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The aim of this work is to present a full set of 34 empirically determined harmonic force constantsFi,k for
benzene (in symmetrized Whiffen’s coordinates), as well as the corresponding set of 20 harmonic normal
mode (NM) frequencies for all fourD6h isotopomers: C6H6, C6D6, 13C6H6, 13C6D6. The reliability of the
obtained harmonic force constant values is reinforced by their ability to reproduce satisfactorily the
experimentally measured fundamental vibrational frequencies of the fourD6h benzene isotopomers. A specific
combined LM (local mode)/SM (symmetrized modes) complex symmetrized nonperturbative vibrational model,
developed in our previous work, has been employed for calculations on the vibrational energy levels in benzene,
using the harmonic force constantsFi,k and a few diagonal anharmonic parameters, as input data. A set of
local (valence) harmonic force constants has also been derived from the empirically determined symmetrized
force constantsFi,k, and their physical meaning was discussed. The set of 20 harmonic NM frequenciesωk

for all four D6h benzene isotopomers, calculated in the present work using the empirically determined set of
Fi,k values, have been analyzed and compared to previous empirical and ab initio determinations by other
authors.

I. Introduction

The ground electronic state potential surface of benzene has
been established as a benchmark molecular potential surface,
suitable for calibration of molecular vibrational models in
general. This surface has been the target of massive analytical
research, both empirical and semiempirical, as well as ab initio
calculations.1-16 A considerable amount of work over the years
has been spent on the reliable determination of the harmonic
force constantsFi,k,1-13,15whose values are of foremost impor-
tance for the understanding and realistic description of the
potential energy hypersurface and hence of the vibrational
motion in ground electronic state benzene. Despite the large
number of vibrational degrees of freedom in benzene (30), due
to the high molecular symmetry (D6h), the number of inde-
pendent harmonic force constantsFi,k (defined in terms of
symmetrized Whiffen’s coordinatesSk) is only 34. The isoto-
pically invariant symmetrized force constantsFi,k, are rigorously
related to the 20 harmonic NM molecular frequenciesωk, which
are, however, isotopically dependent, because the relevant
relations (the WilsonF-G analysis) involve the atomic
masses.1,8

For benzene and for some of its isotopomers, there exists a
rich database of experimental spectroscopic evidence.17-37,48-55

The status of the fundamentals has recently been refined and
summarized by Trombetti and coauthors.16,28 Despite the
numerous experimental studies, however, the values of several
fundamental frequencies remain unclear.

An exhaustive account of the work done on the empirical
determinations of the harmonic force constantsFi,k in benzene
can be found in the Feature Article by Goodman, Ozkabak, and
Thakur (GOT),8 where the best set of empirically determined
Fi,k values available by 1991 has been listed. In this work,8 two
sets of harmonic frequenciesωexp for benzene C6H6 were
derived: the one is related rigorously to the empirically
determined harmonic force constantsFi,k (through Wilson’s
F-G analysis), and the second one follows more closely the
experimentally observable frequenciesνk. In fact, the two sets
of ωexp are rather close to each other, except for some of the
(strongly anharmonic) C-H stretch frequencies, which were
obviously not satisfactorily described by the empirically deter-
mined set ofFi,k values. Since 1991, there have practically been
no further attempts for an empirical refinement of the harmonic
force constants and harmonic frequencies of benzene. In those
years there has been, however, considerable activity, aimed at
the theoretical (both ab initio and density functional) compu-
tational determination of the harmonic frequencies,ωcalc (and
hence of the harmonic force constants),9-16 or even some
anharmonic (cubic and quartic) force constants.9,11,16So far, the
most accurate ab initio harmonic force field for benzene has
been obtained by Martin, Taylor, and Lee (MTL).13 The
harmonic frequenciesωcalc calculated by MTL13 exceed sig-
nificantly the harmonic frequenciesωexp empirically determined
by GOT. The same is true, as a rule, for the results obtained
from density functional calculations.12,15,16 At present it is
difficult to judge, in general, which values for the harmonic
frequencies are closer to reality: the lower set of values (ωexp)
obtained empirically or the theoretically derived (higher) ones
(ωcalc). Of course, the only reliable test for the quality of a given
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set of harmonic frequenciesωk is that against the experimentally
measured fundamentalsνk. However, there is no easy and
straightforward way to check the harmonic frequencies (and the
related set of harmonic force constantsFi,k) against the
fundamental frequencies in benzene. The anharmonic corrections
νk - ωk involve two main possible sources of error: (i) the
uncertainties, inherent to the vibrational method, employed for
calculation of the anharmonic corrections, as functions of the
harmonic and anharmonic force constants; (ii) uncertainties in
the values of the (theoretically calculated) anharmonic force
constants themselves. The authors11,14,16have assumed that these
two sources of error should be negligible, as compared to the
error coming from the direct theoretical calculation of the
harmonic frequenciesωcalc; so they have derived a set of
harmonic frequenciesωest by combining the experimentally
measured fundamentals with the calculated anharmonic correc-
tions, obtained using theoretically calculated anharmonic force
constants as input data. Two such sets ofωestvalues have been
obtained in this way.11,16 Again, in either case, the estimated
ωest values were obtained as a rule much larger than the
empirically determinedωexp values, although not so large as
the directly calculatedωcalc values. Thus, at present, it remains
unclear which set of harmonic frequencies are closer to reality:
those derived empirically by GOT (ωexp) or those obtained
theoretically (ωcalc, ωest).

Taking all this into account, it is clear that a reliable set of
empirically determined values of the harmonic force constants
Fi,k and the harmonic frequenciesωk in benzene should be very
valuable as a guide for the quality of theoretically obtained
results. An inherent part of the empirical procedure for deter-
mination of the harmonic force constantsFi,k and the related
harmonic frequenciesωk is the vibrational method employed
for calculation of the fundamentalsνk from the harmonic force
constants (and some anharmonic constants), as input data. It
has been our main purpose in the last years to develop a reliable
vibrational procedure, capable of establishing a sound cor-
respondence between the harmonic force constants and the
fundamental vibrational frequencies in benzene. Such a method
should necessarily be nonperturbative, because of the consider-
able congestion of vibrational levels, even at the energies of
the fundamental frequencies, in a molecule the size of benzene.
This work is the third in a series,38,40aimed at the development
and elaboration of a specific, fully symmetrized, nonperturbative
model approach for the treatment of benzene vibrations. Our
approach will be schematically outlined in section II. In section
III, using our vibrational procedure, all 34 symmetrized
harmonic force constantsFi,k for benzene will be empirically
determined, from a very good fit of the calculated fundamental
frequencies to the experimentally measured values, for benzene
and itsD6h isotopomers. The presently obtainedFi,k values will
be analytically compared to other sets of both empirically
derived and theoretically calculated sets of values, by other
authors. In section IV the local bond (valence) harmonic force
constants are derived from the set of empirically determined
symmetrized harmonic force constantsFi,k. Our values for the
local (valence) force constants are compared to those obtained
by other authors and their physical meaning is discussed. In
section V the harmonic NM frequenciesωk are calculated for
each of the 4D6h benzene isotopic species (C6H6, C6D6, 13C6H6,
13C6D6), using Wilson’sF-G analysis. Our results are compared
to other determinations ofωk, both empirical and ab initio or
semiempirical methods, and some peculiarities concerning these
data are pointed out and discussed in detail. In section VI we
summarize the main results and conclusions.

