute 129 Xe frequency of XeF₂ and eq 1, was used to determine the chemical shift of solid XeF₂. We have taken δ (Xe(free atom)) = -5460 ppm;^{37 129}Xe NMR measurements of Xe (g) on our spectrometer indicate that $\delta_{iso} = -5388$ ppm when referenced with respect to Ξ for OXeF₄ (neat liquid, 24 °C).⁶³ Our ¹⁹F NMR spectra are referenced with respect to the primary ¹⁹F NMR chemical shift reference, CCl₃F (neat liquid), $\Xi = 94.094 011$ MHz.⁶³ The absolute ¹⁹F frequency of CCl₃F (neat liquid) on our spectrometer was calculated, 188.328 058 MHz, and used to determine the ¹⁹F chemical shift of solid XeF₂.

3.2. Quantum Chemical Calculations. DFT calculations of Xe, Kr, and F magnetic shielding tensors were performed using the NMR module⁶⁴ of the Amsterdam Density Functional program.^{65,66} The Vosko–Wilk–Nusair (VWN) local density approximation⁶⁷ with the Becke⁶⁸–Perdew⁶⁹ generalized gradient approximation (GGA) were used for the exchange-correlation functional. Both relativistic and nonrelativistic calculations were performed. Relativistic calculations included scalar and spin–orbit corrections and were carried out using the ZORA formalism.^{70–73} The triple- ζ doubly polarized, TZ2P, Slatertype ZORA basis sets, available with the ADF program, were employed for xenon, krypton, and fluorine. Our calculations were carried out using either an IBM RS/6000 workstation or a Linux-based cluster with dual AMD 1800+ Athlon processor nodes.

DFT calculations were performed on isolated XeF₂, XeF₄, and KrF₂ molecules at their equilibrium bond lengths, $r_e(Xe,F)$ = 1.9791 Å,²⁰ $r_e(Xe,F)$ = 1.928 970 Å,⁷⁴ and $r_e(Kr,F)$ = 1.876 93 Å,⁷⁵ respectively, determined from Raman²⁰ and highresolution infrared^{74,75} spectroscopy. As well, the effect of bond length variation on the Xe, Kr, and F magnetic shielding tensors of XeF₂ and KrF₂ was investigated by systematically varying $r_e(Xe,F)$ and $r_e(Kr,F)$ by ±0.02 in 0.01 Å increments. The shielding of the free atom values for Kr and Xe were also determined using both nonrelativistic and spin–orbit relativistic ZORA DFT.

Noteworthy is that Vaara and Pyykkö⁷⁶ recently proposed an absolute shielding scale for xenon including relativistic effects and very large basis sets and found that σ (Xe(free atom)) = 6938 ± 21 ppm. An absolute magnetic shielding scale has also been established for fluorine, where σ (CFCl₃) = 189.9 ppm at 303 K.⁷⁷

4. Results and Discussion

4.1. ¹²⁹Xe NMR Spectroscopy. Shown in Figure 1 are experimental and calculated ¹²⁹Xe NMR spectra of an MAS sample of XeF2 at two different spinning frequencies. The halfheight line width, $\Delta v_{1/2}$, of the individual spinning sidebands is 300 \pm 50 Hz. The isotropic ¹²⁹Xe chemical shift varied slightly with spinning frequency, which is expected given the sensitivity of ¹²⁹Xe chemical shifts to temperature.²³ The observed isotropic chemical shift of XeF₂, $\delta_{iso} = -1603 \pm 5$ ppm, is characteristic of Xe(II) compounds.³⁵ Qualitatively, the extent of shielding of the xenon nucleus appears to depend on the formal oxidation state of xenon and generally follows the trend: Xe(0) > Xe(II) > Xe(IV) > Xe(VI). Xenon gas is the most shielded, $\delta_{iso} \approx -5460$ ppm,³⁷ and XeO₂F⁺ is the least shielded xenon species, $\delta_{iso} \approx +704$ ppm, known to date.⁷⁸ Several reports in the literature state that the xenon of XeO₆⁴⁻ is the least shielded xenon; however, the previously reported chemical shift for XeO_6^{4-} , +2077 ppm,⁷⁹ is erroneous and the correct value is -748 ppm.35

The X-ray crystal structure of XeF₂ has been determined¹⁹ and a model of the unit cell is shown in Figure 2. In crystalline XeF₂, the molecules are aligned parallel in a body-centered array (space group I4/m) and the unit cell contains a total of nine

Figure 1. Experimental (a), (c) and calculated (b), (d) ¹²⁹Xe{¹⁹F} NMR spectra of an MAS sample of XeF₂ acquired with high-power TPPM ¹⁹F decoupling. The half-height line width of the spinning sidebands, $\Delta \nu_{1/2}$, is 300 ± 50 Hz. δ (¹²⁹Xe)_{iso} is indicated by an asterisk in (a) and (c).

Figure 2. Unit cell of solid XeF_2 from ref 19: large spheres = xenon, small spheres = fluorine.

