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The fundamental frequencies of vibration of 12 first-row closed-shell diatomics have been predicted using
both full and composite levels of CCSD(T) ab initio theory. For a given CPU time budget, composite levels
of theory were found to predict harmonic frequencies significantly better than full ab initio methods. However,
little improvement was obtained in the computation of the anharmonic correction with composite methods,
its being already well predicted at the CCSD(T) small basis set level. It was found that for a given CPU time
budget the most accurate fundamental frequencies are obtained by performing a calculation of the harmonic
frequencies using a composite method where the optimal choice of basis sets involved a larger cc-pVXZ
basis set only 1 greater in the valence designation compared with the smaller basis set. An anharmonic correction
computed using a small basis set or a low-level composite method could then be added to these harmonic
frequencies. The implication of these findings is that accurate fundamental frequencies can be computed
cheaply and efficiently by first computing the harmonic frequencies using an accurate composite method and
then correcting these frequencies with an anharmonic correction obtained by solving the nuclear Schro¨dinger
equation by some means on a potential energy surface generated using a CCSD(T) small basis set or a low-
level composite method.

Introduction

Composite methods have enjoyed significant success in recent
years in predicting energies of molecules (see ref 1 and
references therein). Such methods approximate high levels of
ab initio theory by performing a series of lower-level calcula-
tions. However, little work has been done regarding the accuracy
of these methods for the determination of other molecular
properties. Collins and co-workers have successfully utilized
composite methods in the construction of potential energy
surfaces for reactive systems. (See, for instance, the reaction of
H + H2O.2) Such methods have also very recently been used
in a bound-state problem for the determination of zero-point
energies and ground-state rotational constants.3 However, no
work has appeared that utilizes composite methods for the
calculation of fundamental frequencies.

The computation of vibrational frequencies has seen much
interest in recent years,4 with frequencies determined on average
to within 8 cm-1 using CCSD(T) and large basis sets.5 However,
the CPU time of CCSD(T) calculations scales as O(N7), where
N is the number of basis functions. Thus, if the success of
composite methods for computing energies can be carried over
into the calculation of frequencies, then significantly larger
molecular systems can be studied with high accuracy. However,
to obtain such high accuracy, at the very least core-valence
correlation should be incorporated within the CCSD(T) calcula-
tion.

It is not the purpose of the work presented here to evaluate
the accuracy of a given ab initio calculation with respect to
experiment but rather to investigate the accuracy of composite
methods in predicting fundamental and harmonic frequencies
determined from a full high-level ab initio calculation. Here,
the harmonic and fundamental frequencies of 12 closed-shell

first-row diatomics are studied using both full and composite
ab initio methods. Diatomics serve as simple test cases because
the fundamentals can be calculated simply and quickly via
variational methods. This paper is set out as follows. The
computational details follow this Introduction, after which the
results are presented and discussed. The final section provides
the conclusion.

Computational Details

Quantum chemical calculations were performed at the fol-
lowing levels of theory: CCSD(T)/cc-pVXZ, whereX ) D, T,
Q, and 5 and at the CCSD(T)/6-311++G(2df,2pd) and CCSD-
(T)/6-311G(d,p) levels. In the case of hydrogen fluoride, aug-
cc-pVXZ were also utilized. The calculations were carried out
using the MOLPRO 2000.1 suite of programs.6 The composite
energies were based on the ad hoc expressionEL/S ) E[CCSD-
(T)/S] + E[MP2/L] - E[MP2/S],(1) where S and L refer to
small and large basis sets, respectively.EL/S is an approximation
to theE[CCSD(T)/L] level of theory. In this work, the L basis
sets were chosen as cc-pVXZ, whereX ) 5, Q, T, and the
6-311++G(2df,2pd) levels. The S basis sets were cc-pVXZ,
whereX ) D and T and 6-311G(d,p). Equation 1 is analogous
to the expression used by Pople et al. in their G3XMP2 method.1

The shorthand designations used in this work to describe the
above calculations are 5, Q,++, T, 311, D for the CCSD(T)/
cc-pV5Z, CCSD(T)/cc-pVQZ, CCSD(T)/6-311++G(2df,2pd),
CCSD(T)/cc-pVTZ, CCSD(T)/6-311G(d,p), and CCSD(T)/cc-
pVDZ, respectively. A composite level of theory is designated
as L/S, where L and S are shorthand notations of the above
basis sets (i.e., 5, Q,++, T, 311, and D). Note that core-
valence correlation was not taken into account in this work.