II. Vibrational Model and Computational Approach,
Used for Studying Benzene Vibrational Levels

Our vibrational model approach to an empirical determination
of the harmonic force constants in benzene38-40 is based on three
main points. First is the well-known fact that anharmonicity in
benzene, although extremely strong, is almost entirely localized
on each of the (six) equivalent C-H bond stretches.41-44 The
C-H stretch system in benzene is most adequately and
economically (with a minimum number of parameters) described
in terms of the local mode, Morse oscillator formalism.41-45

Thus for the vibrational characterization of the C-H stretch
system in benzene, only a single (diagonal) cubic force constant
fsss is required, besides the four harmonic force constantsfss,
f1,2, f1,3, f1,4, replacing the symmetrized force constantsF2,2,
F20,20, F7,7, F13,13. The remaining (non C-H stretch) vibrations
in benzene are described as nonlocal, symmetrized modes (SM).
Second, we are making full use of the high molecular symmetry
(D6h), by employing a specific complex symmetrized vibrational
model approach (and basis set).39,40 This approach is based on
the introduction of complex symmetry species (CSS) for the
symmetric top point groupD6h, as described in our previous
work.39,40Table 1 displays the CSS of the benzene point group
D6h, replacing the conventional character table for this group.1

This table was published in our preceding paper40 but is
displayed here again because of some errors in the previous
version. We note that such CSS can be readily introduced for
all remaining symmetric top point groups. The main advantage
of using CSS instead of conventional real symmetry species1 is
the product of any two CSS is a well-defined CSS again, which
is not true for real symmetry species, in the case when 2-D
species are involved.38-40,46,47 It is this quality for product
reproducibility of the CSS that is crucial for the construction
of a fully symmetrized vibrational (or electronic) basis set in
product form for molecules, belonging to symmetric top point
groups. For the description of vibrational motion in benzene, a
set of curvilinear complex symmetrized vibrational coordinates
has been introduced (transforming according to the CSS ofD6h,
displayed in Table 1), which can be expressed as simple linear
combinations of Whiffen’s symmetrized curvilinear coordi-
nates.4 Table 2 contains the full description of these coordinates
in terms of the local bond stretches and angle distortions and is
published again here, in corrected form. In terms of the complex

TABLE 1: Tranfsormation Table for the Complex
Symmetry Species of Point GroupD6h

a

D6h c6 c2′(ΨfΨ*) c2′′(ΨfΨ*) i

Ag ) A1g( iA2g 1 1 1 1
Au ) A2u ( iA1u 1 -1 -1 -1
Bg ) B1g ( iB2g -1 1 -1 1
Bu ) B2u ( iB1u -1 -1 1 -1
E1ga F 1 -1 1
E1gb F* 1 -1 1
E1ua F -1 1 -1
E1ub F* -1 1 -1
E2ga F2 1 1 1
E2gb F-2 1 1 1
E2ua F2 -1 -1 -1
E2ub F-2 -1 -1 -1

a The notation (ΨfΨ*) attached to the symmetry operationsc2′,
c2′′ means that in addition to multiplying by the indicated factor,
complex conjugation must also be performed (i) space inversion;c6

) rotation about the top axis of the molecule byπ/3; c2′, c2′′ ) rotations
by π about two axes, perpendicular to the top axis of the molecule,
and perpendicular to each other.F ) eiπ/3, F*) e-iπ/3. S × A ) S,
E1a,b × B ) E2b,a, E2a,b × B ) E1b,a, E1b,a × E1b,a ) E2a,b, E1a,b × E1b,a

) A, E2a,b × E2b,a ) A, E1a,b × E2a,b ) B, E1a,b × E2b,a ) E1b,a, g × u
) u, u × u ) g.
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symmetrized description of the vibrational coordinates and wave
functions, in the framework of the combined LM/SM approach,
a completely symmetrized, separable (in product form), infinite
dimensional vibrational basis set for benzene has been set up,
as described in detail in our previous work.39,40A wave function,
belonging to this basis set, is the product of a C-H stretch part
(a symmetrized linear combination of local Morse oscillator
eigenfunctions40) and a SM part, which in turn is a product of
separate eigenfunctions, belonging to each of the SM in benzene.
Third, a completely nonperturbative procedure was applied for
(i) selection of an appropriate active space of vibrational basis
states (all of them belonging to one and the same CSS), (ii)
construction of the relevant Hamiltonian matrix (containing the
energy levels of the selected basis states as well as the coupling
matrix elements among them), and (iii) Lanczos tridiagonal-
ization and subsequent diagonalization, for determination of the
molecular vibrational energy levels, which are located in an
energy range of interest. A specific vibrational code has been
written, on the basis of these theoretical principles, that allows
for the automatic calculation of the vibrational level energies
(belonging to a defined symmetry species), of all fourD6h

benzene isotopomers, and is related to an initially chosen basis
state of interest.

In the following, we shall summarize briefly the recipe
employed for construction of a fully symmetrized, multiplicative,
infinite dimensional vibrational basis set for benzene. Because
part of the benzene vibrations (the C-H stretches) will be
considered as LM, and the remaining part as SM, the conven-
tional NM treatment cannot be applied in this case; i.e., the
quadratic Hamiltonian interaction terms, coupling various
vibrational modes in benzene, cannot be removed. Each of those
two vibrational parts (LM and SM) is described in a different
way. The complex symmetrized LM wave functions for the
C-H stretch part have already been defined in our previous
work.40 On the other hand, each mode belonging to the SM
part (e.g., thekth), is defined in the usual way,1 in terms of a
diagonal harmonic force constant,Fk,k, and a diagonalG-matrix
element,Gk,k. The harmonic frequencyfk for such a SM, is given
by fk ) (1/2πc) xFk,kGk,k [cm-1] (c ) the velocity of light).
The SM in benzene are of two types: either nondegenerate or
doubly degenerate. The eigenstates|nk〉 (nk ) 0, 1, 2, ...) of a
nondegenerate SM are usually described as harmonic oscillator
eigenfunctions, whose energy is given byEnk ) fk(nk + 1/2),
and only in a few cases of more strongly anharmonic modes,
as Morse oscillator eigenfunctions, are the energy levelsEnk )
fk(nk + 1/2)- xk(nk + 1/2)2, wherexk is an anharmonic constant.
For the case whenk is a doubly degenerate mode, it is described
by the eigenfunctions of a 2-D oscillator (taken in complex form,
as eigenfunctions of thez-component of the vibrational angular
momentum as well). In this case two occupation numbers must
be defined (nka, nkb ) 0, 1, ...), instead of onenk, and the 2-D
oscillator eigenstates are given by|nka,nkb〉 ) |nka〉 × |nkb〉.40

We have shown previously46,47that these eigenfunctions belong
to well-defined CSS of the molecular point groupD6h. Of course
the same is true for the eigenfunctions|nk〉 of nondegenerate
SM. Now, the vibrational functionΨa for a group of (both
nondegenerate and 2-D) SM is obtained as the product of the
eigenfunctions of all modes,Ψa ) ∏k|nk〉, in completely
complex symmetrized form. The energy ofΨa is obtained as
the simple sum of the energy levels of the participating harmonic
or anharmonic oscillators.

A quadratic harmonic nondiagonal (interaction) Hamiltonian
Hint is next defined as a sum of termsHi,k, wherei andk are
two SM, belonging to one and the same symmetry species (e.g.,
i ) 4 andk ) 5, in Wilson’s numbering, both of them of b2g

symmetry): Hint ) ∑i*kHi,k. Hint is responsible for the couplings
between various basis statesΨa, as defined above. An interaction
Hamiltonian termHi,k, has kinetic (Gi,k) and potential (Fi,k) parts:

whereak
+|nk〉 ) xnk+1|nk + 1〉 and ak

-|nk〉 ) xnk|nk - 1〉.
(Hi,k is written in analogous form, already detailed in our
previous work,46,47for the case wheni andk are two 2-D, instead
of nondegenerate, SM.) Any one of theHi,k terms, andHint in
general, can couple only such pairs of basis statesΨa andΨb,
which belong to one and the same CSS, i.e.,〈Ya|Hint|Ψb〉 ) 0,
wheneverΨa and Ψb do not belong to the same CSS of
D6h.39-40,46,47

In this way a very simple Hamiltonian model for the
description of benzene vibrational states is obtained, containing
an extremely small number of adjustable parameters: the
harmonic force constantsFi,k, with the addition of a local bond

