Theoretical Study of the Reaction Mechanism of $\mathbf{B O}, \mathrm{B}_{2} \mathrm{O}_{2}$, and BS with $\mathbf{H}_{\mathbf{2}}$

Chih-Hao Chin, ${ }^{\dagger}$ Alexander M. Mebel, ${ }^{*}, \ddagger, \S$ and Der-Yan Hwang*, \dagger
Department of Chemistry, Tamkang University, Tamsui 25137, Taiwan, Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10764, Taiwan, and Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199

Received: June 20, 2003; In Final Form: November 5, 2003

Abstract

Potential energy surfaces of various reactions in the $\mathrm{BO} / \mathrm{H}_{2}, \mathrm{~B}_{2} \mathrm{O}_{2} / \mathrm{H}_{2}$, and $\mathrm{BS} / \mathrm{H}_{2}$ systems have been studied at the $\mathrm{G} 2 \mathrm{M}(\mathrm{MP} 2) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. The $\mathrm{BO}+\mathrm{H}_{2}$ reaction is shown to proceed by abstraction of a hydrogen atom by B to produce $\mathrm{OBH}+\mathrm{H}$ with the barrier and exothermicity of 8.3 and 6.8 $\mathrm{kcal} / \mathrm{mol}$, respectively. The reaction can also occur by 1,2 -insertion of BO into the $\mathrm{H}-\mathrm{H}$ bond or by H abstraction by the O atom; however, the barriers for these channels are much higher, 36.4 and $42.7 \mathrm{kcal} / \mathrm{mol}$, respectively. Via a low $\sim 0.3 \mathrm{kcal} / \mathrm{mol}$ barrier, the $\mathrm{OBH}+\mathrm{H}$ reaction produces the OBH_{2} radical, which is the most stable compound in the $\mathrm{BO} / \mathrm{H}_{2}$ system and lies $15.9,2.5$, and $4.2 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{BO}+\mathrm{H}_{2}$, transHBOH , and cis- HBOH , respectively. OBH_{2} can isomerize to trans -HBOH overcoming a barrier of $27.7 \mathrm{kcal} /$ mol and the latter can rearrange to the cis conformer with a barrier of $10.8 \mathrm{kcal} / \mathrm{mol}$. BOH and H can recombine and form cis- or trans-HBOH without barriers. In the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction, the reactants can first form a weakly bound $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ complex, which then can eliminate an H atom producing $\mathrm{BOH}+\mathrm{H}$ or undergo insertion of B into an $\mathrm{O}-\mathrm{H}$ bond giving trans- HBOH with barriers of 4.7 and $6.2 \mathrm{kcal} / \mathrm{mol}$ relative to the initial reactants, respectively, and trans- HBOH can eventually decompose to $\mathrm{OBH}+\mathrm{H}$ and a minor amount of $\mathrm{BO}+\mathrm{H}_{2}$. Singlet OBBO is shown to be much less reactive with respect to H_{2} than the BO monomer. Alternatively, after two BO recombine to form a triplet OBBO molecule over a moderate $8.3 \mathrm{kcal} / \mathrm{mol}$ barrier, t -OBBO can easily react with H_{2} producing either $\mathrm{BO}+\mathrm{OBH}_{2}$ (via a $\mathrm{t}-\mathrm{OBBH}_{2} \mathrm{O}$ intermediate) or $\mathrm{OBBOH}+\mathrm{H}$ with barriers of 4.4 and $7.4 \mathrm{kcal} / \mathrm{mol}$, respectively. The reactions in the $\mathrm{BS} / \mathrm{H}_{2}$ system are shown to be similar to those for $\mathrm{BO} / \mathrm{H}_{2}$, except that BS cannot insert into $\mathrm{H}_{2}, \mathrm{SBH}_{2}$ resides in a much deeper potential well (37.3 $\mathrm{kcal} / \mathrm{mol}$ below $\mathrm{BS}+\mathrm{H}_{2}$) and can rearrange both to trans- and cis- HBSH , the $\mathrm{B}-\mathrm{H}_{2} \mathrm{~S}$ complex is more strongly bound than $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$, and the $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ reaction is expected to be significantly faster than the reaction of $B+\mathrm{H}_{2} \mathrm{O}$.

Introduction

The oxidation of boron to solid or liquid $\mathrm{B}_{2} \mathrm{O}_{3}$ is a highly exothermic process and therefore boron is of interest as a potential component of propellants. ${ }^{1-7}$ However, significant obstacles exist for practical use of elemental boron combustion, including the formation of a protective oxide layer that hinders the ignition of boron particles, the generation of boron oxyhydride intermediates which impede the combustion process, and also a slow condensation rate to the desired liquid or solid final product. When hydrogen is present, a substantial amount of boron gets trapped as metastable species such as HBO and HOBO, with less energy release than would occur with formation of $\mathrm{B}_{2} \mathrm{O}_{3}$. Because of these problems, extensive efforts are underway to create quantitative models for the complex processes of boron ignition and combustion and to study the detailed kinetics of homogeneous gas-phase ${ }^{4-6,8}$ and heterogeneous boron combustion. ${ }^{5,7}$ These modeling studies require first of all thermodynamic and kinetic data, including heats of reactions and activation barriers. ${ }^{9-11}$ Accurate ab initio and density functional calculations of potential energy surfaces (PES) for the reactions involved in boron combustion are a valuable tool to achieve these data.

[^0]In the present paper, we report the results of such calculations for several reactions related to boron combustion. These include various reactions in the $\mathrm{BO} / \mathrm{H}_{2}$ system, such as $\mathrm{BO}+\mathrm{H}_{2} \rightarrow$ $\mathrm{HBO}+\mathrm{H}, \mathrm{HBO}+\mathrm{H} \rightarrow \mathrm{OBH}_{2} / \mathrm{HOBH}$, and $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ products. Some of these reactions have been studied earlier experimentally ${ }^{12-17}$ and by various theoretical methods; ${ }^{18-22}$ however, a complete PES for the $\mathrm{BO} / \mathrm{H}_{2}$ system including all possible intermediates and transition states has not been scrutinized so far at a consistently high level of theory. We also consider the reaction of the boron oxide dimer $\mathrm{B}_{2} \mathrm{O}_{2}$ with molecular hydrogen and compare its reactivity with that of the monomer. In addition, we study PES and elucidate the gasphase reaction mechanism of boron sulfide BS with H_{2} and compare the $\mathrm{BO}+\mathrm{H}_{2}$ and $\mathrm{BS}+\mathrm{H}_{2}$ reactions. To our knowledge, neither $\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$ nor $\mathrm{BS}+\mathrm{H}_{2}$ reactions have been studied theoretically until now. The present calculations continue systematic investigations in our group ${ }^{23-27}$ of the reactions of diatomic oxides MO and sulfides MS with molecular hydrogen and reverse reactions of atoms with water and $\mathrm{H}_{2} \mathrm{~S}$ and provide reliable structures of various reactants, products, intermediates, and transition states as well as their energies within chemical accuracy.

Computational Details

We investigate the lowest doublet electronic state PESs for the $\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BS}+\mathrm{H}_{2} \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{~S}$ reactions

TABLE 1. Total Energies (hartree), ZPE, and Relative Energies ($\mathbf{k c a l} / \mathrm{mol}$) of Various Compounds in the BO $+\mathbf{H}_{2}$ Reaction Calculated at the B3LYP/6-311+G(d,p), MP2/6-311G(d,p), CCSD(T)/6-311G(d,p), MP2/6-311+G(3df,2p), and G2M(MP2)// B3LYP/6-311 $+\mathbf{G}(\mathrm{d}, \mathrm{p})$ Levels of Theory

species	B3LYP/6-311+G(d,p)			MP2/6-311G(d,p)		$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$		MP2/6-311+G(3df,2p)		G2M(MP2)
	total energy	ZPE	rel energy	total energy	rel energy	total energy	rel energy	total energy	rel energy	$\begin{gathered} \text { rel } \\ \text { energy } \end{gathered}$
$\mathrm{BO}\left(C_{\infty \nu},{ }^{2} \Sigma^{+}\right)$	-100.05887	2.74		-99.80119		-99.81545		-99.85654		
$\mathrm{H}_{2}\left(D_{\infty h},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$	-1.17957	6.34		-1.16025		-1.16834		-1.16272		
$\mathrm{BO}+\mathrm{H}_{2}$	-101.23844	9.05	0	-100.96144	0	-100.98379	0	-101.01926	0	0
TS1 ($\left.C_{\infty \nu},{ }^{2} \Sigma^{+}\right)$	-101.23260	8.45	3.08	-100.94554	9.39	-100.96956	8.34	-101.00351	9.29	8.25
H (${ }^{\text {S }}$)	-0.50216	0		-0.49981		-0.49981		-0.49981		
OBH ($C_{\infty \nu},{ }^{1} \Sigma^{+}$)	-100.74744	9.01		-100.47875		-100.49552		-100.53581		
$\mathrm{OBH}+\mathrm{H}$	-101.24960	9.01	-8.12	-100.97856	-11.86	-100.99533	-7.28	-101.03562	-11.38	-6.81
$\mathrm{TS} 2\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-101.24856	9.32	-6.09	-100.97851	-10.45	-100.99531	-6.96	-101.03569	-10.05	-6.56
$\mathrm{OBH}_{2}\left(C_{2 v},{ }^{2} \mathrm{~B}_{2}\right)$	-101.28292	12.47	-24.56	-100.97630	-5.97	-101.01571	-16.68	-101.03289	-5.20	-15.90
TS3 ($C_{s},{ }^{2} \mathrm{~A}^{\prime}$)	-101.22942	11.08	7.65	-100.93532	18.38	-100.96249	15.36	-100.99877	14.85	11.82
t - $\mathrm{HOBH}\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-101.27354	14.94	-16.25	-100.98777	-10.75	-101.01128	-11.47	-101.04859	-12.63	-13.36
TS4 (C_{1})	-101.11561	10.81	78.80	-100.82054	90.14	-100.85398	83.18	-100.88062	88.72	81.76
TS5 ($C_{s},{ }^{2} \mathrm{~A}^{\prime}$)	-101.18857	10.74	32.95	-100.90061	39.83	-100.92310	39.74	-100.96384	36.43	36.35
$c-\mathrm{HBOH}\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-101.27052	14.63	-14.66	-100.98483	-9.21	-101.00819	-9.84	-101.04559	-11.05	-11.68
TS6 (C_{1})	-101.25481	13.20	-6.20	-100.96513	1.75	-100.98881	0.92	-101.02847	-1.71	-2.54
$\operatorname{TS7}\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-101.17204	7.54	40.19	-100.88243	48.1	-100.91029	44.64	-100.94336	46.15	42.69
$\mathrm{BOH}\left(C_{s},{ }^{1} \mathrm{~A}^{\prime}\right)$	-100.66957	8.29		-100.39481		-100.42105		-100.45426		
$\mathrm{BOH}+\mathrm{H}$	-101.17173	8.29	41.12	-100.89462	41.18	-100.92086	38.74	-100.95407	40.16	37.72
$\mathrm{TS} 8\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-101.12355	10.49	73.51	-100.82013	90.09	-100.85493	82.27	-100.88116	88.07	80.26
$\mathrm{B}-\mathrm{H}_{2} \mathrm{O}\left(C_{2 v},{ }^{2} \mathrm{~B}_{2}\right)$	-101.13100	14.05	72.32	-100.84153	80.15	-100.87369	73.99	-100.89924	80.22	74.06
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$	-101.12093	13.36	77.97	-100.83307	84.78	-100.86773	77.06	-100.89332	83.25	75.53
TS9 ($C_{s},{ }^{2} \mathrm{~A}^{\prime}$)	-101.22901	9.60	6.46	-100.93688	15.95	-100.96050	15.15	-100.99657	14.78	13.98