XeF₂ molecules. On the basis of symmetry arguments, the xenon and fluorine nuclear magnetic shielding tensors of solid XeF₂ must be axially symmetric, as evidenced by the line shape of the ¹²⁹Xe NMR spectra (Figure 1). Of particular note is the enormous span, $\Omega = 4245 \pm 20$ ppm, which indicates that the chemical shift of a XeF₂ molecule oriented perpendicular to the applied magnetic field, \mathbf{B}_0 , gives rise to an NMR signal that is 4245 ppm less shielded than that of a molecule oriented parallel to \mathbf{B}_0 . The observed xenon shielding anisotropy for XeF₂ is the largest measured for xenon³³ and represents the first direct measurement of $\Omega(Xe)$ for a xenon compound. The span of the shielding tensor for XeF₂ covers the entire known chemical shift range for Xe(II) compounds and approximately 70% of the total known xenon chemical shift range (\sim 6200 ppm), as illustrated in Figure 3. The isotropic chemical shift range for Xe(II) compounds in various solvents is approximately 3400 ppm, ranging from -574 ppm for XeF⁺ in SbF₅ at 25 °C to -3967.5 ppm for C₆H₅Xe⁺ in HF at -10 °C.³⁵

A striking feature of the ¹²⁹Xe NMR spectrum (Figure 3c) is the position of the parallel component of the chemical shift

Figure 3. (a) Spin–orbit relativistic and (b) nonrelativistic ZORA DFT calculations of $\Omega(Xe)$ in XeF₂, assuming $\delta(^{129}Xe)_{iso} = -1603$ ppm. The isotropic ^{129}Xe chemical shift of the free Xe atom is shown with respect to $\delta(XeF_2)_{||}$, calculated using $\sigma(Xe(free atom))_{||} - \sigma(XeF_2)_{||}$ from Table 3. (c) Experimentally determined $\Omega(Xe)$ in XeF₂ and isotropic chemical shifts of selected xenon compounds plotted on the known xenon chemical shift scale.⁷⁹

tensor, $\delta_{\parallel} = -4433$ ppm, which differs from δ (Xe(free atom)) by ~ 1000 ppm! This observation is not in accord with nonrelativistic theory,^{40,45} which predicts that $\sigma_{\rm II} = \sigma_{\rm II}^{\rm dia} \simeq \sigma$ (free atom) for any linear molecule, suggesting that relativistic effects play a significant role in determining nuclear magnetic shielding tensors for xenon. Our spin-orbit relativistic calculations are in agreement with experiment and indicate that the xenon free atom is ~430 ppm more shielded than $\sigma_{\rm II}$ for XeF₂ (Figure 3a), whereas results from nonrelativistic calculations indicate that $\sigma_{\parallel} \simeq \sigma$ (free atom), as expected (Figure 3b). Hence, for relatively heavy nuclei such as xenon, it is clear that Ramsey's nonrelativistic theory⁴⁰ is not strictly applicable. Also, the spin-orbit relativistic results for $\Omega(Xe)$, 4469 ppm, are in excellent agreement with our experimental value, 4245 ± 50 ppm, with a relative difference, $[\Omega(Xe)_{exp} - \Omega(Xe)_{calc}]/\Omega(Xe)_{exp}$, of less than 10%, whereas the nonrelativistic value, 5067 ppm, is \sim 800 ppm greater than the experimental value. The dependence of $\sigma_{iso}(Xe)$ on r(Xe,F) is small (see Table 8 of ref 80) at the relativistic level, $\partial \sigma(\text{Xe})_{iso}/\partial r \simeq -403 \text{ ppm } \text{\AA}^{-1}$, but more pronounced at the nonrelativistic level, $\partial \sigma(\text{Xe})_{\text{iso}}/\partial r \simeq -1016$ ppm Å⁻¹. Upon inspection of σ_{II} for XeF₂ and KrF₂ at various bond lengths near $r_{\rm e}$ (not shown), considerable changes in $\sigma_{\rm H}$ are observed for the relativistic calculations; however, calculations carried out at the nonrelativistic level as a function of bond length indicate that σ_{\parallel} remains constant for both XeF₂ and KrF₂, in accord with Ramsey's theory.^{40,44} These results further stress the importance of relativistic effects in the xenon magnetic shielding of XeF₂ (Figure 3) and XeF₄ (Table 1). In particular, for XeF₄, inclusion of spin-orbit relativistic effects results in a dramatic change in $\Omega(Xe)$ from -204 to +1694 ppm. Comparison of results from $\sigma(Xe)$ and $\sigma(Kr)$ for XeF₂ and KrF₂ indicates that a significant decrease in the isotropic shielding and span is observed for Kr compared to Xe, as expected from

 TABLE 1: Calculated Magnetic Shielding Parameters for

 the Xenon Atom and Isolated XeF₂, XeF₄, and KrF₂

 Molecules^a

		$\sigma_{\rm H}/{\rm ppm}$	$\sigma_{\!\!\perp}\!/{ m ppm}$	$\sigma_{ m iso}/ m ppm$	Ω/ppm		
Spin–Orbit Relativistic DFT							
Xe (free atom)	1	6409.4	6409.4	6409.4	0		
XeF ₂	Xe	5976.6	1521.8	3006.7	4469.0		
	F	523.8	246.6	339.0	277.2		
XeF ₄	Xe	1534.6	-159.7	405.0	1694.3		
	\mathbf{F}^{b}	313.4	-48.0	177.9	361.4		
KrF_2	Kr	3303.7	1312.2	1976.0	1991.6		
	F	510.7	-161.2	62.8	671.9		
Nonrelativistic DFT							
Xe (free atom)		5646.7	5646.7	5646.7	0		
XeF ₂	Xe	5653.2	586.5	2275.4	5066.7		
	F	496.8	297.2	363.7	199.6		
XeF ₄	Xe	-41.6	162.0	94.1	-203.5		
	\mathbf{F}^{c}	271.3	-22.8	172.0	294.1		
KrF_2	Kr	3255.8	1040.3	1778.8	2215.5		
	F	492.8	-132.9	75.7	625.7		

^{*a*} Equilibrium geometries for XeF₂ from a Raman study and those for XeF₄ and KrF₂ from high-resolution infrared studies: $r_e(Xe,F)$ in XeF₂ is 1.9791 Å, $r_e(Xe,F)$ in XeF₄ is 1.928970 Å, and $r_e(Kr,F)$ in KrF₂ is 1.87693 Å; refs 20, 74, and 75, respectively. ^{*b*} For XeF₄, $\sigma(F)$ is nonaxially symmetric. The component along r(Xe,F) is $\sigma_{\parallel} = \sigma_{33}$ and that parallel to the molecular C_4 symmetry axis is $\sigma_{\perp} = \sigma_{11}$, $\sigma_{11} =$ -48.0 ppm, $\sigma_{22} = 268.3$ ppm, and $\sigma_{33} = 313.4$ ppm. ^{*c*} Assignment of σ_{\parallel} and σ_{\perp} as in (b); $\sigma_{11} = -22.8$ ppm, $\sigma_{22} = 267.4$ ppm, and $\sigma_{33} =$ 271.3 ppm.