The PES for the diatomics was determined by incrementing
the bond lengths by small amounts 40 times from some
compressed value relative tore. This produced a total of 41
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energies that ranged in value on either side ofre up to about
the energy of the 10th vibrational state. Annth order polynomial
was then least-squares fit to the energies, wherebyn was as
small as possible but gave no residual greater than 1 cm-1. The
order of the required polynomial ranged from 5th at some levels
for CO to 12th at some levels for HF and Li2. The polynomial
was checked for sensible results between the 41 points. The
fitted polynomials were then transformed into Hermite poly-
nomials, and the 1D anharmonic oscillator was solved variation-
ally in the harmonic oscillator basis to obtain convergence to 1
cm-1 in the first excited state energy. This usually required about
eight basis functions. Atomic masses7 were used for all
calculations.

Results and Discussion

Table 1 shows the experimental8 and experimental minus
calculated fundamental frequencies for the molecules studied
in this work at the CCSD(T)/B level, where B represents each
of the basis sets used in this work. Although it is not the current
focus of this work to achieve good agreement between experi-
ment and theory, this comparison has been made to provide
the reader with an indication of the level of agreement that can
be achieved without including core-correlation or relativistic
effects. The basis sets in Table 1 have been arranged in order
of decreasing quality. Not surprisingly, an inspection of the root-
mean-square (rms) and mean absolute deviations (mad) clearly
indicates a systematic variation in the errors between experiment
and theory, with the higher levels being more accurate than the
lower levels. There are, however, some interesting points to note.
First, there is no significant difference between the results
obtained at the CCSD(T)/cc-pVTZ and the CCSD(T)/6-311++G-
(2df,2pd) levels. Apparently, the additional diffuse functions
included in the latter basis set have little impact on the stretching
frequencies because the 6-311G(2df,2pd) and the cc-pVTZ basis
sets are of similar quality.

Second, there is no great difference between the results
obtained at the CCSD(T)/cc-pVDZ and CCSD(T)/6-311G(d,p)
levels. Again, apparently the additional single valence basis
function included in the later basis set has little impact on the
stretching frequencies compared to the cc-pVDZ basis set
because the 6-31G(d,p) basis set is of similar quality to the cc-
pVDZ basis set.

Third, the agreement between theory and experiment appears
to be comparatively bad in the case of HF and to a lesser extent
in the cases of BeO and LiH. HF (and BH) was the focus of

the recent study of Larsen et al.9 These authors, among other
things, looked at predicted fundamental frequencies at the
CCSD(T)/cc-pVDZ level of theory. The fundamental reported
in the current work at this level agrees with the result of Larsen
et al. However, the reasonable agreement with experiment at
this level is fortuitous, as clearly indicated in Table 1. Increasing
the basis set to the 6-311G(d,p) level results in a deviation of
-84 cm-1. Convergence to near the experimental result is also
noted to be slow, with a deviation of-15 cm-1 even at the
CCSD(T)/cc-pV5Z level. Interestingly, augmenting the cc-pVXZ
basis sets alleviates this situation significantly. The difference
between experiment and theory becomes-7, -7, -1, and-27
cm-1 at the CCSD(T)/aug-cc-pVXZ levels whereX is 5, Q, T,
and D, respectively. Unfortunately, augmented basis sets do not
yet exist for Be or Li, so a similar comparison cannot be made.

To make meaningful comparisons between lower and higher
levels of theory, the convergence of the fundamental frequencies
should be established. Table 2 provides the differences between
fundamental frequencies computed for the same molecule at
progressively higher levels of theory. It is clear that, apart from
HF and to a lesser extent LiF, convergence has approximately
been achieved. Thus, for the rest of this discussion the results
pertaining to HF and LiF have been excluded.

The harmonic and anharmonic contributions to the funda-
mental frequencies were computed. The anharmonic contribution
to the calculated fundamental frequency was deduced by taking
the difference between the calculated fundamental frequency
and the calculated harmonic frequency. Table 3 provides the
differences between the harmonic frequency calculated at
various levels of theory and the harmonic frequency calculated
at the CCSD(T)/cc-pV5Z level for the 10 remaining diatomics
in this study. Table 3 also provides the same comparison for
the anharmonic contribution. Only the mean absolute deviation
(mad) and root mean square (rms) are given for brevity.