TABLE 2: Complex Symmetrized Vibrational Coordinates
qi for Benzenea

s1 s2 s3 s4 s5 s6

q2 (Ag ) A1 g) g g g g g g
q7a (E2ga) g gG* g(G*)2 g(G*)3 g(G*)4 g(G*)5

q7b (E2gb) g gG gG2 gG3 gG4 gG5

q20a(E1ua) ig igF* ig (F* )2 ig(F* )3 ig(F* )4 ig(F* )5

q20b (E1ub) -ig -igF -igF2 -igF3 -igF4 -igF5

q13 (Bu ) iB1u) ig -ig ig -ig ig -ig

t1 t2 t3 t4 t5 t6

q1 (Ag ) A1g) g g g g g g
q8a (E2ga) gF* gF*G* gF*(G*)2 gF*(G*)3 gF*(G*)4 gF*(G*)5

q8b (E2gb) gF gFG gFG2 gFG3 gFG4 gFG5

q14 (Bu ) B2u) g -g g -g g -g
q19a(E1ua) gF g gF* g(F*) 2 g(F*)3 g(F* )4

q19b (E1ub) gF* g gF gF2 gF3 gF4

R1 × t0 R2 × t0 R3 × t0 R4 × t0 R5 × t0 R6 × t0

q6a (E2ga) g gG* g(G*)2 g(G*)3 g(G*)4 g(G*)5

q6b (E2gb) g gG gG2 gG3 gG4 gG5

q12(Bu ) iB1u) ig -ig ig -ig ig -ig

â1 × s0 â2 × s0 â3 × s0 â4 × s0 â5 × s0 â6 × s0

q3 (Ag ) iA2g) ig ig ig ig ig ig
q9a (E2ga) ig igG* ig(G*)2 ig(G*)3 ig(G*)4 ig(G*)5

q9b (E2gb) -ig -igG -igG2 -igG3 -igG4 -igG5

q15 (Bu ) B2u) g -g g -g g -g
q18a(E1ua) g gF* g(F* )2 g(F* )3 g(F* )4 g(F* )5

q18b (E1ub) g gF gF2 gF3 gF4 gF5

δ1 × t0 δ2 × t0 δ3 × t0 δ4 × t0 δ5 × t0 δ6 × t0

q16a(E2ua) -igG -ig -igG* -ig(G*)2 -ig(G*)3 -ig(G*)4

q16b (E2ub) igG* ig igG igG2 igG3 igG4

q4 (Bg ) iB2g) ig -ig ig -ig ig -ig

γ1 × s0 γ2 × s0 γ3 × s0 γ4 × s0 γ5 × s0 γ6 × s0

q5 (Bg ) iB2g) ig -ig ig -ig ig -ig
q10a(E1ga) ig igF* ig(F* )2 ig(F* )3 ig(F* )4 ig(F* )5

q10b (E1gb) -ig -igF -igF2 -igF3 -igF4 -igF5

q11 (Au ) A2u) g g G g g g
q17a(E2ua) g gG* g(G*)2 g(G*)3 g(G*)4 g(G*)5

q17b (E2ub) g gG gG2 gG3 gG4 gG5

a Conversion matrixesAik of complex symmetrized vibrational
coordinatesqi in terms of curvilinear internal coordinatesxk (si , ti , Ri

, âi , γi , δi) and vice versa. Rows:qi ) ΣAikxk. Columns: xi ) ΣAikqk.
s0 andt0 are equilibrium C-H and C-C bond lengths, respectively;g
) 1/x6, F ) eiπ/3, F* ) e-iπ/3, G ) e2iπ/3, G* ) e-2iπ/3.

Hi,k ) 1
2
(Fi,k - p2Gi,k)(ai

+ak
- + ai

-ak
+) +

1
2
(Fi,k + p2Gi,k)(ai

+ak
+ + ai

-ak
-) (1)
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C-H stretch cubic force constantfsss and several anharmonic
constantsxk, pertaining to the few anharmonic SM (withk )
1, 3, 8, 9, 18, in Wilson’s numbering). We note that the
anharmonic constants introduced in the present work are related
to the symmetrized modes, and therefore they are different from
the usual definition of anharmonic constantsxk, attached to
normal modes. The introduced anharmonic constantsxk for some
of the symmetrized modes in benzene C6H6 are transformed
into “effective” cubic force constantsF ′k,k,k, which are isoto-
pically independent and allow for appropriate anharmonic
constantsxk to be readily calculated for each of the remaining
threeD6h isotopomers C6D6, 13C6H6, 13C6D6. The only one of
these “effective” cubic force constants, which was not given in
our previous work,40 is F ′3,3,3) -1.678. The “effective” cubic
force constants do not have direct physical meaning. Such true
cubic force constantsFk,k,k do not exist, because of symmetry
considerations, except for the totally symmetric mode 1. In fact,
the quantitiesF ′k,k,kcharacterize, in simplified (isotope invariant)
form, the cumulative effect of a large number of nondiagonal
anharmonic (cubic and quartic) force constants, on the Morse
potential curve along thekth symmetrized coordinate, and hence
on the energy levels of thekth SM. In practice, these diagonal
anharmonicities, attached to some of the SM, are rather small
and do not have a strong effect on the quality of the overall
vibrational description.

Using the basis set schematically defined above, the computa-
tion of vibrational levels proceeds as follows. The search
procedure is started with a suitably chosen initial basis state of
the required CSS. On this state, all quadratic Hamiltonian terms
in operator form (1) are consequtively applied, which leads to
the generation of new basis states, which are coupled to the
initial state. TheHi,k terms (1) are next applied on these states,
and as a result, more basis states arise. The search goes on by
continuously repeating this procedure. All basis states, which
can be generated in this way (which form the active space),
necessarily belong to one and the same CSS, that of the initially
chosen state for the search. The energy levels of the selected
basis states and their mutual coupling matrix elements form the
Hamiltonian matrix for the particular vibrational problem
explored, whose dimensionality may amount to several hundred
thousand. The Hamiltonian matrix obtained in this way has to

be diagonalized (using Lanczos tridiagonalization techniques)
to obtain the required benzene vibrational energy levels. The
calculated energy levels can be compared to experimentally
measured values.

In our recent work,40 we have carried out large scale
calculations, involving each of the four mode blocks in benzene
that contain a C-H stretch vibration and whose symmetries
are A1g, E2g, B1u, and E1u. As a result of these calculations, we
have been able to achieve a satisfactory fit of the calculated
fundamentals of benzene (and itsD6h isotopomers), belonging
to these four mode blocks, with the experimentally measured
values. Thus we have empirically obtained an improved set of
force constant valuesfss, fsss, f1,2, f1,3, f1,4, pertaining to the C-H
stretch system, as well as the relevant set of SM harmonic force
constants:F1,1, F1,2, F6,6, F6,7, F6,8, F6,9, F7,8, F7,7, F8,8, F8,9,
F9,9, F12,12, F12,13, F18,18, F18,19, F18,20, F19,19, andF19,20.40 In the
present work we shall employ the described approach to the
determination of the remaining harmonic force constants in
benzene:F3,3, F4,4, F4,5, F5,5, F10,10, F11,11, F14,14, F14,15, F15,15,
F16,16, F16,17, F17,17. Thus a full set of 34 harmonic force
constants for benzene will be derived empirically. It is note-
worthy that a very good fit could be achieved for almost all
theoretically calculated fundamentalsνk with the experimentally
measured values (where available), for all four benzeneD6h

isotopomers: C6H6, C6D6, 13C6H6, 13C6D6. A full set of the best
fit fundamentals for benzene and its isotopomers corresponding
to the set of harmonic force constant values, empirically
determined in this work, together with the available experi-
mentally measured values ofνk, are summarized in Table 3.

