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When the calculation of a unimolecular reaction rate constant is cast in the form of a master equation eigenvalue
problem, the magnitude of that rate is often smaller than the rounding error of the trace of the corresponding
reaction matrix. Two available methods to overcome this cancellation problem are examined, and it is shown
that one of them, the Nesbet procedure, can fail if the master equation relaxation matrix is improperly
normalized, or when some time-saving computational approximations are used.

Introduction

The cancellation problem in computing small rate constants
via master equation eigenvalue methods is well known.1 In the
case of a unimolecular reaction rate constant, the standard
contemporary procedure is to use the Nesbet method2,3ain order
to determine the eigenvalue. Generally, this approach is very
reliable but, from time to time, verbal reports allude to
“difficulties in calculating small eigenvalues” in unimolecular
rate constant calculations.4,5

Herein, we describe an extensive testing of the Nesbet method
as it is applied in unimolecular reaction theory and demonstrate
two conditions under which it may fail. To do this, the results
from a newly written Nesbet algorithm are compared with those
from two other methods, as described in more detail below.

Basic Formulation

With the energy-level spectrum of the molecule divided into
consecutive grains of equilibrium populationñi at the temper-
atureT in question, the master equation for the system can be
cast in matrix form6a,b

where the vectorn(t) contains the individual populationsni at
time t, normalized to unity; the elements of the diagonal matrix
D are the decay rate constantsdi for the respective grains, being
only nonzero above the reaction threshold; and the elements of
Q, qij, represent the rates of collisional transfer from statesi to
statesj.

In the absence of reaction, conservation of reactant is ensured
by6a

i.e., qii is minus the sum of all the other elements in theith
column. Also, since the collisional transfer rates obey detailed
balancing,

Let E be a (diagonal) matrix with elements [e] ij ) ñjδij,
whence the transformation-E-1/2[Q - D]E1/2 yields a positive

definite symmetric matrix [A + D] and in whichA itself is
positive semi-definite, i.e., it has one eigenvalue which is
identically zero and the remainder are all positive. Crucially,
the eigenvectorS0 corresponding to the zero eigenvalue has
elements (S0)j ) ñj

1/2.
Finally, the smallest eigenvalue,γ0, of [A + D] is the required

rate constant6b and is equal to the scalar product6c (S0,DΨ0)
where ( , ) denotes a scalar product andΨ0 is the eigenvector
of [A + D] corresponding toγ0.

Perturbation Solutions

When the rate constant is pathologically small, the reactive
population distributionni ) (S0)i(Ψ0)i is very close to that at
equilibrium, and so the eigenvectorΨ0 is very little different
from S0. Hence, perturbation methods should be effective.

First, we summarize the use of the Nesbet method.2,3a This
is an iterative procedure which starts with a guessed value for
the eigenvalueλ0 and a plausible eigenvectorc0 (properly
normalized such that (S0,c0) ) 1) and which converges smoothly
toward the correct smallest eigenvalueγ0 of the matrix, i.e.,
kuni, no matter how small this rate constant may be. In the
numerical examples described below, we will always begin at
the highest pressure withλ0 ) k∞ andc0 ) S0 and then work
downward in pressure, using the precedingγ0 and Ψ0 as the
starting values for the next case; this tends to minimize the
number of iterations needed in the calculation of a complete
falloff curve.

For short, denote the matrix [A + D] by B and construct the
vector

from which an improved, but unnormalized, vector

is formed. It is normalized by (S0, (c0)1) ) 1 and the next (λ0)1

is calculated as (S0, D(c0)1). These new (c0)1 and (λ0)1 are put
back into eq 4 and the process repeated until (λ0)n-1 and (λ0)n

differ by less than the required tolerance, whence (λ0)n is taken
to beγ0 ) kuni and the properly normalized (c0)n is taken to be
Ψ0.* Corresponding author. E-mail: huw@yorku.ca.

dn(t)/dt ) [Q - D]n(t) (1)

