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The aim of this work is to present a full set of 34 empirically determined harmonic force conBtarfits
benzene (in symmetrized Whiffen’s coordinates), as well as the corresponding set of 20 harmonic normal
mode (NM) frequencies for all fouDg, isotopomers: gHs, CeDs, 2CeHs, 3CsDs. The reliability of the
obtained harmonic force constant values is reinforced by their ability to reproduce satisfactorily the
experimentally measured fundamental vibrational frequencies of thé®fglrenzene isotopomers. A specific
combined LM (local mode)/SM (symmetrized modes) complex symmetrized nonperturbative vibrational model,
developed in our previous work, has been employed for calculations on the vibrational energy levels in benzene,
using the harmonic force constaris; and a few diagonal anharmonic parameters, as input data. A set of
local (valence) harmonic force constants has also been derived from the empirically determined symmetrized
force constant§ix, and their physical meaning was discussed. The set of 20 harmonic NM frequencies

for all four Dgn benzene isotopomers, calculated in the present work using the empirically determined set of
Fik values, have been analyzed and compared to previous empirical and ab initio determinations by other
authors.

I. Introduction An exhaustive account of the work done on the empirical
) ) determinations of the harmonic force constaRisin benzene
The ground electronic state potential surface of benzene hascap pe found in the Feature Article by Goodman, Ozkabak, and
been established as a benchmark molecular potential surfaceyhakur (GOT) where the best set of empirically determined
suitable for calibration of molecular vibrational models in Fix values available by 1991 has been listed. In this widvko
general. This surface has been the target of massive analyticagétS of harmonic frequenciese,, for benzene @Hs were
research, both empirical and semiempirical, as well as ab initio gerived: the one is related rigorously to the empirically
calculations:™'® A considerable amount of work over the years determined harmonic force constarfs (through Wilson’s
has been spent on the reliable determination of the harmonicp_g analysis), and the second one follows more closely the
force constants,'~***>whose values are of foremostimpor-  experimentally observable frequenciesIn fact, the two sets
tance for the understanding and realistic description of the qf wexp are rather close to each other, except for some of the
potential energy hypersurface and hence of the vibrational (strongly anharmonic) €H stretch frequencies, which were
motion in ground electronic state benzene. Despite the large opviously not satisfactorily described by the empirically deter-
number of vibrational degrees of freedom in benzene (30), due mined set of; values. Since 1991, there have practically been
to the high molecular symmetnyDgy), the number of inde-  ng further attempts for an empirical refinement of the harmonic
pendent harmonic force constarfts (defined in terms of  force constants and harmonic frequencies of benzene. In those
symmetrized Whiffen's coordinate®) is only 34. The isoto-  years there has been, however, considerable activity, aimed at
pically invariant symmetrized force constafig, are rigorously  the theoretical (both ab initio and density functional) compu-
related to the 20 harmonic NM molecular frequeneigswhich tational determination of the harmonic frequenci@ga. (and
are, however, isotopically dependent, because the relevanthence of the harmonic force constarfts) or even some
relations (the WilsonF—G analysis) involve the atomic  anharmonic (cubic and quartic) force const&rifsi®So far, the

masses:? most accurate ab initio harmonic force field for benzene has
For benzene and for some of its isotopomers, there exists abeen obtained by Martin, Taylor, and Lee (MT¥).The
rich database of experimental spectroscopic evidéhiéé*e-55 harmonic frequenciesca calculated by MTE® exceed sig-

The status of the fundamentals has recently been refined andnificantly the harmonic frequencies.y, empirically determined
summarized by Trombetti and coauthéf@® Despite the by GOT. The same is true, as a rule, for the results obtained
numerous experimental studies, however, the values of severafrom density functional calculatiod3.1516 At present it is
fundamental frequencies remain unclear. difficult to judge, in general, which values for the harmonic
frequencies are closer to reality: the lower set of valugg)

* Corresponding author. E-mail: RASHEV@ISSP.BAS.BG. Fax: 00 Obtained empirically or the theoretically derived (higher) ones
359 2 975 36 32. (wcaiQ). Of course, the only reliable test for the quality of a given
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set of harmonic frequencies is that against the experimentally TABLE 1. Tranfsormation Table for the Complex
measured fundamentals. However, there is no easy and Symmetry Species of Point GroupDex®

straightforward way to check the harmonic frequencies (and the Den Co c (P—w¥) ¢ (W—W*) i

related set of harmonic force constarfsy) against the Ag=Agtif, 1 1 1 1
fundamental frequencies in benzene. The anharmonic corrections A,= A, + A, 1 -1 -1 -1
vk — wg involve two main possible sources of error: (i) the  Bg=Big+tiBoyg -1 1 -1 1
uncertainties, inherent to the vibrational method, employed for Bu=Bz+iBw, -1 -1 1 -1
calculation of the anharmonic corrections, as functions of the Elga E* 11 :i i
harmonic and anharmonic force constants; (ii) uncertainties in Eﬁ: = -1 1 -1
the values of the (theoretically calculated) anharmonic force g, F* -1 1 -1
constants themselves. The authb#é1®have assumed that these  Exga F2 1 1 1
two sources of error should be negligible, as compared to the Ezgb F;Z 1 1 1
error coming from the direct theoretical calculation of the Ezzz E,z :i :i :i

harmonic frequenciesscq; SO they have derived a set of _ _
harmonic frequencieses by combining the experimentally *The notation W—4") attached to the symmetry operatioos,
measured fundamentals with the calculated anharmonic correc-2’_means that in addition to multiplying by the indicated factor,

. . . . . complex conjugation must also be performee-(space inversiongs
tions, obtained using theoretically calculated anharmonic force Z | i-vio - about the top axis of the moleculetf3; ¢, ¢" = rotations

constants as input data. Two such setagfvalues have been  py 7 about two axes, perpendicular to the top axis of the molecule,
obtained in this way!16 Again, in either case, the estimated and perpendicular to each othér.= 73 F*= e 73, S x A = S,
west Values were obtained as a rule much larger than the Eiap X B = Ezpa Ezap X B = Eipa Eiba X Eiva= Ezap Eiap X Eipa
empirically determinedveyp, values, although not so large as = A Ezap X E20a= A, Eiap X Ezap= B, Eiap X Ezpa= Ewa g x U

the directly calculatedcq values. Thus, at present, it remains ~ 4 Ux U =0

unclear which set of harmonic frequencies are closer to reality: ||. vibrational Model and Computational Approach,

those derived empirically by GOTwgy) or those obtained  Used for Studying Benzene Vibrational Levels

theoretically (caie, Wes).