III. A Full Set of 34 Harmonic Force Constants Fi,k for
Benzene

A full set of 34 empirically determined harmonic force
constantsFi,k for benzene is displayed in Table 4, column 3.
The Fi,k values, pertaining to the four C-H stretch containing
mode blocks have already been published in our recent work.40

Here, theFi,k values for the E2g block have been slightly
modified to achieve better conformity of the relevant calculated
fundamentals with experiment. The remainingFi,k values,
pertaining to the non-C-H stretch containing modes blocks,

TABLE 3: Calculated Fundamental Vibrational Frequencies (cm-1) for D6h Symmetry Benzenes, Corresponding to the
Empirically Determined Harmonic Force Constants [References in Brackets]

C6H6 C6D6
13C6H6

13C6D6

symmetry frequency calc exp calc exp calc exp calc exp

A1g ν1 993.0 993.071 [51] 945.7 945.583 [24] 957.4 957.4 [29] 915.6 916.6 [8]
ν2 3076.1 3073.942 [51] 2300.3 2303.44 [24] 3064.9 3049.8 [29] 2283.6 2283.9 [8]

A2g ν3 1349.9 1350a [17] 1046.2 1059a [17] 1338.8 1031.9
B2g ν4 702.1 702.24 [28] 599.6 599a [17] 679.4 592.6

ν5 991.7 992.93 [28] 822.1 829a [17] 984.3 799.0
E2g ν6 608.9 608.13 [50] 579.0 580.2 [32] 587.1 584.2 [33] 560.8 561.3 [8]

ν7 3059.1 3057.04 [28] 2285.8 2272.5 [24] 3049.2 2267.3
ν8 1603.2 1600.9764b [34] 1554.5 1558.3 [24] 1550.7 1497.5
ν9 1177.3 1177.776 [50] 864.5 867.00 [24] 1169.1 861.3

E1g ν10 847.3 847.1062 [52] 659.1 660a [17] 840.4 650.2
A2u ν11 674.2 673.97465 [35] 495.0 496.2136 [36] 672.2 492.3
B1u ν12 1013.7 1013.74 [28] 964.6 970a [17] 977.3 934.0

ν13 3027.2 3028a [15] 2249.4 2285a [17] 3019.6 2234.1
B2u ν14 1309.4 1309.4 [37] 1286.2 1286.3 [37] 1270.1 1270.1 [37] 1236.3 1236.3 [37]

ν15 1150.0 1147.6751 [52] 828.1 823.677a [18] 1138.9 1138.4 [37] 827.7 823.762a [31]
E2u ν16 398.5 398.1330 [53] 346.0 346.8a [49] 387.1 339.4

ν17 967.7 967.98 [28] 787.7 787a [17] 956.8 772.5
E1u ν18 1038.4 1038.2670 [54] 814.1 814.2969 [18] 1018.6 1018.3798 [18] 808.1 808.5479 [31]

ν19 1484.0 1483.9854 [55] 1336.8 1335.2212 [18] 1453.3 1454.2576 [18] 1295.3 1295.7564 [31]
ν20 3064.8 3064.3674b [18] 2285.7 2284.9524 [48] 3055.3 3065.4540 [18] 2268.8 2266.0796 [31]

a Estimated from IR combinations or from rotational perturbations.b Strongly perturbed by Fermi resonance.
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have been calculated in the present work for the first time, using
our vibrational method.

In Table 4, for comparison, are given the best available set
of empirically determinedFi,k values by GOT8 (obtained using
the Wilson’sF-G analysis) (column 4), the best set obtained
using an ab initio method by MTL13 [CCSD(T), atomic natural
basis set] (column 5), and in addition, the set calculated earlier
by Berces and Ziegler,12 using a method based on local density
functional theory. The comparison between theFi,k values
obtained in this work and those of GOT8 shows several strong
distinctions. These are mainly concerned with the four diagonal
C-H stretch constants:F2,2, F7,7, F13,13, F20,20. Our values are
substantially and systematically lower than those of GOT in all
four cases (Table 4). Next, some nondiagonal force constants,
connecting a C-H stretch to a non C-H stretch, have been
dramatically reduced almost to zero:F1,2, F6,7, F12,13(however,
some others, likeF18,20andF19,20, have increased, as compared
to GOT). And last, in our work mostFi,k constants, pertaining
to the E2g (ν6, ν7, ν8, ν9) mode block, obtained have been rather
different from those of GOT.8

The set ofFi,k values obtained from ab initio calculations by
MTL 13 (Table 4, column 5) are in general substantially different
from both our set and that of GOT. In general, our set is
definitely closer to the set of values of GOT, than to the MTL
set; in fact, there are only 8 of the 34 force constants (F1,2, F6,6,
F6,7, F6,8, F6,9, F12,13, F13,13, F18,19) for which our value is closer
to those of MTL than to those of GOT. The values of Berces
and Ziegler12 are in general closer to the MTL13 results than to
those of GOT.8 Of special interest are the values of the

nondiagonal force constants, coupling a C-H stretch with a
non C-H stretch mode:F1,2, F6,7, F7,8, F7,9, F12,13, F18,20, F19,20.
In view of the pronounced local character of the C-H stretch
vibrations and their well-known separation from the remaining
modes, these force constants should logically be expected to
be very small. Indeed, for three of the four C-H stertch
containing blocks in benzene (those of A1g, E2g, and B1u

symmetry), the relevant nondiagonal force constants (F1,2, F6,7,
F7,8, F7,9, F12,13) were very small in our work. ThoughF7,8 and
F7,9 were also found to be small by the other authors,8,12,13F1,2,
F12,13, andF6,7 were small in our work in contrast to all previous
determinations. Contrary to this tendency, the two E1u non-
diagonal (C-H stretch)/(non C-H stretch) constantsF18,20and
F19,20 were quite large, as determined in the present work,
considerably exceeding the values found by the other au-
thors.8,12,13It is noteworthy, that the theoretically derived values
for these force constants12,13 (and in particularF18,20) are
consistently lower than the empirically determined ones.8,40

However, as seen from Table 3, our values for the E1u block
force constants allow for a particularly good fit of the calculated
E1u fundamentals to the experimentally measured values for all
four benzene isotopomers. Nevertheless, we are still not
completely convinced of the feasibility and reliability of the
presently determined set of force constant values, pertaining to
the E1u block (F18,18, F18,19, F19,19, F20,20, F18,20, F19,20), and are
currently looking for another set of values satisfying the
condition for smallness ofF18,20 andF19,20.

IV. Calculation of the Local Bond Force Constants

It is important and instructive to calculate the values of the
local (valence) force constants in benzene, corresponding to the
set of symmetrized harmonic force constantsFi,k, determined
empirically in the present work. The bond specific (valence)
force constants have significant physical meaning and can serve
as a test for the feasibility of the empirically determinedFi,k

values. Furthermore, taking into account the serious distinctions
in some of the presently obtainedFi,k values, as compared to
previous determinations, it is necessary to find out whether these
changes lead to physically sound and meaningful changes in
the local bond (valence) force constants.

The total number of local bond force constants [according to
the definition and notation of Wilson, Decius, and Cross
(WDC)1] is 44. They were defined by WDC in terms of the
local bond stretch and angle distortion coordinates, which have
the following meaning (k ) 1, ..., 6): sk, C-H stretch;tk, C-C
stretch;Rk, in-plane C-ring distortion;âk, in-plane H-wag;γk,
out-of-plane H-wag;δk, out-of-plane C-ring distortion. Only 34
of the 44 local bond force constants are independent. All force
constants are distributed in the following way among 13 groups
(blocks) according to the type of local coordinates involved: 4
s-type (Fs

1, Fs
2, Fs

3, Fs
4), 4 t-type (Ft

1, Ft
2, Ft

3, Ft
4), 3 st-type

(Fst
1, Fst

2, Fst
3), 4 â-type (Fâ

1, Fâ
2, Fâ

3, Fâ
4), 4 R-type (FR

1,
FR

2, FR
3, FR

4, 2 of them independent), 4sR-type (FsR
1, FsR

2,
FsR

3, FsR
4, 2 of them independent), 2sâ-type (Fsâ

1, Fsâ
2), 3 tR-

type (FtR
1, FtR

2, FtR
3, 1 of them independent), 2Râ-type (FRâ

1,
FRâ

2, 1 of them independent), 3tâ-type (Ftâ
1, Ftâ

2, Ftâ
3), 4 δ-type

(Fδ
1, Fδ

2, Fδ
3, Fδ

4, 2 of them independent), 4γ-type (Fγ
1, Fγ

2,
Fγ

3, Fγ
4), and 3 γδ-type (Fγδ

1, Fγδ
2, Fγδ

3, 2 of them inde-
pendent). In the notation of WDCFσ

k, the subscript denotes
the type of local coordinates involved, whereas the superscript
number indicates whether the two coordinates are located on
one and the same center (1), on adjacent centers (2), etc. In
general, the symmetrized force constantsFi,k are related to the
local force constantsFσ

k, through linear equations, which are

TABLE 4: Symmetrized Harmonic Force Constants for
Benzene (mdyn and Å), Empirically Determined in This
Work, and in Ref 8, and Theoretically Calculated in Refs 12
and 13

