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An equation for analyzing the kinetic results for the droplet-train apparatus with a wall loss is derived. We
show that the presence of a radial concentration gradient due to loss on the flow reactor wall significantly
affects the measured uptake coefficientγmeason droplets in the center of the reactor. For an efficient wall
loss,γmeascan be∼60% less than that calculated without consideration of the loss on the wall. This revision
of the kinetics for species with a wall loss leads to an increase in the uncertainty of the extracted gas-surface
reaction probability for high water vapor pressure experimental conditions.

Introduction

The extraction of fundamental physical and chemical param-
eters from the results of a heterogeneous chemistry experiment
can be difficult when processes other than the one that is the
aim of the study dominate the kinetics. One such example is
the study of gas-surface reaction probabilities where diffusion
of the reactant through a bath gas is a significant, or perhaps
the major, rate-limiting process.

The droplet-train apparatus (DTA) has been utilized to study
heterogeneous chemistry for many years.1,2 It is uniquely suited
to study the interactions of reactant species with aqueous
surfaces where a relatively high vapor pressure of water is
present. This is because evaporation/condensation of the droplets
is small or negligible during the short time the droplets travel
through the interaction region. It also allows for the study of
uptake due to solvation for short (ms) gas-liquid contact times.

However, there are a few DTA results for uptake onto liquids
that have a significant vapor pressure of H2O8,18 that are at odds
with the results of another experiment5,16and with molecular19,20

and fluid dynamics3,4 computational studies. Specifically, for
uptake onto dilute sulfuric acid solutions (20-40 wt % H2SO4)
near room temperature, the mass accommodation coefficients
R for NH3

8 and HCl18 are reported to be near∼0.3 while theR
values measured in aerosol flow reactor experiments are reported
to be near unity (NH3,5 HCl16). Note that for NH3 uptake onto
very dilute acid solutions (pH> 3.7, equivalent [H2SO4] e
0.001 wt %), another experimental result21 is in accord with
the DTA results22 for this case (elsewhere23 we have provided
a critique of the model used in ref 21). Molecular dynamics
simulations of the uptake of ethanol19,20 onto water and the
computational fluid dynamics simulations of a droplet train3,4

also do not quantitatively agree with DTA results. This paper

focuses on a regime of the DTA analysis that addresses the
issues surrounding these discrepancies.

The analysis of the results of the DTA in the presence of
several Torr of water vapor (or another bath gas) when there is
an efficient uptake is complicated. The kinetics of diffusion and
of the surface reaction probability (γt) are treated separately
and comprise the measured reaction probability (γmeas). Con-
sequently, a value forγt can be obtained by applying a correction
to γmeasdue to the resistance of gas-phase diffusion,DiffCorr

Presently, the valuation ofDiffCorr for experiments in the DTA2

is determined by empirical results because, as stated in ref 2,
“...an exact treatment of the full gas uptake process is not
available...” This approach is reasonable, and the functionality
of DiffCorr is based on sound physical arguments (see the
discussion in refs 1 and 2 and references therein), and it yields
a cohesive set of results forγt, the true uptake coefficient. The
use of DiffCorr has been established over a wide range of
experimental conditions.2 For efficient uptake coefficients (γt

near unity), these experiments have usually employed variable
amounts of a noble gas (He, Ne, Ar, or Kr) to provide the
diffusion resistance.2,8 But there is a subset of measurements
for γt near unity where a significant amount of water vapor
was present: the uptake of deuterated species onto water
droplets. The losses of CD3COOD,6 D-ethanol,6 and D2O7 on
H2O-water are notable in this respect. The results for CD3-
COOD and D2O have been used to affirm the applicability of
DiffCorr to uptake measurements on water droplets where H2O
vapor provides the diffusive resistance.2,6

However, there may be additional uncertainty in the results
for these species due to an error in the determination ofγmeas.

1
γt

) 1
γmeas

- DiffCorr (1)
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Shi et al.6 report that CD3COOD (and to a lesser extent
D-ethanol) was lost efficiently on the wall. It is reasonable to
consider also the possibility of D2O loss on the wall because
measurements were conducted in the presence of a large excess
of H2O vapor, although wall loss for D2O was not mentioned
by Li et al.7 The presence of a wall loss is a significant difference
from the majority of the previous DTA experiments where
conditions were such that no wall loss occurred. Loss on the
reactor wall can lead to a significant concentration gradient
across the flow reactor radius which deviates from the assump-
tions1,2,9 employed in the calculation ofγmeas.