[Q] ij ) [(1 - δij)qji - δij∑
k

(1 - δik)qik] (2)

qijñi ) qjiñj (3)

si ) ∑
j

Bij(c0)j,0 - (λ0)0(c0)i,0 (4)

(c0)i,1 ) (c0)i,0 +
si

(λ0)0 - Bii

(5)
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A quite different perturbation method7 is less well known
and is restated briefly here. We define a function

whereR is a constant (usually chosen to be 1),p0 is the operator
S0(S0, ), and

i.e.,

Forming the scalar product ofS0 with eq 8, we have

From eqs 6 and 9, we then get

which has been shown7 to be a lower bound toγ0, and with a
corresponding upper bound given byφh(0)/(1 - φh(0)/R). The
function of the constantR in these equations is to stabilize the
inversion in eq 7 to obtainf, if needed.

In applying these algorithms to the test reaction below, they
will be referred to as the Nesbet and inversion methods,
respectively. Where possible, standard matrix routines8 were
used, but others of local origin, including the newly written
Nesbet procedure, were incorporated where necessary.

The Model Reaction

The test reaction was taken to be the isomerization of CH3NC
f CH3CN. Given the molecular constants, the density of states
F(E) was tabulated at 1 kcal mol-1 intervals by using standard
methods;6d also, from the reaction threshold at 39 kcal mol-1

up to the cutoff at 65 kcal mol-1, and with the same grain width,
the specific rate constantk(E) was tabulated as the inverse
Laplace transform of the Arrhenius rate law.6eThe first 32 grains
were collapsed into 8 equally spaced widths, yielding a test
matrix of dimension 40, which was a convenient size with which
to expose the failings of the Nesbet method, if and when they
occur.

For each test temperatureT, the grain populations were
calculated and a∆Edown exponential transition probability3b

matrixQ was constructed, and thenceA by symmetrization. The
correspondingreactionmatrix [A + D] was formed from the
relaxationmatrixA by addition of the diagonal matrixD whose
elements are the grained specific rate constantsk(E). All
calculations were performed in FORTRAN real*8 arithmetic,
over a standard pressure range 10-3 e P/Torr e 106, unless
otherwise stated.

Most of the tests described below were for a temperature of
503 K, and thek(E) function was adjusted by a fraction of a
percent so that the calculatedk∞ was exactly 9× 10-4 s-1.

Numerical Results

At first, a simple comparison was made between eigenvalues
obtained from the Nesbet and the standard Householder
methods, with apparently successful results. However, at the
low pressures, the corresponding eigenvectors differed signifi-
cantly, it being deduced from what follows that those generated

by the Householder andQL procedures8 were of poor quality
in these cases.

The accuracy of the Nesbet algorithm was then tested
extensively in a different manner. The matrixA can be
transformed into another matrixM having the same set of
eigenvalues,9 but for which there exists an analytical solution10

for the smallest eigenvalueandeigenvector of [M + D]. Over
the complete range of pressures, the Nesbet eigenvalue agreed
with the analytical solution to the number (7) of significant
figures requested. Within this range, the absolute difference in
any of the 40 eigenvector elements never exceeded 5× 10-11;
in more detail, at 106 Torr, the fractional difference in the
elements ranged from∼10-15 for the largest elements to∼10-3

for the smallest; on the other hand, at 10-3 Torr, the fractional
differences ranged from∼10-10 to ∼10-8. Remembering that
the Nesbet eigenvalue itself was not completely converged and
that the analytic solution is merely a first approximation, this
result can be considered as conclusive.