D6h

symmetry
force

constants this work GOT8 MTL13 ref 12

A1g F1,1 7.630 7.616 7.755 7.767
F1,2 0.030 0.157 0.112 0167
F2,2 5.540 5.554 5.612 5.241

A2g F3,3 0.877 0.877 0.894 0.808
B2g F4,4 0.202 0.202 0.209 0.209

F4,5 0.252 0.249 0.263 0.255
F5,5 0.524 0.519 0.545 0.519

E2g F6,6 0.671 0.644 0.651 0.627
F6,7 0.020 -0.136 -0.124 -0.128
F6,8 0.388 0.308 0.314 0.311
F6,9 -0.235 -0.140 -0.143 -0.124
F7,7 5.495 5.510 5.573 5.208
F7,8 0.054 0.054 0.072 0.080
F7,9 -0.066 -0.066 -0.033 0.038
F8,8 6.670 6.690 7.029 6.956
F8,9 -0.030 -0.398 -0.427 -0.409
F9,9 0.918 0.895 0.905 0.822

E1g F10,10 0.337 0.337 0.351 0.322
A2u F11,11 0.249 0.249 0.259 0.241
B1u F12,12 0.661 0.658 0.664 0.629

F12,13 -0.010 -0.237 -0.189 -0.200
F13,13 5.522 5.571 5.569 5.206

B2u F14,14 3.939 3.939 4.142 4.550
F14,15 0.298 0.298 0.329 0.318
F15,15 0.828 0.828 0.830 0.760

E2u F16,16 0.160 0.160 0.168 0.162
F16,17 -0.168 -0.168 -0.178 -0.167
F17,17 0.420 0.420 0.438 0.406

E1u F18,18 0.931 0.926 0.943 0.854
F18,19 0.221 0.209 0.226 0.228
F18,20 0.214 0.151 0.004 0.002
F19,19 7.403 7.380 7.612 7.644
F19,20 0.590 0.572 0.167 0.186
F20,20 5.519 5.568 5.592 5.218
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restricted to the separate blocks, specified above. These equa-
tions are easy to derive and can be found, e.g., in ref 1. For
each of the blocks containing only nonredundant coordinates
(s, t, â, γ), the number of local force constants coincides with
the number of relevant symmetrized force constants. For these
cases, the transformation from one set to another is straight-
forward and will not be discussed here. However, for the blocks,
containing redundant coordinates (R, δ), the number of inde-
pendent, empirically determined symmetrized force constants
Fi,k is smaller than the number of local force constants; therefore
the latter cannot be determined from the former unambiguously.
For these cases we have adopted here a specific approximate
procedure, which will be discussed in the following, for each
block separately.

The R-type block contains two independent symmetrized
force constants,F6,6 andF12,12, on one hand and four local force
constants,FR

1, FR
2, FR

3, andFR
4 (two of them independent),

on the other hand. The equations that relate the former to the
latter have the form1

Due to the redundancy of theR-coordinates, the symmetrized
force constants denotedFR(A1g) andFR(E1u), cannot be deter-
mined, because they do not correspond to real vibrational
motions. As a result of this, the four local constantsFR

k cannot
be determined unambiguously from the system of eqs 2, because
only the first two equations of this system are meaningful. As
a way out of this situation, most authors (e.g., refs 8 and 45)
use symmetrized constants instead of local ones, for the blocks
of redundant coordinates. This approach does not reveal the local
coupling mechanisms. Therefore we have decided to use a
different recipe, which is based on the following considerations.
It is physically reasonable to expect that the one-center force
constantFR

1 should greatly exceed (in absolute values) the
remaining three,FR

2, FR
3, andFR

4, of which the last two are
expected to be the smallest because they correspond to the
maximum displacement of centers. Therefore we expect to make
a good approximation by setting these two to zero:FR

3 ) FR
4

) 0. Under this condition, the first two equations (2a,b) can be
solved:

The numerical values forFR
1 andFR

2, obtained by substituting
in eqs 3 the presently determined values forF6,6 andF12,12(Table
4, column 3), justify the approach employed (becauseFR

1 .
FR

2). The obtained values ofFR
1, FR

2, FR
3, andFR

4 are therefore
expected to be good approximations to their real values.

Next, there are four local force constants ofsR type, FsR
1,

FsR
2, FsR

3, andFsR
4, and only two symmetrized force constants

of this type,F6,7(E2g) andF12,13(B1u). Therefore, we propose to
keep only the one-centerFsR

1 and the nearest neighborFsR
2, as

presumably the largest ones, and set the other two to zero:FsR
3

) FsR
4 ) 0. In this way the original system of four equations

is reduced to two equations.

which are readily solved:

As seen, the obtained values for bothFsR
1 andFsR

2 are quite
small, which implies that the neglect ofFsR

3 andFsR
4 is probably

justified. In an analogous manner we proceed to handle the block
of threetR-type force constants,FtR

1, FtR
2, andFtR

3, where the
empirically determined symmetrized force constant is only
one: F6,8. In line with the considerations explained above, we
have setFtR

2 ) FtR
3 ) 0. This reduces the set of three linear

equations1 to only one: FtR
1 ) F6,8 ) 0.388, which (together

with FtR
2 ) FtR

3 ) 0) is expected to be a reasonable approxima-
tion.

Next, for the block of twoRâ-type force constants,FRâ
1 and

FRâ
2, there is only one symmetrized force constant,F6,9.

Therefore we setFRâ
2 ) 0, which reduces the system of two

equations1 to one equation:FRâ
1 ) F6,9/x3 ) - 0.136, which

is expected to be a reasonable approximation. For theδ block
of four local force constants,Fδ

1, Fδ
2, Fδ

3, andFδ
4, there are

only two empirically determined symmetrized force constants:
F4,4 and F16,16. We set to zero the presumably smallest local
force constants:Fδ

3 ) Fδ
4 ) 0. This reduces the system of

four linear equations to two, which are readily solved:

The obtained numerical results (Fδ
1 . Fδ

2) indicate that this is
probably a good approximation. Finally, for theγδ-type block
of three local force constants,Fγδ

1, Fγδ
2, andFγδ

3, only two
symmetrized force constants are available:F4,5 andF16,17. Here
we have setFγδ

3 ) 0, thus reducing the original system of three
linear equations to only two, which can be readily solved:

Both obtained values are comparatively small, withFγδ
2 being

several times smaller thanFγδ
1; so this seems to be a reasonable

approximation again.
Table 5 summarizes all local force constant values, calculated

from our set of empirically determined harmonic force constants
Fi,k (displayed in Table 4, column 3), under the approximations
described in detail above. We have also calculated, using the
same approximations, a set of local force constants correspond-
ing to the set of empirically determined force constantsFi,k by
GOT.8 These calculated values are displayed in column 4 of
Table 5, for the sake of comparison. The following observations
and conclusions can be made from the comparison of the values
of the local force constants corresponding to the presently
obtained set ofFi,k (Table 5, column 3) and those calculated
from the GOT set ofFi,k values (Table 5, column 4). The
(nonredundant) sets of 4Fs

k, 4 Ft
k, and 3Fst

k values are very
similar for the present work and GOT, especially theFt

k set.
Concerning theFs

k block (designatedfss, f1,2, f1,3, f1,4 above) it
is noteworthy that the presently obtainedFs