 TABLE 2: Xenon Magnetic Shielding and Indirect Nuclear

 ¹²⁹Xe, ¹⁹F Spin-Spin Coupling Values for XeF₂ from This

 Study and the Literature

method	$\Omega(Xe)/ppm$	$\Omega(F)/ppm$	¹ J(¹²⁹ Xe, ¹⁹ F) _{iso} /Hz
solid-state NMR	4245 ± 20^{a}	150 ± 20^{d} 105^{b}	-5560^{d}
solution NMR ⁶	2416 or 4722 ^d	205 ^g	$5550 \pm 20^{e} \\ 5644.2 \pm 0.6^{f}$
semiempirical calcns ZORA DFT	5125 or 7185 ^g 4469 ^d	277 ^d	-6038^{h} -5958 ⁱ

^{*a*} This work. ^{*b*} Reference 22. ^{*c*} XeF₂ dissolved in acetonitrile-*d*₃. ^{*d*} Reference 24. ^{*e*} Reference 39. ^{*f*} Reference 23. ^{*g*} Reference 8. ^{*h*} Reference 15. ^{*i*} Reference 16.

the decrease in atomic number.⁸¹ For $\sigma(Kr)$ in KrF₂, inclusion of relativistic effects is less important.

It is now instructive to compare our $\Omega(Xe)$ results to those obtained in the literature; see Table 2. As previously mentioned, the work carried out by Jokisaari and co-workers²⁴ represents the first indirect measurement of $\Omega(Xe)$ from ¹²⁹Xe and ¹⁹F T_1 studies of XeF_2 dissolved in acetonitrile- d_3 . In favorable cases, interpretation of such data allows the determination of both $\Omega(Xe)$ and $\Omega(F)$ as well as the nuclear spin-rotation, SR, constants, $C_{\perp}(^{129}\text{Xe})$ and $C_{\perp}(^{19}\text{F})$. The analysis is complicated by the fact that one does not know the rotational correlation time, τ_2 , or the angular momentum correlation time, τ_I . In the case of XeF_2 dissolved in acetonitrile- d_3 , measurements of the spin-lattice relaxation rate, $R_1 = T_1^{-1}$, at variable temperatures and three different applied magnetic field strengths led to the conclusion that $\Omega(Xe)/\Omega(F) = 21.6 \pm 0.7$. Using the value of $\Omega(F)$, 105 \pm 10 ppm, from early solid-state ¹⁹F NMR measurements by Hindermann and Falconer,²² and the ratio of the xenon and fluorine shielding anisotropies, 21.6, yields $\Omega(Xe) \simeq 2270$ ppm. In an alternative approach, the authors recognized that the square root of the product of R_1^{CSA} and R_1^{SR} was independent of temperature and directly proportional to the applied magnetic field. In fact, one can show that

Magnetic Shielding in Xenon Difluoride

$$(R_1^{\text{CSA}} R_1^{\text{SR}})^{1/2} = \left(\frac{4}{135}\right)^{1/2} \left(\frac{m_e}{m_p}\right) \left(\frac{\gamma\hbar}{\mu_N}\right) (\gamma \mathbf{B}_0) \Omega^2$$
(3)

where m_e and m_p are the electron and proton rest masses, γ is the ¹²⁹Xe magnetogyric ratio, \hbar is Planck's constant divided by 2π , μ_N is the nuclear magneton, and **B**₀ is the applied magnetic field. An equivalent expression was used by Spiess and coworkers in analyzing ¹³C T_1 relaxation data for liquid carbon disulfide.⁸² This expression is valid under conditions where the Hubbard relationship⁸³ holds. Substitution of $(R_1^{CSA}R_1^{SR})^{1/2}$, determined from experiment, and the known constants into eq 3 led to $\Omega(Xe) = 4722$ ppm, which is in fair agreement with our solid-state NMR value, 4245 ppm. In obtaining the above expression, we assume that the relationship between the nuclear spin-rotation tensor and magnetic shielding tensor is valid for xenon, a relatively heavy nucleus where relativistic effects are important.

Previous to the T_1 investigation of Jokisaari et al.,²⁴ the only data available for $\Omega(Xe)$ were the very early LCAO-MO calculations of Jameson and Gutowsky,⁸ who, employing two different models, predicted that $\Omega(Xe) = 5125$ or 7185 ppm. More recently, Jameson⁹ made use of the approximation, $\Omega \approx -(3/2)[\sigma(XeF_2)_{iso} - \sigma(free atom)]$, to estimate $\Omega(Xe)$, 5895 ppm; however, as previously mentioned, this result is based on a nonrelativistic model.