Taking all this into account, it is clear that a reliable set of
empirically determined values of the harmonic force constants
Fix and the harmonic frequencieg in benzene should be very
valuable as a guide for the quality of theoretically obtained
results. An inherent part of the empirical procedure for deter-

Our vibrational model approach to an empirical determination
of the harmonic force constants in benZ8n¥ is based on three
main points. First is the well-known fact that anharmonicity in
benzene, although extremely strong, is almost entirely localized
on each of the (six) equivalent-G4 bond stretche$.-44 The
N ; C—H stretch system in benzene is most adequately and
m|nat|0|j of the ha(mon!c force.con.starﬁgk and the related economically (with a minimum number of parameters) described
harmonic frequencieay is the vibrational method employed i, terms of the local mode, Morse oscillator formali4m?5
for calculation of the fundamentaig from the harmonic force 5 for the vibrational characterization of the-B stretch
constants (and some anharmonic constants), as input data. Ity stem in benzene, only a single (diagonal) cubic force constant
has been our main purpose in the last years to develop a rellable}SSS is required, besides the four harmonic force constégts
vibrational procedure, capable of gstablishing a sound cor- fio 13 fis replacing the symmetrized force constafts,,
respondence between the harmonic force constants and thg, . 'F, . Fi3 15 The remaining (non EH stretch) vibrations
fundamental vibrational frequencies in benzene. Such a methodiy henzene are described as nonlocal, symmetrized modes (SM).
should necessarily be nonperturbative, because of the considersecond, we are making full use of the high molecular symmetry
able congestion of vibrational levels, even at the energies of (p,) by employing a specific complex symmetrized vibrational
the fundamental frequencies, in a molecule the size of benzenemgdel approach (and basis s&j° This approach is based on
ThIS WOI’k |S the th|rd in a Serie’§;4oaimed at the deve|0pment the introduction Of Complex Symmetry Species (CSS) for the
and elaboration of a specific, fully symmetrized, nonperturbative symmetric top point groufDen, as described in our previous
model approach for the treatment of benzene vibrations. Our ywork 3240 Table 1 displays the CSS of the benzene point group
approach will be schematically outlined in section II. In section pg,, replacing the conventional character table for this group.
lll, using our vibrational procedure, all 34 symmetrized This table was published in our preceding pa&pesut is
harmonic force constants for benzene will be empirically  displayed here again because of some errors in the previous
determined, from a very good fit of the calculated fundamental version. We note that such CSS can be readily introduced for
frequencies to the experimentally measured values, for benzenegy|| remaining symmetric top point groups. The main advantage
and itsDen isotopomers. The presently obtairieg values will of using CSS instead of conventional real symmetry speiges
be analytically compared to other sets of both empirically the product of any two CSS is a well-defined CSS again, which
derived and theoretically calculated sets of values, by other s not true for real symmetry species, in the case when 2-D
authors. In section IV the local bond (valence) harmonic force species are involve# 404647 |t s this quality for product
constants are derived from the set of empirically determined reproducibility of the CSS that is crucial for the construction
symmetrized harmonic force constafig. Our values for the  of a fully symmetrized vibrational (or electronic) basis set in
local (valence) force constants are compared to those obtainedoroduct form for molecules, belonging to symmetric top point
by other authors and their physical meaning is discussed. Ingroups. For the description of vibrational motion in benzene, a
section V the harmonic NM frequencies are calculated for  set of curvilinear complex symmetrized vibrational coordinates
each of the D¢, benzene isotopic speciesgtds, CeDs, 1°CoHe, has been introduced (transforming according to the CI&Qf
13CsDg), using Wilson'sF—G analysis. Our results are compared displayed in Table 1), which can be expressed as simple linear
to other determinations aby, both empirical and ab initio or ~ combinations of Whiffen's symmetrized curvilinear coordi-
semiempirical methods, and some peculiarities concerning thesenates! Table 2 contains the full description of these coordinates
data are pointed out and discussed in detail. In section VI we in terms of the local bond stretches and angle distortions and is
summarize the main results and conclusions. published again here, in corrected form. In terms of the complex
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TABLE 2: Complex Symmetrized Vibrational Coordinates
g for Benzené
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benzene isotopomers, and is related to an initially chosen basis
state of interest.
In the following, we shall summarize briefly the recipe

S1 S 3 S S S . . e reci
®Ag=Alg) g 9 9 9 9 9 _err_lp_loyeq for construction pf a fully s_ymmetrlzed, multiplicative,
ra (Ezg) g gG*  gG*? gG*)? oGt 9GP infinite dimensional vibrational basis set for benzene. Because
7o (E2gb) g gG gG gG gG* g& part of the benzene vibrations (the—@& stretches) will be
Goa (E1ug) ig  igF*  ig(F)? ig(F*)? ig(F*)*  ig(F*)® considered as LM, and the remaining part as SM, the conven-
Geob (Eun) —ig —igF —igR? —igR* —igFt  —igF® tional NM treatment cannot be applied in this case; i.e., the
Ge®=Bw) g 79 g 99 19 quadratic Hamiltonian interaction terms, coupling various