It is clear by examining Table 3 that a substantial improve-
ment in the accuracy of the harmonic frequencies is achieved
by using composite methods compared with the CCSD(T)/S
frequencies. For example, the mad and rms harmonic frequen-
cies are improved from 47 and 64 cm-1 to 14 and 19 cm-1,
respectively, when using harmonic frequencies computed using
the T/D composite method compared with harmonic frequencies
computed at the D level. It is also noted that little improvement
is obtained here by increasing the L basis set beyond L) T.
The same situation is observed with S) 311. Harmonic
frequencies at the T/311 level are significantly better than at
the 311 level, but little, if any, improvement is obtained when
L is made larger than T. A less pronounced, but significant,

TABLE 1: Experimental and Experimental - Calculateda

Fundamental Frequencies in cm-1

molecule exptlb 5 Q ++ T 311 D

H2 4159 -4 -3 -4 -7 -18 14
LiH 1360 14 13 14 10 -3 32
BH 2269 5 6 6 14 21 22
HF 3959 -15 -27 -43 -43 -84 -8
Li2 346 5 5 8 6 4 10
LiF 894 10 3 12 0 -50 -63
BeO 1464 11 14 25 29 55 111
BF 1379 7 4 4 -2 27 79
C2 1827 -7 -4 5 7 22 25
CO 2143 4 5 9 15 5 25
N2 2330 -2 2 16 12 18 20
F2 894 -9 -4 13 -1 148 136
madc - 8 7 13 12 38 37
rmsd - 9 10 17 17 56 61

a See text for a description of the level of theory.b All experimental
frequencies are from ref 7.c Mean absolute deviation.d Root mean
square.

TABLE 2: Convergence of the Calculateda Fundamental
Frequencies in cm-1

molecule 5 5- Qb Q Q - Tb T T - Db D

H2 4163 1 4162 -4 4166 21 4145
LiH 1346 -1 1347 -3 1350 22 1328
BH 2264 1 2263 8 2255 8 2247
HF 3974 -12 3986 -16 4002 35 3967
Li2 341 0 341 1 340 4 336
LiF 884 -7 891 -3 894 -63 957
BeO 1453 3 1450 15 1435 82 1353
BF 1372 -3 1375 -5 1380 80 1300
C2 1834 3 1831 11 1820 18 1802
CO 2139 1 2138 10 2128 10 2118
N2 2332 4 2328 10 2318 8 2310
F2 903 5 898 3 895 137 758

a See text for a description of the level of theory.b The notationX
- Y represents the fundamental frequency at level of theoryX minus
the fundamental frequency at level of theoryY.
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improvement is achieved in the harmonic frequencies by using
the Q/T composite method rather than simply the T level of
theory to compute the harmonic frequencies. Note that it was
remarked earlier that the++ level is little better than the T
level of theory, which is born out here. Likewise, the 311 level
is little better than the D level, a result also illustrated in Table
3.

Interestingly, the anharmonic contribution is always reason-
ably well predicted, even at the D level of theory. A small
improvement is observed using the T/D composite method rather
than the D level of theory, but little more improvement is gained
by increasing the level of theory or composite method. This
can possibly be understood if one considers the comparative
sizes of the harmonic frequencies and the anharmonic contribu-
tionsthe anharmonic contribution is about a factor of 10 smaller
than the harmonic frequency. Thus, on the basis of this
observation and the findings born out in Table 3, one could
justify the use of a less accurate level of theory to compute the
anharmonic correction and add this correction to an accurate
calculation of the harmonic frequency.

Table 4 illustrates the accuracy of the above approach. Only
the Dunning basis sets have been employed in this table, and
the results from a harmonic frequency calculation using the 5/Q
composite method have also been included. Fundamental
frequencies have been computed using varying levels of theory
for the harmonic frequency calculation and the D level and T/D
method for the anharmonic correction. The notation used to
describe this type of calculation isA,B, whereA is the level of
theory, or composite method, used to compute the harmonic
frequency andB is the level of theory, or composite method,
used to compute the anharmonic correction. These fundamentals
are then compared with the fundamental frequencies computed
at the CCSD(T)/cc-pV5Z level. It is immediately seen that a
significant systematic improvement is achieved in the calculated
fundamentals for both of theA,D and A,T/D series, with
excellent agreement using the 5/Q,D and 5/Q,T/D procedures.