Listed in Table 3 are results for $\Omega(Xe)$, $C_1(^{129}Xe)$, and $C_{\perp}(^{19}\text{F})$ in XeF₂, from the literature and this work. Our result for $C_{\perp}(^{129}\text{Xe})$, 24.4 kHz, was calculated using our solid-state NMR value for $\Omega(Xe)$ and the relationship between Ω and C_{\perp} ,⁴⁵ which is based on nonrelativistic theory. Although we have shown that relativistic effects are important for XeF₂, this exercise is carried out for the mere purpose of comparison with previous values. Jameson9 followed the same approach, using $\Omega(\text{Xe}) = 5895 \text{ ppm}$, to calculate $C_{\perp}(^{129}\text{Xe})$ and $C_{\perp}(^{19}\text{F}), -33.92$ and -2.135 kHz, respectively; to a first approximation, the results are satisfactory. Jokisaari et al.²⁴ calculated the ¹²⁹Xe and ¹⁹F spin-rotation constants according to the two aforementioned approaches. The first approach yielded values of 340 and 38.5 kHz for $C_{\perp}(^{129}\text{Xe})$ and $C_{\perp}(^{19}\text{F})$, respectively, whereas the second approach gave respective values of 174 and 19.7 kHz. We believe these values were mistakenly reported in kHz, but in fact are in rad s⁻¹. Dividing these values by 2π results in the values presented in Table 3. The value obtained for $C_{\perp}(^{129}\text{Xe})$ calculated using the second approach, 27.7 kHz, is in reasonable agreement with those obtained here and those reported by Jameson.9

Expansions of a selected region of the ¹²⁹Xe NMR spectra of XeF₂ acquired *without* ¹⁹F decoupling at two different spinning rates are shown in Figure 4. These spectra are characteristic of an AX₂-spin system influenced by both the direct, $R_{DD}(^{129}Xe,^{19}F)$, and indirect, $^{1}J(^{129}Xe,^{19}F)$, nuclear spinspin coupling interactions. The *indirect* spin-spin coupling splits each spinning sideband into a triplet, corresponding to the three possible combinations of ¹⁹F nuclear spin states, $m(^{19}F)$, of the two ¹⁹F nuclei; i.e., $\Sigma m(^{19}F) = -1$, 0, +1. The magnitude of $^{1}J(^{129}Xe,^{19}F)_{iso}$, 5566 ± 50 Hz, is easily determined by measuring the splitting between the centerband and either satellite peak and confirmed by measuring this splitting at two different sample spinning rates. The ¹²⁹Xe,¹⁹F *direct* dipolar interactions alter the relative intensities of the satellite peaks (Figure 4);⁸⁴

TABLE 3: Xenon Magnetic Shielding and Spin-Rotation Data for XeF_2

	$\Omega(Xe)/ppm$	$ C_{\perp}(^{129}\text{Xe}) /\text{kHz}$	$ C_{\perp}(^{19}\text{F}) /\text{kHz}$
Jameson ^a Jokisaari et al. ^b this work	5895 2416 and 4722 4245	33.92 54.1 and 27.7 24.4	2.135 6.13 and 3.14

^{*a*} Reference 9. ^{*b*} Reference 24. Values of C_{\perp} given in ref 24 have been divided by 2π .

Figure 4. Expansions of ¹²⁹Xe NMR spectra of an MAS sample of XeF₂ acquired without ¹⁹F decoupling at spinning frequencies of (a) 14.000 kHz and (b) 8.000 kHz.

where μ_0 is the vacuum permeability constant, $4\pi \times 10^{-7}$ kg m s⁻² A⁻², and $\langle r_{XeF}^{-3} \rangle$ is the motionally averaged value of the inverse cube of the distance between xenon and fluorine. Experimentally, one measures the *effective* dipolar coupling, R_{eff} , which contains a contribution from the anisotropy of **J**_{iso}, ΔJ .⁸⁴

$$R_{\rm eff} = R_{\rm DD} - \frac{\Delta J}{3} \tag{5}$$

For an AX₂ system, the relative signs of ${}^{1}J({}^{129}\text{Xe},{}^{19}\text{F})_{iso}$ and R_{DD} may be determined, as outlined by Bai and Harris,⁸⁵ by analyzing the spinning sideband manifolds of the centerband and each of the satellite subspectra. If R_{eff} makes a significant contribution to the stationary line shapes, the effective spans of the satellite subspectra will differ: the subspectrum of one satellite will be stretched, whereas that of the other satellite will be squeezed with respect to the breadth of the central transition. In fact, one can show that the breadth of each subspectrum is given by⁸⁴

$$\Delta \nu_{\pm m(^{19}\text{F})} = (\nu_{||} - \nu_{\perp}) \pm 3\Sigma m(^{^{19}}\text{F})R_{eff}$$
(6)

where $\Sigma m(^{19}\text{F}) = -1$, 0, +1. In the case of XeF₂, the centerband has a breadth of 235.9 kHz, the high-frequency spinning sideband manifold is stretched (breadth $\simeq 248.8$ kHz), and the low-frequency spinning sideband manifold is squeezed (breadth $\simeq 219.7$ kHz); making use of eq 6 gives $R_{\text{eff}} \simeq -4850 \pm 600$ Hz. Because only the relative signs of ${}^{1}J({}^{129}\text{Xe}, {}^{19}\text{F})_{\text{iso}}$ and $R_{\text{DD}}({}^{129}\text{Xe}, {}^{19}\text{F})$ can be determined, the absolute sign of either ${}^{1}J({}^{129}\text{Xe}, {}^{19}\text{F})_{\text{iso}}$ or $R_{\text{DD}}({}^{129}\text{Xe}, {}^{19}\text{F})$ must be known. For XeF₂, R_{DD} is negative as a consequence of the negative value of $\gamma({}^{129}\text{Xe})$.

Figure 5. Experimental (a), (c) and calculated (b), (d) ¹⁹F NMR spectra of an MAS sample of XeF₂. The isotropic ¹⁹F chemical shifts for XeF₂ and the Teflon inserts of the rotor are indicated by * and #, respectively. The simulated ¹⁹F NMR spectra do not include ¹⁹F-¹⁹F dipolar coupling, which contribute ~10% to the relative intensities of the spinning sidebands in the observed ¹⁹F NMR spectra (see text).

