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The potential energy surface for the ground state of HCO was obtained with 133 single-point energies calculated
with use of the augmented correlation-consistent polarized basis sets of triple-, quadruple-, and quintuple-ú
quality and extrapolated then to the complete basis set level. Calculations are at the coupled-cluster singles
and doubles level augmented by a perturbative correction for connected triple excitations CCSD(T). The
relativistic and core-valence corrections were taken into consideration. A variational calculation of the HCO
vibrational spectrum was performed in a basis of products of the eigenfunctions of harmonic oscillators
expressed through Hermite polynomials. Infrared intensities of the lowest excitations were evaluated through
calculations of matrix elements of the dipole moment for the relevant transitions. The expectation values of
the structural and rotational parameters of HCO were computed. Values ofCp°, S°, and (HT° - H0°) are
presented for temperatures up to 2000 K.

Introduction

This paper is the second part (see the first part1) of our
investigation of the properties of the formyl (HCO) radical,
which is one of the organic free radicals being studied
intensively because of its important role in astrophysics,
combustion chemistry, photochemistry, and the chemistry of
stratospheric processes.

The main purpose of this work is the calculation of structural
parameters and vibrational fundamentals of HCO in the ground
electronic state. It is well known that the HCO molecule exists
in two isomeric forms (HCO and COH) separated by a high
barrier of 107 kJ/mol.1 The stabilization energy of the H-CO
transition state,h(H-CO) ) E(H-CO) - E(H) - E(CO), with
respect to CO+ H decay is 14 kJ/mol.1 This indicates that for
benchmark calculations of the low vibrational levels we may
use the time-independent Schro¨dinger equation with a potential
energy surface describing only the global HCO minimum. A
contribution from lower excited rovibrational energy levels is
expected to contribute to the gas-phase thermochemistry of HCO
at moderately elevated temperatures. Hence, the question of their
accuracy is critical. In our previous study,1 we reported results
of calculations of anharmonic vibrational frequencies for the
X2A′ ground state of HCO calculated by standard second-order
perturbation theory, all cubic and quartic force constants being
determined by the numerical differentiation of analytic second
derivatives along normal mode displacements.1 The coupled-
cluster level [CCSD(T)] and correlation-consistent polarized
valence basis sets of quadruple-ú quality were used.1 The
application of a one-reference method such as CCSD(T) is quite
justified by the high vertical energies of the excited electron
states of HCO investigated at the X2A′ ground-state geometry.1

Here, we improve the results of our previous investigation1 by
means of variational calculations of the vibrational spectrum
of HCO. This allows us to eliminate an error of spectroscopic

perturbation theory caused by resonances between vibrational
levels in HCO. We expanded the anharmonicity treatment by
the inclusion of fifth- and sixth-order force constants along the
most anharmonic mode (CH) of HCO at the global minimum
area. The 3D potential energy surface was built up from single-
point CCSD(T) energies derived with complete basis set (CBS)
extrapolation. The latter diminishes possible error due to basis
set incompleteness in the results1 of the previous investigation.
To the best of our knowledge, this is the first CCSD[T]/CBS
variational calculation on HCO. The influence of the curvilin-
earity of vibrational coordinates was also studied for the results
of these variational calculations. We discuss in detail our
approach to calculations of rotational constants and rotation-
vibration couplings followed by computations of molecular
partition functions.

Results of the most recent calculations on HCO and experi-
mental observations (microwave, infrared spectroscopy, ultra-
violet absorption, hydrocarbon flame emission, and dispersed
fluorescence of HCO) were surveyed in our previous publica-
tion.1 Here, we mention a few previously performed variational
calculations on HCO. Eigenvalues and eigenfunctions were
computed by Bowman et al.2 and by Pauzat et al.3 (see also the
development of ref 2 in ref 4) in the basis of direct products of
three harmonic oscillators with the potential energy surfaces
(PES) of HCO and COH calculated by the CISD (all singles
and doubles configuration interactions) method with basis sets
of double-ú quality. Perićet al.5 studied the vibronic structure
of the X2A′, A2A" (12Π) spectral system of HCO within the
semirigid bender formalism with the use of multireference
configuration interaction (MR-CISD) total energies. Keller et
al.6 presented a dynamical calculation of the unimolecular
dissociation resonances of HCO. The global potential energy
surface for the X2A′ ground state was constructed in Jacobi
coordinates with about 1000 energy points computed at the
MRCI level with complete active space self-consistent field
(CASSCF) reference functions and in the quadruple-ú basis set.
The work of Serrano-Andre´s et al.7 contains results of calcula-

* To whom correspondence should be addressed. E-mail: james.boggs@
mail.utexas.edu. Fax: (512)471-8696.

5431J. Phys. Chem. A2004,108,5431-5437

10.1021/jp031355i CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/02/2004



tions of the fundamental frequencies and some transition
properties for the HCO X2A′ and B2A′ states.