In ref 6, the wall loss of CD3OOD was addressed, and it was
stated that “...in principle, the depletion signal due to gas-
droplet interaction should be independent of wall loss.” In
essence, because the wall loss was present for both measured
signals that were used to determineγmeas, its effect would cancel
out. Here we demonstrate, however, that a wall loss can affect
the kinetics in the DTA reactor andγmeascan be significantly
decreased when the wall loss is taken into account. If there is
an error in γmeas, then theDiffCorr might have additional
uncertainty if applied to measurements where the droplets have
a significant vapor pressure of water, which would lead to an
increased uncertainty in the extracted value forγt.

Analytical Solution of the Kinetics of Uptake in DTA
with Wall Loss

As was presented by Gardner et al.,9 the kinetic equations
for the DTA can be derived assuming a plug-flow velocity
profile, insignificant axial diffusion, and negligible gradients
due to finite rates of diffusion to the droplets (i.e.,DiffCorr is
assumed to be 0). This approach is much simpler than that of
solving the appropriate convecto-reacto-diffusive (CRD) equa-
tions.10-14 A detailed analytical solution of the plug-flow CRD
that takes into account axial diffusion and models the gradients
due to diffusive uptake onto the droplet train is presented in
the Appendix. The results of that solution are nearly identical
to those from the approach described in this section.

Sufficiently far from the inlet such that entrance effects can
be neglected (i.e., the axial decay constant has settled down to
the fundamental mode), a species that is lost on the wall of a
flow reactor has a first-order wall-loss rate coefficient denoted
by kw (cm-1), where the incremental first-order loss10-12 in a
length dz of the flow reactor is

where dnj(z)is the change (loss) in the average concentration of
the species denoted bynj(z). This equation in essence provides
a definition for kw and nj(z) ) nj(0) exp(-kwz), wherenj(0) is
the cross sectional average ofn(r,0) at a position designatedz
) 0. nj(0) is equal to (∫ n(r,0)2πr dr)/πR2, whereR is the flow
reactor radius. The value ofkw depends on the radial profile,
the diffusion coefficient, the flow rate, and the loss rate on the
wall surface. The value ofkw can also be dependent on other
losses, such as uptake onto droplets, if they affect the radial
profile.

With the addition of a beam of spherical particles on the
central axis of the flow reactor, an additional loss dnj(z)het ensues

This additional loss is given by the gas-kinetic flux times the

uptake coefficientγ multiplied by the surface area of the
particles contained in length dz of the flow reactor and divided
by the volume flow rate of the carrier gas,VFR

The particles in the droplet train have a radiusa (a single droplet
has a surface areaAd ) 4πa2) and a linear number densityη
(particle cm-1). n(0,z) is the species concentration along the
flow reactor axis (radial position,r ) 0), i.e., that which is in
contact with the particles. The flux to the particles is assumed
to follow cn(0,z)/4, wherec is the mean molecular speed of the
reactant. This assumption has no consequence on the conclusions
of this work. Because there is no difference betweenγt and
γmeas in this treatment, we designate the uptake coefficient
by γ.

The incremental loss becomes

Integration of (5) from 0 toL yields

As above, if kinetic measurements are conducted far enough
from the inlet, the radial profile of the species is independent
of the axial distance along the flow reactor,10-14 and the
integrand is constant. We define a parameter

With this simplification, eq 6 becomes

The DTA experimental result forγ is deduced from the
change in the signal upon a change in the droplet surface area.
Thus, for a constant exposure lengthL, the quantity AdηL ) Ai

is varied (Ai ) A2 - A1 ) L{Ad2η2 - Ad1η1}). We specifically
allow for kw to depend on the amount of loss on the droplets
and denote thesekw,1 andkw,2 for wall loss in the presence of
droplets of surface areaA1 andA2, respectively. Subtracting eq
8 for A1 from that forA2 results in