This result, along with the fact that $\sigma_{\rm H} > \sigma_{\perp}$, indicates that the relative signs of ${}^{1}J({}^{129}\text{Xe}, {}^{19}\text{F})_{\rm iso}$ and $R_{\rm DD}({}^{129}\text{Xe}, {}^{19}\text{F})$ are the same;⁸⁵ therefore, ${}^{1}J({}^{129}\text{Xe}, {}^{19}\text{F})_{\rm iso}$ must be negative, -5560 ± 50 Hz. Analogous qualitative analysis of the ${}^{19}\text{F}$ NMR spectra obtained with MAS supports this conclusion, as well as results from recent ZORA DFT calculations on XeF₂.^{15,16} The calculated values of ${}^{1}J({}^{129}\text{Xe}, {}^{19}\text{F})_{\rm iso}, -6030{}^{15}$ and -5958 Hz, 16 are in very good agreement with our solid-state NMR value of ${}^{1}J({}^{129}\text{Xe}, {}^{19}\text{F})_{\rm iso}, -5560 \pm 50$ Hz, as well as the reported range of values from solution NMR in various solvents, ± 5579 to ± 5665 Hz.^{23,39}

In some cases, ΔJ can be obtained from NMR spectra of isolated spin pairs.^{86,87} Using the above result for $R_{\rm eff}$, and making use of the known value of $r({\rm Xe,F})$ in XeF₂ to calculate $R_{\rm DD}$ (eq 4), one can determine ΔJ . Substitution of $R_{\rm DD}(^{129}{\rm Xe},^{19}{\rm F}) \approx -4060$ Hz, calculated using $r({\rm Xe,F}) = 1.9791$ Å, and $R_{\rm eff} \approx -4850$ Hz into eq 5 gives $\Delta J = +2370$ Hz; the error in this value is estimated to be on the order of ± 1.8 kHz. Our experimental value for ΔJ , +2380 Hz, is of the same order of magnitude as that determined using ZORA DFT calculations, $\Delta J = 4048$ Hz.¹⁵

The ¹²⁹Xe NMR spectra indicate that ¹ $J(^{129}Xe,^{19}F)_{iso}$ is insensitive to temperature changes brought upon by sample heating at the spinning speeds employed in this study. Previous ¹²⁹Xe and ¹⁹F NMR studies of XeF₂ in acetonitrile-*d*₃ also found that ¹ $J(^{129}Xe,^{19}F)_{iso}$ is insensitive to temperature changes over the range 240–320 K.²³

4.2. ¹⁹**F NMR Spectroscopy.** Shown in Figure 5 are experimental and calculated ¹⁹F NMR spectra of XeF₂ acquired with MAS at two different spinning rates. Simulations of these spectra, using ¹*J*(¹²⁹Xe, ¹⁹F)_{iso} = -5560 Hz, $R_{DD}(^{129}Xe, ^{19}F) = 4064$ Hz, and assuming that the Xe, F dipolar vector and σ_{II} are coincident, provides $\delta(^{19}F)_{iso} = -162 \pm 3$ ppm and $\Omega(F) = 160 \pm 20$ ppm. However, these simulations do not account for ¹⁹F homonuclear dipolar coupling, which are known to contribute to the observed ¹⁹F NMR line shape ($M_2^{\text{homon}} = 2.65$ G²

or equivalently, $1.68 \times 10^9 \text{ rad}^2 \text{ s}^{-2})^{22}$ due to the proximity of neighboring fluorine atoms in the unit cell of XeF₂ (Figure 2). The significance of the ¹⁹F-¹⁹F dipolar interaction was subsequently investigated using an analytical method based on stochastic theory involving the memory function, which describes the time-averaged fluctuations of the local dipolar field.⁸⁸ The FID response function due to the dipolar interaction, obtained using the memory function approach, is given by⁸⁹

$$G_{\rm D}(t) = \exp\left\{M_2^{\rm homo}\left[\frac{2}{3}f(\Gamma,\nu_{\rm rot},t) + \frac{1}{3}(\Gamma,2\nu_{\rm rot},t)\right]\right\}$$
(7)

where

$$f(\Gamma, \nu_{\text{rot}}, t) = \frac{1}{\Gamma^2 + \nu_{\text{rot}}^2} \times \left\{ \frac{\left[(\Gamma^2 - \nu_{\text{rot}}^2)(1 - \cos\nu_{\text{rot}}t) + 2\Gamma\nu_{\text{rot}}\sin\nu_{\text{rot}}t \right] \exp(-\Gamma t)}{\Gamma^2 + \nu_{\text{rot}}^2} - \Gamma t \right\}$$

and $\Gamma = 1/\tau_c$. Here, τ_c is the correlation time describing the stochastic process of the expectation values of the z-component of the spins due to the flip-flop operator and M_2 is the second moment. Simulations using $M_2^{\text{homo}} = 1.68 \times 10^9 \text{ rad}^2 \text{ s}^{-2}$ suggest that ${}^{19}\text{F}{-}{}^{19}\text{F}$ dipolar coupling contributes ${\sim}10\%$ to the line shape of the ¹⁹F NMR spectrum of XeF₂ and that $\Omega(^{19}F)$ = 150 ± 20 ppm; this value for $\Omega(^{19}\text{F})$ is within the error limits of that determined when ¹⁹F-¹⁹F dipolar coupling was neglected. Using our best solid-state NMR values for $\Omega(Xe)$, 4245 ppm, and $\Omega(F)$, 150 ppm, gives a ratio, $\Omega(Xe)/\Omega(F)$, of 28.3, which is larger than that obtained by Jokisaari et al., 21.6,²⁴ suggesting that the xenon and fluorine shielding anisotropies may be different in solution and the solid state. The early solidstate ¹⁹F NMR study by Hindermann and Falconer²² determined $\Omega(F)$ to be 105 \pm 10 ppm (vide supra); however, we believe the reported error to be underestimated. Jokisaari et al.24 used the method based on eq 3 to determine $\Omega(F)$, 205 ppm, for XeF₂ in acetonitrile. There have been experimental reports of $\Omega(F)$ for XeF₄, ranging from 261 to 790 ppm,^{90,91} and other main-group fluorides; solid-state ¹⁹F NMR results indicate that for the series: SF₆, SeF₆, and TeF₆, $\Omega(F)$ is 310, 370, and 215 ppm, respectively.92