Details and Methods of Calculation

Nuclear Hamiltonian. The solution of the HCO nuclear
problem was performed by the diagonalization of the vibrational
Hamiltonian shown by eq 1 in a basis of products of the
eigenfunctions of harmonic oscillators expressed through Her-
mite polynomials.8

whereqi (i ) 1-3) are arbitrary displacements of the internal
molecular coordinatesR(CH), R(CO), andR(HCO) from their
values at the equilibrium nuclear configuration. The operators
P̂k ) -ip∂/∂qk areqk-conjugate momenta;gij are elements of
the kinematic matrixG ) Bm-1Bq calculated at the equilibrium
geometry of HCO.9

In general, the displacementsq are nonlinear functions of
the Cartesian displacementsR. For large-amplitude vibrations,
the G matrix elements

may differ significantly from (gij)e calculated in the vicinity of
the global minimum. To study the role of the curvilinearity
effect, we presume that theG matrix in eq 1 is a function ofqi

(i ) 1-3) and rewrite the kinetic part of eq 1 as (in hartree)

The matrix elements of the operator (eq 2) were computed by
numerical integration over the ranges of 0.64-1.59 Å (CH
stretching), 0.70-1.65 Å (CO stretching), and 64-180° (HCO
bending), the minimal point step being equal to 0.016 Å along
R(CH) and R(CO) and 2° along R(HCO) with a number of
quadrature points up to 60 per mode. The resulting accuracy
((1 cm-1) of the computed fundamentals of HCO was evaluated
by enhancing the integration ranges with more quadrature points.
We consider the results of the variational calculations with the
numerical integration of eq 2 to be the most accurate in the
present investigation.

Another way we used to estimate the role of the curvilinearity
effect in the kinetic part of eq 1 was based on the assumption
that theG-matrix dependence onq is close to linear:

The matrix (gij)e and tensor (∂gij/∂qn)e elements are calculated
at the equilibrium geometry.

The matrix elements of the operators in eqs 1 and 3 may be
computed analytically in the basis ofΦn

8

by the use of expressions for nonvanishing 1D matrix elements
from eqs 5-10 and their derivatives (eqs 11 and 12):8,10

wheren e i + j, i e n + j, j e n + i, andn + i + j ) 2g (g
is zero or an integer).

The parameterγ in eqs 4-12 is a positive value that should be
optimized according to the principle of minimum energy.

The potential energyV in eq 1 depends on the bond-length
and bond-angle displacements (qi, i ) 1-3) from the reference
configuration and can be built by fitting its values to ab initio
energies of chosen distorted geometries as expansions:

In other words, we can treat HCO as a pseudo-rigid molecule
with highly anharmonic vibrations. Coefficientsak of eq 13 were
evaluated by the least-squares method as fitting values of eq
13 to the CCSD(T)/CBS energies calculated for 133 geometries
with an accuracy better than 0.05 cm-1. TheV(q1, q2, q3) in eq
13 describes the HCO potential surface equilibrium area with
minimal intervals of 0.005 Å and 0.3° between points along a
coordinate and contains 33 terms corresponding to the first- and
second-order derivatives of the potential energy, all cubic and
quartic force constants (except those of the formφabc andφaabc)
and the quinticφ11111 and sexticφ111111 constants for the CH
mode that may exhibit dissociative nature at larger values of
q1. Our numerical experiment demonstrated that the inclusion
of the cubicφabc constant and other higher-order constants did
not lead to appreciable shifts in frequencies (less than 2 cm-1).
Some expansion of the potential surface area covered by eq 13
may improve evaluations of high-energy levels of HCO, but it

Φn(q) ) γ1/4

(π1/22nn!)1/2Hn(γ
1/2q ) exp(- γq2

2 )
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decreases the accuracy of calculated fundamentals and the lowest
overtones. The matrix elements ofV were evaluated by the use
of eq 8.

To evaluate the significance of rotation-vibration interactions
for the calculation of the thermodynamic partition functions,
we expressed the total nuclear Hamiltonian of HCO using
Watson’s simplification of the rotation-vibration kinetic energy
operator:8

R, â ) x, y, z, µRâ is determined to be an element of the
inverse of the instantaneous inertia matrix,ĴR is a component
of the rovibrational angular momentum operator along the
molecule fixed axes and is expressed by means of three Euler
angles (ϑ, Φ, X) to describe the orientation of the molecular
fixed axes in the reference (equilibrium) configuration relative
to the space fixed axis system with the origin at the nuclear
center of mass.8 The operatorp̂R is a component of the
vibrational angular momentum operator expressed through the
Coriolis coupling constants (see details in ref 8). Equation 14
satisfies the condition that the molecule lies in thexy plane.
Hence, the other possible terms of eq 14 must vanish because
the values ofµxz andµyz and all of the derivatives ofp̂x andp̂y

are zero. We representedµxx, µyy, µzz, andµxy as functions of
the lengths and valence angle distortions of HCO in the manner
of eq 13 with the use of theµRâ values for 133 geometries around
the equilibrium configuration.