Here it is assumed, as it is for the previous derivations of the
kinetics of the DTA,2,6,9 that nj(0) is unaffected by the change
in the size and spacing of the droplets. With a change in notation,
VFR ) Fg, njA2(L) ) ng′, andnjA1(L) ) ng, eq 9 can be rearranged
to yield

This equation is different from eq 17 of Shi et al., and the
changes are due to the consideration of a wall loss. Specifically,
the kinetic equation is altered through the factorâ in the

dnj(z)

nj(z)
) -kw dz (2)

dnj(z)

nj(z)
) -kw dz +

dnj(z)het

nj(z)
(3)

dnj(z)het ) -
γcn(0,z)

4VFR
Adη dz (4)

dnj(z)

nj(z)
) -kw dz -

γcn(0,z)Adη dz

4nj(z)VFR

(5)

ln(nj(L)

nj(0)) ) -Lkw -
γcAdη
4VFR

∫0

L n(0,z)

nj(z)
dz (6)

â ) n(0,z)/nj(z) (7)

ln(nj(L)

nj(0)) ) -Lkw -
γcAdη
4VFR

âL (8)

ln(njA2
(L)

njA1
(L)) ) - γc∆A

4VFR
â - L(kw,2 - kw,1) (9)

γ )
4Fg

c∆A
1
â (lnng

ng′
- L(kw,2 - kw,1)) (10)

3740 J. Phys. Chem. A, Vol. 108, No. 17, 2004 Hanson et al.



denominator and through the last term in brackets that is due
to a dependency of the wall loss rate coefficient on droplet
surface area.

Discussion

To begin the discussion of the magnitude of the wall-loss
effect, we evaluate the factorâ with the assumption that the
loss on the wall determines the radial profile of the trace gas.
This assumption also has the effect of making the last term in
eq 10 equal to zero. Within the plug flow approximation, the
fundamental mode of the solutions to the CRD equation13,14for
a species that is lost only on the wall yields a radial profile for
[reactant],n(r), that is given by the zero-order Bessel function:
n(r) ) c1J0(x), wherec1 is an arbitrary constant andx ) r(kwu/
D)0.5, whereu is the linear flow velocity andD is the diffusion
coefficient. The boundary condition at the wall determines a

value forx ) λ ) R(kwu/D)0.5 from the solution to

γw is the reaction probability on the wall, andJ1 is the first-
order Bessel’s function. The quantityâ is given by

where the integral is from Wheelon.17 For an efficient wall loss
andD e 10 cm2/s, which is typical for the DTA at high water
vapor pressure conditions,γw(c/4) is much greater thanDλ/R,
and λ takes a value near the first root ofJ0, which is ∼2.4.
J1(2.4) is ∼0.52; thus a value of∼2.3 for â is obtained for
these conditions. A few values forâ are shown in the fourth
column of Table 1 for a range ofγw for D ) 5 cm2/s. The wall
loss has a very large effect on the kinetics measured within a
DTA if γw/D is g0.002 s/cm2 (â g 2). Shown in Figure 1 is
the quantityâ as a function of Shw ) γw(c/4)R/D, which is the
Sherwood number for loss on the wall.

In this context, the effect of a wall loss in the DTA can be
given a physical interpretation. The droplets at the center of
the reactor experience a higher than average reactant concentra-
tion resulting in a higher than average loss rate. The loss is
then averaged via diffusion in the radial direction, which
obscures the relationship between the experimentally determined
quantities (e.g.,ng, ng′, and the droplet surface area density)
and the desired result,γ. The inclusion of the factor 1/â in eq
10 can thus be thought of as the need for proper accounting
within the flow reactor.

Figure 1. The divisorâ (from eq 12) to be applied to the measured uptake coefficient plotted vs the Sherwood number for loss on the wall. The
dashed line is a polynomial fit to the data for Shw e 5 giving â to within ∼1% of eq 12. These results are for the plug-flow approximation with
negligible axial diffusion; see the Appendix for an alternate calculation ofâ.