bt i3 t ts ts vibrational modes in benzene, cannot be removed. Each of those
G (Ag=A19) g g g g g two vibrational parts (LM and SM) is described in a different
Gga (E2g9) gF* gF*G* gF*(G*)? gF*(G*)® gF*(G*)* gF*(G*)°® way. The complex symmetrized LM wave functions for the
Go(Eog) ~ OF gFG  gFG  oFG  gFG'  gFG C—H stretch part have already been defined in our previous
gig:FElU_B)BZU) gF g_g gp ;(?:*)2 g(F*)3 &%*)4 work.4% On the other hand, each mode belonging to the SM
Taob (Erur) gF* g gF gP gFe gF* part (e.g., thekth), is defined in the usual walyin terms of a
diagonal harmonic force constaRiy and a diagonab-matrix
dxl Goxl 03xl daxl G5xl doxly elementGy . The harmonic frequendy for such a SM, is given
323%32)) g gg %(g*)z g(g)S gg*)“ ggg*)s by fic = (1/27¢) \/F Gy [em ™1 (c = the velocity of light).
G2(Bu=iB1) g Zig g “ig g dg The SM in benzene are of two types: either nondegenerate or
doubly degenerate. The eigenstagsl(nc = 0, 1, 2, ...) of a
Prixso Pox o PsxS PaxS PsxSo Poxs nondegenerate SM are usually described as harmonic oscillator
G (Ag=iAz) g ig ig ig ig ig eigenfunctions, whose energy is given By = fi(n + 1/2),
qga(?ga) '9 'g.G; '9.(6822 '9.(G(23 '9.(6(24 '9.(6(25 and only in a few cases of more strongly anharmonic modes,
3??53?3 Bsy) ;g :gg ;g :'gg ;'g :'gg as Morse oscillator eigenfunctions, are the energy leEgls
Guea(E1g) g gF*  gF*)? oF*)?} gF*)* g(F*)s fi(nk + 1/2) — x(ng + 1/2, wherex, is an anharmonic constant.
Gasb (E1ub) g gF gP gF? gF4 gFs For the case whekis a doubly degenerate mode, it is described
d1xto Oaxty Osxto Osxto Osxte Oxtlo by the eigenfunctions of a 2-D oscillator (taken in complex form,
P TigG g —igo* —igG —igG) —ig(GY)’ as eigenfunctions of thecomponent of the vibrational angular
qu(EZEb) igG* ig  igG  igQ e igG? momentum as well). In this case two occupation numbers must
G (Bg=1Bzg ig Zig g “ig ig ~ig be defined ks kb = 0, 1, ...), instead of ong, and the 2-D
oscillator eigenstates are given hyw,Nk= |Nkadx |NkplI°
VX% y2X% YaXH yaXD ¥5xXB yex R We have shown previousf§/*’that these eigenfunctions belong
45 (Bg=iB2g g lgoig  o-ig g TG to well-defined CSS of the molecular point groDg,. Of course
gigzggz)) EJig 'Ei'; - EJi(gFFZ '?ngg IEi(gF‘)‘ 'E’i(gFFg the same is true for the eigenfunctiomgof nondegenerate
Gt (Aug=A2u) g g G g g g SM. Now, the vibrational functionV, for a group of (both
h7a(Ezud) g gG*  g(G*)? g(GY3 g(G*)* g(G*)° nondegenerate and 2-D) SM is obtained as the product of the
Q17 (E2un) g gG 9G gG® gG* g&® eigenfunctions of all modesW, = []kIn in completely

aConversion matrixesAx of complex symmetrized vibrational

coordinatesy; in terms of curvilinear internal coordinateg(s , ti , o
, Bi, vi, 0i) and vice versa. Rowsg = ZAix. Columns: X = ZAikGk.
S andtp are equilibrium C-H and C-C bond lengths, respectively;
_ 1/J6’ F =g F* =gt G = g3 Gr = g 23,

complex symmetrized form. The energy Wi is obtained as
the simple sum of the energy levels of the participating harmonic
or anharmonic oscillators.

A quadratic harmonic nondiagonal (interaction) Hamiltonian
Hint is next defined as a sum of terrkky, wherei andk are
two SM, belonging to one and the same symmetry species (e.g.,

symmetrized description of the vibrational coordinates and wave i = 4 andk = 5, in Wilson’s numbering, both of them ot
functions, in the framework of the combined LM/SM approach, Symmetry): H™ = 5 i-Hi . H" is responsible for the couplings
a completely symmetrized, separable (in product form), infinite between various basis stalfs, as defined above. An interaction
dimensional vibrational basis set for benzene has been set upHamiltonian ternH;y, has kinetic Gix) and potentialf;y) parts:
as described in detail in our previous wéPKOA wave function,
belonging to this basis set, is the product of-akstretch part
(a symmetrized linear combination of local Morse oscillator
eigenfunction®) and a SM part, which in turn is a product of
separate eigenfunctions, belonging to each of the SM in benzene.

Third, a (_:ompletely nonpe_rturbati\_/e procedure was gpplied fqr whereactHn = Wlnk + 10and ac |ndJ= «/kak — 10

(i) selection of an approprlate active space of vibrational bas_l_s (Hix is written in analogous form, already detailed in our
states (all of them belonging to one and the same CSS), (i) previous workié47for the case whenandk are two 2-D, instead
construction of the relevant Hamiltonian matrix (containing the of nondegenerate, SM.) Any one of thig, terms, andH™ in
energy levels of the selected basis states as well as the couplingeneral, can couple only such pairs of basis stitgand Wy,
matrix elements among them), and (iii) Lanczos tridiagonal- which belong to one and the same CSS, ¥,H" W= 0,
ization and subsequent diagonalization, for determination of the whenever¥, and W, do not belong to the same CSS of
molecular vibrational energy levels, which are located in an Dg, 39-40.46.47

energy range of interest. A specific vibrational code has been In this way a very simple Hamiltonian model for the
written, on the basis of these theoretical principles, that allows description of benzene vibrational states is obtained, containing
for the automatic calculation of the vibrational level energies an extremely small number of adjustable parameters: the
(belonging to a defined symmetry species), of all fdup, harmonic force constants, with the addition of a local bond

1 _ _
Hx= E(Fi,k - hZGi,k)(ai+ak + 8 ak+) +

%(Fi,k + thi,k)(ai+ak+ +a a) )
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TABLE 3: Calculated Fundamental Vibrational Frequencies (cnT?) for Dy Symmetry Benzenes, Corresponding to the
Empirically Determined Harmonic Force Constants [References in Brackets]

CGHG CGDG 1?’CGHG 13CGD6
symmetry  frequency calc exp calc exp calc exp calc exp
Axg V1 993.0 993.071 [51] 945.7 945.583 [24] 957.4 957.4 [29] 915.6 916.6 [8]
2 3076.1  3073.942 [51] 2300.3  2303.44 [24] 3064.9 3049.8[29] 2283.6 2283.9[8]
Azg V3 1349.9  13508[17] 1046.2  1059[17] 1338.8 1031.9
Bag Va 702.1 702.24 [28] 599.6 59917] 679.4 592.6
Vs 991.7 992.93 [28] 822.1 82917] 984.3 799.0
Eog Ve 608.9 608.13 [50] 579.0 580.2 [32] 587.1 584.2 [33] 560.8 561.3 [8]
v7 3059.1 3057.04 [28] 2285.8 2272.5[24] 3049.2 2267.3
vg 1603.2  1600.976434] 1554.5 1558.3[24] 1550.7 1497.5
Vo 1177.3  1177.776 [50] 864.5 867.00 [24] 1169.1 861.3
Eig V1o 847.3 847.1062 [52] 659.1 660L7] 840.4 650.2
Aoy V11 674.2 673.97465 [35] 495.0 496.2136 [36] 672.2 492.3
Biy V12 1013.7 1013.74[28] 964.6 97(L7] 977.3 934.0
V13 3027.2  3028[15] 2249.4  2285[17] 3019.6 2234.1
By Via 1309.4  1309.4 [37] 1286.2  1286.3 [37] 1270.1  1270.1[37] 1236.3  1236.3[37]
V1s 1150.0 1147.6751[52] 828.1 823.6718] 1138.9 1138.4[37] 827.7 823.7631]
= Vie 398.5 398.1330 [53] 346.0 348.819] 387.1 3394
V17 967.7 967.98 [28] 787.7 787117] 956.8 7725
Ew V1s 1038.4  1038.2670 [54] 814.1 814.2969[18] 1018.6 1018.3798[18] 808.1 808.5479 [31]
V19 1484.0  1483.9854 [55] 1336.8 1335.2212[18] 1453.3 1454.2576[18] 1295.3 1295.7564 [31]
V20 3064.8 3064.367418] 2285.7 2284.9524[48] 3055.3 3065.4540[18] 2268.8 2266.0796 [31]