as well as singlet and triplet PESs of the $\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$ reaction. On these surfaces, full geometry optimizations were run to locate all local minima and transition states at the B3LYP/6-311+G(d,p) level of theory. ${ }^{28,29}$ Harmonic vibrational frequencies were obtained at the same level to characterize the stationary points as minima or first-order saddle points, to obtain zero-point vibrational energy corrections (ZPE), and to generate force constant data needed in the intrinsic reaction coordinate (IRC) calculation. To predict more reliable ZPE, the raw calculated B3LYP/6-311+G(d,p) ZPE values were scaled 0.9806 to account for their average overestimation. ${ }^{30}$ The IRC method ${ }^{31}$ was used to track minimal energy paths from transition structures to corresponding minima. A step size of $0.1 \mathrm{amu}^{1 / 2}$ bohr or larger was used in the IRC procedure. The relative energies have been refined by using the modified Gaussian-2 G2M(MP2) theory ${ }^{32}$ with B3LYP/6-311+G(d,p) optimized geometries. All the ab initio calculations described here were performed employing the Gaussian 98 programs. ${ }^{33}$

Results and Discussion

$\mathbf{B O}+\mathbf{H}_{\mathbf{2}} \rightarrow \mathbf{B}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$ Reaction. Total energies and ZPE corrected relative energies of various compounds in the $\mathrm{BO}+$ $\mathrm{H}_{2} \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{O}$ reaction calculated at the B3LYP/6-311+G(d,p), MP2/6-311G(d,p), MP2/6-311+G(3df,2p), and CCSD-(T)/6-311G(d,p) levels of theory and their G2M(MP2) relative energies are listed in Table 1. Table 2 presents calculated vibrational frequencies. The $\mathrm{BO}+\mathrm{H}_{2}$ potential energy diagram along the reaction path computed at the G2M(MP2) level and the optimized geometries of various compounds along the predicted reaction pathway are shown in Figure 1.

Three mechanisms are possible in the reaction of boron oxide with molecular hydrogen, including abstraction of an H atom of H_{2} by B and O atoms of BO and insertion of boron oxide into the $\mathrm{H}-\mathrm{H}$ bond. The most favorable mechanism is the abstraction of H by the B atom, $\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{OBH}+\mathrm{H}$, proceeding via transition state TS1. The barrier for this process is calculated to be $8.3 \mathrm{kcal} / \mathrm{mol}$. The transition state has a linear $C_{\infty v}$-symmetric geometry that ensures the most efficient inter-

TABLE 2. Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ of Various Compounds in the $\mathrm{BO}+\mathrm{H}_{2}$ Reaction Calculated at the B3LYP/6-311 + G(d,p) Level

species	frequencies
BO	1916
TS1 (B3LYP)	$591 i, 10,10,886,886,1885,2240$
TS1 (MP2) ${ }^{a}$	$1230 i, 116,116,982,982,1758,2128$
OBH	$768,768,1865,2902$
TS2	$375 i, 268,762,784,1832,2877$
OBH $_{2}$	$548,907,980,1408,2425,2459$
TS3	$1818 i, 637,904,1419,2162,2629$
trans-HBOH	$748,870,1090,1330,2574,3837$
TS4	$1344 i, 302,649,1084,2091,3433$
TS5	$1681 i, 868,985,1560,1971,2130$
cis-HBOH	$739,845,1079,1341,2531,3701$
TS6	$979 i, 571,968,1301,2467,3929$
TS7	$635 i, 192,697,815,1468,2103$
BOH	$570,1411,3816$
TS8	$1671 i, 359,773,1030,1384,3789$
B-H 20	$138,215,508,1567,3660,3745$
TS9	$1554 i, 601,776,857,1666,2818$

${ }^{a}$ Calculated at the MP2/6-311G(d,p) level with the MP2/6-311G(d,p) optimized geometry.
action between the singly occupied σ orbital of BO $\left({ }^{2} \Sigma^{+}\right)$ composed mostly of the p_{z} orbital of the boron atom and σ_{g} and σ_{u} orbitals of H_{2}. The resulting OBH molecule is also linear and the $\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{OBH}+\mathrm{H}$ reaction is $6.8 \mathrm{kcal} / \mathrm{mol}$ exothermic. In TS1, the breaking $\mathrm{H}-\mathrm{H}$ bond is stretched by 14% as compared to that in an isolated H_{2} molecule, while the forming $\mathrm{B}-\mathrm{H}$ bond is 35% longer than that in the OBH product. This indicates an early character of the transition state, in line with the finding that the reaction is exothermic. The $\mathrm{BO}+\mathrm{H}_{2}$ $\rightarrow \mathrm{OBH}+\mathrm{H}$ reaction has been carefully investigated earlier. The reaction exothermicity was computed to be $6.4,7.8$, and $7.1 \mathrm{kcal} / \mathrm{mol}$ at the MRCI/TZ2P, ${ }^{21} \mathrm{G} 2,{ }^{34}$ and CBS-Q ${ }^{35}$ levels, respectively, all in close agreement with our present value. The reaction barrier obtained by Page using the MRCI/TZ2P method is $9.5 \mathrm{kcal} / \mathrm{mol},{ }^{21}$ about $1.2 \mathrm{kcal} / \mathrm{mol}$ higher than the G2M(MP2) result.

Figure 1. Potential energy diagram for various reactions in the $\mathrm{BO} / \mathrm{H}_{2}$ system calculated at the G2(MP2) level. Relative energies are given in $\mathrm{kcal} / \mathrm{mol}$. Geometric structures (bond lengths in \AA and bond angles in deg) of various intermediates and transition states optimized at the B3LYP/ $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory are also shown.

In a secondary $\mathrm{OBH}+\mathrm{H}$ reaction, the OBH molecule can recombine with H and addition of the latter to the middle B atom is more favorable than the addition to the terminal oxygen. Indeed, the barrier at TS2 for the $\mathrm{OBH}+\mathrm{H} \rightarrow \mathrm{OBH}_{2}$ reaction is only $\sim 0.25 \mathrm{kcal} / \mathrm{mol}$, while that at TS9 for the OBH $+\mathrm{H} \rightarrow$ cis-HBOH reaction is $20.5 \mathrm{kcal} / \mathrm{mol}$ higher. TS2 has a very early and loose character with the forming $\mathrm{B}-\mathrm{H}$ bond as long as 2.180 \AA. Alternatively, TS 9 is a much tighter and later transition state, where the forming $\mathrm{O}-\mathrm{H}$ bond is only 16% longer than the $\mathrm{O}-\mathrm{H}$ bond in the cis-HBOH product. The $C_{2 v}$-symmetric $\mathrm{OBH}_{2}\left({ }^{2} \mathbf{B}_{2}\right)$ radical is the global minimum in the $\mathrm{BO} / \mathrm{H}_{2}$ system, which resides $15.9 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the initial $\mathrm{BO}+\mathrm{H}_{2}$ reactants. The planar cis- $\mathrm{HBOH}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ isomer is $4.2 \mathrm{kcal} / \mathrm{mol}$ less stable than OBH_{2} and lies $11.7 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{BO}+\mathrm{H}_{2}$. This value is somewhat lower than the G2 result by Duan et al., $14.0 \mathrm{kcal} / \mathrm{mol} .{ }^{34}$ The third isomer is planar trans- HBOH $\left({ }^{2} \mathrm{~A}^{\prime}\right), 2.6 \mathrm{kcal} / \mathrm{mol}$ less stable than $\mathrm{OBH}_{2}\left({ }^{2} \mathrm{~B}_{2}\right)$ but $1.7 \mathrm{kcal} /$ mol more favorable than cis- $\mathrm{HBOH}\left({ }^{2} \mathrm{~A}^{\prime}\right)$. The energy difference between the trans- and cis-HBOH conformers computed at the G2 level is very similar, $1.8 \mathrm{kcal} / \mathrm{mol} .{ }^{34}$ trans- HBOH lies 13.4 (G2M(MP2)), 15.8 (G2), ${ }^{34}$ and $15.3(\mathrm{CBS}-\mathrm{Q})^{35} \mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathrm{BO}+\mathrm{H}_{2}$. It should be noted that we were not able to find a transition state leading directly from OBH +H to trans-HBOH; a search of a first-order single point starting from a trans conformation of TS9 converged back to TS9, which connects $\mathrm{OBH}+\mathrm{H}$ with cis- HBOH .

