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We report Monte Carlo simulations of the effect of solute and solvent polarizability on the solvent reorganization
energy of intramolecular electron transfer. In the first set of simulations, the polarizability of the solvent is
varied at constant permanent dipole of the solvent molecules (high-frequency dielectric constants is in the
range 1-2.5). The reorganization energy is calculated on the solvent configurations around a nonpolar solute
(charge separation transition) and around a dipolar solute (charge recombination transition). In both cases,
the variation of the solvent reorganization energy does not exceed 30%, a change much smaller than predicted
by dielectric continuum models. In the second set of simulations, the solute polarizability in the charge-
separated state was varied while keeping the initial state for charge separation at zero dipole moment and
polarizability. The gap between the charge-separation and charge recombination reorganization energies widens
substantially with increasing difference in the polarizability of the initial and final charge-transfer states.
Both the effect of solute and solvent polarizability can be accurately described by analytical theories of solvent
reorganization.

I. Introduction

Existing theories of electron transfer (ET) reactions predict
a substantial effect of the solvent polarizability on the reaction
activation barrier. The main portion of this effect arises from
the solvent reorganization energyλs. The classical Marcus
formulation1 predicts that for widely separated donor and
acceptor units (intermolecular ET)λs is proportional to the Pekar
factor

where ε∞ and εs are the high-frequency and static dielectric
constants, respectively. In highly polar solvents withεs . 1
the factor 1/εs in c0 is insignificant, and the reorganization energy
depends on the solvent predominantly throughε∞. The magni-
tude ofλs then drops by about a factor of 2 in going fromε∞ )
1 to ε∞ ) 2 common for molecular solvents. When the distance
between the donor and acceptor is small compared to the
characteristic radius of the donor-acceptor complex (DAC)
(intramolecular ET), the relevant solvent polarity factor is
defined by the Onsager reaction field2 (Lippert-Mataga equa-
tion3)

In this case, the reorganization energy drops by a factor of 1.7
when the high-frequency dielectric constant changes fromε∞
) 1 to ε∞ ) 2 at εs . 1. Most real ET configurations fall
between these two limiting cases, and according to dielectric
solvation theories, one should expect a significant dependence
of the activation barrier onε∞.

Despite its significance for the formulation of theories of
solvent effect on ET activation, the dependence ofλs on ε∞ has
never been tested experimentally. The common experimental
setup involves changing solvent for the same ET system, which
alters bothε∞ andεs along with other solvent properties. Linear
trends of the reorganization energy with eitherc0

4 or f 5-7 are
often observed and are interpreted to support the predictions of
dielectric theories. However, a strong dependence ofλs on ε∞
substantially affects the calculated values of the entropy and
volume of reorganization for which dielectric models do not
perform well.8,9 This fact brings up the question of the actual
dependence ofλs on the high-frequency dielectric constant.

The high-frequency dielectric constantε∞ is related to the
solvent molecular polarizability through the Clausius-Mossotti
relation.10 Changes in molecular polarizabilityR is the main
source of the variation ofε∞ observed among molecular solvents
at ambient conditions. The problem of the effect of solvent
polarizability, and, related to it, the problem of the effect ofε∞
on solvation thermodynamics, is also relevant to theoretical
modeling of reorganization parameters of ET. The inclusion of
solvent polarizability in condensed-phase calculations and/or
simulations is often hard because of the many-body character
of polarizability effects. An approach often employed in
theoretical algorithms to go around the problem is to perform
calculations at zero solvent polarizability and then rescale the
results according to the predictions of dielectric models. An
alternative approach, widely used in calculations involving
complex molecular geometries,11,12 is to represent the reorga-
nization energy as the difference of two equilibrium solvation
free energies calculated for solvation in dielectric media
characterized by the dielectric constantsε∞ andεs.