Eigenvalues and eigenfunctions of eq 14 could be found in
principle in the basis of products of eigenfunctions of eq 1 and
rotational wave functionsΦJkm(ϑ, Φ, X) expressed through
Wigner polynomialsdJ

mk using three quantum numbersJ, k,
andm. This approach, however, is too computationally expen-
sive and was not used. Instead, we evaluated perturbative
contributions of coupling terms of eq 14, which mix different
vibrational states by means of calculations of the matrix elements
of 〈µRâ〉ij, 〈µzzp̂z〉ij, and〈µzzp̂z

2〉ij between several low vibrational
levels marked asi and j. The expectation values ofµRâ as the
average over any vibrational stateV of the HamiltonianĤvib

led to the principal rotational constantsAV, BV, CV. Comparing
AV, BV, andCV to their equilibrium valuesAe, Be, andCe also
determines whether the rigid rotor approximation is valid in
the determination of the thermodynamical properties of HCO.

The solution of the nuclear problem in DCO, the deuterium-
substituted HCO radical, was also performed in the same way
as for HCO. All calculations were carried out with use of Fortran
programs from refs 11-13.

Solution of the Electronic Problem and the Complete Basis
Set Estimate of the Total Energy.Calculations of single-point
total energies to obtain the analytical representations of the
potential energy of HCO and optimizations of geometry
parameters were performed with a local version of the ACES
II program package14 at the coupled-cluster singles and doubles
level augmented by a perturbative correction for connected triple
excitations [CCSD(T)]15 using only the spin-unrestricted Har-
tree-Fock function. The spin contamination effects were very
small in all cases. An analysis of theTn amplitudes demonstrates
that the wave function is dominated by a single reference
determinant. We used the augmented correlation-consistent
polarized valence basis sets of Dunning et al. 16 of triple-,
quadruple-, and quintuple-ú quality (further abbreviated to apvtz,

apvqz, and apv5z, respectively). The frozen-core (1s for C and
O atoms) approximation was applied. The geometric extrapola-
tion of total energy was used in calculations of single-point
energies

wheren is the level of the apvnz basis set. The core-valence
correction (or inner-shell correlation) toE(CBS) was calculated
at the core-valence apvqz (apcvqz) basis set.16 The relativistic
(Darwin and mass-velocity) correction14 was evaluated with
the apcvtz basis set.16

We have no strong physical justification for the CBS
extrapolation by eq 15. However, using the mixed exponential/
Gaussian extrapolation, we found that another equation widely
adopted in the modern literature,

gives the CBS optimal geometry and harmonic frequencies
similar to ones evaluated by eq 15. The discrepancies in
harmonic frequencies of HCO calculated with the use of eqs
15 and 16 do not exceed 2 cm-1 with optimal geometries of
Re(CH) ) 1.1171 Å, Re(CO) ) 1.1753 Å, andRe(HCO) )
124.51° by eq 15 andRe(CH) ) 1.1172 Å,Re(CO) ) 1.1749
Å, and Re(HCO) ) 124.52° by eq 16. All of the dynamical
calculations were performed with use of the CBS geometry of
HCO evaluated by eq 15.

We also found the band intensitiesI of a transition from the
ground vibrational stateΨ′′ to a chosen excited oneΨ′ to be

where the square of the vibrational transition moment is

The Cartesian dipole moment componentsdx, dy, anddz were
obtained from summations similar to eq 13 by fitting values of
eq 13 to relevant values of the dipole moment calculated by
the CCSD[T]/apcvtz method for 31 geometries. These functions
were expressed through the following derivatives: (∂dR/∂qi)e,
(∂2dR/∂qi∂qj)e, (∂3dR/∂qi

3)e, and (∂4dR/∂qi
4)e, where i and j run

over 1, 2, and 3 andR runs overx, y, andz. The integrals on
the right side of eq 18 were calculated by the use of eqs 5-8.
The expectation value of the absolute magnitude〈d〉 of the dipole
moment was also computed for some low vibrational states.

Results and Discussion

Vibrational Spectra of HCO and DCO. The eigenfunctions
and eigenvalues of eq 1 were found by diagonalization of the
Hamiltonian matrix in the basis|n1 n2 n3〉 of the products of
functionsΦ(ni) from eq 4, wherei corresponds to coordinates
q1, q2, andq3. The maximum basis size applied consisted of
13 824 functions. For the fundamentalνi wavenumbers com-
puted with an accuracy of 0.01 cm-1, the variational limit could
be achieved at|11 7 7〉. The low-lying vibrational levels of HCO
and DCO are shown in Table 1. The expectation values of some
molecular properties including the infrared intensities calculated
for transitions from the ground vibrational state to a given
excited one are also presented there. All of these calculations
took the curvilinear property of vibrational coordinates into
account by means of the numerical integration of eq 2.

