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Eigenvalue Methods in Unimolecular Rate Calculations
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When the calculation of a unimolecular reaction rate constant is cast in the form of a master equation eigenvalue
problem, the magnitude of that rate is often smaller than the rounding error of the trace of the corresponding
reaction matrix. Two available methods to overcome this cancellation problem are examined, and it is shown
that one of them, the Nesbet procedure, can fail if the master equation relaxation matrix is improperly
normalized, or when some time-saving computational approximations are used.

Introduction definite symmetric matrix4A + D] and in whichA itself is
The cancellation problem in computing small rate constants positive semi-definite, i.e., It has one e'ge“‘_’"i"“e Wh'c.h IS
identically zero and the remainder are all positive. Crucially,

via master equation eigenvalue methods is well knéwnthe the eigenvectoS, corresponding to the zero eigenvalue has
case of a unimolecular reaction rate constant, the standard g 1/ P g 9
elements &); = R~

contemporary procedure is to use the Nesbet méttiadorder Finally, the smallest eigenvalugs, of [A + D] is the required
to determine the eigenvalue. Generally, this approach is very rate constafit and is equal to the scalar prod®ic{S,DWo)

reliable but, from time to time, verbal reports allude to where (,) denotes a scalar product dHglis the eigenvector
“difficulties in calculating small eigenvalues” in unimolecular ’ . P 9
of [A + D] corresponding to.

rate constant calculatioris.

Herein, we describe an extensive testing of the Nesbet method
as it is applied in unimolecular reaction theory and demonstrate
two conditions under which it may fail. To do this, the results ~ When the rate constant is pathologically small, the reactive
from a newly written Nesbet algorithm are compared with those population distributiom; = (S)i(Wo); is very close to that at
from two other methods, as described in more detail below. equilibrium, and so the eigenvectif, is very little different

from S. Hence, perturbation methods should be effective.
Basic Formulation First, we summarize the use of the Nesbet methGd his
is an iterative procedure which starts with a guessed value for
the eigenvaluely and a plausible eigenvectay (properly
normalized such tha&,co) = 1) and which converges smoothly
toward the correct smallest eigenvaluyg of the matrix, i.e.,
kuni, N0 matter how small this rate constant may be. In the

Perturbation Solutions

With the energy-level spectrum of the molecule divided into
consecutive grains of equilibrium populatiénat the temper-
atureT in question, the master equation for the system can be
cast in matrix forrfa-°

dn(ty/dt = [Q — D]n(t) (1) numerical examples described below, we will always begin at
the highest pressure withy = k., andcy = S and then work
where the vecton(t) contains the individual populations at downward in pressure, using the precedjngand Wy as the

timet, normalized to unity; the elements of the diagonal matrix starting values for the next case; this tends to minimize the
D are the decay rate constadfgor the respective grains, being number of iterations needed in the calculation of a complete
only nonzero above the reaction threshold; and the elements offalloff curve.

Q. g;, represent the rates of collisional transfer from states For short, denote the matriA[+ D] by B and construct the
states. vector
In the absence of reaction, conservation of reactant is ensured
bysa §= zBij (Co)i0 — (o)o(Codio 4)
]

[Qly = [(1 — oy — 6ijZ(1 ~ 030l 2

from which an improved, but unnormalized, vector

i.e., gi is minus the sum of all the other elements in ikie 5
column. Also, since the collisional transfer rates obey detailed (Co)i,l = (Co)i,o + ﬁ 5)
balancing, (o) — By
g, = g (3) is formed. It is normalized byS,, (co)1) = 1 and the nextAp):
is calculated asS), D(cg)1). These newdp): and @o); are put
Let E be a (diagonal) matrix with elements][ = foj, back into eq 4 and the process repeated ufg)h(1 and €o)n

whence the transformationE-24Q — D]EY2yields a positive  differ by less than the required tolerance, wheniggh (s taken
to beyo = kuni @and the properly normalizedd), is taken to be
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A quite different perturbation methéds less well known
and is restated briefly here. We define a function

(6)

wherea is a constant (usually chosen to be)is the operator
S(S, ), and

$(0) = (S, [A+ D + ap D) = (S, )

f=a[A+ D+ ap] DS, 7

[A+ D + apy]f = oDS, (8)

Forming the scalar product & with eq 8, we have
(S [A+ D+ oplf) = (&, Df) + a(&, f) = (S, DS) (9)
From eqs 6 and 9, we then get

$(0) = (S f) = (S, DS) — (S, DA =k, — (S, D)/t
(10)

which has been shovirio be a lower bound tgo, and with a
corresponding upper bound given By0)/(1 — ¢(0)/a). The
function of the constant in these equations is to stabilize the
inversion in eq 7 to obtaif, if needed.