The three isomers of the $\mathrm{H}_{2} \mathrm{BO}$ species can rearrange to each other. For instance, migration of a hydrogen atom from B to O in OBH_{2} gives trans- HBOH via a planar transition state TS3. The barrier at TS3 is significant, 27.7 and $25.2 \mathrm{kcal} / \mathrm{mol}$ relative to OBH_{2} and trans- HBOH , respectively. In turn, trans- HBOH can undergo rotation around the $\mathrm{B}-\mathrm{O}$ bond to produce cis-

HBOH via an asymmetric transition state TS6. The barrier in this case is much lower, 10.8 and $9.1 \mathrm{kcal} / \mathrm{mol}$ relative to transand cis- HBOH , respectively. The $\mathrm{B}-\mathrm{O}$ bond in HBOH seems to have a single character and the bond elongates only by ~ 0.01 \AA in the transition state. Nevertheless, the barrier at TS6 is rather large for a rotation about an ordinary single bond. Natural bond population analysis for HBOH indicates an additional dative character of the $\mathrm{B}-\mathrm{O}$ bond with $\sim 0.2 e$ transferred from the p_{z} lone pair of the oxygen atom to the p_{z} empty orbital of boron. This dative interaction is upset when the planarity of the molecule is violated, which causes the increase of the barrier. The trans- HBOH molecule can eventually dissociate to the B $+\mathrm{H}_{2} \mathrm{O}$ products although this reaction is highly endothermic. This process involves two steps, hydrogen transfer from B to O leading to formation of a $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ complex via transition state TS4 and dissociation of the complex occurring without an exit barrier. The barrier at the asymmetric TS4 is $95.1 \mathrm{kcal} / \mathrm{mol}$ and the complex resides 87.4 and $74.1 \mathrm{kcal} / \mathrm{mol}$ above trans -HBOH and $\mathrm{BO}+\mathrm{H}_{2}$, respectively. $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ has a planar $C_{2 v}$-symmetric geometry and ${ }^{2} \mathrm{~B}_{2}$ electronic state and is stabilized only by 1.5 $\mathrm{kcal} / \mathrm{mol}$ with respect to the boron atom and water molecule. The overall endothermicity of the $\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{O}$ reaction is computed to be $75.5 \mathrm{kcal} / \mathrm{mol}$, close to the experimental value of $76.7 \mathrm{kcal} / \mathrm{mol}^{37}$ and to the CBS-Q result by Politzer et al., $76.0 \mathrm{kcal} / \mathrm{mol} .{ }^{35}$

The second channel of the $\mathrm{BO}+\mathrm{H}_{2}$ reaction proceeds by the 1,2 -insertion of BO into the $\mathrm{H}-\mathrm{H}$ bond of the molecular hydrogen producing the cis- HBOH isomer. The reaction barrier at a transition state TS5 is rather high, $36.4 \mathrm{kcal} / \mathrm{mol}$. TS5 has a planar rhomb-shaped structure and ${ }^{2} \mathrm{~A}^{\prime}$ electronic state. Such an arrangement provides an overlap between the singly occupied σ orbital of BO (p_{σ} on the B atom) and the antibonding vacant
σ_{u} orbital of H_{2} and makes possible the electron density transfer from the former to the latter, which leads to the $\mathrm{H}-\mathrm{H}$ bond cleavage. Alternatively, we were not able to find a transition state for the 1,1-insertion of the boron atom of BO into H_{2} producing OBH_{2}. If the hydrogen molecule approaches BO within $C_{2 v}$ symmetry perpendicularly to the $\mathrm{B}-\mathrm{O}$ line, the BO $\left({ }^{2} \Sigma^{+}\right)+\mathrm{H}_{2}\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right) \rightarrow \mathrm{OBH}_{2}\left({ }^{2} \mathrm{~B}_{2}\right)$ reaction is symmetry forbidden, as the overall wave function of the reactants is ${ }^{2} \mathrm{~A}_{1}$ within the $C_{2 v}$ point group. Once symmetry is released, the transition state search converges to the hydrogen abstraction transition state TS1. One can also see that the insertion mechanism leading to $c i s-\mathrm{HBOH}$ is much less favorable than the H -abstraction channel producing $\mathrm{OBH}+\mathrm{H}$ because the barrier at TS5 is $28.1 \mathrm{kcal} / \mathrm{mol}$ higher than that at TS1.

The third, least favorable channel of the $\mathrm{BO}+\mathrm{H}_{2}$ reaction is H -abstraction from H_{2} by the oxygen atom of the boron oxide leading to the $\mathrm{BOH}+\mathrm{H}$ products. The barrier at the corresponding TS7 is computed to be $42.7 \mathrm{kcal} / \mathrm{mol}$ and $\mathrm{BOH}+\mathrm{H}$ lie $37.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the reactants. The reaction heats computed earlier at the G2 and CBS-Q levels of theory are similar, 37.4 and $38.6 \mathrm{kcal} / \mathrm{mol}$, respectively. In accord with the fact that the reaction is endothermic, TS7 exhibits a late character, with the breaking $\mathrm{H}-\mathrm{H}$ bond stretched to $1.280 \AA, 72 \%$ longer than the $\mathrm{H}-\mathrm{H}$ distance in free H_{2}, and the forming $\mathrm{O}-\mathrm{H}$ bond is only 5% longer than that in the BOH product. The BOH angle in $\operatorname{TS} 7\left(129.7^{\circ}\right)$ is also rather similar to that in $\mathrm{BOH}\left(124.7^{\circ}\right)$, while the OHH fragment is nearly linear. TS7 has a planar geometry and ${ }^{2} \mathrm{~A}^{\prime}$ electronic state. If secondary collisions are possible under the reaction conditions, BOH can easily recombine with H to produce cis- or transHBOH without a barrier. The transition state search for the H atom elimination from B in the two HBOH conformers converged to the $\mathrm{BOH}+\mathrm{H}$ products thus confirming that the highly exothermic $\mathrm{BOH}+\mathrm{H} \rightarrow$ cis- $\mathrm{HBOH}(-49.4 \mathrm{kcal} / \mathrm{mol})$ and $\mathrm{BOH}+\mathrm{H} \rightarrow$ trans- $\mathrm{HBOH}(-51.1 \mathrm{kcal} / \mathrm{mol})$ reactions are barrier-free. Finally, the hydrogen atom can also add to the oxygen of BOH to produce the $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ complex. This reaction is $36.3 \mathrm{kcal} / \mathrm{mol}$ endothermic and proceeds via a late transition state TS8 over a barrier of $42.5 \mathrm{kcal} / \mathrm{mol}$. Evidently, the BOH $+\mathrm{H} \rightarrow \mathrm{B}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction channel is not expected to be competitive with the barrierless H additions forming cisand trans- HBOH and with the reverse H abstraction reaction $\mathrm{BOH}+\mathrm{H} \rightarrow \mathrm{BO}+\mathrm{H}_{2}$ occurring via a $5.0 \mathrm{kcal} / \mathrm{mol}$ barrier.

B $+\mathbf{H}_{2} \mathbf{O}$ Reaction. As seen in Figure 1, the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction can proceed by two different mechanisms following the formation of the weak $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ complex. The first channel leads to trans-HBOH over a barrier of $6.2 \mathrm{kcal} / \mathrm{mol}$ at TS4. Then, the trans- HBOH molecule can isomerize to cis- HBOH and the latter would decompose to either $\mathrm{OBH}+\mathrm{H}$ or $\mathrm{BO}+$ H_{2}. Alternatively, trans- HBOH can rearrange to OBH_{2} and then dissociate to $\mathrm{OBH}+\mathrm{H}$. After TS4 is cleared, all intermediates and transition states lie significantly lower in energy than the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reactants. The second channel of the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction involves elimination of a hydrogen atom via TS8 via a lower $4.7 \mathrm{kcal} / \mathrm{mol}$ barrier leading to the $\mathrm{BOH}+\mathrm{H}$ products. Secondary recombination of BOH and H is most likely to produce chemically activated cis- or trans -HBOH , which eventually decompose to $\mathrm{OBH}+\mathrm{H}$ or less probably to $\mathrm{BO}+$ H_{2}. We can expect that the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{TS} 8 \rightarrow$ $\mathrm{BOH}+\mathrm{H}$ reaction channel is slightly more preferable than B $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{TS} 4 \rightarrow$ trans $-\mathrm{HBOH} \rightarrow$ products $(\mathrm{OBH}$ +H or $\mathrm{BO}+\mathrm{H}_{2}$), as the barrier at TS8 is $1.5 \mathrm{kcal} / \mathrm{mol}$ lower than that at TS4. Summarizing, we conclude that BOH +H and $\mathrm{OBH}+\mathrm{H}$ should be major reaction products and a minor
amount of $\mathrm{BO}+\mathrm{H}_{2}$ also can be formed. This conclusion qualitatively agrees with that made by Alberti et al. on the basis of their quasiclassical trajectory calculation. ${ }^{22}$ If the trans- and cis- HBOH and OBH_{2} intermediates can be stabilized by collisions or in an inert matrix, they can be observed too. In matrix isolation experiments, Jeong et al. ${ }^{16}$ identified the HBOH product of the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction based on the observation of a $1408-\mathrm{cm}^{-1}$ IR band and two weak bands at 2536 and $2571 \mathrm{~cm}^{-1}$. On the other hand, Andrews and Burkholder ${ }^{17}$ assigned the major reaction products as HBO and BO. They also observed several absorption peaks between 1408 and $1450 \mathrm{~cm}^{-1}$, but those were assigned to the BOB and OBOB species rather than to HBOH. As seen in Table 2, the $1408-\mathrm{cm}^{-1}$ peak could additionally belong to the IR spectra of BOH or OBH_{2}, while the bands at 2536 and $2571 \mathrm{~cm}^{-1}$ indeed can be due to cis- and trans -HBOH , respectively. Possibly all of the above-mentioned products were formed in some amounts in the experiments.

There still has been a controversy in the literature of what is the barrier for the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction. Early MP2/6-31G* calculations by Sakai and Jordan ${ }^{18}$ gave the value of $\sim 12 \mathrm{kcal} /$ mol for the barrier of insertion of B into an $\mathrm{O}-\mathrm{H}$ bond of $\mathrm{H}_{2} \mathrm{O}$ corresponding to our TS4. Alberti et al. ${ }^{22}$ used a value of about $20 \mathrm{kcal} / \mathrm{mol}$ in their analytical PES employed for the quasiclassical trajectory calculations. On the other hand, more recent B3LYP calculations by Wang and Huang ${ }^{38}$ indicated that the insertion barrier is in the range of $0.0 \mathrm{kcal} / \mathrm{mol}$ with respect to the initial reactants and the reaction first proceeds via a rather stable $\mathrm{B}-\mathrm{OH}_{2}$ complex, $5.1 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ at their best B3LYP/6-311++G(3df,2p) level. Our higher level CCSD$(T) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and G2M(MP2) results show that the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction does have a significant insertion barrier, $6.1-6.2 \mathrm{kcal} /$ mol. Moreover, we demonstrate for the first time that the $\mathrm{B}+$ $\mathrm{H}_{2} \mathrm{O}$ reaction can directly produce $\mathrm{BOH}+\mathrm{H}$ through elimination of an H atom from the $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ complex and the H loss barrier is somewhat lower than the insertion barrier.

Rate Constants of the Reactions in the $\mathbf{B O} / \mathbf{H}_{\mathbf{2}}$ System. We carried out transition state theory (TST) calculations with Wigner's tunneling corrections ${ }^{36}$ of the rate constants for various reactions in the $300-3000 \mathrm{~K}$ temperature range:

$$
\begin{aligned}
k & =\left(\frac{R T}{p^{\varnothing}}\right)^{-\Delta n^{\ddagger}} \frac{k_{\mathrm{B}} T}{h} e^{-\Delta G_{0} \ddagger / R T} \\
Q_{\text {tun }} & =1-\frac{1}{24}\left(\frac{h v_{\mathrm{S}}}{k_{\mathrm{B}} T}\right)^{2}\left(1+k_{\mathrm{B}} T / E_{0}\right)
\end{aligned}
$$

where R is the Rydberg constant, k_{B} is the Boltzmann constant, h is the Planck constant, T and p^{ϕ} are the temperature and the standard pressure, respectively, Δn^{\ddagger} is the change of the number of moles from reactants to the transition state, $\Delta G_{0}{ }^{\ddagger}$ is the change of the Gibbs free energy from reactants to the transition state, v_{S} is the transition state imaginary frequency, and E_{0} is the barrier height including ZPE correction. The resultant fitted three-parameter $\mathrm{AT}^{\mathrm{B}} \exp (-\mathrm{C} / \mathrm{T})$ expressions for the rate constants are collected in Table 3. For the reactions which have a unimolecular character in the forward or reverse direction, the TST rates correspond to the high-pressure limit, while their pressure dependence can be evaluated by using RRKM theory, which is beyond the scope of this paper.