TABLE 1: Values for â as a Function of Shw ) γw(c/4)R/D
and the Axial Flow Velocity Profilea

Shw γw
b â, laminar flow â, plug flow âw,2

c âw,1
c

0.126 0.0001 1.05 1.031 1.049 1.029
0.379 0.0003 1.15 1.093 1.053 1.031
1.26 0.001 1.42 1.28 1.064 1.038
3.79 0.003 1.83 1.62 1.082 1.048

12.6 0.01 2.24 2.01 1.094 1.055
1260 1 2.54 2.31 1.098 1.057

a See the Appendix for a detailed explanation of the parameterâw,i,
which was calculated for plug flow.b Values forγw are for D ) 5
cm2/s,c/4 ) 8425, andR ) 0.75 cm.c Wall-loss enhancement factors
for plug flow. Subscript 1 indicates values for the loss representative
of a typical far-apart droplet geometry, and subscript 2 indicates that
for a typical closely spaced droplet geometry.

γw(c/4)J0(λ) ) -D
dJ0(x)

dr |R ) -D
dJ0(x)

dx
dx
dr |x)λ ) DJ1(λ)

λ
R

(11)

â )
n(r)0)

nj
)

J0(0)

∫0

R
J0(x)2πr dr

πR2 ) λ/2J1(λ) (12)
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In this discussion, we have assumed that the loss on the wall
determines the radial profile of the species in arriving at eqs 11
and 12. This assumption is useful for understanding the effect
under consideration and to deduce its magnitude. A detailed
treatment that takes into consideration the loss on the droplets
is presented in the Appendix. The simple treatment presented
above is within 3% of that presented in the Appendix providing
justification for treating the kinetics of wall loss separately from
the DiffCorr term.

Dependency ofkw upon the Loss Rate on the Droplets.
There is a finding in the Appendix that is noteworthy: the loss
at the center of the reactor results in a small increase inkw. In
principle, therefore, the latter term in eq 10 should not be
assumed to be zero. The incorporation of this dependence in
eq 10 leads to further changes in the flow reactor kinetics. In
the Appendix are the details of the variation ofkw with the loss
on the droplets. Also presented there is a method for evaluating
the last term in eq 10.

Laminar and Other Flows. While plug-flow is a useful
approximation for the kinetics of the DTA,1,2,9 it is not
representative of the actual flow. In the absence of particles, it
is closely approximated as a fully developed laminar flow, while
in the presence of rapidly moving particles, the flow can be
substantially distorted from laminar especially near the drop-
lets.3,4,15 This latter flow profile cannot be treated with the
current methods; however,â can be calculated for laminar flow
using eq 7 and the radial profiles obtained from the solutions
to the CRD equation for laminar flow.10-13 Again for D ) 5
cm2/s and forγw ) 0.001 to 1,â ranges from 1.4 to 2.5. These
are also shown in Table 1 and are slightly larger than those for
plug-flow. The evaluation of the last term in eq 10 for a laminar
flow profile is not feasible using the methods in the Appendix.
The methods presented by Dang13 could in principle be useful
for this endeavor.

The fundamental mode for the kinetics within a flow reactor
can be described by eq 8 irrespective of the velocity profile.
The details of the axial velocity profile enter via the dependence
of kw and â on parameters such asγw and D. This is strictly
true only for a steady-flow profile and for low loss rates in the
center of the reactor. The latter condition can be relaxed for
plug flow conditions as detailed in the Appendix, and we suspect
it can be relaxed for arbitrary flow profiles as long as they are
steady. The value forâ using steady flow profiles other than
plug-flow will be addressed using numerical techniques in a
forthcoming paper [Sugiyama, Hanson, Morita, manuscript in
preparation.] The examination of nonsteady-flow profiles, such
as those that exist very near the droplets in a DTA, will be
addressed with computational fluid dynamics calculations
[Morita et al., in preparation].

Application to DTA Results. It is difficult to make firm
conclusions regarding the value ofâ for a particular experi-
mental result without a detailed knowledge of the experimental
conditions. In ref 6, a value of 0.05 cm-1 is quoted forkw for
CD3COOD but neither the flow velocity nor the pressure for
the experiment where this value was determined are provided.
These are essential for making a proper evaluation ofâ.
Assuming that this value forkw applies for the typical flow rates
and partial pressures in the D-acetic acid uptake experiments6