Ĥ ) (12)∑
R

µRRĴR
2 + (12)µxy(ĴxĴy + ĴyĴx) - µzzp̂zĴz +

(12)µzzp̂z
2 - (18)∑

R
µRR + Ĥvib (14)

E(CBS)) E(n) - [E(n) - E(n - 1)]2[E(n) - 2E(n - 1) +
E(n - 2)]-1 (15)

E(n) ) E(CBS)+ a exp(1- n) + b exp[-(1 - n)2] (16)

I(km/mol) ) 2.5066ν(cm-1)(〈ψ′|d(D)|ψ′′〉)2 (17)

(〈ψ′|d|ψ′′〉)2 ) (〈ψ′|dx|ψ′′〉)2+ (〈ψ′|dy|ψ′′〉)2 + (〈ψ′|dz|ψ′′〉)2

(18)
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The approximate assignments of wavenumbers for HCO and
DCO in Table 1 were made in terms of the normal coordinates
by an analysis of the calculated eigenfunctions of eq 1. The
harmonic frequencies were also calculated (cm-1): 2713 (ω1),
1906 (ω2), and 1119 (ω3) for HCO; 2036 (ω1), 1856 (ω2), and
871 (ω3) for DCO. Let us discuss the results of the HCO
calculations first. The HCO vibrational states shown in Table
1 are mostly assigned as single-mode oscillations. This is done
when there is a dominating (more than 0.5) weight of a certain
normal-mode harmonic oscillator function. The weights were
determined as squares of the relevant coefficients in the basis
expansion of the vibrational eigenfunction being discussed. In
some cases when wave functions were not dominated by one
harmonic oscillator function, assignments were based on an
examination of the expectation values of geometric parameters
and the values of infrared intensities from the zero level to higher
excitations. For instance, the energy levelE13 ) 7405 cm-1

can be assigned to CH-stretching overtone 2ν1 because at this
level we can see that the CH distance changes more significantly
than 〈R(CO)〉 or 〈R(HCO)〉: this value of〈R(CH)〉 is 0.05 Å
larger than〈R(CH)〉 at the E4 ) 5228 cm-1 level (that is
definitelyν1) or 0.11 Å larger than〈R(CH)〉 at the zero vibration
level E0. However, the eigenfunction atE13 ) 7405 cm-1 is
made up of the following combination of normal oscillator basis
functions: 0.49|3 0 0〉 + 0.48|2 0 0〉 - 0.39|1 0 0〉 - 0.32|1 0
2〉. For comparison, the wave function of theν1 state ofE4 )
5228 cm-1 is approximately equal to 0.85|1 0 0〉 + 0.40|2 0 0〉.
The high anharmonicity of theν1(CH) vibration (-297 cm-1)
demonstrates that even the 2ν1 overtone state is not dominated
by the|2 0 0〉 harmonic oscillator function. Moreover, the|2 0
0〉, |0 0 4〉, and |1 0 2〉 states are in Fermi resonance because
2ν3 ≈ ν1. This is referred to as an anharmonic resonance, in
which coupling is caused by terms in the potential energy
function.8 The result of this coupling is another mixed state at
E12 ) 7274 cm-1 assigned asν1 + 2ν3 and containing the
combination 0.68|1 0 2〉 + 0.22|2 0 0〉. More excited states also
may be in accidental resonance with each other because of the
quartic or cubic terms in eq 13, and they can form the vibrational
clusters (polyads). Hence, it is clearly impossible to predict a

high overtone-state energy using the standard spectroscopic
(Dunham) expansion:

However, we did try eq 19 to treat the lowest vibrational
energies of HCO (Table 1) corresponding to wavenumbersνi,
2νi, andνi + νj. Calculated coefficientsxij (x11 ) -119.3,x22

) -7.8, x33 ) -15.0, x12 ) -1.9, x13 ) -31.0, andx23 )
-4.0 cm-1) agree somewhat with values obtained by Tobiason
et al. from the disperse fluorescence spectroscopy study:17 x22

) -12.4,x33 ) -11.7,x12 ) 1.4,x13 ) -49.3, andx23 ) -4.0
cm-1. The authors of ref 17 concluded that the standard
expansion, eq 19, was not a valid model for the observed term
energies because the overall standard deviation of the fit was
too large in comparison with the regular error of the experi-
mental method. We also tried to include cubic terms in eq 19
and the overtones and combination frequencies of higher order.
However, we did not reach any reasonable result because of
the strong coupling of excited vibrational states of HCO. Hence,
the direct variational calculation with the basis set as large as
possible is the only approach to correct evaluations of those
molecular properties (for example, the HCO thermochemistry)
that require highly accurate energies of high states.