For the $\mathrm{BO}+\mathrm{H}_{2}$ reaction, we compared the calculated rates with those predicted by Page ${ }^{21}$ and with available experimental data. ${ }^{12,13}$ It should be noted that the B3LYP/6-311+G(d,p) calculations gave a very low value of $10 \mathrm{~cm}^{-1}$ for the lowest degenerate vibrational frequency of TS1 (see Table 2). This is

TABLE 3. Fitted Three-Parameter Expressions for Rate Constants of Various Reactions in the $\mathbf{B O} / \mathbf{H}_{\mathbf{2}}$ System in the Temperature Range of $\mathbf{3 0 0}-\mathbf{3 0 0 0} \mathrm{K}$

reaction	expression	units
$\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{TS} 1 \rightarrow \mathrm{OBH}+\mathrm{H}$	$2.94 \times 10^{-19} T^{2.57} \exp (-2903 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$
	$7.49 \times 10^{-23} T^{3.53} \exp (-1590 / T)^{a}$	
$\mathrm{OBH}+\mathrm{H} \rightarrow \mathrm{TS} 1 \rightarrow \mathrm{BO}+\mathrm{H}_{2}$	$7.01 \times 10^{-16} T^{1.77} \exp (-6921 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{OBH}+\mathrm{H} \rightarrow \mathrm{TS} 2 \rightarrow \mathrm{OBH}_{2}$	$2.78 \times 10^{-13} T^{1.002} \exp (+159.3 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{OBH}+\mathrm{H} \rightarrow \mathrm{TS} 9 \rightarrow$ cis -HBOH	$2.78 \times 10^{-14} T^{1.10} \exp (-9659 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{OBH}_{2} \rightarrow \mathrm{TS} 2 \rightarrow \mathrm{OBH}+\mathrm{H}$	$2.43 \times 10^{12} T^{0.60} \exp (-5014.5 / T)$	s^{-1}
$\mathrm{OBH}_{2} \rightarrow$ TS3 \rightarrow trans -HBOH	$2.41 \times 10^{12} T^{0.33} \exp (-13652 / T)$	s^{-1}
cis $-\mathrm{HBOH} \rightarrow \mathrm{TS} 9 \rightarrow \mathrm{OBH}+\mathrm{H}$	$3.32 \times 10^{10} T^{0.93} \exp (-12590 / T)$	s^{-1}
cis- $\mathrm{HBOH} \rightarrow$ TS6 \rightarrow trans -HBOH	$1.46 \times 10^{12} T^{0.37} \exp (-4610 / T)$	s^{-1}
trans $-\mathrm{HBOH} \rightarrow \mathrm{TS} 3 \rightarrow \mathrm{OBH}_{2}$	$2.39 \times 10^{11} T^{0.62} \exp (-12303 / T)$	s^{-1}
trans $-\mathrm{HBOH} \rightarrow \mathrm{TS} 6 \rightarrow$ cis -HBOH	$1.22 \times 10^{12} T^{0.41} \exp (-5448 / T)$	s^{-1}
trans- $\mathrm{HBOH} \rightarrow \mathrm{TS} 4 \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{O}$	$2.17 \times 10^{11} T^{0.80} \exp (-47784 / T)$	s^{-1}
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{TS} 4 \rightarrow$ trans -HBOH	$1.92 \times 10^{-17} T^{2.00} \exp (-2069 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{TS} 8 \rightarrow \mathrm{BOH}+\mathrm{H}$	$7.22 \times 10^{-18} T^{2.10} \exp (-1159 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{BOH}+\mathrm{H} \rightarrow \mathrm{TS} 7 \rightarrow \mathrm{BO}+\mathrm{H}_{2}$	$4.34 \times 10^{-16} T^{1.62} \exp (-1791 / T)$	cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$

${ }^{a}$ Recommended expression from ref 12 .

Figure 2. Arrhenius plot of experimental and calculated rate constants for the $\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{OBH}+\mathrm{H}$ reaction. The plain curve marked with open circles shows recommended values from ref 13. The bold line depicts experimental rates from ref 12 . The long-dashed (marked with open squares) and short-dashed (marked with " \times ") curves show theoretical rate constants calculated in ref 21 and in the present work, respectively.
apparently an artifact of the method because TST calculations with this value give an unphysically fast growth of the rate constant with temperature. Hence, we reoptimized the structure and recalculated frequencies of TS1 at the MP2/6-311G(d,p) level. The changes in the optimized bond lengths are small and their effect on the G2M(MP2) energy of TS2 is negligible. As seen in Table 2, the frequency changes are also not very large, except for the lowest degenerate frequency, $116 \mathrm{~cm}^{-1}$ at the MP2 level. This seems to be a more reasonable result, although it is somewhat lower than the $173 \mathrm{~cm}^{-1}$ obtained by Page at a lower $\operatorname{CASSCF}(3,3) / D Z P$ level. ${ }^{21}$ Therefore, we used the MP2/ $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ vibrational frequencies scaled by 0.9496^{30} (except for the lowest $116-\mathrm{cm}^{-1}$ frequency which was scaled by 1.0127^{30}) to compute the TST rate constants. The results are shown in Figure 2. As one can see, the calculated rates closely agree with recommended rate constants for the $500-3000 \mathrm{~K}$ temperature range ${ }^{13}$ and with the rates measured experimentally between 690 and $1030 \mathrm{~K} .{ }^{12}$ The deviation from experiment at low temperatures may be due to small curvature tunneling effects, which are not taken into account in our simple treatment of the tunneling correction. Direct dynamics calculations would

Figure 3. Arrhenius plot of calculated rate constants for the B +H 2 O $\rightarrow \mathrm{TS} 8 \rightarrow \mathrm{BOH}+\mathrm{H}$ (marked with solid squares) and $\mathrm{B}+\mathrm{H} 2 \mathrm{O} \rightarrow$ TS4 \rightarrow trans- HBOH (marked with solid circles) reactions.
be able to provide more accurate rate constants for the lowtemperature range. The rates obtained by Page using TST calculations based on his MRCI/TZ2P//CASSCF/DZP PES ${ }^{21}$ significantly underestimate experimental and our values, indicating that the reaction barrier is overestimated at that level of theory. Indeed, lowering the calculated barrier from 9.5 to 8.5 $\mathrm{kcal} / \mathrm{mol}$ and adjustment of the lowest degenerate frequency of the transition state from 173 to $134 \mathrm{~cm}^{-1}$ led 12 to excellent agreement between experimental and TST rate constants. Our present higher level calculations confirm this result.

For the $\mathrm{B}+\mathrm{H} 2 \mathrm{O}$ reaction (see Figure 3), the calculated rate constants indicate that the $\mathrm{BOH}+\mathrm{H}$ reaction channel occurring via TS8 is faster than the formation of trans-HBOH via TS4 for the entire 300-3000 K temperature range. However, the $\mathrm{BOH}+\mathrm{H} /$ trans -HBOH branching ratio decreases from 93/7 at 300 K to $51.6 / 48.4$ at 3000 K .
$\mathbf{B}_{2} \mathrm{O}_{2}+\mathbf{H}_{2}$ Reaction. Density functional calculations of PES for the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{B}_{2}+\mathrm{H}_{2} \mathrm{O}$ reactions by Wang and Huang ${ }^{38}$ showed that the boron dimer has a higher reactivity than B in inserting into water. In this view, we considered the reaction of the boron oxide dimer with H_{2} and compared the reactivity of $\mathrm{B}_{2} \mathrm{O}_{2}$ with respect to molecular hydrogen with that of BO . The most stable isomer of the boron dimer is linear OBBO, which is $72.3 \mathrm{kcal} / \mathrm{mol}$ more stable than a cyclic form at the B3PW91 level. ${ }^{35}$ Therefore, we have studied PES of the OBBO

TABLE 4. Total Energies (hartree), ZPE, and Relative Energies (kcal/mol) of Various Compounds in the $\mathbf{B}_{2} \mathbf{O}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}}$ Reaction Calculated at the B3LYP/6-311+G(d,p), MP2/6-311G(d,p), CCSD(T)/6-311G(d,p), MP2/6-311+G(3df,2p), and G2M(MP2)// B3LYP/6-311 $+\mathbf{G}(\mathbf{d}, \mathrm{p})$ Levels of Theory

species	B3LYP/6-311+G(d,p)			MP2/6-311G(d,p)		$\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$		MP2/6-311+G(3df,2p)		G2M(MP2)
	total energy	ZPE	rel energy	total energy	rel energy	total energy	rel energy	total energy	$\begin{gathered} \text { rel } \\ \text { energy } \end{gathered}$	$\begin{gathered} \text { rel } \\ \text { energy } \end{gathered}$
s- $\mathrm{B}_{2} \mathrm{O}_{2}\left(D_{\infty},{ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$	-200.30435	8.48		-199.79106		-199.81486		-199.90064		
$\mathrm{s}-\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$	-201.48392	14.79	0	-200.95131	0	-200.98320	0	-201.06336	0	0
s-TS1 (C_{1})	-201.40964	17.29	49.06	-200.86884	54.19	-200.90120	53.90	-200.98695	50.40	50.10
$\begin{aligned} & \mathrm{s}-c i s-\mathrm{OBB}(\mathrm{H}) \mathrm{OH} \\ & \left(C_{s},{ }^{1} \mathrm{~A}^{\prime}\right) \end{aligned}$	-201.50763	21.77	-8.03	-200.96575	-2.22	-201.00225	-5.12	-201.08262	-5.25	-8.14
s-TS2 $\left(C_{1}\right)$	-201.48372	20.04	5.27	-200.93747	13.83	-200.97375	11.07	-201.05789	8.58	5.82
$\begin{aligned} & \text { s-trans-OBB }(\mathrm{H}) \mathrm{OH} \\ & \left(C_{s},{ }^{1} \mathrm{~A}^{\prime}\right) \end{aligned}$	-201.50657	21.80	-7.34	-200.96451	-1.41	-201.00094	-4.27	-201.08198	-4.81	-7.67
$\mathrm{s}-\mathrm{TS} 3\left(C_{s},{ }^{1} \mathrm{~A}^{\prime}\right)$	-201.40259	17.00	53.21	-200.86153	58.51	-200.89484	57.61	-200.97981	54.60	53.70
s-TS4 ($C_{s},{ }^{1} \mathrm{~A}^{\prime}$)	-201.37208	17.46	72.80	-200.82704	80.60	-200.86060	79.54	-200.94449	77.21	76.15
$\mathrm{OBH}+\mathrm{OBH}$	-201.49487	15.82	-5.86	-200.95749	-2.87	-200.99105	-3.92	-201.07161	-4.17	-5.22
$\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}\left(C_{s},{ }^{3} \mathrm{~A}^{\prime}\right)$	-200.12818	6.73		-199.59124		-199.63275		-199.70010		
$\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$	-201.30775	13.06	108.85	-200.7515	123.69	-200.80109	112.58	-200.86283	124.13	113.03
t-TS1 (C_{1})	-201.30623	14.35	111.07	-200.74460	129.28	-200.79474	117.83	-200.85735	128.84	117.39
$\mathrm{t}-\mathrm{OBBH}_{2} \mathrm{O}\left(C_{s},{ }^{3} \mathrm{~A}^{\prime \prime}\right)$	-201.36582	16.12	75.41	-200.79069	102.09	-200.84953	85.18	-200.90026	103.65	86.74
t-TS2 $\left(\mathrm{C}_{\mathrm{s}},{ }^{3} \mathrm{~A}^{\prime \prime}\right)$	-201.34143	15.74	90.34	-200.77661	110.55	-200.83053	96.73	-200.88861	110.58	96.76
$\mathrm{BO}+\mathrm{OBH}_{2}$	-201.34180	15.21	90.23	-200.77749	109.49	-200.83117	95.81	-200.88943	109.56	95.88
t-TS3 ($C_{s},{ }^{3} \mathrm{~A}^{\prime}$)	-201.30376	14.40	112.67	-200.74128	131.41	-200.79061	120.46	-200.85340	131.36	120.42
$\mathrm{OBBOH}\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)+\mathrm{H}$	-201.33840	15.18	91.70	-200.79933	95.75	-200.83219	95.14	-200.91489	93.55	92.94
$\mathrm{t}-\mathrm{TS} 4\left(C_{s},{ }^{3} \mathrm{~A}^{\prime}\right)$	-200.10815	5.83	120.27^{a}	-199.58531	126.46^{a}	-199.61661	$121.75^{\text {a }}$	-199.69763	$124.74{ }^{a}$	120.03^{a}