In applying these algorithms to the test reaction below, they
will be referred to as the Nesbet and inversion methods,
respectively. Where possible, standard matrix roufivesre
used, but others of local origin, including the newly written
Nesbet procedure, were incorporated where necessary.

The Model Reaction

The test reaction was taken to be the isomerization ofNTH
— CH3CN. Given the molecular constants, the density of states
p(E) was tabulated at 1 kcal mdlintervals by using standard
methods?? also, from the reaction threshold at 39 kcal miol
up to the cutoff at 65 kcal mot, and with the same grain width,
the specific rate consta(E) was tabulated as the inverse
Laplace transform of the Arrhenius rate 18 he first 32 grains
were collapsed into 8 equally spaced widths, yielding a test
matrix of dimension 40, which was a convenient size with which
to expose the failings of the Nesbet method, if and when they
occur.

For each test temperatufg the grain populations were
calculated and aAEgown exponential transition probabili#y
matrix Q was constructed, and thenddoy symmetrization. The
correspondingeaction matrix [A + D] was formed from the
relaxationmatrix A by addition of the diagonal matri@ whose
elements are the grained specific rate constdE. All
calculations were performed in FORTRAN real*8 arithmetic,
over a standard pressure range3& P/Torr < 105, unless
otherwise stated.
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by the Householder an@L procedureswere of poor quality
in these cases.

The accuracy of the Nesbet algorithm was then tested
extensively in a different manner. The matr& can be
transformed into another matrid having the same set of
eigenvalue$,but for which there exists an analytical soluttén
for the smallest eigenvalwend eigenvector of [ + D]. Over
the complete range of pressures, the Nesbet eigenvalue agreed
with the analytical solution to the number (7) of significant
figures requested. Within this range, the absolute difference in
any of the 40 eigenvector elements never exceeded 517
in more detail, at 10 Torr, the fractional difference in the
elements ranged from10~15 for the largest elements te102
for the smallest; on the other hand, at'3Qorr, the fractional
differences ranged from+10710 to ~10-8. Remembering that
the Nesbet eigenvalue itself was not completely converged and
that the analytic solution is merely a first approximation, this
result can be considered as conclusive.

The capacity of this Nesbet procedure to recover small
eigenvalues was tested by successively reducing the temperature,
so as to produce very small rate constants. At 100 K, it correctly
recovered rate constants fron7.8 x 10772to ~3.9 x 107 7®
s 1 over the trial pressure range, usually within 3 or 4 iterations
to achieve 7-figure accuracy. However, at 75 K, with rate
constants between-3.1 x 10710 {0 ~1.6 x 107103 g1
convergence to within 7-figure accuracy could not be achieved
in fewer than 10 000 iterations, although 6-figure accuracy was
readily achievable. Finally, at 50 K, where the computed rate
constants lie within the range4.6 x 107157to ~2.4 x 107160
s71, the Nesbet method gave nonsensical results. Depending
upon the pressure, the trace a&fF D] lies between~10 and
~10%s71, for rounding errors roughly beweerl0~* and~1°
s 1in real*8 arithmetic.

These results were confirmed by using the inversion
method: for these very low rate constants, the upper and lower
bounds were identical, not only with each other but with the
Nesbet results as well. Moreover, the inversion method easily
yielded an acceptable set of results for the 50 K test just
mentioned, in whichy, is some 10170 of the magnitude of the
dominant matrix elements.

Tests were also conducted up To= 1000 K, and for
variables within the ranges 10 < P/Torr < 10, 100 <
AEgowd/cm™t < 2000; these limits oif, P, andAEgown are far-
removed from the values expected in practice for typical
reactions (and in the latter case, the choiceA&qown to be
smaller than the grain size of 350 chwould tend to exacerbate
the numerical difficulties), but both methods perform equally
well throughout, and a selection of typical results is given in
the top half of Table 1.

Hence, the ability of either method to handle eigenvalues very
many orders of magnitude smaller than would ever be encoun-
tered in practice over a wide range of parameters is not in doubt,
and if there are hidden difficulties, they must reside elsewhere
in the algorithms that are used by unimolecular reaction

Most of the tests described below were for a temperature of Kineticists. Also, this validation of the inversion method opens

503 K, and thek(E) function was adjusted by a fraction of a
percent so that the calculatéd was exactly 9x 1074 s71,

Numerical Results

the possibility (see below) of extension to multiwell problems
with multiple eigenvalues.