1 value is substan-
tially reduced as compared to the GOT value. Furthermore,Fs

4

is also strongly reduced, attaining a value comparable to and
even smaller than theFs

2 andFs
3 values, which in our view is

F6,6(E2g) ) FR
1 - FR

2 - FR
3 + FR

4 (2a)

F12,12(B1u) ) FR
1 - 2FR

2 + 2FR
3 - FR

4 (2b)

FR(A1g) ) FR
1 + 2FR

2 + 2FR
3 + FR

4 (2c)

FR(E1u) ) FR
1 + FR

2 - FR
3 - FR

4 (2d)

FR
1 ) 2F6,6 - F12,12) 0.681

FR
2 ) F6,6 - F12,12) 0.010 (3)

F6,7(E2g) ) FsR
1 - FsR

2 F12,13(B1u) ) FsR
1 - 2FsR

2 (4)

FsR
1 ) 2F12,13- F6,7 ) -0.040

FsR
2 ) F6,7 - F12,13) 0.030

Fδ
1 ) 2F16,16- F4,4 ) 0.118

Fδ
2 ) F16,16- F4,4 ) -0.042

Fγδ
1 ) F16,17/x3 ) -0.097

Fγδ
2 ) F16,17/x3 - 0.5F4,4 ) -0.029
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the expected behavior, whereas the GOTFs
4 value substantially

exceedsFs
2 andFs

3. For the blocks ofFâ
k andFR

k local force
constants, the tendencies displayed by both sets of values are
very similar. However, in both blocks, the leading (one-center)
constant is substantially different, whereas the smallest member
of each block changes sign.

A qualitatively different picture is observed for thesR block.
Here our data for bothFsR

1 and FsR
2 are consistently much

smaller than the relevant GOT values. Furthermore, they are
both quite close to zero, which justifies settingFsR

3 andFsR
4 to

zero preliminarily. Concerning thetR block, our value forFtR
1

is similar although substantially increased, as compared to the
GOT value, calculated under the same approximation (FtR

2 )
FtR

3 ) 0). The obtained value forFtR
1 should be a good

approximation to its real value, if the two constantsFtR
2 and

FtR
3 are indeed as close to zero as assumed above. Concerning

theRâ (degenerate) block, ourFRâ
1 value is substantially (about

twice) increased as compared to the relevant GOT value. Here
again, the estimate forFRâ

1 should be realistic, if theFRâ
2

constant is indeed sufficiently small, as assumed. For thetâ
(nondegenerate) block, our values differ rather strongly from
the GOT results. Indeed, the leadingFtâ

1 constant is strongly
reduced andFtâ

1 is increased. As a result, all three constants
Ftâ

1, Ftâ
2, andFtâ

3 are of comparable (small) magnitude in our

case, which is physically feasible. A qualitatively different,
however equally realistic, physical picture is observed in the
results of GOT, who have obtainedFtâ

1 . Ftâ
2, Ftâ

3. For the
three out-of-plane blocks,γγ (nonredundant),γδ (redundant),
and δδ (redundant), the local force constant values coincide,
because the relevantFi,k values of this work and of GOT,
coincide.

In general, our values for the local force constants are
substantially decreased as compared to GOT,8 with very few
exceptions. For some of the blocks, this leads to a qualitatively
changed physical picture of couplings.

V. Calculation of Harmonic Normal-Mode Frequencies

The set of harmonic force constantsFi,k is rigorously related
to the set of harmonic frequenciesωk through the well-known
F-G analysis of Wilson,1 which can be summarized as follows.
As already mentioned in section II, each one of the 20 (k ) 1,
..., 20) symmetrized modes in benzene is characterized by a
diagonal harmonic force constantFk,k, a diagonalG-matrix
element (inverse mass)Gk,k, from which its frequencyfk can be
calculated, using the formulafk ) (1/2π)xFk,kGk,k. For the
case when there is no other symmetrized mode in the molecule
with the same symmetry species ask, this coincides with the
harmonic NM frequency,ωk ) fk. In the case whenk belongs
to a block ofn equal symmetry modes (for benzene, possible
values aren ) 2-4), twon × n symmetric matricesG ) {Gi,k}
andF ) {Fi,k} (wherei, k ) 1, ...,n) are set up, including the
nondiagonalGi,k andFi,k matrix elements, besides the diagonal
ones. These two matrices must be multiplied to obtain the
(nonsymmetric) matrixA ) F × G. Then harmonic frequencies
ωk (k ) 1, ..., n) for the considered block of modes are then
obtained as the square roots of the eigenvalues ofA. TheF-G
formalism can either be employed to calculate the harmonic
frequenciesωk from a given set ofFi,k values (as will be done
in the present work), or in the opposite direction, to determine
the appropriate set ofFi,k values, from a set of inputωk values.

Employing Wilson’sF-G analysis, we have calculated the
set of harmonic NM frequenciesωk for benzene, using as input
values the symmetrized harmonic force constant valuesFi,k,
empirically determined in the present work (displayed in Table
4, column 3). For this purpose we have employed a self-made
algorithm and computer code. Table 6 contains the set of 20

TABLE 5: Calculated Local (Valence) Harmonic Force
Constants for Benzene, Corresponding to the Empirically
Determined Symmetrized Harmonic Force Constants,
Empirically Determined in the Present Work (Column 3)
and Ref 8 (Column 4)

block force constant this work GOT8

(ss) Fs
1(s1s1) 5.515 5.547

Fs
2(s1s2) 0.007 0.007

Fs
3(s1s3) 0.008 0.008

Fs
4(s1s4) -0.005 -0.022

(tt) Ft
1(t1t1) 6.619 6.616

Ft
2(t1t2) 0.737 0.728

Ft
3(t1t3) -0.417 -0.419

Ft
4(t1t4) 0.371 0.383

(st) Fst
1(s1t1) 0.184 0.200

Fst
2(s1t2) -0.013 0.008

Fst
3(s1t3) -0.156 -0.130

(ââ) Fâ
1(â1â1) 0.901 1.047

Fâ
2(â1â2) 0.010 0.016

Fâ
3(â1â3) -0.024 -0.023

Fâ
4(â1â4) 0.004 -0.002

(sâ) Fsâ
1(s1â2) -0.081 -0.068

Fsâ
2(s1â3) -0.043 -0.025

(tR) FtR
1(t1R1)

(FtR
2 ) FtR

3 ) 0)
0.388 0.308

(Râ) FRâ
1(R1â2) ) F6,9/x3

(FRâ
2 ) 0)

-0.136 -0.081

(RR) FR
1(R1R1) 0.681 0.630

FR
2(R1R2) 0.010 -0.014

FR
3 ) FR

4 ) 0
(sR) FsR

1(s1R1) -0.040 -0.338
FsR

2(s1R2) 0.030 0.101
(FsR

3 ) FsR
4 ) 0)

(tâ) Ftâ
1(t1â1) 0.095 0.200

Ftâ
2(t1â6) -0.024 -0.020

Ftâ
3(t1â5) -0.078 0.030

(γγ) Fγ
1(γ1γ1) 0.381 0.381

Fγ
2(γ1γ2) -0.060 -0.060

Fγ
3(γ1γ3) 0.003 0.003

Fγ
4(γ1γ4) -0.018 -0.018

(δδ) Fδ
1(δ1δ1) 0.118 0.118

Fδ
2(δ1δ2) -0.042 -0.042

Fδ
3 ) Fδ

4 ) 0
(γδ) Fγδ

1(γ1δ1) -0.097 -0.097
Fγδ

2(γ1δ2) -0.029 -0.029
Fγδ

3(γ1δ3) ) 0

TABLE 6: Calculated Harmonic Frequencies for D6h
Symmetry Benzenes, Corresponding to the Empirically
Determined Harmonic Force Constants in This Work

symmetry frequency C6H6 C6D6
13C6H6

13C6D6

A1g ω1 993.7 946.3 958.1 916.1
ω2 3193.2 2372.2 3181.7 2353.8

A2g ω3 1366.9 1063.2 1355.8 1048.9
B2g ω4 702.1 599.6 679.4 592.6

ω5 991.7 822.1 984.3 799.0
E2g ω6 609.0 578.9 587.2 560.7

ω7 3176.0 2351.3 3165.2 2334.3
ω8 1606.4 1556.9 1553.9 1499.7
ω9 1182.3 867.5 1173.8 864.3