TABLE 5. Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ of Various Compounds in the $\mathbf{B}_{2} \mathbf{O}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}}$ Reaction Calculated at the B3LYP/ 6-311 + G(d,p) Level

species	frequencies
$\mathrm{s}-\mathrm{B}_{2} \mathrm{O}_{2}$	216, 498, 503, 616, 1961, 2135
$\mathrm{s}-\mathrm{TS} 1$	1816i, 193, 240, 495, 518, 675, 979, 1100, 1614, 1982, 2029, 2267
s-cis- $\mathrm{OBB}(\mathrm{H}) \mathrm{OH}$	190, 284, 489, 656, 702, 913, 1005, 1187, 1363, 2010, 2597, 3832
s-TS2	880i, 177, 280, 487, 512, 711, 849, 1121, 1315, 1999, 2573, 3993
s-trans-OBB(H)OH	175, 285, 503, 671, 701, 891, 1022, 1175, 1346, 2005, 2639, 3836
s-TS3	1887i, 184, 187, 374, 473, 692, 790, 992, 1546, 1956, 1976, 2715
s-TS4	1723i, 171, 265, 349, 582, 706, 897, 1135, 1605, 1985, 2037, 2481
$\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}$	150, 282, 380, 666, 1289, 1946
t-TS1	301i, 140, 156, 229, 306, 389, 494, 627, 671, 1277, 1956
$\mathrm{t}-\mathrm{OBBH}_{2} \mathrm{O}$	145, 240, 379, 474, 572, 590, 643, 783, 1248, 1983, 2087, 2129
t-TS2	87i, 44, 47, 139, 213, 544, 885, 970, 1379, 1913, 2419, 2454
t-TS3	$471 i, 168,188,300,362,441,442,575,671,1322,1967,3637$
OBBOH	176, 206, 279, 458, 611, 988, 1456, 1971, 3677
t-TS4	$322 i, 60,106,332,1683,1900$

$+\mathrm{H}_{2}$ reaction. The dimer has the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$ground electronic state and is bound by $111.7 \mathrm{kcal} / \mathrm{mol}$ (at the G2M(MP2) level) with respect to two monomers.

Total energies and ZPE corrected relative energies of various compounds in the $\mathrm{OBBO}+\mathrm{H}_{2}$ reaction in the ground singlet and lowest triplet electronic states calculated at the B3LYP/6$311+G(d, p)$, MP2/6-311G(d,p), MP2/6-311+G(3df,2p), and $\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels of theory and their G2M(MP2) relative energies are listed in Table 4, while Table 5 shows calculated vibrational frequencies. The $\mathrm{OBBO}+\mathrm{H}_{2}$ potential energy diagram along the reaction path computed at the G2M(MP2) level and the optimized geometries of various compounds along the predicted reaction pathways are shown in Figure 4. In accord with its higher stability as compared to BO, OBBO exhibits a lower reactivity. We found two channels for the $\mathrm{OBBO}+\mathrm{H}_{2}$ reaction. The first mechanism is 1,2-insertion of a BO fragment into the $\mathrm{H}-\mathrm{H}$ bond proceeding via transition state s-TS1 via a barrier of $50.1 \mathrm{kcal} / \mathrm{mol}$. This process leads to a cis- $\mathrm{OBB}(\mathrm{H}) \mathrm{OH}$ intermediate residing $8.1 \mathrm{kcal} / \mathrm{mol}$ below the reactants. As one can see, the 1,2-insertion barrier for OBBO is $13.8 \mathrm{kcal} / \mathrm{mol}$ higher than that for the BO monomer. Next, cis- $\mathrm{OBB}(\mathrm{H}) \mathrm{OH}$ can isomerize to a trans conformer by rotation around the $\mathrm{B}-\mathrm{O}$ bond. The calculated barrier is $14.0 \mathrm{kcal} / \mathrm{mol}$
and it occurs at s-TS2. The trans- $\mathrm{OBB}(\mathrm{H}) \mathrm{OH}$ isomer lies 0.5 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than the cis form. trans- $\mathrm{OBB}(\mathrm{H}) \mathrm{OH}$ can dissociate to two OBH molecules through 1,2-hydrogen migration from one boron atom to the other accompanied by a cleavage of the $\mathrm{B}-\mathrm{B}$ bond. The corresponding transition state s-TS3 lies 53.7 and $61.4 \mathrm{kcal} / \mathrm{mol}$ above $\mathrm{OBBO}+\mathrm{H}_{2}$ and trans$\mathrm{OBB}(\mathrm{H}) \mathrm{OH}$, respectively. The overall exothermicity of the $\mathrm{OBBO}+\mathrm{H}_{2} \rightarrow 2 \mathrm{OBH}$ is calculated to be $5.2 \mathrm{kcal} / \mathrm{mol}$ at the G2M(MP2) level, somewhat higher than the CBS-Q value of $2.3 \mathrm{kcal} / \mathrm{mol} .^{35}$ Otherwise, cis- and trans-OBB(H)OH can decompose to $\mathrm{OBBOH}+\mathrm{H}$ or $\mathrm{BO}+\mathrm{OBH}_{2}$ by the cleavage of the $B-H$ or $B-B$ single bonds, respectively. However, these processes are highly endothermic, as the products reside 92.9 $(\mathrm{OBBOH}+\mathrm{H})$ and $95.9 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{BO}+\mathrm{OBH}_{2}\right)$ higher in energy than $\mathrm{OBBO}+\mathrm{H}_{2}$.

The alternative reaction channel is 1,2 -insertion of the $\mathrm{B}-\mathrm{B}$ fragment of OBBO into the H_{2} molecule. This leads directly to the $\mathrm{OBH}+\mathrm{OBH}$ products; two new $\mathrm{B}-\mathrm{H}$ bonds are formed, while the $\mathrm{H}-\mathrm{H}$ and $\mathrm{B}-\mathrm{B}$ bonds are cleaved during this process occurring via transition state s-TS4. The barrier is very high, $76.1 \mathrm{kcal} / \mathrm{mol}$, so that this reaction mechanism is not likely. As was described in a previous section, the most favorable mechanism of the $\mathrm{BO}+\mathrm{H}_{2}$ reaction is H abstraction leading

Figure 4. Potential energy diagram for the $\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$ reactions in the lowest singlet and triplet electronic states calculated at the G2(MP2) level. Relative energies are given in $\mathrm{kcal} / \mathrm{mol}$. Geometric structures (bond lengths in \AA and bond angles in deg) of various intermediates and transition states optimized at the B3LYP/6-311+G(d,p) level of theory are also shown.
to $\mathrm{OBH}+\mathrm{H}$. In the case of OBBO, the hydrogen abstraction would lead from two closed-shell species to two radicals, $\mathrm{OBBOH}+\mathrm{H}$. Therefore, the reaction energy, $92.9 \mathrm{kcal} / \mathrm{mol}$, is too high and this channel is not probable. As a consequence of its greater stability, the singlet OBBO is not expected to be reactive with molecular hydrogen, except at high temperatures when the 50.1 and $53.7 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{s}-\mathrm{TS} 1$ and $\mathrm{s}-\mathrm{TS} 3 \mathrm{can}$ be overcome and two OBH molecules can be produced.

Alternatively, electronically excited triplet OBBO, which lies $113.0 \mathrm{kcal} / \mathrm{mol}$ above the ground state minimum and $1.7 \mathrm{kcal} /$ mol higher in energy than two BO monomers, can easily react with H_{2}. The most favorable reaction mechanism is 1,1-insertion of a B atom into the $\mathrm{H}-\mathrm{H}$ bond proceeding via transition state t -TS1 with a barrier of $4.4 \mathrm{kcal} / \mathrm{mol}$. The transition state has an asymmetric geometry and a very early character (see Figure 4). A t-OBBH 2 O molecule residing $26.3 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}$
$+\mathrm{H}_{2}$ is formed as a result of the insertion. This molecule can decompose to the $\mathrm{BO}+\mathrm{OBH}_{2}$ products via a barrier of 10.0 $\mathrm{kcal} / \mathrm{mol}$ at t-TS2. The transition state lies $16.3 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the initial triplet state reactants, so that the decomposition of the chemically activated $t-\mathrm{OBBH}_{2} \mathrm{O}$ species is expected to be fast. The $\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{BO}+\mathrm{OBH}_{2}$ reaction is thus $17.2 \mathrm{kcal} / \mathrm{mol}$ exothermic and the initial step with the $4.4 \mathrm{kcal} / \mathrm{mol}$ barrier is rate determining. The second channel of the $\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$ reaction involves abstraction of a hydrogen atom by a terminal oxygen. In this case, the products are $\mathrm{OBBOH}+\mathrm{H}$ and the reaction is more exothermic, by 20.1 $\mathrm{kcal} / \mathrm{mol}$. However, the abstraction barrier located at t-TS3, 7.4 $\mathrm{kcal} / \mathrm{mol}$, is $3.0 \mathrm{kcal} / \mathrm{mol}$ higher than the insertion barrier at t -TS1. Therefore, the production of $\mathrm{BO}+\mathrm{OBH}_{2}$ in the reaction of the triplet boron dimer with molecular hydrogen is expected to be more probable than the production of $\mathrm{OBBOH}+\mathrm{H}$.