The Nesbet Method in Failure Mode

At first, a simple comparison was made between eigenvalues A chance programming error (highlighted in the deposited

obtained from the Nesbet and the standard Householdermaterial) revealed that the Nesbet method can fail disastrously
methods, with apparently successful results. However, at theeven though no other obvious signs of trouble are apparent.
low pressures, the corresponding eigenvectors differed signifi- The standard normalization procediiffer the originalQ matrix

cantly, it being deduced from what follows that those generated became compromised: the conservation eq 2 no longer held
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TABLE 1: Unimolecular Rate Constants, 10 x (Kyni/s™),
Calculated by the Nesbet Method, the Lower (LB) and
Upper (UB) Bounds from the Inversion Method, and the
Exact Solution, for the Model Calculation of the
Isomerization of CH3NC with AEgoun = 400 cmmlat T =
503 K, as a Function of PressureP
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A surprising result is that the inversion method provides a
pair of bounds that are very close to the expected eigenvalue at
all pressures. Presumably, the mismatch betv&emd S* is
almost damped out by the presence of the powexful term
in eq 6.

P/Torr  exact LB UB Nesbet Nia® A|S(?, n.ot shoyvn here but available from the dGDOSIt'ed
standard normalization material, if the diagonal elements of the improper relaxation
106 89990 89909 89990  8.9990 28 matrix Q are adjus_tgd arbitraily to conform exact_ly with the
108 89871 8.9790 89871 89871 37  conservation condition (eq 2), all methods agree: the Nesbet
104 8.8768 8.8690 8.8768  8.8768 49 procedure converges rapidly and the inversion method upper
10° 8.1265 8.1199  8.1265  8.1265 63 bound is always in agreement with the exact value.
1¢? 5.6009  5.5978  5.6009  5.6009 72 Incorrect normalization is unlikely to occur and to remain
10 2.1798 ‘ 2.1793 2'1798_ 2.1798 73 undetected for long. What the above analysis does show,
improper normalization . however, is that if there is an inconsistency between the true
10° Ve 9.0003 90084 173 10 1475 eigenvector that the Nesbet method is trying to achieve and the
1 —-ve 9.0003 9.0084 7.84 10 736 . . . . .
10t —ve 8.6669 8.6744 102 10t 220 one tha}t it is con'stral'ned to flnq, then it can fail. Such a
108 8.0180 7.9684 7.9748  8.2463 64 constraint may arise in one variant of the reduced matrix
17 5.6008 5.5656 5.5687  5.6023 72 approximation, as used, for example, in the well-known suite
10 21798 21760  2.1765  2.1798 73 of algorithms provided by Gilbert and Smith.Here, it is

a Exact solution is by the Householder method in quadruple-precision
(real*16) arithmetic? nye, is the number of iterations required for
convergence of the Nesbet procedure to 1 part ih 10

precisely, although the resultirg matrix remained perfectly
symmetric, with the results shown for tieEqon = 400 cnr?

assumed that in the falloff region, all states of energy less than
half of the critical value maintain their equilibrium populations.
This means that all the corresponding element¥gfare the
same as those df, apart from a minuscule change in the
normalization. In a typical calculation using these programs on
the CHNC isomerization reaction at 503 K and 1 Torr pressure,
with AEgown = 1000 cnTl, the error in®, at the halfway point

case in the lower half of Table 1. Below atmospheric pressure, is apout 2x 10-8. and this causes no problem.

where one would normally study this reaction, the results are

However, if the energy transfer pattern among the lower levels

close enough to the correct ones as to not arouse immediatgs \yeak and they do not maintain their equilbrium populations
suspicion. However, at higher pressures, the Householder andy,ring the reaction, the Nesbet method can get into difficulties
Nesbet methods fail catastrophically but, remarkably, the i ihis particular form of reduced matrix constraint is applied.

inversion method continues to report fairly sensible rate |, the model calculation, we fix the first five elements of the
constants. This curious situation is analyzed below. trial (co), j = O, ..., n to be the same as those &, the