E1g ω10 847.3 659.1 840.4 650.2
A2u ω11 674.2 495.0 672.2 492.3
B1u ω12 1013.0 964.2 976.7 933.5

ω13 3188.5 2370.0 3176.9 2351.3
B2u ω14 1309.4 1286.2 1270.1 1236.3

ω15 1150.0 828.1 1138.9 827.7
E2u ω16 398.5 346.0 387.1 339.4

ω17 967.7 788.7 956.8 772.5
E1u ω18 1041.2 816.5 1020.9 810.1

ω19 1491.6 1338.7 1461.4 1297.7
ω20 3170.6 2340.0 3160.8 2324.0
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calculated harmonic frequenciesωk, for benzene and itsD6h

isotopomers (C6H6, C6D6, 13C6H6, 13C6D6). Next, in Table 7,
column 2, are displayed again theωk values for benzene C6H6,
together with four other sets ofωk values, obtained by other
authors, for the sake of comparison. Two sets ofωexp values
by GOT are presented: one adapted to the experimentally
measured fundamentals (column 4) and one rigorously corre-
sponding to their own set of empirically determinedFi,k values
(column 5). Column 6 presents the best available set of harmonic
frequenciesωcalc, obtained using ab initio calculations by MTL.13

And column 7 contains the estimated set of harmonic NM
frequenciesωest, obtained by Maslen et al.11 by way of
combining experimentally measured fundamentals with theoreti-
cally calculated anharmonic corrections (from ab initio calcu-
lated cubic and quartic anharmonic force constants). This last
set (together with the setωest, obtained using a similar, however
more sophisticated, procedure in ref 16) has been considered
in the literature as possibly the most reliable available set of
harmonic frequencies for benzene, that is, appropriate to serve
as a test for theoretically calculated harmonic frequencies.

From a survey of the results displayed in Table 7 it is obvious
that our presently obtained values for the harmonic frequencies
in benzene C6H6 are definitely much closer to the GOT set8

than to the values calculated by MTL13 or estimated by Maslen
et al.,11 the last two sets of values being much larger, as a rule.
This is true for all 20 harmonic frequencies, without exception.
The only serious distinctions between our set and the GOT8 set
are connected with two of the C-H stretch frequencies,ω13

andω20. It is noteworthy that for the case ofω7, our value is in
almost perfect accord with the experimentally estimated GOT
value (Table 7, column 4), but rather different from the value
derived using their own set ofFi,k values (column 5).

VI. Conclusion

This work is the third in a series, aimed at the empirical
determinination of an improved and reliable set of harmonic

force constantsFi,k for benzene, in symmetrized (Whiffen’s)
coordinates. Using the determined harmonic force constants,
as well as a limited number of small “effective” anharmonic
constants as input values, and employing a specific fully
symmetrized, combined LM/SM, nonperturbative vibrational
calculation procedure, it has been possible to reproduce very
well most of the experimentally measured vibrational funda-
mental frequencies, for all four benzeneD6h species: C6H6,
C6D6, 13C6H6, 13C6D6. This might be considered as a strong
indication that the determinedFi,k values are close to the real
molecular values. Some of the presently determinedFi,k values
are quite different from the best existing set of empirically
determined harmonic force constant values by GOT,8 obtained
using Wilson’s F-G analysis with a set of experimentally
estimated harmonic frequencies. However, our values forFi,k

are by far more strongly different from the best set of
theoretically calculated harmonic force constants by MTL.13

Concerning the distinction in some of theFi,k values between
GOT8 and the present work, both of them empirically deter-
mined, the following comments could be made. In this work it
has been our aim to reproduce as closely as possible the
fundamental frequencies of the fourD6h benzene isotopomers:
C6H6, C6D6, 13C6H6, 13C6D6. Hence the determined set ofFi,k

values is primarily designed to satisfy this particular requirement.
GOT8 have also based their empirical determination of the
harmonic force constants on the experimentally measured
fundamentals of some lower symmetry benzene species (such
as 1,3,5-C6H3D3, 1,4-C6H4D2, and 1,2,4,5-C6H2D4), as well as
the most important available Coriolis constants. In forthcoming
work we plan to perform calculations on these quantities, using
our specific procedure described above, to further test the
reliability of our set ofFi,k values.

The full set of harmonic force constantsFi,k empirically
determined in the present work were used to calculate a set of
local bond (valence) harmonic force constants, which are an
important test for the physical feasibility of theFi,k values. The
obtained set of local force constants was discussed and compared
to the values, derived using other authors’ data. Serious
distinctions were observed in some of the values, which results
in a changed physical picture of local coupling strengths,
characterizing the potential energy hypersurface of benzene. The
major conclusion from these calculations is that the set ofFi,k

values empirically derived in the present work are reasonable,
because they lead to a physically consistent picture of local bond
force constants.

The empirically determined set ofFi,k values were used to
calculate a set of harmonic NM frequenciesωk for each of the
four D6h benzene isotopomers, using our own code for imple-
mentation of Wilson’sF-G analysis. The presently determined
ωk set for benzene C6H6 was found quite close to the best
empirically determined set of GOT,8 however substantially
different from and generally at values lower than the theoreti-
cally calculated setωcalc of MTL,13 as well as the estimated set
ωest, obtained using experimentally measured fundamentals,
combined with theoretically calculated anharmonic constants.

Thus a major conclusion from the results obtained in this
work could be that the set of harmonic force constant values
obtained empirically are very good approximations to the true
harmonic force constants for benzene. It is noteworthy that such
good conformity with the experimentally measured fundamentals
of benzene could be achieved with a very small number of
anharmonic constants taken into account. Moreover, the only
large one among them is the diagonal cubic force constantfsss,
characterizing the local bond C-H stretch anharmoniicity. This

TABLE 7: Calculated Harmonic Frequencies ωk for
Benzene C6H6 (cm-1), Corresponding to the Empirically
Determined Harmonic Force Constants in This Work in
Comparison with the Values Obtained by Other Authors

ωexp

(this work)
ωexp

a

(ref 8)
ωexp

b

(ref 8)
ωcalc

c

(ref 13)
ωest

d

(ref 11))

A1g ω1 993.7 994.4 994.4 1002.8 1008
ω2 3193.2 3191 3191.0 3209.9 3208

A2g ω3 1366.9 1367 1367.0 1379.9 1390
B2g ω4 702.1 707 707.0 708.8 718

ω5 991.7 990 990.0 1008.8 1011
E2g ω6 609.0 607.8 607.2 610.8 613

ω7 3176.0 3174 3167.5 3183.1 3191
ω8 1606.4 1607 1609.9 1637.2 1639
ω9 1182.3 1177.8 1178.2 1194.4 1192

E1g ω10 847.3 847.1 847.1 865.1 866
A2u ω11 674.2 674.0 674.0 687.2 686
B1u ω12 1013.0 1010 1014.4 1019.7 1024