Experimental values of $\delta(^{19}\text{F})_{iso}$ have previously been determined for XeF₂, XeF₄, and the XeF₆-tetramer in solution: -199.6, -15.7, +118.3 ppm.³⁵ The difference between $\delta(^{19}\text{F})_{iso}$ for XeF₂ in solution and our solid-state NMR value, -162 ppm, is attributed to intermolecular effects, which are known to be predominantly deshielding.⁹³ Listed in Table 1 are ZORA DFT results for the shielding tensors in isolated XeF₂, XeF₄, and KrF₂ molecules. The *difference* in observed values of $\delta(\text{F})_{iso}$ between XeF₂ and XeF₄, ~ 180 ppm, agrees well with our calculated value, $\sigma(\text{F})_{iso} \simeq 170$ ppm. In addition, our calculated values of $\Omega(\text{F})$ for XeF₄ are within this range of observed values.^{90,91} Calculations were not carried out on XeF₆ because it exists as a tetramer in solution⁷⁹ and in the solid state the structure is complicated by the presence of nondiscrete polymeric units.^{94,95}

5. Conclusions

The xenon and fluorine magnetic shielding tensors in XeF₂ have been determined using solid-state ¹²⁹Xe and ¹⁹F NMR spectroscopy and ZORA DFT calculations. The first direct experimental measurement of σ (Xe) for XeF₂ in the solid state is reported and the lingering question of the magnitude of the ¹²⁹Xe magnetic shielding anisotropy in this compound has been

resolved. The measured xenon anisotropy, $\Omega = 4245 \pm 20$ ppm, covers approximately 70% of the total known xenon chemical shift range. Analysis of 129Xe NMR spectra allows determination of δ_{iso} , -1603 ± 3 ppm, and ${}^{1}J({}^{129}Xe, {}^{19}F)_{iso}$, -5566 ± 50 Hz. Results from ¹⁹F NMR spectra indicate that $\Omega(F)$, 150 \pm 20 ppm, and that ${}^{19}\text{F}-{}^{19}\text{F}$ dipolar couplings contribute $\sim 10\%$ to the observed ¹⁹F NMR line shape. Spin-orbit relativistic ZORA DFT calculations of $\sigma(Xe)$ are in excellent agreement with our solid-state NMR results, with a relative error less than 10%. Most important is that this study provides the first direct evidence that consideration of relativistic effects is important in interpreting xenon magnetic shielding tensors both experimentally and theoretically; however, questions remain. How far down the periodic table can one go before Ramsey's relativistic theory breaks down? Our spin-orbit calculations show that relativistic effects play a minor role for Kr, but a significant role for Xe. Also, what influence do relativistic effects have on nuclear spin-rotation constants and their relationship with nuclear magnetic shielding constants? Ongoing studies in our laboratory are being carried out to address this question.

Acknowledgment. We thank the members of the solid-state NMR group at the University of Alberta. In particular, we are grateful to Drs. Renée Siegel and Guy Bernard for valuable assistance and insightful discussions. R.E.W. is a Canada Research Chair in physical chemistry and thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support. M.A.M.F. thanks the Alberta Ingenuity Fund, NSERC, and the University of Alberta for postgraduate scholarships.

References and Notes

(1) Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. Nature 2000, 406, 874-876.

- (2) Pettersson, M.; Khriachtchev, L.; Lignell, A.; Rasanen, M.; Bihary, Z.; Gerber, R. B. J. Chem. Phys. 2002, 116, 2508-2515.
 - (3) Frenking, G.; Cremer, D. Struct. Bonding 1990, 73, 17-95.
- (4) Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R. B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Rasanen, M. J. Am. Chem. Soc. **2003**, *125*, 6876–6877.
- (5) Feldman, V. I., Sukhov, F. F.; Orlov, A. Y.; Tyulpina, I. V. J. Am Chem. Soc. 2003, 125, 4698–4699.
- (6) Stein, L. Nature 1973, 243, 30-32.
- (7) Holloway, J. H.; Hope, E. G. Adv. Inorg. Chem. 1999, 46, 51-100.
- (8) Jameson, C. J.; Gutowsky, H. S. J. Chem. Phys. 1963, 40, 2285–2293.
- (9) Jameson, C. J. In Nuclear Magnetic Resonance: A Specialist Report; Webb, G. A., Ed.; Royal Society of Chemistry: Cambridge, U.K.,
- 1996; Vol. 25, Chapter 2, pp 38-82.
 (10) Liao, M.-S.; Zhang, Q.-E. J. Phys. Chem. A 1998, 102, 10647-10654.
- (11) Buth, C.; Santra, R.; Cederbaum, L. S. J. Chem. Phys. 2003, 119, 7763–7771.
- (12) Styszyński, J.; Cao, X.; Malli, G. L. J. Comput. Chem. **1997**, 18, 601–608.
- (13) Bagus, P. S.; Liu, B.; Liskow, D. H.; Schaefer, H. F. J. Am. Chem. Soc. 1975, 97, 7216-7219.
- (14) Malli, G. L. Styszyński, J. Dasilva, A. B. F. Int. J. Quantum Chem. 1995, 55, 213–225.
- (15) Bryce, D. L.; Wasylishen, R. E. Inorg. Chem. 2002, 41, 3091-3101.
 - (16) Bagno, A.; Saielli, G. Chem. Eur. J. 2003, 9, 1486-1495.
- (17) Smith, D. F. J. Chem. Phys. 1963, 38, 270-271. Tsao, P.; Cobb,
 C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247-5253.
 - (18) Siegel, S.; Gerbert, E. J. Am. Chem. Soc. **1963**, 85, 240.
 - (19) Levy, H. A.; Agron, P. A. J. Am. Chem. Soc. **1963**, 85, 241–242.
- (20) Brassington, N. J.; Edwards, H. G. M.; Long, D. A. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1208-1213.
- (21) Bürger, H. J. Mol. Spectrosc. 1993, 157, 536-539.
- (22) Hindermann, D. K.; Falconer, W. E. J. Chem. Phys. 1969, 50, 1203–1205.
- (23) Jokisaari, J. P.; Ingman, L. P.; Schrobilgen, G. J.; Sanders, J. C. P. *Magn. Reson. Chem.* **1994**, *32*, 242–247.