TABLE 6. Total Energies (hartree), ZPE, and Relative Energies (kcal/mol) of Various Compounds in the BS $+\mathbf{H}_{2}$ Reaction Calculated at the B3LYP/6-311+G(d,p), MP2/6-311G(d,p), CCSD(T)/6-311G(d,p), MP2/6-311 + G(3df,2p), and G2M(MP2)// B3LYP/6-311 $+\mathbf{G}(\mathrm{d}, \mathrm{p})$ Levels of Theory

species	B3LYP/6-311+G(d,p)			MP2/6-311G(d,p)		$\underline{\operatorname{CCSD}(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})}$		$\underline{\text { MP2/6-311+G(3df,2p) }}$		G2M(MP2)
	total energy	ZPE	rel energy	total energy	rel energy	total energy	$\begin{gathered} \text { rel } \\ \text { energy } \end{gathered}$	total energy	rel energy	$\begin{gathered} \text { rel } \\ \text { energy } \end{gathered}$
BS ($\left.C_{\infty \nu},{ }^{2} \Sigma^{+}\right)$	-423.00362	1.68		-422.35806		-422.38860		-422.41142		
$\mathrm{BS}+\mathrm{H}_{2}$	-424.18319	8.00	0	-423.51831	0	-423.55694	0	-423.57414	0	0
TS1 ($\left.C_{\infty<},{ }^{2} \Sigma^{+}\right)$	-424.17527	7.12	4.11	-423.50101	10.00	-423.54029	9.59	-423.55800	9.27	8.86
SBH ($C_{\infty \nu},{ }^{1} \Sigma^{+}$)	-423.68919	7.82		-423.03345		-423.06494		-423.09019		
$\mathrm{SBH}+\mathrm{H}$	-424.19135	7.82	-5.29	-423.53326	-9.56	-423.56475	-5.08	-423.59000	-10.13	-5.65
$\mathrm{TS} 2\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-424.19138	8.00	-5.14	-423.53174	-8.43	-423.56352	-4.13	-423.58897	-9.31	-5.01
$\mathrm{SBH}_{2}\left(C_{2 v},{ }^{2} \mathrm{~B}_{2}\right)$	-424.25794	12.23	-42.77	-423.58283	-36.34	-423.62329	-37.49	-423.63829	-36.12	-37.26
TS3 ($C_{s},{ }^{2} \mathrm{~A}^{\prime}$)	-424.19026	9.72	-2.75	-423.51799	1.89	-423.55607	2.24	-423.57761	-0.49	-0.14
trans-HBSH ($\left.C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-424.21860	11.76	-18.53	-423.55051	-16.52	-423.58820	-15.95	-423.60803	-17.58	-17.00
TS4 (C_{1})	-424.08540	8.36	61.71	-423.40653	70.49	-423.45637	63.46	-423.46236	70.49	63.46
TS9 ($C_{s},{ }^{2} \mathrm{~A}^{\prime}$)	-424.18932	8.10	-3.75	-423.52211	-2.29	-423.55631	0.49	-423.58020	-3.71	-0.92
cis-HBSH $\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-424.21860	11.76	-18.53	-423.54837	-15.17	-423.58618	-14.66	-423.60600	-16.30	-15.79
TS6 (C_{1})	-424.19273	10.62	-3.42	-423.52185	0.35	-423.55954	0.94	-423.57954	-0.82	-0.23
TS5 ($\mathrm{C}_{\mathrm{s}},{ }^{2} \mathrm{~A}^{\prime}$)	-424.18074	9.90	3.40	-423.50508	10.17	-423.54475	9.52	-423.56641	6.72	6.07
$\operatorname{TS7}\left(C_{s},{ }^{2} \mathrm{~A}^{\prime}\right)$	-424.08401	5.86	60.13	-423.41708	61.42	-423.46036	58.50	-423.47437	60.51	57.59
$\mathrm{BSH}\left(C_{s},{ }^{1} \mathrm{~A}^{\prime}\right)$	-423.58157	5.67		-422.92110		-422.96386		-422.97749		
$\mathrm{BSH}+\mathrm{H}$	-424.08372	5.67	60.13	-423.42091	58.84	-423.46367	56.24	-423.47730	58.48	55.89
TS8 (C_{1})	-424.08102	6.57	62.70	-423.40018	72.72	-423.45197	64.46	-423.45752	71.77	63.52
$\mathrm{B}-\mathrm{H}_{2} \mathrm{~S}\left(\mathrm{C}_{2 v},{ }^{2} \mathrm{~B}_{2}\right)$	-424.09464	9.75	57.28	-423.41589	65.99	-423.46486	59.50	-423.47517	63.83	57.34
$\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$	-424.08500	9.41	63.00	-423.41560	65.84	-423.46365	59.92	-423.46810	67.92	62.01

Interestingly, the presence of a second BO radical can alter the course of the $\mathrm{BO}+\mathrm{H}_{2}$ reaction. For instance, two BO radicals can recombine to form triplet OBBO via a barrier of $8.3 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{t}-\mathrm{TS} 4$ (see Figure 4). The recombination on the triplet PES is certainly less favorable than the $111.7 \mathrm{kcal} / \mathrm{mol}$ exothermic and barrierless formation of s-OBBO in the singlet electronic state; however, the triplet reaction can play some role at elevated and high temperatures. Then, $\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}$ can react with H_{2} by the following mechanism, $\mathrm{t}-\mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{t}-\mathrm{TS} 1 \rightarrow$ $\mathrm{t}-\mathrm{OBBH}_{2} \mathrm{O} \rightarrow \mathrm{t}-\mathrm{TS} 2 \rightarrow \mathrm{BO}+\mathrm{OBH}_{2}$. The overall reaction is then $\mathrm{BO}+\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{BO}+\mathrm{OBH}_{2}$ and the rate-limiting step is the initial recombination of two BO with the barrier of 8.3 $\mathrm{kcal} / \mathrm{mol}$. Without a second BO , the $\mathrm{BO}+\mathrm{H}_{2}$ reaction produces $\mathrm{OBH}+\mathrm{H}$ with a similar barrier. Thus, the second boron oxide species can enhance the formation of the OBH_{2} radical instead of $\mathrm{HBO}+\mathrm{H}$.
$\mathbf{B S}+\mathbf{H}_{\mathbf{2}} \rightarrow \mathbf{B}+\mathbf{H}_{\mathbf{2}} \mathbf{S}$ Reaction. Total energies and ZPE corrected relative energies of various compounds in the $\mathrm{BS}+$ $\mathrm{H}_{2} \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{~S}$ reaction calculated at the B3LYP/6-311+G(d,p), MP2/6-311G(d,p), MP2/6-311+G(3df,2p), and CCSD$(\mathrm{T}) / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels of theory and their G2M(MP2) relative energies are collected in Table 6. Table 7 shows calculated vibrational frequencies. The $\mathrm{BS}+\mathrm{H}_{2}$ potential energy diagram along the reaction path computed at the G2M(MP2) level and the optimized geometries of various compounds along the predicted reaction pathway are shown in Figure 5. The mechanism of the $\mathrm{BS}+\mathrm{H}_{2}$ reaction is similar to that for $\mathrm{BO}+\mathrm{H}_{2}$, although the energetics and some details differ. Hence, we used the same notation for transition states in the $\mathrm{BS} / \mathrm{H}_{2}$ system as that for $\mathrm{BO} / \mathrm{H}_{2}$.

The most favorable reaction channel is abstraction of a hydrogen atom of H_{2} by a B atom of BS , giving the $\mathrm{SBH}+\mathrm{H}$ products. The calculated barrier at the linear transition state TS1 and the reaction exothermicity, 8.9 and $5.7 \mathrm{kcal} / \mathrm{mol}$, respectively, are very close to the values obtained for the $\mathrm{BO}+\mathrm{H}_{2}$ $\rightarrow \mathrm{OBH}+\mathrm{H}_{2}$ reaction. As compared to $\mathrm{BO}+\mathrm{H}_{2}$, the reaction exothermicity decreases by $1.1 \mathrm{kcal} / \mathrm{mol}$ and the barrier correspondingly increases by $0.6 \mathrm{kcal} / \mathrm{mol}$. In the secondary SBH +H reaction, the hydrogen atom can easily add to the middle boron of SBH to produce the SBH_{2} molecule. The barrier at TS2 is only $0.6 \mathrm{kcal} / \mathrm{mol}$, slightly higher than the $0.3 \mathrm{kcal} / \mathrm{mol}$

TABLE 7. Vibrational Frequencies (cm^{-1}) of Various Compounds in the $\mathrm{BS}+\mathrm{H}_{2}$ Reaction Calculated at the B3LYP/6-311 + G(d,p) Level

species	frequencies
TS1 (B3LYP)	$767 i, 25,25,925,925,1171,1934$
TS1 ((MP2)	
SBH	$1331 i, 58,58,924,924,1177,1913$
TS2	$723,723,1186,2839$
SBH $_{2}$	$136 i, 139,719,720,1176,2840$
TS3	$564,837,893,1103,2538,2615$
trans-HBSH	$1449 i, 444,764,885,2045,2664$
TS4	$597,681,840,919,2500,2690$
TS9	$428 i, 222,260,945,1746,2670$
cis-HBSH	$481 i, 265,680,722,1156,2841$
TS6	$597,681,840,919,2500,2690$
TS5	$1157 i, 602,755,830,2604,2640$
TS7	$1226 i, 604,738,899,1954,2732$
BSH	$263 i, 134,306,631,751,2276$
TS8	$602,760,2545$