The assignments of wavenumbers for DCO were even more
difficult than for HCO. As seen from Table 1, energiesE2, E3,
and E4 are almost equal. This may lead to a possible 1:1:2
resonance with the|1 0 0〉 + |0 1 0〉 + |0 0 2〉 polyad. Hence,
one should expect the next polyad to be|2 0 0〉 + |1 1 0〉 + |0
2 0〉 + |0 0 4〉 + |1 0 2〉 + |0 1 2〉. We found that this represents
levelsE8-E13 with an energy range of 5625-6169 cm-1 (Table
1). The assignments of levels in the polyads were made with
the use of regularities of changes in the expectation values of
R(CO),R(CD), andR(DCO). The theoretical assignments agree
with the DCO assignments from experiment18 to be discussed
in the next section.

Table 2 contains HCO and DCO wavenumbersνi, 2νi, and
νi + νj computed and observed by experiment. For these lower
transitions, the results of variational calculations (the first three
columns in Table 2) are close to the wavenumbers obtained by

TABLE 1: Selected Properties of HCO and DCO in the Ground and Excited Vibrational Statesa

HCO DCO

i Ei weightb I0i 〈d〉i Ri(CH) Ri(CO) Ri(HCO) Ai Bi Ci Ei weightb I0i 〈d〉i

0 2812 0.96|0 0 0〉 1.560 1.146 1.179 124.4 24.594 1.493 1.397 2349 0.97|0 0 0〉 1.580
1 3889 0.95|0 0 1〉 47 1.540 1.151 1.180 124.9 27.169 1.499 1.394 3195 0.96|0 0 1〉 28 1.568
2 4697 0.93|0 1 0〉 81 1.582 1.146 1.187 124.1 24.461 1.482 1.386 4022 0.90|0 0 2〉 0.3 1.548
3 4935 0.91|0 0 2〉 0.2 1.509 1.157 1.180 125.4 30.306 1.503 1.392 4141 0.69|0 1 0〉 7 1.538
4 5228 0.73|1 0 0〉 113 1.397 1.205 1.175 123.7 22.824 1.496 1.385 4270 0.71|1 0 0〉 137 1.533
5 5769 0.91|0 1 1〉 1 1.561 1.151 1.188 124.6 26.989 1.487 1.383 4831 0.82|0 0 3〉 0.05 1.523
6 5951 0.85|0 0 3〉 0.1 1.468 1.163 1.181 126.0 34.068 1.509 1.389 4980 0.60|0 1 1〉 0.05 1.516
7 6273 0.65|1 0 1〉 1 1.368 1.211 1.176 123.9 25.109 1.503 1.383 5108 0.66|1 0 1〉 1 1.524
8 6566 0.84|0 2 0〉 2 1.607 1.146 1.195 123.9 24.319 1.472 1.375 5625 0.73|0 0 4〉 0.08 1.491
9 6812 0.86|0 1 2〉 0.04 1.529 1.157 1.189 125.1 30.077 1.492 1.380 5781 0.30|0 1 2〉 0.07 1.448
10 6941 0.77|0 0 4〉 0.3 1.415 1.170 1.182 126.4 37.923 1.515 1.386 5847 0.08|2 0 0〉 0.1 1.420
11 7111 0.69|1 1 0〉 4 1.406 1.207 1.183 123.4 22.581 1.485 1.373 5926 0.58|1 0 2〉 0.07 1.508
12 7274 0.47|1 0 2〉 0.2 1.316 1.224 1.176 124.1 27.083 1.508 1.380 6006 0.53|0 2 0〉 0.5 1.547
13 7405 0.23|2 0 0〉 0.9 1.240 1.254 1.172 123.3 22.450 1.502 1.376 6169 0.46|1 1 0〉 5 1.520
14 7634 0.80|0 2 1〉 0.04 1.585 1.151 1.196 124.3 26.794 1.477 1.372 6415 0.62|0 0 5〉 0.0008 1.456
15 7824 0.79|0 1 3〉 0.02 1.487 1.164 1.190 125.7 33.770 1.498 1.377 6573 0.19|0 1 3〉 0.005 1.410

a Values and dimensions:ith eigenvalueE (cm-1), infrared intensityI0i of transition “0-i”(km/mol), dipole moment absolute valued (D), distances
R (Å), valence angleR(deg), principal rotational constantsA, B, andC (cm-1). All of the magnitudes ofd, R, R, A, B, andC shown here are
expectation values calculated for each vibrational statei. They differ from their equilibrium values marked with the subscript “e” and mentioned
in the text.b Weights of one single normal oscillator calculated as the square of a relevant coefficient in the ortho-normalized basis expansion of
this eigenfunction to be considered.