(24) Ingman, L. P.; Jokisaari, J.; Oikarinen, K.; Seydoux, R. J. Magn. Reson. 1994, 111A, 155-160.

(25) Cutler, J. N.; Bancroft, G. M.; Bozek, J. D.; Tan, K. H.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 9125–9131.

- (26) Bürger, H.; Kuna, R.; Ma. S.; Breidung, J.; Thiel, W. J. Chem. Phys. **1994** 101, 1-14.
- (27) Lounila, J.; Oikarinen, K.; Ingman, P.; Jokisaari, J. J. Magn. Reson. **1996**, 118A, 50–54.
- (28) Mills, I.; Cvitaš, T.; Homann, K.; Kallay, N.; Kuchitsu, K. *Quantities, Units and Symbols in Physical Chemistry*, 2nd ed.; Blackwell Science: Oxford, U.K., 1993.
- (29) Jameson, C. J, de Dios, A. C. J. Chem. Phys. 2002, 116, 3805-3821.
- (30) Jameson, C. J., Sears, D. N., de Dios, A. C. J. Chem. Phys. 2003, 118, 2575–2580.
- (31) Autschbach, J. Zurek, E. J. Phys. Chem. A 2003, 107, 4967–4972.
 (32) Barrie, P. J., Klinowski, J. Prog. Nucl. Magn. Reson. Spectrosc. 1992, 24, 91–108.
- (33) Ratcliffe, C. I. Ann. Rep. Nucl. Magn. Reson. Spectrosc. 1998, 36, 123-221.
- (34) Jokisaari, J. Prog. Nucl. Magn. Reson. Spectrosc. **1994**, 26, 1–26. And in: Encyclopedia of Spectroscopy and Spectrometry; Lindon, J. C., Tranter, G. E., Holmes, J. L., Eds.; Academic Press: San Diego, 1999; Vol. 3, pp 2435–2446.
- (35) Gerken, M.; Schrobilgen, G. J. Coord. Chem. Rev. 2000, 197, 335–395.
- (36) Raftery, D.; Chmelka, B. F. In *NMR*, *Basic Principles and Progress*; Diehl, P., Fluck, E., Günther, H., Kosfeld, R., Seelig, J., Eds.; Springer-Verlag: Berlin, 1994; Vol. 30, pp 112–158.
- (37) Jameson, C. J. In: *Multinuclear NMR*; Mason, J., Ed.; Plenum Press: New York, 1987; Chapter 18, p 463.
- (38) Schrobilgen, G. J. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; Vol. 5, p 3251.
- (39) Seppelt, K.; Rupp, H. H. Z. Anorg. Allg. Chem. 1974, 409, 331.
 (40) (a) Ramsey, N. F. Molecular Beams; Oxford University Press: London, 1956. (b) Phys. Rev. 1950, 78, 699-703.
- (41) Pyykkö, P. Theor. Chem. Acc. 2000, 103, 214-216.
- (42) Beeler, A. J.; Orendt, A. M.; Grant, D. M.; Cutts, P. W.; Michl, J.; Zilm, K. W.; Downing, J. W.; Facelli, J. C.; Schindler, M. S.; Kutzelnigg,
- W. J. Am. Chem. Soc. 1984, 106, 7672-7676.
- (43) Dickson, R. M.; McKinnon, M. S.; Britten, J. F.; Wasylishen, R. E. *Can. J. Chem.* **1987**, *65*, 941–946.
- (44) Jameson, C. J. In: *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; Vol. 2, pp 1273–1281.
- (45) Flygare, W. H., Goodisman, J. J. Chem. Phys. **1968**, 49, 3122– 3125.
- (46) Jameson, C. J. In *Multinuclear NMR*; Mason, J., Ed.; Plenum Press: New York, 1987; Chapter 3.
- (47) Pyykkö, P. Quantum Chemical Calculation of Magnetic Resonance Properties; Kaupp, M., Bühl, M., Malkin, V., Eds. (in press).
- (48) Vaara, J.; Malkina, O. L.; Stoll, H.; Malkin, V. G.; Kaupp, M. J. Chem. Phys. 2001, 114, 61-71.
- (49) Manninen, P.; Lantto, P.; Vaara, J.; Ruud, K. J. Chem. Phys. 2003, 119, 2623–2637.

(50) Autschbach, J.; Ziegler, T. In *Encyclopedia of Nuclear Magnetic Resonance*, Grant, D. M., Harris, R. K., Eds.; Wiley: Chichester, U.K., 2002; Vol. 9, pp 306–323.