ω13 3188.5 3174 3166.3 3173.1 3172
B2u ω14 1309.4 1309.4 1309.4 1326.1 1318

ω15 1150.0 1149.7 1149.7 1163.1 1167
E2u ω16 398.5 398 398.0 405.8 407

ω17 967.7 967 967.0 984.8 989
E1u ω18 1041.2 1038.3 1038.3 1055.5 1058

ω19 1491.6 1494 1494.4 1509.4 1512
ω20 3170.6 3181.1 3181.9 3199.7 3191

a Experimentally estimated in ref 8.b Calculated from the empirically
determinedFi,k values in ref 8, by the authors.c Calculation CCSD(T)
ANO4321′ in ref 13. d Estimated by Maslen et al., using the experi-
mentally observed fundamentals and the ab initio calculated anharmonic
(cubic and quartic) force constants in ref 11.
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implies that anharmonicity in benzene is indeed exclusively
concentrated on the C-H stretches, the remaining modes being
very nearly harmonic (at the lower excitation energies). Another
important conclusion could be derived from the fact that the
determined harmonic NM frequencies for benzene C6H6 were
consistently found to be very close to the fundamental frequen-
cies, much closer than the estimated valuesωest;11,16 i.e., the
NM anharmonic correctionsνk - ωk were found to be much
smaller than the theoretically calculated ones. This could be
taken as an indication that theoretical calculations tend to
strongly overestimate most of the harmonic as well as anhar-
monic force constants in benzene.11,16

Our work on theS0 potential hypersurface of benzene will
be continued by including the most important nondiagonal
higher order (both potential and kinetic) interaction Hamiltonian
terms in our vibrational calculation procedure. By exploring the
experimentally measured overtone and combination levels,
involved in the well-known cases of Fermi resonance interac-
tions, we shall try to determine the most important (largest)
anharmonic nondiagonal (cubic and quartic) force constants for
benzene. This will most probably lead to a further refinement
and improvement of the empirically determined harmonic force
constant values, through a better fit achieved between the
calculated and experimentally measured vibrational energy levels
(both fundamentals as well as higher excited overtone and
combinations).

References and Notes

(1) Wilson, E. B.; Decius, J. C.; Cross, P. C. InMolecular Vibrations;
McGraw-Hill: New York, 1955.

(2) Miller, F. A.; Crawford, B. L., Jr.J. Chem. Phys.1946, 14, 282.
(3) Crawford, B. L., Jr.; Miller, F. A.J. Chem. Phys.1949, 17, 249.
(4) Whiffen, D. H. Philos. Trans. R. Soc. London A1955, 248, 131.
(5) Duinker, J. C.; Mills, I. M.Spectrochim. Acta A1968, 24, 417.
(6) Ozkaback, A. G.; Goodman, L.; Thakur, S. N.; Krogh-Jespersen,

K. J. Chem. Phys.1985, 83, 6047.
(7) Ozkaback, A. G.; Goodman, L.J. Chem. Phys.1989, 90, 5213.
(8) Goodman, L.; Ozkaback, A. G.; Thakur, S. N.J. Phys. Chem.1991,

95, 9044.
(9) Pulay, P.; Fogarasi, G.; Boggs, J. E.J. Chem. Phys.1981, 74, 3999.

(10) Guo, H.; Karplus, M.J. Chem. Phys.1988, 89, 4235.
(11) Maslen, P. E.; Handy, N. C.; Amos, R. D.; Jayatilaka, D.J. Chem.

Phys.1992, 97, 4233.
(12) Berces, A.; Ziegler, T.J. Chem. Phys.1993, 98, 4793.
(13) Martin, J. M.; Taylor, P. R.; Lee, T. J.Chem. Phys. Lett.1997,

275, 414.
(14) Handy, N. C.; Willets, A.Spectrochim. Acta A1997, 53, 1169.
(15) Cane, E.; Miani, A.; Trombetti, A.Chem. Phys. Lett.2001, 340,

356.
(16) Miani, A.; Cane, E.; Palmieri. P.; Trombetti, A.; Handy, N. C.J.

Chem. Phys.2000, 112, 248.
(17) Brodersen, S.; Langseth, A.Mater. Fys. Skr. Dan. Vid. Selsk.1959,

No. 7, 1.

(18) Pliva, J.; Pine, A. S.J. Mol. Spectrosc.1987, 126, 82.
(19) Pliva, J.; Johns, J. W. C.; Goodman, L. J. Mol. Spectrosc.1990,

140, 214.
(20) Hochstrasser, R. M.; Wessel, J. E.; Sung, H. N.J. Chem. Phys.

1974, 60, 317.
(21) Wunsch, L.; Metz, F.; Neusser, H. J.; Schlag, E. W.J. Chem. Phys.

1977, 66, 386.
(22) Berman, J. M.; Goodman, L.J. Chem. Phys.1987, 87, 1479.
(23) Thakur, S. N.; Goodman, L.; Ozkaback, A. G.J. Chem. Phys.1986,

84, 6642.
(24) Hollinger, A. B.; Welsh, H. L.; Jammu, K. S.Can. J. Phys.1979,

57, 767.
(25) Jensen, H. B.; Brodersen, S.J. Raman. Spectrosc.1979, 8, 103.
(26) Chernoff, D. A.; Myers, J. D.; Pruett, J. G.J. Chem. Phys.1986,

85, 3732.
(27) Pulay, P.Mol. Phys.1969, 17, 197.
(28) Cane, E.; Miani, A.; Trombetti, A.Chem. Phys. Lett.1997, 272,

83.
(29) Thakur, S. N.; Goodman, L.; Ozkaback, A. G.J. Chem. Phys.1986,

84, 6642.
(30) Page, P. H.; Shen Y. R.; Lee, Y. T.J. Chem. Phys.1988, 88, 4621.
(31) Pliva, J.; Johns, J. W. C.; Goodman, L. J. Mol. Spectrosc.1991,

148, 427.
(32) Callomon, J. H.; Dunn, T. M.; Mills, I. M.Philos. Trans. R. Soc.

London A1966, 259, 499.
(33) Goodman, L.; Nibu, Y.Chem. Phys. Lett.1988, 143, 551.
(34) Esherick, P.; Owyoung, A.; Pliva, J.J. Chem. Phys.1985, 83, 3311.
(35) Hollenstein, H.; Piccirillo, S.; Quack, M.; Snels, M.Mol. Phys.

1990, 71, 759.
(36) Cabana, A.; Bachand, J.; Giguere, J.Can. J. Phys.1974, 52, 1949.
(37) Goodman, L.; Berman, J. M.; Ozkaback, A. G.J. Chem. Phys.1989,

90, 2544.
(38) Rashev, S.J. Phys. Chem. A2001, 105, 6499.
(39) Rashev, S.Int. J. Quantum Chem.2002, 89, 292.
(40) Rashev, S.J. Phys. Chem. A2003, 107, 2160.
(41) Reddy, K. V.; Heller, D. F.; Berry, M. J.J. Chem. Phys.1982, 76,

2814.
(42) Halonen, L.Chem. Phys. Lett.1982, 87, 221.
(43) Wallace, R.Chem. Phys.1975, 11, 189.
(44) Swofford, R. L.; Long M. J.; Albrecht, A. C.J. Chem. Phys.1976,

65, 179.
(45) Zhang, Y.; Klippenstein S. J.; Marcus, R. A.J. Chem. Phys.1991,

94, 7319.
(46) Rashev, S.; Stamova, M.; Kancheva, L.J. Chem. Phys.1998, 109,

585.
(47) Rashev, S.; Stamova, M.; Djambova, S.J. Chem. Phys.1998, 108,

4797.
(48) Pliva, J.; Johns, J. W. C.; Goodman, L. J. Mol. Spectrosc.1994,

163, 108.
(49) Snels, M.; Hollenstein, H.; Quack, M.; Cane, E.; Miani, A.;

Trombetti, A. Mol. Phys.2002, 100, 981.
(50) Hollinger, A. B.; Welsh, H. L.Can. J. Phys.1978, 56, 1513.
(51) Jensen, H. B.; Brodersen, S.J. Raman Spectrosc.1979, 8, 103.
(52) Pliva, J.; Johns, J. W. C.; Lu, Z. Mol. Phys.1996, 87, 859.
(53) Pliva, J.; Johns, J. W. C.; Lu, Z. J. Mol. Spectrosc.1993, 161,

269.
(54) Pliva, J.; Johns, J. W. C.J. Mol. Spectrosc.1984, 107, 318.
(55) Pliva, J.; Johns, J. W. C.Can. J. Phys.1983, 61, 269.

Harmonic Force Constants in Benzene J. Phys. Chem. A, Vol. 108, No. 7, 20041267