For AEgown = 1000 cni* and unit collision rate, the matrix  equilibrium eigenvector; this corresponds to states lying below
Ahas 39 eigenvalues ranging from 0.90to 0.15 and one at 20 kcal mot, just about half of the assumed critical energy of
—7.6 x 1071% s71, a not-unreasonable approximation to zero 39 kcal motl. With AEdown = 1000 cn1, the procedure
when using real*8 arithmetic in FORTRAN. However, the penaves normally, but iAEgown is reduced to 100 crd,
corresponding eigenvectd*, is notSy: it begins to diverge  problems arise. Now, convergence can take up to 10 times as
after about the 10th element, and by the last B¢, is long, and the eigenvalues are are degraded slightly. However,
significantly in error, viz. 6x 10719 instead of 2x 1071°. if the number of constrained levels is raised to six or seven,

Moreover k»* = (S, DS*) = 9.190x 1074 s instead of 9x then the eigenvalues at low-pressure assume an error of more
10 s, because the elements of the vecEgrare too large  than an order of magnitude.

in the range wher® is nonzero. In fact, the Nesbet solution is
very slightly too large throughout the whole pressure range due Conclusion
to this imperfection ir&*. But when the calculation is repeated

using quadruple precision (real*16) arithmetic, it is found that iy . . .
the last eigenvalue isot zero, but—7.4 x 10715 571, and the method has no difficulty in computingxceedingly smalate

corresponding eigenvector is the same as was found by USingconstants reliably, but when an incqnsistency exists between
real*8 arithmetic. Hence, the smallest eigenvalueAds not S andA, or betweenA + D] and Wy, its performance can be
identically zero as required by the conservation condition, but d€graded. In particular, use of this form of the reduced matrix
has a real value which compromises the quality of the corre- 2PProximation is almost always benign, but very occasionally,
sponding eigenvector. depending upon the reaction parameters, it may notlpeably dglay
For AEgown = 400 cnT?, however, the changes are more the convergence of the Nesbet procedure or even yield spurious
bizarre: there is still an eigenvalue close to zefd@,4 x 10716 results. Given the power of modern computing m_achl_nes, itis
s 1, but all of the eigenvector elements for the states above probably t_)est to abar_1don the use of this approximation, or at
threshold are now negative. These changes account for the exaéFaSt provide the choice to use it or not.
rate constants also becoming negative at the higher pressure
when theA matrix dominates ovel, in column 2 of Table 1.
On the other hand, the Nesbet procedure fails to find the correct, First, a note about the difference in the properties of the
although negative, solution at all. The reason is that it is trying solutions of M + D] and of [A + D]: the two falloff curves

From these observations, we can conclude that the Nesbet

S
General Comments

to calculate the eigenvalue as the scalar prodGgt DWo)
instead of &%, DWo): S is inconsistent with the relaxation
part of the defective reaction matri&[+ D] and so, after a

for the methyl isocyanide reaction are virtually exactly super-
imposable, as they should be because the shape of the falloff is
determined principally by the dispersion of the values of

relatively large number of iterations, it arrives at an meaningless p(E)k(E) over the reactive energy rangfeand this is unchanged.

answer.

On the other hand, the two low-pressure limiting rates are
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different because iV, stepwise relaxation rates are arbitrarily same fundamental theo#§?2 All that is needed in order to find,
assigned at the grain boundaries, thus altering the original for example, the second eigenvalue in such a system is the
physical picture of therelaxation process and making the second eigenvector of the unperturbed relaxation mayix
truncatedM quite different from the truncate matrix;}* hence, which will not often present much, if any, numerical difficulty.
the method of Gilbert and Rassmust be used to establish the Of the two, the inversion method is to be preferred because of
second-order limit whence the analytic curve can be moved into its greater simplicity. A detailed description of these techniques
coincidence. It should be added, though, that the transformationavailable elsewher®.
back from the eigenvector oM + D] to that of [A + D] can
often be quite ill-conditioned. Acknowledgment. | wish to thank Dr. Raj Vatsya for
The inversion method has both advantages and disadvan-sharing some of his insights into matrix properties.
tages: Its use is limited to “small” eigenvalues, but that is not
a problem in this context, nor does it provide an eigenvector ~ Supporting Information Available: An extensively docu-
needed to examine population distributions in the falloff raige, mented set of FORTRAN algorithms and input data with which
or to calculate incubation timé8.However, given a reliable ~ to demonstrate these points is available free of charge via the
eigenvalue, it will usually not be difficult to find the corre-  Internet at http:/pubs.acs.org.
sponding eigenvector by any one of a variety of methidds.
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