The capacity of this Nesbet procedure to recover small
eigenvalues was tested by successively reducing the temperature,
so as to produce very small rate constants. At 100 K, it correctly
recovered rate constants from∼7.8 × 10-72 to ∼3.9 × 10-75

s-1 over the trial pressure range, usually within 3 or 4 iterations
to achieve 7-figure accuracy. However, at 75 K, with rate
constants between∼3.1 × 10-100 to ∼1.6 × 10-103 s-1,
convergence to within 7-figure accuracy could not be achieved
in fewer than 10 000 iterations, although 6-figure accuracy was
readily achievable. Finally, at 50 K, where the computed rate
constants lie within the range∼4.6× 10-157 to ∼2.4× 10-160

s-1, the Nesbet method gave nonsensical results. Depending
upon the pressure, the trace of [A + D] lies between∼1011 and
∼1015 s-1, for rounding errors roughly beween∼10-4 and∼100

s-1 in real*8 arithmetic.
These results were confirmed by using the inversion

method: for these very low rate constants, the upper and lower
bounds were identical, not only with each other but with the
Nesbet results as well. Moreover, the inversion method easily
yielded an acceptable set of results for the 50 K test just
mentioned, in whichγ0 is some 10-170 of the magnitude of the
dominant matrix elements.

Tests were also conducted up toT ) 1000 K, and for
variables within the ranges 10-6 e P/Torr e 1015, 100 e
∆Edown/cm-1 e 2000; these limits onT, P, and∆Edown are far-
removed from the values expected in practice for typical
reactions (and in the latter case, the choice of∆Edown to be
smaller than the grain size of 350 cm-1 would tend to exacerbate
the numerical difficulties), but both methods perform equally
well throughout, and a selection of typical results is given in
the top half of Table 1.

Hence, the ability of either method to handle eigenvalues very
many orders of magnitude smaller than would ever be encoun-
tered in practice over a wide range of parameters is not in doubt,
and if there are hidden difficulties, they must reside elsewhere
in the algorithms that are used by unimolecular reaction
kineticists. Also, this validation of the inversion method opens
the possibility (see below) of extension to multiwell problems
with multiple eigenvalues.

The Nesbet Method in Failure Mode

A chance programming error (highlighted in the deposited
material) revealed that the Nesbet method can fail disastrously
even though no other obvious signs of trouble are apparent.
The standard normalization procedure3c for the originalQ matrix
became compromised: the conservation eq 2 no longer held

φh(0) ) R(S0, [A + D + Rp0]
-1DS0) ) (S0, f) (6)

f ) R[A + D + Rp0]
-1DS0 (7)

[A + D + Rp0]f ) RDS0 (8)

(S0, [A + D + Rp0]f) ) (S0, Df) + R(S0, f) ) R(S0, DS0) (9)

φh(0) ) (S0, f) ) (S0, DS0) - (S0, Df)/R ) k∞ - (S0, Df)/R
(10)

5250 J. Phys. Chem. A, Vol. 108, No. 24, 2004 Pritchard



precisely, although the resultingA matrix remained perfectly
symmetric, with the results shown for the∆Edown ) 400 cm-1

case in the lower half of Table 1. Below atmospheric pressure,
where one would normally study this reaction, the results are
close enough to the correct ones as to not arouse immediate
suspicion. However, at higher pressures, the Householder and
Nesbet methods fail catastrophically but, remarkably, the
inversion method continues to report fairly sensible rate
constants. This curious situation is analyzed below.

For ∆Edown ) 1000 cm-1 and unit collision rate, the matrix
A has 39 eigenvalues ranging from 0.90 to 0.15 s-1, and one at
-7.6 × 10-15 s-1, a not-unreasonable approximation to zero
when using real*8 arithmetic in FORTRAN. However, the
corresponding eigenvector,S0

q, is notS0: it begins to diverge
after about the 10th element, and by the last one,S0

q is
significantly in error, viz. 6× 10-10 instead of 2× 10-10.
Moreover,k∞

q ) (S0, DS0
q) ) 9.190× 10-4 s-1 instead of 9×

10-4 s-1, because the elements of the vectorS0
q are too large

in the range whereD is nonzero. In fact, the Nesbet solution is
very slightly too large throughout the whole pressure range due
to this imperfection inS0

q. But when the calculation is repeated
using quadruple precision (real*16) arithmetic, it is found that
the last eigenvalue isnot zero, but-7.4 × 10-15 s-1, and the
corresponding eigenvector is the same as was found by using
real*8 arithmetic. Hence, the smallest eigenvalue ofA is not
identically zero as required by the conservation condition, but
has a real value which compromises the quality of the corre-
sponding eigenvector.