(Fg ) 610 cm3/s, Ar partial pressure) 5.2 Torr, and H2O partial
pressure) 1.44 Torr, P. Davidovits, private communication,
2003),â takes a value of∼1.14 in the plug-flow approximation.
The effect onγmeasof the last term in eq 10 can also be estimated
as discussed in the Appendix (see A22 and the following
discussion). For typical droplet geometries and akw ) 0.05

cm-1, the last term in eq 10 results in a 16% effect on the
reportedγmeas. The overall correction to the reportedγmeas is
then-25%. This is a significant correction to the reportedγmeas

6

as it leads toγt values using eq 1 that range from 0.35 to 0.6.
The uncertainty in theγt for D-acetic acid, reported in ref 6 to
be 0.96( 0.21, should be increased; the rough estimate of the
wall-loss effect presented here suggests that the negative error
bar could be increased to∼0.5.

Note that the value ofkw that is appropriate for these
experimental conditions is uncertain. The wall loss for CD3-
COOD was reported to be so large that He could not be used
as the carrier gas.6 This implies that the Ar carrier gas provided
sufficient gas-phase diffusion resistance to make the measure-
ment possible. Yet, a value of 0.05 cm-1 for kw for these flow
rates and Ar pressures indicates that diffusion was not a major
impediment to the transport to the walls (0.05 cm-1 is only
∼25% of the diffusion-limited wall-loss rate coefficient for
laminar flow14 given by 3.6D/R2/u ) 0.2 cm-1 whereu is the
average linear flow velocity). However, precise knowledge of
the radial flow velocity profile and the method used to determine
kw may shed light on this uncertainty.

Wall loss due to H-D exchange for other deuterated species
(D-ethanol on H2O and ethanol on D2O, ref 6, and D2O)7 that
have been studied in a DTA might be large enough to
significantly affect the reported uptake coefficient. In ref 6, the
kw for D-ethanol was described in detail and the determination
of its value was corroborated in mass balance experiments where
the relative abundances of CD3CD2OD and CD3CD2OH were
monitored in the absence of droplets.kw was reported to range
from 0.01 to 0.05 cm-1 for D-ethanol, dependent upon
conditions, and the data reported in the paper were taken under
the low wall loss conditions. Nonetheless,â and the second
term in eq 10 should be calculated to provide values forγmeas

for ethanol that are as accurate as possible. Wall loss for D2O
was not reported in ref 7, yet a non-negligible wall loss might
have occurred for this species. It is reasonable to postulate this
because keeping track of the relative signals between injection
points is not necessary to obtain values forγmeas. Thus a small
but possibly nonnegligible wall loss can go undetected if not
looked for specifically. To provide a point of reference,
assuming similar experimental conditions as those quoted above
for D-acetic acid, a value forkw e 0.02 cm-1 would lead to a
correction toγmeasof e10%.

Conclusions

We have shown that the loss of a species on the reactor wall
should be taken into account when analyzing the kinetic results
of the DTA. Because of the form of the diffusion correction in
eq 1, a reliable value forγt depends critically in assessing
accurate values forγmeasand DiffCorr. The measured uptake
coefficientγmeascan be decreased by 60% (i.e., it is divided by
â ) 2.5), assuming laminar flow and neglecting the last term
in eq 10. We showed that even a small revision of-25% in
the γmeasfor D-acetic acid can lead to a large increase in the
uncertainty of the extracted surface reaction probability,γt. The
use of the results for CD3COOD to affirm the applicability of
DiffCorr to uptake measurements on water droplets where H2O
vapor provides the diffusive resistance should be re-evaluated.2,6

Finally, one should keep in mind that theDiffCorr term in
eq 1 where the value forγt is determined is a correction in the
opposite direction of these corrections toγmeas. The consideration
of wall loss in the DTA presented here allows for the possible
revision of the applicableγmeas. This is important for considering
alternative values forDiffCorr such as that of Morita, Sugiyama,
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and co-workers.3,4 Even though the effect of a wall loss may
be relatively small, it is important to consider it to fully evaluate
all the kinetic processes within the DTA.

The consideration of wall-loss effects, along with diffusion
treatments such as those from the fluid dynamics simulation,
will allow for a better understanding of the kinetic measurements
within a DTA. Contrary to the considerable body of empirical
evidence that affirms the present DTA analysis,2 we believe
these considerations will provide part of the basis for re-
evaluating the uncertainties of the extracted mass accommoda-
tion coefficients from measurements at high water vapor
pressures. This could lead to a better agreement of some of the
DTA results with the results of other investigations.