${ }^{a}$ Calculated at the MP2/6-311G(d,p) level with the MP2/6-311G(d,p) optimized geometry.
calculated for the $\mathrm{OBH}+\mathrm{H} \rightarrow \mathrm{OBH}_{2}$ process. However, SBH_{2} is more stable than OBH_{2} because the former resides $37.3 \mathrm{kcal} /$ mol lower in energy than $\mathrm{BS}+\mathrm{H}_{2}$ as compared to only 15.9 $\mathrm{kcal} / \mathrm{mol}$ for the latter. The addition of H to the sulfur end of SBH forming cis-HBSH via TS9 exhibits a somewhat higher barrier, $4.7 \mathrm{kcal} / \mathrm{mol}$. This value is much lower than the barrier for the $\mathrm{OBH}+\mathrm{H} \rightarrow \mathrm{TS} 9 \rightarrow$ cis-HBOH process, $20.8 \mathrm{kcal} / \mathrm{mol}$. cis-HBSH lies $15.8 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{BS}+\mathrm{H}_{2}$, i.e., it is slightly more stable than cis- HBOH with respect to $\mathrm{BO}+\mathrm{H}_{2},-11.7$ $\mathrm{kcal} / \mathrm{mol}$. The trans-HBSH isomer is $1.2 \mathrm{kcal} / \mathrm{mol}$ more stable than the cis conformer, but $20.3 \mathrm{kcal} / \mathrm{mol}$ less favorable than SBH_{2}. One can see that the SBH_{2} structure lies in a deeper potential energy well with respect to the HBSH isomers as compared to OBH_{2}. 1,2-Hydrogen migration from B to S via TS3 leads from SBH_{2} to trans-HBSH but the barrier is higher than that in the $\mathrm{BO} / \mathrm{H}_{2}$ system, 37.1 versus $27.7 \mathrm{kcal} / \mathrm{mol}$. The rotational barrier at TS6 separating the trans and cis forms of HBSH is calculated to be 16.8 and $15.6 \mathrm{kcal} / \mathrm{mol}$ relative to trans- and cis-HBSH, respectively, again higher than the rotational barrier for $\mathrm{HBOH}, 10.8$ and $9.1 \mathrm{kcal} / \mathrm{mol}$. The increase of the barrier for the rotation around the $\mathrm{B}-\mathrm{S}$ bond correlates

Figure 5. Potential energy diagram for various reactions in the $\mathrm{BS} / \mathrm{H}_{2}$ system calculated at the G2(MP2) level. Relative energies are given in $\mathrm{kcal} / \mathrm{mol}$. Geometric structures (bond lengths in \AA and bond angles in deg) of various intermediates and transition states optimized at the B3LYP/ $6-311+G(d, p)$ level of theory are also shown.
with larger elongation of the $\mathrm{B}-\mathrm{S}$ bond in TS6, $0.08-0.09 \AA$, as compared to only $0.01 \AA$ in HOBH.

In addition to TS3, the transition state between SBH_{2} and trans-HBSH, we also found a transition state connecting SBH_{2} with the cis-HBSH isomer. We started the first-order saddle point search with a structure similar to TS5 for $\mathrm{BO} / \mathrm{H}_{2}$, which is a transition state for 1,2 -insertion of BO into the $\mathrm{H}-\mathrm{H}$ bond. However, the calculations converged to the structure TS5 shown in Figure 5, which, according to IRC calculations, connects cisHBSH with SBH_{2} but not with $\mathrm{BS}+\mathrm{H}_{2}$. This result represents the main difference between the $\mathrm{BS} / \mathrm{H}_{2}$ and $\mathrm{BO} / \mathrm{H}_{2}$ systems. Thus, on the contrary to BO, boron sulfide cannot insert into the $\mathrm{H}-\mathrm{H}$ bond of H_{2}. As we discussed above, the 1,1-insertion is not favorable because the singly occupied p_{z} orbital of the boron atom cannot interact in this case both with the occupied σ_{g} and vacant σ_{u} orbitals of H_{2}. A first-order saddle point on the 1,2 -insertion pathway disappears for BS apparently because of a larger size of the BS molecule as compared to BO. Along this pathway, the $\mathrm{H}-\mathrm{H}$ bond has to be broken and $\mathrm{S}-\mathrm{H}$ to be formed while the electron density is transferred from $\mathrm{p}_{z}(\mathrm{~B})$ to $\sigma_{\mathrm{u}}\left(\mathrm{H}_{2}\right)$. The $\mathrm{B}-\mathrm{S}$ bond length is $\sim 0.4 \AA$ longer than $\mathrm{B}-\mathrm{O}$ and the $\mathrm{H}-\mathrm{H}$ bond has to be stretched more significantly before the $\mathrm{S}-\mathrm{H}$ bond can start to form, which leads to an energy increase on the insertion pathway. On the other hand, in cisHBSH two hydrogen atoms are located farther away from each other than in cis- HBOH and repulsion between them is not as large when one of them migrates from S to B , making possible the direct cis-HBSH $\rightarrow \mathrm{SBH}_{2}$ rearrangement. In HBOH , two hydrogens have to be located in a trans position to allow the 1,2-H shift.

The barrier at TS5 is calculated to be $21.9 \mathrm{kcal} / \mathrm{mol}$ relative to cis-HBSH, $5.0 \mathrm{kcal} / \mathrm{mol}$ higher than the barrier for the transHBSH $\rightarrow \mathrm{SBH}_{2}$ isomerization at TS3. The HBSH species can decompose to $\mathrm{BSH}+\mathrm{H}$ without exit barriers and the strengths of the $\mathrm{B}-\mathrm{H}$ bond are 71.7 and $72.9 \mathrm{kcal} / \mathrm{mol}$ for the cis and trans isomers, respectively. Additionally, trans-HBSH can dissociate to $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ through a $1,2-\mathrm{H}$ shift from B to S and formation of the $B-\mathrm{H}_{2} \mathrm{~S}$ complex. Note that the $\mathrm{B}-\mathrm{H}_{2} \mathrm{~S}$ complex formation energy, $4.7 \mathrm{kcal} / \mathrm{mol}$, is significantly larger than that for $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}, 1.5 \mathrm{kcal} / \mathrm{mol}$. The overall heat of the endothermic $\mathrm{BS}+\mathrm{H}_{2} \rightarrow \mathrm{~B}+\mathrm{H}_{2} \mathrm{~S}$ reaction, $62.0 \mathrm{kcal} / \mathrm{mol}$, is $13.5 \mathrm{kcal} / \mathrm{mol}$ lower than the endothermicity of the $\mathrm{BO}+\mathrm{H}_{2}$ $\rightarrow \mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction.

Since the insertion of BS into $\mathrm{H}-\mathrm{H}$ is not possible, the only alternative channel of the $\mathrm{BS}+\mathrm{H}_{2}$ reaction is H abstraction by the S atom leading to $\mathrm{BSH}+\mathrm{H}$. As for $\mathrm{BO}+\mathrm{H}_{2}$, the $\mathrm{BS}+\mathrm{H}_{2}$ $\rightarrow \mathrm{BSH}+\mathrm{H}$ reaction is endothermic and exhibits a high barrier at TS7. The barrier height and reaction heat, 57.6 and $55.9 \mathrm{kcal} /$ mol , respectively, both are 14.9 and $18.2 \mathrm{kcal} / \mathrm{mol}$ higher than the corresponding values for the $\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{BOH}+\mathrm{H}$ reaction. BSH and H can in turn recombine producing cis- or trans-HBSH without entrance barriers. The reverse BSH +H $\rightarrow \mathrm{BS}+\mathrm{H}_{2}$ abstraction reaction has a $1.7-\mathrm{kcal} / \mathrm{mol}$ barrier, 3.3 $\mathrm{kcal} / \mathrm{mol}$ lower than that for $\mathrm{BOH}+\mathrm{H} \rightarrow \mathrm{BO}+\mathrm{H}_{2}$. Finally, H addition to the S atom of BSH gives the $\mathrm{B}-\mathrm{SH}_{2}$ complex via a barrier of $7.6 \mathrm{kcal} / \mathrm{mol}$ at TS8. This barrier is much lower than the barrier calculated for the $\mathrm{BOH}+\mathrm{H} \rightarrow \mathrm{TS} 8 \rightarrow \mathrm{~B}-\mathrm{OH}_{2}$ process, $42.5 \mathrm{kcal} / \mathrm{mol}$.

The $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ reaction starts from the formation of the relatively strong $\mathrm{B}-\mathrm{SH}_{2}$ complex and then proceeds by elimina-

TABLE 8. Calculated and Experimental Heats of Formation [$\left.\Delta H_{\mathrm{f}}(0 \mathrm{~K}), \mathrm{kcal} / \mathrm{mol}\right]$ for Various Species in the $\mathrm{BO} / \mathrm{H}_{2}$, $\mathrm{B}_{2} \mathrm{O}_{2} / \mathrm{H}_{2}$, and $\mathrm{BS} / \mathrm{H}_{2}$ Systems

species	calcd a	exptl	G3 b	CBS-Q
BO	1.2	1.6 ± 2.6^{c}	0.8	1.6
OBH	-57.2	-50.2 ± 6.0^{c}	-57.6	-57.6
BOH	-12.7			
OBH_{2}	-14.7			
trans -HBOH	-12.2			
cis -HBOH	-10.5			
B2O2	-109.3	-109.9 ± 2.4^{c}	-112.4	-112.4
cis-OBB(H)OH	-117.4			
trans-OBB(H)OH	-117.0		66.5	66.5
BS	67.6	57.4 ± 4.1^{d}	10.1	10.1
SBH	10.3	-4.0^{d}		
BSH	71.8			
SBH	30.3			
trans -HBSH	50.6			
cis-HBSH	51.8			

${ }^{a}$ Present calculations. Based on the heats of reactions calculated in this study and experimental $\Delta H_{\mathrm{f}}(0 \mathrm{~K})$ for $\mathrm{B}(133.8 \mathrm{kcal} / \mathrm{mol}), \mathrm{H}_{2} \mathrm{O}$ $(-57.1), \mathrm{H}_{2} \mathrm{~S}(-4.2)$, and $\mathrm{H}(51.6) .{ }^{b}$ Theoretical data obtained with use of the G3 and CBS-Q methods are taken from ref 40. ${ }^{c}$ From ref 39. ${ }^{d}$ From ref 37.
tion of an H atom via a barrier of only $1.5 \mathrm{kcal} / \mathrm{mol}$ with respect to the initial reactants leading to the $\mathrm{BSH}+\mathrm{H}$ products. On the other hand, B can insert into an $\mathrm{S}-\mathrm{H}$ bond and produce trans-HBSH with a barrier of $1.45 \mathrm{kcal} / \mathrm{mol}$ relative to $\mathrm{B}+$ $\mathrm{H}_{2} \mathrm{~S}$. Then, trans-HBSH can rearrange to SBH_{2} or cis-HBSH via transition states lying much lower in energy than the reactants. As HBSH and SBH_{2} can decompose only $\mathrm{SBH}+\mathrm{H}$ (not counting highly endothermic dissociation to $\mathrm{BSH}+\mathrm{H}$, which more likely can be formed by the H elimination mechanism from the $\mathrm{B}-\mathrm{SH}_{2}$ complex), $\mathrm{BS}+\mathrm{H}_{2}$ cannot be primary products of the $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ reaction. This is an implication of the fact that no transition state exists for the insertion of BS into H_{2}. As compared to the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction, $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ is expected to be much faster because the activation barriers are as low as $1.5 \mathrm{kcal} / \mathrm{mol}$, significantly lower than 4.7 and 6.2 $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$.