G(V) ) ∑
i

ωi(ni +
1

2) + ∑
iej

∑xij(ni +
1

2)(nj +
1

2) (19)
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second-order spectroscopic theory at the CCSD(T)/pvqz level.1

However, the present investigation gives more accurate values
for ν1(CH) and its overtones and better agreement with the gas-
phase experimental data because of the inclusion of fifth- and
sixth-order force constants along the CH mode of HCO to
describe the flatter nature of the HCO potential energy surface
with increasing R(CH). Although the E(H-CO)-E(HCO)
relative energy1 of the H-CO dissociation transition state is as
low as 7940 cm-1, it is still considerably larger thanν1(CH) )
2416 cm-1. The inclusion of higher-order force constants does
not improve the accuracy of this fundamental. The remaining
discrepancies between theoretical and experimental data might
be due to insufficiently accounting for the electron correlation
effect in our CCSD(T) calculations or some experimental
uncertainties (Table 2). The mean absolute deviation in the DCO
case is smaller than for HCO: 15 versus 20 cm-1. We still
consider our results to be in good agreement with experiment
without any scaling of the calculated results for better adjustment
with observed wavenumbers. Keller et al.6 (see Table 2) and
Wang and Bowman4 reached better agreement with experiment,
but they used an adjustment of coordinates to fit calculated
eigenvalues to observed energies. In general, our results are
found to be in agreement with the results of previous calculations
(see refs 4 and 6 and references therein), and our conclusions
here do not contradict conclusions (strong coupling between
normal modes especially in the DCO case, Fermi resonances)
from refs 4 and 6.

We studied the role of the curvilinearity correction in our
calculations. The first column of Table 2 contains fundamentals
and overtones of HCO calculated with the assumption that
elementsgij in eq 1 are constant. The second one shows the
results of calculations by eq 3 when the linear dependencegij-
(q1, q2, q3) was postulated. The wavenumbers obtained with
the full consideration of curvilinearity in the kinetic part of the
Hamiltonian are shown in the third column. Comparing these
results demonstrates the relative significance of the curvilinearity
correction in the case of the bend-mode excitations and, to a
lesser degree, for the CH stretching. Computation by eq 3 with
the assumption of the linear dependence ofgij(q1, q2, q3) may
be used for an approximate evaluation of the curvilinear effect
in the kinetic part of the Hamiltonian (eq 1) but seems to show
a slight overestimate (Table 2).

In the conclusion of this section, we should mention that the
calculated infrared intensities in the vibrational spectra of HCO
and DCO assigned to fundamental transitions are much greater
than the intensities corresponding to overtones, with the
exception of the|0 0 0〉 f |1 1 0〉 transition (Table 1). The
calculated infrared intensities are in good agreement with the
results of investigations of the HCO and DCO spectra in the

solid CO matrix.21 According to the study by Milligan and
Jacox, the relative intensity of the HCO absorption atν2(CO)
) 1861 cm-1 was approximately 3 times that of theν3(HCO)
) 1090 cm-1 band.21 Our relation of these absorption intensities
is 2:1. The observed peak atν1(CD) ) 1937 cm-1 was more
intense than the absorption atν1(CH) ) 2488 cm-1.21 The
experimental relative intensity of theν2(CO)) 1800 cm-1 band
in the deuterated system is significantly less than that ofν2-
(CO) ) 1861 cm-1 for HCO.21 Our calculations give the ratios
of I(CD)/I(CH) ) 1.2 andI(CO)HCO/I(CO)DCO ) 12.

Structural and Thermodynamical Properties of HCO and
DCO. The CBS equilibrium structure parameters of HCO were
calculated by eq 15:Re(CH) ) 1.1171 Å,Re(CO) ) 1.1753 Å,
andRe(HCO) ) 124.51°. These values are in good agreement
with the results of the earlier microwave investigation by Austin
et al.22 (Re(CH) ) 1.11 Å,Re(CO) ) 1.17 Å, andRe(HCO) )
127°) and with the higher-accuracy estimates ofRe(CH) )
1.1191(50) Å,Re(CO)) 1.1754(15) Å, andRe(HCO)) 124.43-
(25)° made by Hirota23 from observed rotational-vibrational
spectra.

The expectation values of the absolute magnitude of the dipole
moment shown in Table 1 for the low-lying vibrational states
were compared with the zero-level value〈d〉0: they decrease
much more with the growth of the CH-mode excitations than
with respect to the bending mode, and they increase with the
change in the CO stretching mode quantum number. Similar
correlations were found for the DCO case. It was an auxiliary
tool in our assignments of the DCO vibrational levels. For
example, theE10 assignment may seem to be contradictory.
However, the sharp decrease in〈d〉 from 〈d〉0 ) 1.580 D to〈d〉10

) 1.420 D clarifies such an assignment. One should note that
even the zero-level expectation values of the dipole moment
and geometric parameters differ between HCO and DCO
because of the difference in frequencies caused by deuterium
substitution: compare the DCO parametersR0(CD) ) 1.138
Å, R0(CO) ) 1.179 Å, andR0(DCO) ) 124.4° to the HCO
data in Table 1. With the growth of relevant excitations, the
expectation values of the valence angleR(HCO) or R(DCO)
and the CO distance do not decrease significantly, whereas the
CH (or CD) growth is very prominent because of the very strong
anharmonicity of the CH(CD) stretching mode.