For ∆Edown ) 400 cm-1, however, the changes are more
bizarre: there is still an eigenvalue close to zero,-7.4× 10-16

s-1, but all of the eigenvector elements for the states above
threshold are now negative. These changes account for the exact
rate constants also becoming negative at the higher pressures,
when theA matrix dominates overD, in column 2 of Table 1.
On the other hand, the Nesbet procedure fails to find the correct,
although negative, solution at all. The reason is that it is trying
to calculate the eigenvalue as the scalar product (S0, DΨ0)
instead of (S0

q, DΨ0): S0 is inconsistent with the relaxation
part of the defective reaction matrix [A + D] and so, after a
relatively large number of iterations, it arrives at an meaningless
answer.

A surprising result is that the inversion method provides a
pair of bounds that are very close to the expected eigenvalue at
all pressures. Presumably, the mismatch betweenS0 andS0

q is
almost damped out by the presence of the powerfulRp0 term
in eq 6.

Also, not shown here but available from the deposited
material, if the diagonal elements of the improper relaxation
matrix Q are adjusted arbitraily to conform exactly with the
conservation condition (eq 2), all methods agree: the Nesbet
procedure converges rapidly and the inversion method upper
bound is always in agreement with the exact value.

Incorrect normalization is unlikely to occur and to remain
undetected for long. What the above analysis does show,
however, is that if there is an inconsistency between the true
eigenvector that the Nesbet method is trying to achieve and the
one that it is constrained to find, then it can fail. Such a
constraint may arise in one variant of the reduced matrix
approximation, as used, for example, in the well-known suite
of algorithms provided by Gilbert and Smith.3d Here, it is
assumed that in the falloff region, all states of energy less than
half of the critical value maintain their equilibrium populations.
This means that all the corresponding elements ofΨ0 are the
same as those ofS0, apart from a minuscule change in the
normalization. In a typical calculation using these programs on
the CH3NC isomerization reaction at 503 K and 1 Torr pressure,
with ∆Edown ) 1000 cm-1, the error inΨ0 at the halfway point
is about 2× 10-8, and this causes no problem.

However, if the energy transfer pattern among the lower levels
is weak and they do not maintain their equilbrium populations
during the reaction, the Nesbet method can get into difficulties
if this particular form of reduced matrix constraint is applied.
In the model calculation, we fix the first five elements of the
trial (c0)j, j ) 0, ..., n to be the same as those ofS0, the
equilibrium eigenvector; this corresponds to states lying below
20 kcal mol-1, just about half of the assumed critical energy of
39 kcal mol-1. With ∆Edown ) 1000 cm-1, the procedure
behaves normally, but if∆Edown is reduced to 100 cm-1,
problems arise. Now, convergence can take up to 10 times as
long, and the eigenvalues are are degraded slightly. However,
if the number of constrained levels is raised to six or seven,
then the eigenvalues at low-pressure assume an error of more
than an order of magnitude.

Conclusion

From these observations, we can conclude that the Nesbet
method has no difficulty in computingexceedingly smallrate
constants reliably, but when an inconsistency exists between
S0 andA, or between [A + D] and Ψ0, its performance can be
degraded. In particular, use of this form of the reduced matrix
approximation is almost always benign, but very occasionally,
depending upon the reaction parameters, it may noticeably delay
the convergence of the Nesbet procedure or even yield spurious
results. Given the power of modern computing machines, it is
probably best to abandon the use of this approximation, or at
least provide the choice to use it or not.