Concluding Remarks

In terms of the fundamental frequencies of vibration of the
12 diatomics studied in this work at the CCSD(T) level, the
6-311G(d,p) basis set was found to be essentially the same

quality as the cc-pVDZ basis set. This was also found to be the
case with the 6-311++G(2df,2pd) and cc-pVTZ basis sets. The
simple composite method considered in this work involved
performing only two calculations at each data point using the
CCSD(T)/S and MP2/L levels of theory (results at the MP2/S
level are also required but come as part of the CCSD(T)/S
calculation), where S and L represent small and large basis sets,
respectively.

It was found that this composite method substantially
improved the predicted harmonic frequencies over those at the
CCSD(T)/S level. The optimal choice of S and L was when L
was only 1 greater in the valence designation compared with
the S basis set. That is, when S) cc-pVDZ, L ) cc-pVTZ, or
when S) cc-pVTZ, L ) cc-pVQZ. Increasing the L basis set
further did not result in any significant improvement of the
predicted frequencies. The composite level is meant to ap-
proximate an ab initio calculation at the CCSD(T)/L level. This
approximation was found to be reasonably accurate when S and
L basis sets were different by only 1 in their valence designa-
tions.

The anharmonic correction to the harmonic frequency was
found to be well reproduced even at the CCSD(T)/cc-pVDZ
level, with only a slight improvement using the S) cc-pVDZ,
L ) cc-pVTZ composite method. Thus, it appeared justifiable
to compute fundamental frequencies by first calculating the
harmonic frequency at a high level of theory and then correcting
this frequency using an anharmonic correction at a much lower
level of theory. This procedure was applied and found to be
extremely accurate.

On the basis of the results presented here, at least for
stretching modes, accurate fundamental frequencies can be
obtained at relatively low computational expense by first
computing harmonic frequencies using a composite method that
is as high as possible and then applying an anharmonic
correction using the S) cc-pVDZ, L ) cc-pVTZ composite
method. This is significant because one could hypothesize that
the latter composite method could be used to generate a potential
energy surface for a polyatomic system and the anharmonic
correction could be extracted and applied to a high-level
composite method harmonic frequency calculation to obtain
cheap, but accurate, fundamental frequencies.
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TABLE 3: Agreement between CCSD(T)/cc-pV5Z
Harmonic Frequencies and Anharmonic Corrections (in
cm-1) and Lower-Level Full ab Initio Calculations and
Composite Levels of Theory

harmonic anharmonic

comparisona madb rmsc madb rmsc

5-D 47 64 3 4
5-T/D 14 19 1 2
5-++/D 15 22 2 4
5-Q/D 12 19 1 2
5-5/D 12 19 2 3
5-311 32 54 1 2
5-T/311 13 18 2 2
5-++/311 14 20 2 2
5-Q/311 11 17 2 2
5-5/311 11 16 2 2
5-T 9 11 1 2
5-++/T 9 12 1 2
5-Q/T 6 8 1 2
5-5/T 3 5 3 6

a See text for a description of the level of theory. The notationX -
Y represents the harmonic frequency or anharmonic correction at level
of theory X minus that found for level of theoryY. b Mean absolute
deviation.c Root mean square.

TABLE 4: Agreement between CCSD(T)/cc-pV5Z
Fundamental Frequencies (in cm-1) and Fundamentals
Computed Using Separate Levels of Theory for the
Harmonic and Anharmonic Contributions

comparisona madb rmsc

5-D,D 36 43
5-T/D,D 15 19
5-T,D 11 11
5-Q/T,D 7 9
5-Q,D 4 5
5-5/Q,D 3 3
5-5,D 3 4
5-T/D,T/D 13 19
5-T,T/D 9 10
5-Q/T,T/D 6 8
5-Q,T/D 3 3
5-5/Q,T/D 2 2
5-5,T/D 1 2

a See text for a description of the level of theory. The notationA,B
represents a fundamental frequency computed using the harmonic
frequency at levelA, and the anharmonic correction at levelB. b Mean
absolute deviation.c Root mean square.
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