Appendix

Plug-Flow Kinetics in a Model DTA for Significant Loss
on the Droplets.We represent the droplet train as a liquid rod
of radiusa centered within the flow reactor of radiusR. We
consider the steady-state solution to the CRD equation

with a wall loss that occurs with an efficiencyγw at r ) R and
the loss to the particles is taken into account by a collisional
loss efficiencyγt at the surface of the rod. Sufficiently far from
the reactant inlet, we assume that the axial decay ofn(z,r) can
be separated into two functionsf(z)g(r), where f(z) is an
exponential function with a first-order decay constantkm. The
radial profileg(r) obeys

Upon the transformation

the dimensionless radial profileg(x) is a solution to a Bessel’s
equation

which is a linear combination of Bessel’s functions of the first
and second kinds of zeroth order

The constantA and the ratioc2/c1 are determined by the
boundary conditions (c1 can be set to an arbitrary value.) At
the surface of the rod, the boundary condition

translates into the equation

where ε ) a(A)1/2 and Nsh ) γtc/4D(A)1/2 is the Sherwood
number for loss on the rod divided byε. This leads to a relation
for c2/c1

using the identities17 J0′(x) ) -J1(x) andY0′(x) ) −Y1(x). For
loss on the flow reactor wall with a collision efficiency ofγw,

the boundary condition atx ) λ ) R(A)1/2 is

whereNshw is equal toγwc/4D(A)1/2 (the Sherwood number for
loss on the wall divided byλ). This leads to another relation
for c2/c1

Subtracting A10 from A8, a value forA is obtained by
determining the root of

whereupon the solution is fully determined.
Diffusion to the droplets in a DTA may be slow enough that

significant concentration gradients develop near the droplets.
In this case, the parameterâ is not given by the simple relation
in eq 7. Since the parameterâ describes the enhancement in
the loss on the droplet train (here a rod of radiusa) due to the
loss on the flow reactor wall atr ) R, we can provide a more
rigorous definition: â is the ratio of the loss rates on the rod
when a wall loss is present to that in the absence of a wall loss.
The number of molecules s-1 lost on a length of the rodz is
the area of the rod times the gas kinetic flux

The first-order loss rate coefficient for the reactorkrod
I (cm-1)

is obtained by dividing by the number of molecules in a length
z of the flow reactor and byu

Finally, we arrive at an expression forâ

where the zero subscript indicates that they are evaluated in
the absence of a wall loss.

The average ofg(x) along a cross section of the flow reactor
is given by

using the integrals from Wheelon.17 With eqs A7 and A9, it
can be shown

Finally, â is given by

∂n
∂t

) 0 ) D∇2n - u
∂n
∂z

(A1)

Dg′′ + Dg′/r + (Dkm
2 + kmu)g ) 0 (A2)

x ) r(A)1/2 A ) km
2 + kmu/D (A3)

g′′ + g′/x + g ) 0 (A4)

g(x) ) c1J0(x) + c2Y0(x) (A5)

D∇g ) D
dg
dr |a ) γt

c
4
g(a) (A6)

g′(ε) ) Nshg(ε) (A7)

c2

c1
) -

J1(ε) + NshJ0(ε)

Y1(ε) + NshY0(ε)
(A8)

g′(λ) ) -Nshwg(λ) (A9)

c2

c1
) -

J1(λ) - NshwJ0(λ)

Y1(λ) - NshwY0(λ)
(A10)

0 ) -
J1(ε) + NshJ0(ε)

Y1(ε) + NshY0(ε)
+

J1(λ) - NshwJ0(λ)

Y1(λ) - NshwY0(λ)
(A11)

molecule/s) 2πazγt
c
4

n(a) (A12)

krod
I ) molecule/s

njπ(R2 - a2)zu
) 2aγt

c
4

n(a)/nj(R2 - a2)u (A13)

â )
krod

I

krod,0
I

)
n(a)/nj

n0(a)/nj0

)
g(ε)/gj

g0(ε0)/gj0

(A14)

gj )
∫

ε

λ
g(x)2πx dx

∫
ε

λ
2πx dx

)
εg′(ε) - λg′(λ)