The temperature-dependent structural properties of HCO and
DCO (Table 3) were calculated with use of the Maxwell-
Boltzmann distribution law at temperatureT:

TABLE 2: Calculated and Observed Wave Numbers of HCO and DCO (νi, cm-1)

HCO DCO

νi this worka this workb this workc theoryd theorye expf νi this workc expf

ν3(bend) 1096 1066 1076 1097 1079 1087g ν3(bend) 846 849(32)
ν2(CO) 1884 1884 1885 1885 1865 1868g 2ν3 1673 1675(31)
2ν3 2172 2100 2123 2168 2139 2142(15) ν2(CO) 1792 1805(19)
ν1(CH) 2428 2406 2416 2465 2437 2435g ν1(CD) 1921 1928(19)
ν2 + ν3 2974 2946 2957 2980 2939 2942(14) ν2 + ν3 2631 2635(18)
ν1 + ν3 3518 3421 3461 3558 3478 3476(15) ν1 + ν3 2759 2741(18)
2ν2 3752 3753 3754 3749 3706 3709(14) 2ν1 3498 3535(26)
ν1 + ν2 4313 4287 4298 4344 4298 4302(15) 2ν2 3658 3638(10)
2ν1 4613 4573 4593 4682 4558 4570h ν1 + ν2 3820 3786(10)
a The CCSD(T)/CBS variational calculations with the kinematic matrix in eq 1 independent of the geometric parameters.b The CCSD(T)/CBS

variational calculations with the linear dependence of the kinematic matrix according to eq 3.c The CCSD(T)/CBS variational calculations by
means of the numerical differentiation of eq 2.d The CCSD(T)/pvqz calculations with use of the spectroscopic perturbation theory.1 e The MRCI
CASSCF variational calculations in the Jacobi coordinates with the basis set of quadruple-ú quality.6 f Laser fluorescence, with uncertainties in the
parentheses in cm-1 (ref 17 for HCO and ref 18 for DCO if not shown otherwise).g Laser fluorescence.19 h Laser fluorescence.20

PT ) (∑
V

〈P〉V exp(-
EV

kBT))(∑
V

exp(-
EV

kBT))-1

(20)
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whereV runs over all vibrational states with energiesEV and
relevant expectation values〈P〉V of a parameterP, kB is the
Boltzmann constant,P designates distancesR(CH), R(CD), and
R(CO), anglesR(HCO) andR(DCO), and squares of amplitudes
of vibrations9 l2(CH), l2(CD), l2(CO), l2(O‚‚‚H), andl2(O‚‚‚D).
In practice, this summation is truncated at a convenient value
of V after reaching a convergence ofPT at a certain temperature.
It was found that the maximum uncertainty of theP2000 values
shown in Table 3 corresponded to the last digit shown.

We note a considerable increase (by 0.02-0.05 Å) in
RT(CH) andRT(CD) within the temperature range of 298.15-
2000 K in comparison with the equilibrium value ofRe(CH).
TheRT(CO), RT(HCO), andRT(DCO) values vary less signifi-
cantly, remaining very similar to each other for HCO and DCO.
The temperature dependence of the mean amplitudes, especially
l(A...B), is very prominent. The valuesl calculated atT ) 2000
K differ significantly from the amplitudes found within the
harmonic oscillator model (in Å):l(CH) ) 0.094, l(CO) )
0.046, and l(O‚‚‚H) ) 0.131. The temperature-dependent
structure parameters of HCO (especially mean amplitudes)
calculated here can become an auxiliary instrument for the
interpretation of possible structural results from diffraction and
spectroscopic investigations of the formyl radical in the future.

The thermochemical functions of HCO and DCO, including
the heat capacityCp°, the entropyS°, and the reduced enthalpy
(HT° - H0°) (Table 3), were calculated beyond the harmonic
approximation by direct summation over a truncated number
of rovibrational levels. The 10 648 vibrational energies were
obtained by means of the CCSD(T)/CBS variational calculations
with the linear dependence approximation for the kinematic
matrix according to eq 3. Further increases in the vibrational
basis set did not lead to appreciable variations ofCp°, S°, and
(HT° - H0°). However, calculations of high energy levels still
remain a rough evaluation because of the low accuracy of the
potential energy function by eq 13 in the areas far from the
vicinity of the HCO equilibrium. Because of the accuracy
limitation, we do not present values ofCp°, S°, and (HT° -
H0°) calculated above 2000 K. However, we can account for
the anharmonicity of vibrations including Fermi resonance and

the curvilinear effect at least in the moderate energy range that
defines the appropriate accuracy of thermodynamic functions
at T < 2000 K. As seen from Table 1, the expectation values
of the principal rotational constants of HCO have a strong
dependence on the vibrational quantum numbers: they vary
from 22.8 to 37.9 cm-1(A), 1.47-1.52 cm-1(B), and 1.37-1.40
cm-1(C). The rigid rotor approximation is therefore invalid for
the case of HCO and DCO.