2 Estimated from IR combinations or from rotational perturbatidr&trongly perturbed by Fermi resonance.

C—H stretch cubic force constafigsand several anharmonic  be diagonalized (using Lanczos tridiagonalization techniques)
constantsg, pertaining to the few anharmonic SM (wikh= to obtain the required benzene vibrational energy levels. The
1, 3, 8, 9, 18, in Wilson’s numbering). We note that the calculated energy levels can be compared to experimentally
anharmonic constants introduced in the present work are relatedneasured values.

to the symmetrized modes, and therefore they are different from |n our recent work® we have carried out large scale
the usual definition of anharmonic constams attached to  calculations, involving each of the four mode blocks in benzene
normal modes. The introduced anharmonic constarits some that contain a €H stretch vibration and whose symmetries
of the symmetrized modes in benzengHg are transformed are Ay, Exq, By, and B, As a result of these calculations, we
into “effective” cubic force constants 'vk, which are isoto-  have been able to achieve a satisfactory fit of the calculated
pically independent and allow for appropriate anharmonic fundamentals of benzene (and g, isotopomers), belonging
constants to be readily calculated for each of the remaining to these four mode blocks, with the experimentally measured
threeDgn isotopomers €Dg, °CgHe, 1*CeDs. The only one of  values. Thus we have empirically obtained an improved set of
these “effective” cubic force constants, which was not given in force constant valuefgs fsss f1.2, f1 3, f1,4, pertaining to the €H

our previous work?is F '3 33= —1.678. The “effective” cubic  stretch system, as well as the relevant set of SM harmonic force
force constants do not have direct physical meaning. Such trueconstants:Fi 1, F12, Fse Fe7 Fes Feo Frs F77, Fes Fso
cubic force constantByx do not exist, because of symmetry  Fgqo Fi512 F1213 Fig1s Fis19 Fis20 F19.19 @andFig 2% In the
considerations, except for the totally symmetric mode 1. In fact, present work we shall employ the described approach to the

the quantities '« kkCharacterize, in simplified (isotope invariant)  determination of the remaining harmonic force constants in
form, the cumulative effect of a large number of nondiagonal benzene:Fs 3, Fas, Fas, Fss F1010 F11.11 F14,14 F1415 F15,15

anharmonic (cubic and quartic) force constants, on the Morse Fyq .4 Fig17 Fi717 Thus a full set of 34 harmonic force
potential curve along thikth symmetrized coordinate, and hence constants for benzene will be derived empirically. It is note-
on the energy levels of thih SM. In practice, these diagonal  worthy that a very good fit could be achieved for almost all
anharmonicities, attached to some of the SM, are rather smalltheoretically calculated fundamentajswith the experimentally
and do not have a strong effect on the quality of the overall measured values (where available), for all four benzBge
vibrational description. isotopomers: gHs, CsDs, 13CsHs, 13CsDs. A full set of the best
Using the basis set schematically defined above, the computa-it fundamentals for benzene and its isotopomers corresponding

tion of vibrational levels proceeds as follows. The search to the set of harmonic force constant values, empirically
procedure is started with a suitably chosen initial basis state of determined in this work, together with the available experi-

the required CSS. On this state, all quadratic Hamiltonian terms mentally measured values of, are summarized in Table 3.
in operator form (1) are consequtively applied, which leads to

the generation of new basis states, which are coupled to they;; A Full Set of 34 Harmonic Force Constants F
initial state. TheH;x terms (1) are next applied on these states, gapzene

and as a result, more basis states arise. The search goes on by

continuously repeating this procedure. All basis states, which A full set of 34 empirically determined harmonic force
can be generated in this way (which form the active space), constants=x for benzene is displayed in Table 4, column 3.
necessarily belong to one and the same CSS, that of the initially The F;x values, pertaining to the four-€H stretch containing
chosen state for the search. The energy levels of the selectednode blocks have already been published in our recent #fork.
basis states and their mutual coupling matrix elements form theHere, theF;x values for the & block have been slightly
Hamiltonian matrix for the particular vibrational problem modified to achieve better conformity of the relevant calculated
explored, whose dimensionality may amount to several hundredfundamentals with experiment. The remainifigy values,
thousand. The Hamiltonian matrix obtained in this way has to pertaining to the non-€H stretch containing modes blocks,

i,k for
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TABLE 4: Symmetrized Harmonic Force Constants for
Benzene (mdyn and A), Empirically Determined in This
Work, and in Ref 8, and Theoretically Calculated in Refs 12

nondiagonal force constants, coupling &g stretch with a
non C—H stretch mode:Fl,z, F5,7, F7,3, F7,9, F12,13 Flg,zo Flg,zo
In view of the pronounced local character of the-ig stretch