(λ2 - ε
2)/2

(A15)

g(ε)
gj

) λ2 - ε
2

2Nshε

1

1 +
Rγwg(λ)

aγtg(ε)

) A

1 +
Rγwg(λ)

aγtg(ε)

2D(R2 - a2)
γtca

(A16)
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For c/4 ) 8500 cm/s,D ) 5 cm2/s,u ) 200 cm/s,γt ) 1, R )
0.745 cm, anda ) 0.002 cm,â takes values of 1.27, 2.04, and
2.37 forγw ) 0.001, 0.01, and 1, respectively. These are within
a few percent of the values determined using the simpler
approach in the main body of the paper. A rod of radius 20µm
was chosen because it has the same surface area per axial
distance as is typical for the droplets in a DTA. For a point of
reference, the loss on the rod in the absence of a wall loss,
krod,0

I , is 0.016 cm-1. The value of â is not significantly
dependent on the value ofa or γt. This is becauseg(ε)/g(λ)
varies to compensate for variations ina and γt for these
conditions so that the quantityaγtg(ε)/g(λ) is nearly constant.

There is an increase in the wall loss due to the presence of
the loss on the rod. This is because the value ofkw must reflect
the changes in the radial profile of the reactant when loss on
the rod is important. Similar to eq A17, an enhancement factor
âw for the wall loss rate coefficient can be derived

where the zero subscript now indicates that they are evaluated
in the absence of a loss on the rod. Becauseâw depends on the
loss rate at the center of the reactor, we designate it with
subscripti (i ) 1 or 2.) For the conditions listed in the preceding
paragraph andγt,2 ) 1, âw,2 takes values of 1.06 and 1.10 for
γw ) 0.001 and 1, respectively. Forγt,1 ) 0.075 (to give a
lower loss rate that simulates a far apart droplet geometry, i.e.,
krod,0

I ) 0.010 cm-1), âw,1 ranges from 1.04 to 1.06 asγw goes
from 0.001 to 1. Listed in the last two columns of Table 1 are
representative values forâw,i.

The overall first-order loss rate coefficient is equal to

The loss on the rod couples to the loss on the wall to make an
overall effect on the loss rate coefficient that could make the
value for â appear to be even larger than that given by A17.
This coupling should be considered when evaluating the overall
effect of a wall loss on the kinetics in a droplet train apparatus.

The Second Term on the Right-Hand Side of Equation
10. Equation 10 can be rearranged to give

where

is the measured, uncorrected uptake coefficient. The correction
for wall loss is separated into the 1/â term and the last term in
brackets. The last term can be transcribed by integrating A19,
taking the difference between two droplet configurations, and
obtaining for the measured quantity ln(ng/ng′)

With this, the last term in eq A20 becomes

As shown in Table 1, the quantityâw,2 - âw,1 ranges from
0.02 to 0.04 depending upon the Sherwood number for loss on
wall. â also depends on the Sherwood number, and it varies
such that the quantity (âw,2 - âw,1)/â ≈ 0.02 is nearly
independent of Shw. A typical value for the quantitykrod2,0

I -
krod1,0

I is 0.006 cm-1, and thus eq A22 is given approximately
by 1/(1 + 3.3kw,0).
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â ) A
A0

1

1 +
Rγwg(λ)

aγtg(ε)

(A17)

âw,i ) A
A0

1

1 +
aγt,igi(ε)

Rγwgi(λ)

)
kw,i

kw,0
(A18)

dnj(z)
dz

1
nj(z)

) -(kw,i + krod,i
I ) ) - (âw,ikw,0 + âkrod,0

I ) (A19)

γ ) γm
1
â (1 -

L(kw,2 - kw,1)

ln(ng/ng′) )

γm )
4Fg

c∆A
ln(ng

ng′) (A20)

ln(ng/ng′) ) L(krod2
I - krod1

I + kw,2 - kw,1) )

Lâ(krod2,0
I - krod1,0

I ) - Lkw,0(âw,2 - âw,1) (A21)

(1 -
L(kw2 - kw1)

ln(ng/ng′) ) ) (1 +
kw,0(âw,2 - âw,1)

â(krod2,0
I - krod1,0

I ))-1

(A22)
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