Using the expectation values ofµxx, µyy, µzz, and µxy as
elements of the inverse of the calculated instantaneous inertia
matrix, we found the rotational fine structure for vibrational
levels of HCO and DCO as asymmetric tops from eq 14 at the
total angular momentum quantum numberJ ) 150. The terms
-(1/2)µzzp̂z

2 and-(1/8)∑ µRR from eq 14 can be included in the
vibrational HamiltonianĤvibfrom eq 1 because they do not
depend explicitly on rotational coordinates. However, their
contribution (<0.3%) to the vibration energies is small and may
be neglected. The term-µzzp̂zĴz may cause Coriolis-type
resonance8 between different vibrational states. However, the
maximum coupling element,〈µzzpz〉14, mixing the states of HCO
with energiesE1 andE4 assigned as|0 0 1〉 and|1 0 0〉 (Table
1) can give a contribution to rovibrational eigenvalues of<10%
of the unperturbed rotational-level energy. The others〈µzzpz〉ij

are much smaller. We averaged the terms of eq 14{(1/2)∑
µRRĴR

2and (1/2)µxy(ĴxĴy + ĴyĴx)} over each vibrational state with
the assumption of the absence of rovibrational coupling caused
by these terms. The maximum coupling matrix element of the
〈µxy〉ij type, 〈µxy〉13 ) -0.87 cm-1, mixing HCO levels|0 0 1〉
and |0 0 2〉 (Table 1) is still a small perturbation of the
rovibrational spectrum that proves the absence of a Birss
resonance.8 However, matrix elements〈µxx〉01 and 〈µxx〉13 are
found to be relatively large (but less than one-third of 2A0 )
〈µxx〉00) and may cause centrifugal distortion coupling between
HCO vibrational levels|0 0 0〉, |0 0 1〉, and|0 0 2〉. However,
we neglected them as well as the other coupling elements〈µzzpz〉ij

and 〈µRâ〉ij (i * j) in eq 14; otherwise, the final rovibrational
Hamiltonian matrix would be too large. In fact, we used the
adiabatic separation of rotations and vibrations and solved the
asymmetric top eigenvalue problem of eq 14 at different
vibrational states in the basis of the symmetric top wave function
ΦJkm(ϑ, Φ, X)8,12 expressed through Wigner polynomialsdJ

mk

using three quantum numbersJ, k, andm.
The values ofCp°, S°, and (HT° - H0°) shown in Table 3

differ somewhat from results1 obtained within the rigid rotor-
harmonic oscillator (RRHO) approach as well as from the
results1 with the contact-transformed rotation-vibration S-
reduced Hamiltonian (CT),8 the energy levels of which were
expressed through centrifugal distortion constants with the
assumption of the absence of resonance: HCO, atT ) 2000 K
from ref 1,Cp° ) 54.4,S° ) 307.8 J/(mol K), and (HT° - H0°)
) 90.47 kJ/mol (the calculation marked as “RRHO”);Cp° )
58.1,S° ) 310.6 J/(mol K), and (HT° - H0°) ) 93.67 kJ/mol
(CT). The contact transformation apparently fails in the case of
HCO and DCO as well as in the RRHO approach. We consider
calculations ofCp°, S°, and (HT° - H0°) performed here (Table
3) to be the most accurate available.
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TABLE 3: Temperature Dependence of the Properties of
HCO and DCOa

property 298.15 K 400 K 700 K 1000 K 1500 K 2000 K

HCO
R(CH) 1.146 1.146 1.147 1.149 1.156 1.164
R(CO) 1.179 1.179 1.179 1.180 1.180 1.181
R(HCO) 124.4 124.4 124.4 124.5 124.5 124.5
l(CH) 0.090 0.090 0.092 0.095 0.107 0.121
l(CO) 0.036 0.036 0.037 0.039 0.043 0.048
l(O‚‚‚H) 0.101 0.101 0.106 0.114 0.130 0.146
C°p 34.6 36.5 43.0 48.4 53.4 55.9
S° 224.2 234.6 256.7 273.0 293.7 309.4
H°T - H°0 9.98 13.60 25.52 39.28 64.88 92.26

DCO
R(CD) 1.138 1.138 1.139 1.143 1.150 1.159
R(CO) 1.179 1.179 1.180 1.180 1.181 1.182
R(DCO) 124.4 124.4 124.4 124.5 124.5 124.5
l(CD) 0.075 0.076 0.078 0.084 0.098 0.113
l(CO) 0.036 0.036 0.037 0.039 0.043 0.048
l(O...D) 0.086 0.087 0.095 0.105 0.123 0.140
C°p 35.8 38.1 45.3 50.4 54.7 56.7
S° 228.4 239.3 262.5 279.6 300.9 317.0
H°T - H°0 10.08 13.84 26.39 40.80 67.21 95.11

a Values and dimensions: distancesR, mean amplitudesl (Å), angle
R (deg), heat capacityC°p, and entropyS° at 101 325 Pa [J/(mol K)],
reduced enthalpyH°T - H°0 (kJ/mol). The mean distancesR may be
compared with the electron diffraction valuesrg.
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