and 13 vibrations and their well-known separation from the remaining
D force , s modes, these force constants should logically be expected to
symmetry constants thiswork GOT MTL ref 12 be very small. Indeed, for three of the four—& stertch
Asg Fia 7.630 7616  7.755  7.767  containing blocks in benzene (those ofilAEy, and By
El,z g'gig gégz gég 50%% symmetry), the relevant nondiagonal force constafis, (Fs 7,
Ay Fii 0877 0877 0894 0808 F7s Fra F1219 were very small in our work. Thoughy g and
Bag Faa 0.202 0202 0209 0209 Frowere also found to be small by the other autHol&!3F, ,,
Fus 0.252 0.249 0.263 0.255 F12,13 andFe 7 were small in our work in contrast to all previous
Fss 0.524 0.519 0.545 0.519 determinations. Contrary to this tendency, the twq Bon-
Ezg Fes 0.671 0.644  0.651  0.627  diagonal (G-H stretch)/(non € H stretch) constants; g soand
Ez; 8:%3 _%.133;)68 _0(')1.341‘4 _0'3.23811 F10.20 Were quite large, as determined in the present work,
Foo —0235 -0.140 -0143 -0.124 considerably exceeding the values found by the other au-
Frz 5.495 5510 5573 5208 thors®1213|tis noteworthy, that the theoretically derived values
Frs 0.054 0.054 0.072 0.080  for these force constadfs!® (and in particularFigog9 are
Fro —0.066 —0.066 —0.033  0.038 consistently lower than the empirically determined ohs.
E:z 78'828 7(;536580 7074%9 0 3‘5)956 However, as seen from Table_ 3, our valueg for the l#tock
Foo 0.918 0.895 0.905  0.822 force constants allow for a particularly good fit of the calculated
= Fio.10 0.337 0.337 0.351 0.322 E;, fundamentals to the experimentally measured values for all
Az Fii11 0.249 0.249 0.259 0.241 four benzene isotopomers. Nevertheless, we are still not
Biu Fi212 0.661 0.658  0.664  0.629  completely convinced of the feasibility and reliability of the
Eziz _g:g%g _%?5?’771 _Oé,l,ggg _0-52% s  Ppresently determined set of force constant values, pertaining to
Bay Fisis 3939 3939 4142 2550  the Byblock (E18,18 F18,19 F19,19 F20,20 F1s,20 F19,2()1.anq are
Fias 0.298 0.298 0.329 0.318 currently looking for another set of values satisfying the
Fis15 0.828 0.828 0.830 0.760 condition for smallness df1s20and Fig 20
Eou Fi6.16 0.160 0.160 0.168 0.162
Ei‘;i; _8:41123 _%'146280 _061.128 _0'33706 IV. Calculation of the Local Bond Force Constants
Ex ElB,lS 82;1 8-%8 8-332 8'222‘ It is important and instructive to calculate the values of the
Fi:;z 0214 0151 0004 0002 local(valence) force constants in benzene, corresponding to the
Fio.10 7.403 7.380 7.612 7.644 set of symmetrized harmonic force constaRig determined
F19.20 0.590 0.572 0.167 0.186 empirically in the present work. The bond specific (valence)
F20.20 5.519 5.568 5.592 5.218  force constants have significant physical meaning and can serve

as a test for the feasibility of the empirically determirfeg

have been calculated in the present work for the first time, using values. Furthermore, taking into account the serious distinctions
our vibrational method. in some of the presently obtainéty values, as compared to

In Table 4, for comparison, are given the best available set previous determinations, it is necessary to find out whether these
of empirically determinedF;x values by GO¥ (obtained using changes lead to physically sound and meaningful changes in
the Wilson’'sF—G analysis) (column 4), the best set obtained the local bond (valence) force constants.
using an ab initio method by MT [CCSD(T), atomic natural The total number of local bond force constants [according to
basis set] (column 5), and in addition, the set calculated earlierthe definition and notation of Wilson, Decius, and Cross
by Berces and Zieglé#, using a method based on local density (WDC)] is 44. They were defined by WDC in terms of the
functional theory. The comparison between thg values local bond stretch and angle distortion coordinates, which have
obtained in this work and those of G®3hows several strong  the following meaningk= 1, ..., 6): s, C—H stretch;t,, C—C
distinctions. These are mainly concerned with the four diagonal stretch;ay, in-plane C-ring distortiongy, in-plane H-wag:yy,
C—H stretch constantsEy 5, F77, Fi313 F20.20 Our values are  out-of-plane H-waggy, out-of-plane C-ring distortion. Only 34
substantially and systematically lower than those of GOT in all of the 44 local bond force constants are independent. All force
four cases (Table 4). Next, some nondiagonal force constants,constants are distributed in the following way among 13 groups
connecting a €H stretch to a non €H stretch, have been  (blocks) according to the type of local coordinates involved: 4
dramatically reduced almost to zerb; o, Fe 7, F1213(however, stype Fs, F& F3, F&), 4 t-type Fd, F Fé, F), 3 sttype
some others, lik&1g20andFi9.20 have increased, as compared (Fqt, Fs?, Fsf), 4 f-type F4t, F2 F2, Fs), 4 o-type Fol,
to GOT). And last, in our work modf; x constants, pertaining  F.,2, F.3, F# 2 of them independent), do-type Fsl, Fsdl,
to the Bq (ve, v7, vs, o) mode block, obtained have been rather Fg3, Fg?, 2 of them independent), B-type Fst, Fs5d), 3 ta-
different from those of GO¥. type Fwls Fu? Fio®, 1 of them independent), @3-type Fos,

The set ofFix values obtained from ab initio calculations by  Fz?, 1 of them independent),B-type Fs?, Fig?, Fis®), 4 -type
MTL 13 (Table 4, column 5) are in general substantially different (Fs%, Fs?, Fs%, Fs* 2 of them independent), #type F,*, F,2,
from both our set and that of GOT. In general, our set is F, F,%, and 3yo-type F,s', Fy6? Fys®, 2 of them inde-
definitely closer to the set of values of GOT, than to the MTL pendent). In the notation of WDE X, the subscript denotes

set; in fact, there are only 8 of the 34 force constahis,(Fe.e,
F5,7, Fevg, Fa,g, F12'13 F13,13 Fwy;@ for which our value is closer

to those of MTL than to those of GOT. The values of Berces

and Zieglet? are in general closer to the MTresults than to

those of GOT Of special interest are the values of the

the type of local coordinates involved, whereas the superscript
number indicates whether the two coordinates are located on
one and the same center (1), on adjacent centers (2), etc. In
general, the symmetrized force constaRtsare related to the
local force constant&,X, through linear equations, which are
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restricted to the separate blocks, specified above. These equag, (F, ) = Fol — Fo2 Flo15(By) = Fol — 2F,% (4)

tions are easy to derive and can be found, e.g., in ref 1. For = '

each of the blocks containing only nonredundant coordinates which are readily solved:

(s t, B, y), the number of local force constants coincides with

the number of relevant symmetrized force constants. For thesep_* = 2F , .— F,,= —0.040

cases, the transformation from one set to another is straight- ' ' )

forward and will not be discussed here. However, for the blocks, Fe =Fe7— F1213=0.030

containing redundant coordinates, (), the number of inde- . .