General Comments

First, a note about the difference in the properties of the
solutions of [M + D] and of [A + D]: the two falloff curves
for the methyl isocyanide reaction are virtually exactly super-
imposable, as they should be because the shape of the falloff is
determined principally by the dispersion of the values of
F(E)k(E) over the reactive energy range,6h and this is unchanged.
On the other hand, the two low-pressure limiting rates are

TABLE 1: Unimolecular Rate Constants, 104 × (kuni/s-1),
Calculated by the Nesbet Method, the Lower (LB) and
Upper (UB) Bounds from the Inversion Method, and the
Exact Solution, for the Model Calculation of the
Isomerization of CH3NC with ∆Edown ) 400 cm-1 at T )
503 K, as a Function of PressureP

P/Torr exacta LB UB Nesbet niter
b

standard normalization
106 8.9990 8.9909 8.9990 8.9990 28
105 8.9871 8.9790 8.9871 8.9871 37
104 8.8768 8.8690 8.8768 8.8768 49
103 8.1265 8.1199 8.1265 8.1265 63
102 5.6009 5.5978 5.6009 5.6009 72
101 2.1798 2.1793 2.1798 2.1798 73

improper normalization
106 -ve 9.0003 9.0084 1.73× 1011 1475
105 -ve 9.0003 9.0084 7.84× 1010 736
104 -ve 8.6669 8.6744 1.02× 101 220
103 8.0180 7.9684 7.9748 8.2463 64
102 5.6008 5.5656 5.5687 5.6023 72
101 2.1798 2.1760 2.1765 2.1798 73

a Exact solution is by the Householder method in quadruple-precision
(real*16) arithmetic.b niter is the number of iterations required for
convergence of the Nesbet procedure to 1 part in 107.
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different because inM, stepwise relaxation rates are arbitrarily
assigned at the grain boundaries, thus altering the original
physical picture of therelaxation process and making the
truncatedM quite different from the truncatedA matrix;11 hence,
the method of Gilbert and Ross11 must be used to establish the
second-order limit whence the analytic curve can be moved into
coincidence. It should be added, though, that the transformation
back from the eigenvector of [M + D] to that of [A + D] can
often be quite ill-conditioned.

The inversion method has both advantages and disadvan-
tages: Its use is limited to “small” eigenvalues, but that is not
a problem in this context, nor does it provide an eigenvector
needed to examine population distributions in the falloff range,6f

or to calculate incubation times.6g However, given a reliable
eigenvalue, it will usually not be difficult to find the corre-
sponding eigenvector by any one of a variety of methods.12

A more serious disadvantage is that inversion procedures
often become problematic for large matrices. In these examples,
I have used conventional Choleski square-root13 or LU decom-
position8 methods, but modern procedures based on conjugate-
residual and conjugate-gradient methods14a can reduce the
problem very significantly to the inversion of a rank [dim(D)+2]
matrix.14b However, one has to wonder whether the huge
matrices, of the order of a thousand or so, often used in
unimolecular master equation calculations, are really necessary?
Given the crude approximations usually employed in uni-
molecular reaction theory (harmonic oscillators, rigid rotors,
formulaic energy transfer models, etc.), a reduction by an order
of magnitude in size would probably not be noticeable and may
make the inversion method reasonably competitive with the
Nesbet method in most unimolecular reaction applications.

On the other hand, the inversion method has three advantages.
One that it is slightly more robust than the Nesbet method in
finding very small eigenvalues, and is somewhat more fault-
tolerant. Another is that its instruction count, depending upon
the method of inversion used, is more-or-less fixed, whereas
convergence of the Nesbet procedure can (for some combina-
tions of kinetic and structural parameters) be exceedingly slows
sometimes in excess of 10 000 iterations in the model examples
described here; the cause and remedy for this slow convergence
remain to be investigated.

But most important, both it and the analytic method described
above can be extended to multiwell systems in a straightforward
manner; this is because both procedures are derived from the

same fundamental theory.15aAll that is needed in order to find,
for example, the second eigenvalue in such a system is the
second eigenvector of the unperturbed relaxation matrixA,
which will not often present much, if any, numerical difficulty.
Of the two, the inversion method is to be preferred because of
its greater simplicity. A detailed description of these techniques
available elsewhere.15
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