Heats of Formation for Various Species. Heats of formation of various species in the $\mathrm{BO} / \mathrm{H}_{2}, \mathrm{~B}_{2} \mathrm{O}_{2} / \mathrm{H}_{2}$, and $\mathrm{BS} / \mathrm{H}_{2}$ systems computed by using the heats of reactions calculated in the present study are collected in Table 8. They are compared with available experimental data ${ }^{37,39}$ and with the results of most accurate theoretical calculations, using the G3 and CBS-Q model chemistries. ${ }^{40}$ As one can see, the agreement of the calculated ΔH_{f} with experiment is within $1 \mathrm{kcal} / \mathrm{mol}$ for BO and $\mathrm{B}_{2} \mathrm{O}_{2}$. On the other hand, the deviations are large for OBH ($7 \mathrm{kcal} /$ $\mathrm{mol})$, BS ($10 \mathrm{kcal} / \mathrm{mol}$), and SBH ($14 \mathrm{kcal} / \mathrm{mol}$). However, our results for these species closely agree with the values obtained at the most accurate G3 and CBS-Q levels of theory. As the experimental ΔH_{f} values for $\mathrm{OBH}, \mathrm{BS}$, and SBH were reported ${ }^{40}$ with large error bars and are not well established, new measurements would be required to reconcile theory and experiment. For the reaction intermediates, such various isomers of $\mathrm{OBH}_{2}, \mathrm{SBH}_{2}$, and $\mathrm{B}_{2} \mathrm{O}_{2} \mathrm{H}_{2}$, experimental heats of formation are not available to our knowledge, and our calculations provide these important thermodynamic quantities.

Conclusions

G2M(MP2) calculations of PES for the $\mathrm{BO}+\mathrm{H}_{2}$ reaction demonstrate that the reaction proceeds by abstraction of a hydrogen atom by B of the boron oxide to produce $\mathrm{OBH}+\mathrm{H}$ and the barrier and exothermicity of the reaction are computed to be 8.3 and $6.8 \mathrm{kcal} / \mathrm{mol}$, respectively. TST calculations of
the reaction rate constants with the G2M(MP2) barrier and MP2/ $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ vibrational frequencies of the transition state give close agreement with experiment for the rates in the 500-3000 K temperature range. The reaction can also occur by 1,2insertion of BO into the $\mathrm{H}-\mathrm{H}$ bond or by H abstraction by the O atom; however, the barriers for these mechanisms are much higher, 36.4 and $42.7 \mathrm{kcal} / \mathrm{mol}$, respectively. The $\mathrm{OBH}+\mathrm{H}$ reaction produces the OBH_{2} radical via a small $\sim 0.3-\mathrm{kcal} / \mathrm{mol}$ barrier. OBH_{2} is 2.5 and $4.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than transand cis- HBOH , respectively, and can isomerize to trans- HBOH by the $1,2-\mathrm{H}$ shift overcoming a barrier of $27.7 \mathrm{kcal} / \mathrm{mol}$. In turn, trans-HBOH can rearrange to the cis conformer by rotation about the $\mathrm{B}-\mathrm{O}$ bond over a barrier of $10.8 \mathrm{kcal} / \mathrm{mol}$. Dissociation of trans- HBOH to $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ is highly endothermic and is not probable. BOH and H can recombine and form cis- or transHBOH without barriers. In the $\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$ reaction, the reactants can first form a weakly bound $\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ complex, which then can eliminate an H atom producing $\mathrm{BOH}+\mathrm{H}$ over a barrier of $4.7 \mathrm{kcal} / \mathrm{mol}$ with respect to the initial reactants. The second channel is insertion of B into an $\mathrm{O}-\mathrm{H}$ bond giving trans -HBOH via a $6.2-\mathrm{kcal} / \mathrm{mol}$ barrier. The most probable products for this channel are $\mathrm{OBH}+\mathrm{H}$, although minor amounts of $\mathrm{BO}+\mathrm{H}_{2}$ and $\mathrm{BOH}+\mathrm{H}$ also can be produced.

If two BO radicals form a stable dimer OBBO in the ground singlet electronic state, the reactivity with respect to molecular hydrogen drastically decreases because the barriers for the $\mathrm{OBBO}+\mathrm{H}_{2} \rightarrow$ cis- $\mathrm{OBB}(\mathrm{H}) \mathrm{OH} \rightarrow$ trans $-\mathrm{OBB}(\mathrm{H}) \mathrm{OH} \rightarrow \mathrm{OBH}$ +OBH reaction are calculated to be as high as $50-54 \mathrm{kcal} /$ mol. Alternatively, two BO can recombine to form the OBBO molecule in triplet electronic state over a moderate $8.3-\mathrm{kcal} /$ mol barrier. t-OBBO can easily react with H_{2} producing either $\mathrm{BO}+\mathrm{OBH}_{2}($ via a t-OBBH 2 O intermediate $)$ or $\mathrm{OBBOH}+\mathrm{H}$ with barriers of 4.4 and $7.4 \mathrm{kcal} / \mathrm{mol}$, respectively. Thus, the formation of the triplet dimer can enhance the yield of OBH_{2}.

The reactions in the $\mathrm{BS} / \mathrm{H}_{2}$ system are shown to be similar to those for $\mathrm{BO} / \mathrm{H}_{2}$, except for some details in the energetics and mechanism. The main differences are that BS cannot insert into H_{2} and SBH_{2} resides in a much deeper potential well (37.3 $\mathrm{kcal} / \mathrm{mol}$ below $\mathrm{BS}+\mathrm{H}_{2}$) and rearranges by 1,2-H migrations not only to trans- but also to cis-HBSH. B and $\mathrm{H}_{2} \mathrm{~S}$ can form a much more strongly bound complex than B and $\mathrm{H}_{2} \mathrm{O}$ and the $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ reaction is expected to be significantly faster than B $+\mathrm{H}_{2} \mathrm{O}$ because the barriers for H elimination from the complex and for B insertion into an $\mathrm{S}-\mathrm{H}$ bond are in the range of 1.5 $\mathrm{kcal} / \mathrm{mol} . \mathrm{BSH}+\mathrm{H}$ and $\mathrm{SBH}+\mathrm{H}$ are predicted to be produced in the $\mathrm{B}+\mathrm{H}_{2} \mathrm{~S}$ reaction, while $\mathrm{BS}+\mathrm{H}_{2}$ are not likely to be formed as primary products.

Acknowledgment. This work was supported by the National Science Council of Taiwan, R.O.C. Partial support from Academia Sinica and Tamkang University is also appreciated. A.M.M. is thankful to Florida International University for his start-up funds used to purchase the computer equipment partially employed for this study.

References and Notes

(1) Burdette, C. W.; Lander, H. R.; McCoy, J. R. J. Energy 1978, 2, 289.
(2) Turns, S. R.; Holl, J. T.; Solomon, A. S. P.; Faeth, G. M. Combust. Sci. Technol. 1985, 43, 287.
(3) Yetter, R. A.; Cho, S. Y.; Rabitz, H.; Dryer, F. L.; Brown, R. C.; Kolb, C. E. In 22nd Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, PA, 1988; p 919.
(4) Yetter, R. A.; Rabitz, H.; Dryer, F. L.; Brown, R. C.; Kolb, C. E. Combust. Flame 1991, 83, 43.
(5) Brown, R. C.; Kolb, C. E.; Rabitz, H.; Cho, S. Y.; Yetter, R. A.; Dryer, F. L. Int. J. Chem. Kinet. 1991, 23, 957.
(6) Pasternack, L. Combust. Flame 1992, 90, 259.
(7) Brown, R. C.; Kolb, C. E.; Cho, S. Y.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Int. J. Chem. Kinet. 1994, 26, 319.
(8) Brown, R. C.; Kolb, C. E.; Cho, S. Y.; Yetter, R. A.; Dryer, F. L. In Gas-Phase Metal Reaction; Fontijn, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; p 647.
(9) Brown, R. C.; Kolb, C. E.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Combust. Flame 1995, 101, 221.
(10) Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 387.
(11) Zhou, W.; Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 507.
(12) Garland, N. L.; Stanton, C. T.; Nelson, H. H.; Page, M. J. Chem. Phys. 1991, 95, 2511.
(13) Garland, N. L. In Gas-Phase Metal Reaction; Fontijn, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; p 73.
(14) Gole, J. L.; Pace, S. A. J. Phys. Chem. 1981, 85, 2651.
(15) DiGiuseppe, T. G.; Estes, R.; Davidovits, P. J. Phys. Chem. 1982, 86, 260.
(16) Jeong, G. H.; Boucher, R.; Klabunde, K. J. J. Am. Chem. Soc. 1990, 112, 3332.
(17) Andrews, L.; Burkholder, T. R. J. Phys. Chem. 1991, 95, 8554.
(18) Sakai, S.; Jordan, K. D. J. Phys. Chem. 1983, 87, 2293.
(19) Sakai, S.; Jordan, K. D. Chem. Phys. Lett. 1986, 130, 103.
(20) Alberti, M.; Sayos, R.; Gonzalez, M.; Gimenez, M.; Bofill, J.; Aguilar, A. J. Mol. Struct. (THEOCHEM) 1988, 166, 301.
(21) Page M. J. Phys. Chem. 1989, 93, 3639.
(22) Alberti, M.; Sayos, R.; Sole, A.; Aguilar, A. J. Chem. Soc., Faraday Trans. 1991, 87, 1057.
(23) Hwang, D.-Y.; Mebel, A. M. Chem. Phys. Lett. 2000, 321, 95.
(24) Hwang, D.-Y.; Mebel, A. M. J. Am. Chem. Soc. 2000, 122, 11407.
(25) Hwang, D.-Y.; Mebel, A. M. Chem. Phys. Lett. 2001, 341, 393.
(26) Mebel, A. M.; Hwang, D.-Y. J. Phys. Chem. A 2001, 105, 7460.
(27) Hwang, D.-Y.; Mebel, A. M. J. Phys. Chem. A 2002, 106, 520.
(28) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(29) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(30) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16512.
(31) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
(32) Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995, 103, 7414.
(33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
(34) Duan, X.; Linder, D. P.; Page, M.; Soto, M. R. J. Mol. Struct. (THEOCHEM) 1999, 465, 231.
(35) Politzer, P.; Lane, P.; Concha, M. C. J. Phys. Chem. A 1999, 103, 1419.
(36) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall: Englewood Cliffs, NJ, 1999.
(37) Chase, M. W.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, Suppl. No. 1.
(38) Wang, Z.-X.; Huang, M.-B. J. Am. Chem. Soc. 1998, 120, 6758.
(39) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances, 4th ed.; Hemisphere Pub. Co.: New York, 1989.
(40) Computational Chemistry Comparison and Benchmark DataBase, NIST Standard Reference Database 101, Release 8, May 2003. http:// srdata.nist.gov/cccbdb/.

[^0]: ${ }^{\dagger}$ Tamkang University.
 ${ }^{\ddagger}$ Florida International University.
 ${ }^{\text {§ }}$ Institute of Atomic and Molecular Sciences.