pendent, empirically determined symmetrized force constantsAS S€en, the obtained values for bdth' and Fs? are quite

Fix is smaller than the number of local force constants; therefore SMall, which implies that the neglect B, andFs,* is probably

the latter cannot be determined from the former unambiguously. justified. In an analogous manner we proceed to handle the block

For these cases we have adopted here a specific approximat@f threeto-type force constants:.", Fio”, andFi.®, where the

procedure, which will be discussed in the following, for each €mpirically determined symmetrized force constant is only

block separately. one: Fgg In line with the cop3|derat|ons explained abovg, we
The a-type block contains two independent symmetrized Nave sef® = Fi.® = 0. This reduces the set of three linear

force constantsFs s andF 12,13 on one hand and four local force  €duation$to only one: Fi,' = Fe,g = 0.388, which (together

constantsFq!, Fo2, Fo?, andF# (two of them independent), Wlth Fi? = Fi.2 = 0) is expected to be a reasonable approxima-

on the other hand. The equations that relate the former to thet'on-

latter have the forfn Next, for the block of twanS-type force constants;qst and
Fag? there is only one symmetrized force constaRg,se.
Foo(E> g) — Fal _ Faz _ Fa3 + Fa4 (2a) Therefore we seFqg?> = 0, which reduces the system of two

equationsto one equationFqst = Feo/v/3 = — 0.136, which
is expected to be a reasonable approximation. Fob thiock
of four local force constants;s!, Fs?, Fs®, andFs?% there are
only two empirically determined symmetrized force constants:

FlZ,liBlu) = Fal - 2Fa2 + 2Fa3 - Fa4 (Zb)

Fo(Ap) = Fl+2F >+ 2F>+F}* (2¢c) Fs.4 andFi616 We set to zero the presumably smallest local
force constants:Fs® = Fs* = 0. This reduces the system of
F (B = Fal + Faz _ Fa3 _ Fa4 (2d) four linear equations to two, which are readily solved:

1__ —

Due to the redundancy of tleecoordinates, the symmetrized Fo = 2F1616— F44=0.118
force constants denoteg,(A1g) andFy(E1), cannot be deter- Fi= Fi616— Fa4= —0.042
mined, because they do not correspond to real vibrational
motions. As a result of this, the four local constaRgs cannot The obtained numerical resultss{ > F4?) indicate that this is
be determined unambiguously from the system of eqs 2, becausgprobably a good approximation. Finally, for thé-type block
only the first two equations of this system are meaningful. As of three local force constant§, ', F,s% andF,s% only two
a way out of this situation, most authors (e.g., refs 8 and 45) symmetrized force constants are availalfte;s andFi¢ 17 Here
use symmetrized constants instead of local ones, for the blockswe have seF,s* = 0, thus reducing the original system of three
of redundant coordinates. This approach does not reveal the localinear equations to only two, which can be readily solved:
coupling mechanisms. Therefore we have decided to use a
different recipe, which is based on the following considerations. Fyél = Fla‘l/\/'}, = —0.097
It is physically reasonable to expect that the one-center force
constantF,* should greatly exceed (in absolute values) the Fy62: F16,17/‘/§ — 0.57,,=—0.029
remaining threeF,?, F.3, andF.,* of which the last two are i ) .
expected to be the smallest because they correspond to thdBoth obt_alned values are c?mparthely small, vif? being
maximum displacement of centers. Therefore we expect to makeS€Veral imes smaller thaf,; so this seems to be a reasonable

a good approximation by setting these two to zefg? = F,* appr(t);lqmanon again. Il local f | lculated
= 0. Under this condition, the first two equations (2a,b) can be Table 5 summarizes all local force constant values, calculate

solved: from our set of empirically determined harmonic force constants

' Fik (displayed in Table 4, column 3), under the approximations
1_ . _ described in detail above. We have also calculated, using the

Fo, =2Fss— Fi,,,=0.681 S
« ’ ’ 5 same approximations, a set of local force constants correspond-
F.”=Fgs— F121,=0.010 (3) ing to the set of empirically determined force constdhjsby
GOT8 These calculated values are displayed in column 4 of
The numerical values fd¥,! andF2, obtained by substituting  Table 5, for the sake of comparison. The following observations

in egs 3 the presently determined valuesHgg andF12 12 (Table and conclusions can be made from the comparison of the values
4, column 3), justify the approach employed (becabge> of the local force constants corresponding to the presently
Fo?). The obtained values &%, Fo?, F.° andF,* are therefore obtained set ofx (Table 5, column 3) and those calculated
expected to be good approximations to their real values. from the GOT set ofFix values (Table 5, column 4). The
Next, there are four local force constantssof type, Fe,t, (nonredundant) sets of B, 4 F, and 3F¢K values are very