- (51) Pyykkö, P.; Gorling, A.; Rosch, N. Mol. Phys. 1987, 61, 195-205.
- (52) Pyykkö, P. Chem. Phys. 1983, 74, 1-7.
- (53) Pyper, N. C. Chem. Phys. Lett. 1983, 96, 204-210, 211-217.
- (54) Malli, G.; Froese, C. Int. J. Quantum Chem., Suppl. 1967, 1, 95-
- 98.
- (55) Kolb, D.; Johnson, W. R.; Shorer, P. Phys. Rev. A 1982, 26, 19-31.
- (56) Kutzelnigg, W. J. Comput. Chem. 1999, 20, 1199-1219.
- (57) Manninen, P.; Lantto, P.; Vaara, J.; Ruud, K. J. Chem. Phys., 2003, 119, 2623–2637.
- (58) Fukui, H.; Baba, T. J. Chem. Phys. 2002, 117, 7836-7844.
- (59) Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G. J. Chem. Phys. **1995**, 103, 6951–6958.
- (60) Eichele, K.; Wasylishen, R. E. WSOLIDS NMR Simulation Package, version 1.17.26, 2000.
- (61) Bak, M.; Rasmussen, J. T.; Nielsen, N. C. J. Magn. Reson. 2000, 147, 296-330.
- (62) Siegel, R.; Hirschinger, J.; Carlier, D.; Matar, S.; Ménétrier, M.; Delmas, C. J. Phys. Chem. B 2001, 105, 4166-4174.
- (63) Harris, R. K.; Becker, E. D.; de Menezes, S. M. C.; Goodfellow, R.; Granger, P. *Pure Appl. Chem.* **2001**, *73*, 1795–1818.

(64) (a) Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1995, 99, 606–611.
(b) Schreckenbach, G.; Ziegler, T. Int. J. Quantum Chem. 1997, 61, 899–918.
(c) Wolff, S. K.; Ziegler, T. J. Chem. Phys. 1998, 109, 895–905.

(65) ADF 2000.02 and 2002.99, Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.com.

(66) (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. **1973**, 2, 41–

51. (b) Versluis, L.; Ziegler, T. J. Chem. Phys. **1988**, 88, 322–328. (c) te Velde, G.; Baerends, E. J. J. Comput. Phys. **1992**, 99, 84–98. (d) Fonseca Guerra C. Sniiders J. G. te Velde, G. Baerends, F. J. Theor. Chem. Acc.

Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. *Theor. Chem. Acc.* **1998**, *99*, 391–403.

(67) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.

(68) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.

- (69) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824; 1986, 34, 7406-7406.
- (70) Chang, C.; Pelissier, M.; Durand, P. Phys. Scr. 1986, 34, 394-404.
- (71) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597-4610.
- (72) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783–9792.
- (73) van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. *Int. J. Quantum Chem.* **1996**, *57*, 281–293.
- (74) Bürger, H.; Ma, S.; Breidung, J.; Thiel, W. J. Chem. Phys. 1996, 104, 4945-4953.
- (75) Bürger, H.; Kuna, R.; Ma, S.; Breidung, J.; Thiel, W. J. Chem. Phys. 1994, 101, 1-14.

(76) Vaara, J.; Pyykkö, P. J. Chem. Phys. 2003, 118, 2973-2976.

- (77) (a) Jameson, C. J.; Jameson, K. A.; Burrell, P. M. J. Chem. Phys.
- **1980**, *73*, 6013–6021 (b) Jameson, C. J.; Jameson, K. A.; Honarbakhsh, J. J. Chem. Phys. **1984**, *81*, 5266–5267.
- (78) Syvret, R. G.; Mitchell, K. M.; Sanders, J. C. P.; Schrobilgen, G. J. Inorg. Chem. **1992**, *31*, 3381–3385.
- (79) Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980–987.

(80) Jameson, C. J. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; Vol. 4, p 2638.

(81) Jameson, C. J. In *Multinuclear NMR*; Mason, J., Ed.; Plenum Press: New York, 1987; Chapters 2 and 3.

(82) (a) Spiess, H. W.; Schweitzer, D.; Haeberlen, U.; Hausser, K. H. J. Magn. Reson. **1971**, 5, 101. (b) Also discussed in: Spiess, H. W. In NMR, Basic Principles and Progress; Diehl, P., Fluck, E., Ginther, H., Vasfald, D., Eds. J. Seringer, Varloy: Reslin, 1059, Vol. 15, no 55, 214

Kosfeld, R., Eds.; Springer-Verlag: Berlin, 1978; Vol. 15, pp 55–214.
(83) Hubbard, P. S. *Phys. Rev.* 1963, *131*, 1155.

(84) Wasylishen, R. E. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; Vol. 3, pp 1685–1695.

- (85) (a) Bai, H.; Harris, R. K. J. Magn. Reson. **1992**, 96, 24–30. (b) Cherryman, J. C.; Harris, R. K. J. Magn. Reson. **1997**, 128, 21–29.
- (86) VanderHart, D. L.; Gutowsky, H. S. J. Chem. Phys. 1964, 49, 261– 271.
- (87) Penner, G. H.; Power, W. P.; Wasylishen, R. E. Can. J. Chem. 1988, 66, 1821–1823.

(88) Mehring, M. Principles of High-resolution NMR in Solids; Springer: Berlin, 1983.

- (89) (a) Kessemeier, H.; Norberg, R. E. Phys. Rev. 1967, 155, 321. (b)
 Reinheimer, P.; Hirschinger, J.; Gilard, P.; Goetz, N. Magn. Reson. Chem. 1997, 35, 757.
- (90) Blinc, R.; Zupancic, I.; Maricic, S.; Veksli, Z. J. Chem. Phys. 1963, 39, 2109–2110.
- (91) Hindermann, D. K., Falconer, W. E. J. Chem. Phys. 1970, 52, 6198-6202.
- (92) Garg, S. K.; Ripmeester, J. A.; Davidson, D. W. J. Magn. Reson. 1980, 39, 317-323.
- (93) Autschbach, J.; le Guennic, B. J. Am. Chem. Soc. 2003, 125, 13585-13593.
- (94) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon Press: Oxford, U.K., 1984; p 377.
 - (95) Burbank, R. D. Jones, G. R. J. Am. Chem. Soc. 1974, 96, 43-48.