% Fs®, andFg?, and only two symmetrized force constants similar for the present work and GOT, especially g set.
of this type,Fs AE2g) andF1213(B1y). Therefore, we proposeto  Concerning thé=& block (designatedis f; o, f1 3, f14 above) it
keep only the one-cent&i,! and the nearest neighbbg,?, as is noteworthy that the presently obtainEgl value is substan-
presumably the largest ones, and set the other two to Feg: tially reduced as compared to the GOT value. Furthernfafe,
= Fg* = 0. In this way the original system of four equations is also strongly reduced, attaining a value comparable to and
is reduced to two equations. even smaller than thEs?2 andFg3 values, which in our view is
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TABLE 5: Calculated Local (Valence) Harmonic Force TABLE 6: Calculated Harmonic Frequencies for Dg,
Constants for Benzene, Corresponding to the Empirically Symmetry Benzenes, Corresponding to the Empirically
Determined Symmetrized Harmonic Force Constants, Determined Harmonic Force Constants in This Work
Empirically Determined in the Present Work (Column 3
andpRef 8y(Cqumn 4) ( ) symmetry  frequency e CsDs BCeHs  '3CoDs
. Axg w1 993.7 946.3 958.1 916.1
block force constant this work GGT o5 31932 23722 31817 23538
(s9 Fsl(s151) 5.515 5.547 Azg w3 1366.9 1063.2 1355.8 1048.9
Sz(slsz) 0.007 0.007 Bog [on 702.1 599.6 679.4 592.6
S(S1S3) 0.008 0.008 ws 991.7 822.1 984.3 799.0
RER)) —0.005 —0.022 = we 609.0 578.9 587.2 560.7
(tt) Fe'(tats) 6.619 6.616 w7 3176.0 2351.3 3165.2 2334.3
Fé(tato) 0.737 0.728 ws 1606.4  1556.9 1553.9 1499.7
F(tats) —0.417 —0.419 wo 1182.3 867.5 1173.8 864.3
F*(tats) 0.371 0.383 Eig w10 847.3 659.1 840.4 650.2
(sY) Fsit(sit1) 0.184 0.200 Aoy w11 674.2 495.0 672.2 492.3
Fsf(sito) —0.013 0.008 Biu w12 1013.0 964.2 976.7 933.5
Fsd(sita) —0.156 —0.130 w13 3188.5 2370.0 31769 2351.3
(BB) Fsi(B1Br) 0.901 1.047 Bau w14 1309.4 1286.2 1270.1 1236.3
Fs?(B1B2) 0.010 0.016 w15 1150.0 828.1 1138.9 827.7
Fs(B1Bs) —0.024 —0.023 Eau w16 3985 3460  387.1  339.4
Fs'(B1P4) 0.004 —0.002 w17 967.7 788.7 956.8 772.5
(s6) Fss'(s152) —0.081 —0.068 Eiu w1s 1041.2 816.5 1020.9 810.1
Fs*(s183) —0.043 —-0.025 1o 1491.6  1338.7 14614 1297.7
(tar) legtlal) , 0.388 0.308 w20 3170.6  2340.0 3160.8 2324.0
(Ftu. = Flu = 0)
@B) Fugt{oufy) = Fedv/3 —0.136 —0.081 case, which is physically feasible. A qualitatively different,
(ot) f:i‘;l(*agg) 0.681 0.630 however equally realistic, physipal picture is observed in the
Fu?(0u0ts) 0.010 _0014 results of GOT, who have obtaindds' > Fg?, Fi°. For the
FE=F2=0 three out-of-plane blocks;y (nonredundant)yd (redundant),
(so) Feul(S1011) —0.040 —0.338 and 66 (redundant), the local force constant values coincide,
'(:Fsazgslaf__) ‘=) 0.030 0.101 because the relevarfx values of this work and of GOT,
s = Po” = coincide.
(tB) Fit(tB1) 0.095 0.200
2 _ _ ’
Fus?(tfo) 0.024 0.020 In general our values for the local force constants are
Fip’(ta3s) —0.078 0.030 substantially decreased as compared to G@ith very few
(yy) F, (y1y1) 0.381 0.381 exceptions. For some of the blocks, this leads to a qualitatively
Eyzgm/zg —8-882 —%00%% changed physical picture of couplings.
7y \V1Y3 . -
Fy4(y1ya) —0.018 —0.018 . : :
(60) (310 0118 0118 V. Calculation of Harmonic Normal-Mode Frequencies
Eéi@l‘;% o —0.042 —0.042 The set of harmonic force constaritg is rigorously related
o o _ to the set of harmonic frequencieg through the well-known
(v6) FysX(y101) 0.097 —0.097 ) _ ¢ _
2 _ _ F—G analysis of Wilsort,which can be summarized as follows.
Fy02(r102) 0.029 0.029 _ _ _
E. 3(yv104) = 0 As already mentioned in section Il, each one of thekR6&-(1,
yo°(7103)

..., 20) symmetrized modes in benzene is characterized by a
the expected behavior, whereas the GE¥fvalue substantially ~ diagonal harmonic force constafiy, a diagonalG-matrix
exceeds¢2 andF3. For the blocks of g¢ andFq¥ local force ~ element (inverse mas€)x from which its frequencyi can be
constants, the tendencies displayed by both sets of values arealculated, using the formul = (1/27)\/F, Gy, For the
very similar. However, in both blocks, the leading (one-center) case when there is no other symmetrized mode in the molecule
constant is substantially different, whereas the smallest membemwith the same symmetry species laghis coincides with the
of each block changes sign. harmonic NM frequencygy = fi. In the case whek belongs

A qualitatively different picture is observed for tbe block. to a block ofn equal symmetry modes (for benzene, possible
Here our data for botlFs,! and Fg,2 are consistently much  values aren = 2—4), twon x n symmetric matrice§ = { G}
smaller than the relevant GOT values. Furthermore, they areandF = {F;} (wherei, k=1, ...,n) are set up, including the

both quite close to zero, which justifies settiRg? andFs,* to nondiagonalG;x andF;x matrix elements, besides the diagonal
zero preliminarily. Concerning thtet block, our value forF,! ones. These two matrices must be multiplied to obtain the
is similar although substantially increased, as compared to the(nonsymmetric) matriA = F x G. Then harmonic frequencies
GOT value, calculated under the same approximatigg? & wk (k =1, ...,n) for the considered block of modes are then
Fi® = 0). The obtained value foFy! should be a good obtained as the square roots of the eigenvalués dheF—G
approximation to its real value, if the two constafig? and formalism can either be employed to calculate the harmonic

Fi.2 are indeed as close to zero as assumed above. Concerninfrequenciesy from a given set of values (as will be done
theas (degenerate) block, odi,s* value is substantially (about in the present work), or in the opposite direction, to determine
twice) increased as compared to the relevant GOT value. Herethe appropriate set ¢ x values, from a set of inpuby values.
again, the estimate foFus' should be realistic, if the=.? Employing Wilson’sF—G analysis, we have calculated the
constant is indeed sufficiently small, as assumed. Fortfhe set of harmonic NM frequencies for benzene, using as input
(nondegenerate) block, our values differ rather strongly from values the symmetrized harmonic force constant vakigs

the GOT results. Indeed, the leadiRg' constant is strongly ~ empirically determined in the present work (displayed in Table
reduced and-y! is increased. As a result, all three constants 4, column 3). For this purpose we have employed a self-made
Fit, Fig?, andF3 are of comparable (small) magnitude in our algorithm and computer code. Table 6 contains the set of 20
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TABLE 7: Calculated Harmonic Frequencies o for force constants-k for benzene, in symmetrized (Whiffen’s)
Benzene GHe (cm™?), Corresponding to the Empirically coordinates. Using the determined harmonic force constants,

Determined Harmonic Force Constants in This Work in L “ N .
Comparison with the Values Obtained by Other Authors as well as a Ilmlted number of small efft_ectlve anhqr_momc
constants as input values, and employing a specific fully

WDexp Wexp® Wexp’ Wealc” Desf symmetrized, combined LM/SM, nonperturbative vibrational
(thiswork) (ref8) (ref8) (ref13) (ref11)) calculation procedure, it has been possible to reproduce very
A o1 993.7 994.4 9944  1002.8 1008 well most of the experimentally measured vibrational funda-

w2 3193.2 3191 3191.0 3209.9 3208

Aoy o 1366.9 1367 13670 13799 1390 mental frequencies, for all four benzebg, species: GHs,

1 13, i i i
By s 702.1 707 707.0 708.8 718 _Cal?a, _3C6H6, CeDs. Thls_ might be considered as a strong
ws 991.7 990 990.0 1008.8 1011 indication that the determine x values are close to the real
By ws 609.0 607.8  607.2 610.8 613 molecular values. Some of the presently determiRgad/alues

w7 3176.0 3174 31675 31831 3191 are quite different from the best existing set of empirically
s ﬁ’gg-g ﬂg; g 161(;98-3 ﬁg}i ﬁgg determined harmonic force constant values by G@btained
9 . . . . . . y _ . . .
Eiy w0 847.3 8471 8471 865 1 866 using Wilson's F G anaIyS|s.W|th a set of experimentally
A 01 674.2 6740 6740  687.2 686 estimated harmonic frequencies. However, our values-fpr
B w12 1013.0 1010 1014.4 1019.7 1024 are by far more strongly different from the best set of

013 3188.5 3174 3166.3 31731 3172 theoretically calculated harmonic force constants by MYL.
Baw w1 1309.4 1309.4 1309.4 1326.1 1318

w16 1150.0 11497 11497 11631 1167 Concerning the distinction in some of the vaIue§ between
Ea  wis 398.5 308 398.0  405.8 407 GQ‘I’8 and the present work, both of them empmca!ly deter_-
w17 967.7 967 967.0 984.8 989 mined, the following comments could be made. In this work it

B wis 1041.2 1038.3 1038.3 1055.5 1058 has been our aim to reproduce as closely as possible the
wie 14916 1494 = 14944 15094 1512 fyndamental frequencies of the foDg, benzene isotopomers:
@20 31706 slsll 31819 31997 3191 CsHe, CeDs, 13CeHs, 1CeDs. Hence the determined set Bfi
a3 Experimentally estimated in ref 8 Calculated from the empirically ~ values is primarily designed to satisfy this particular requirement.
determinedriy values in ref 8, by the authorsCalculation CCSD(T)  GOT8 have also based their empirical determination of the
ANO4321 in ref 13.° Estimated by Maslen et al., using the experi- parmonic force constants on the experimentally measured
Pgﬁg}i'Zn%bZigﬁﬂ;L]{g?&mf:;zir?tnsdi;hfe?blT't'o caleulated anharmon'cfundamentals of some lower symmetry benzene species (such
as 1,3,5-@HsD3, 1,4-GH4D,, and 1,2,4,5-6H,D,), as well as

calculated harmonic frequencies, for benzene and it®g, the most important available Coriolis constants. In forthcoming
isotopomers (§Hs, CoDe, 13CsHs, 13CsDs). Next, in Table 7, work we plan to perform calculations on these quantities, using
column 2, are displayed again the values for benzenegHs, our specific procedure described above, to further test the
together with four other sets @fy values, obtained by other reliability of our set offx values.

authors, for the sake of comparison. Two setsvef, values The full set of harmonic force constanky empirically

by GOT are presented: one adapted to the experimentallydetermined in the present work were used to calculate a set of
measured fundamentals (column 4) and one rigorously corre-local bond (valence) harmonic force constants, which are an
sponding to their own set of empirically determiniggl values important test for the physical feasibility of thgy values. The
(column 5). Column 6 presents the best available set of harmonicobtained set of local force constants was discussed and compared
frequenciesuca, Obtained using ab initio calculations by MTE. to the values, derived using other authors’ data. Serious
And column 7 contains the estimated set of harmonic NM distinctions were observed in some of the values, which results
frequencieswes;, Obtained by Maslen et &l by way of in a changed physical picture of local coupling strengths,
combining experimentally measured fundamentals with theoreti- characterizing the potential energy hypersurface of benzene. The
cally calculated anharmonic corrections (from ab initio calcu- major conclusion from these calculations is that the se;of
lated cubic and quartic anharmonic force constants). This lastvalues empirically derived in the present work are reasonable,
set (together with the setes; Obtained using a similar, however because they lead to a physically consistent picture of local bond
more sophisticated, procedure in ref 16) has been consideredorce constants.
in the literature as possibly the most reliable available set of  The empirically determined set & values were used to
harmonic frequencies for benzene, that is, appropriate to servecalculate a set of harmonic NM frequenciegfor each of the
as a test for theoretically calculated harmonic frequencies.  four Dg, benzene isotopomers, using our own code for imple-
From a survey of the results displayed in Table 7 it is obvious mentation of Wilson'ss—G analysis. The presently determined
that our presently obtained values for the harmonic frequencies,, set for benzene &g was found quite close to the best
in benzene €Hs are definitely much closer to the GOT $et  empirically determined set of GOThowever substantially
than to the values calculated by M¥or estimated by Maslen  different from and generally at values lower than the theoreti-
et al.1* the last two sets of values being much larger, as a rule. cally calculated sabcac of MTL, 23 as well as the estimated set
This is true for all 20 harmonic frequencies, without exception. .., obtained using experimentally measured fundamentals,
The only serious distinctions between our setand the ®@T  combined with theoretically calculated anharmonic constants.
are connected with two of the-€H stretch frequenciesy;s Thus a major conclusion from the results obtained in this
andwzo. Itis noteworthy that for the case af,, ourvalueisin o1k could be that the set of harmonic force constant values
almost perfect accord with the experlm_entally estimated GOT piained empirically are very good approximations to the true
ValL_Je (Tab_le ’, C(_)Iumn 4), but rather different from the value aymonic force constants for benzene. It is noteworthy that such
derived using their own set &y values (column 5). good conformity with the experimentally measured fundamentals
of benzene could be achieved with a very small number of
anharmonic constants taken into account. Moreover, the only
This work is the third in a series, aimed at the empirical large one among them is the diagonal cubic force conigant
determinination of an improved and reliable set of harmonic characterizing the local bond-H stretch anharmoniicity. This

VI. Conclusion
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implies that anharmonicity in benzene is indeed exclusively
concentrated on the-€H stretches, the remaining modes being
very nearly harmonic (at the lower excitation energies). Another
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