In the absence of direct experimental evidence on the effect
of solvent polarizability on ET rates, computer simulations may
provide the necessary insight. The first microscopic study of
the polarizability effect was given in the simulations by King
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and Warshel,13 who concluded that increasing solvent polariz-
ability markedly reducesλs. This conclusion was challenged
by Berne and co-workers14,15who carried out full self-consistent
simulations of electronic transitions in formaldehyde in two
types of water models, polarizable and nonpolarizable. Their
conclusion was that the change from a polarizable to a
nonpolarizable water model does not strongly affectλs. These
results were further supported in simulations by Ando, who
compared a flexible-charge model of water (TIP3P-FQ) with
its fixed-charge analogue (TIP3P) for the calculation ofλs.16

The polarizable and nonpolarizable models of water used in
these simulations were parametrized to give the observable
average dipole moment of bulk water (=2.5 D), i.e., nonpolar-
izable molecules had a higher permanent dipole moment than
molecules in polarizable solvents.

The conclusion from both Berne et al.14,15 and Ando16

simulations is that, for the purpose of calculating the reorganiza-
tion energy, the full polarizable solvent is equivalent to a
nonpolarizable solvent with an effective permanent dipole
moment. This result is not that surprising in view of well-
developed self-consistent models of polarizable solvents17

employing the idea that a nonpolarizable solvents with an
effective permanent dipole is equivalent from the perspective
of thermodynamic properties to a polarizable solvent. The
question we address in this study goes one step further: What
is the effect of the actual change ofε∞ at constant permanent
dipole of the solvent onλs? We report Monte Carlo (MC)
simulations of dipolar solvation in solvents with varying
polarizability. The simulation results indicate that the reorga-
nization energy in strongly polar solvents does decay with
increasingε∞. However, the change ofλs whenε∞ changes from
1 to 2.5 does not exceed 30%, a much weaker variation than
one would expect from thef factor in eq 2.

A general understanding of the effect of molecular polariz-
ability on the kinetics of ET reactions cannot be achieved
without addressing the problem of the effect of solute polariz-
ability on the ET activation barrier. This part of the problem
has a new flavor due to the fact that electronic transitions can
actually induce quite substantial changes in the molecular
polarizability of the DAC.18 Analytical theories19,20 predict a
substantial effect of the polarizability change on the activation
barrier. The key origin of this effect is the change in the solvent
reorganization energy with the solute polarizability. The second
part of this study reports direct MC simulations of the solvent
reorganization energy for charge separation (CS) and charge
recombination (CR) transitions accompanied by the alteration
of both the solute dipole moment and dipolar polarizability. A
good agreement between analytical theory and computer
simulations is achieved.

The rest of the paper is organized as follows. A general
discussion of ET thermodynamics in section 2 is followed in
section 3 by a more specific formulation for intramolecular
transitions in dipolar DACs. Section 4 presents the results of
MC simulations in which the solvent polarizability and the
polarizability of the final ET state are separately varied. We
conclude with the discussion of results in section 5.

II. Problem Formulation

The electronic states of the donor and acceptor in a DAC are
coupled to the electrostatic potential of the solvent produced
by the electronic and nuclear charges on the solvent molecules.
The electronic shells of both the solvent and the solute are
inherently polarizable resulting in the creation of induced
charges equilibrated to the instantaneous electric field. The

probability of realizing a particular equilibrium or nonequilib-
rium configuration of nuclear charges and the equilibrium
distribution of induced charges is determined by the instanta-
neous (partial)free energy of a condensed-phase system. This
free energy, obtained by tracing out the electronic degrees of
freedom,21,22depends on the instantaneous nuclear configuration
of the system. The free energy consists of the energy of all
intermolecular interactions and the free energy of polarization
of the electronic shells by the internal electric field in the system.

For problems related to electronic transitions in molecules
dissolved in condensed-phase solvents, one considers the
instantaneous free energy of a solute in its electronic statei:

HereQ denotes the manifold of all nuclear coordinates in the
system,Ii is the vacuum energy of the solute in itsi th electronic
state, and the last two terms describe the solute-solvent
interaction and the free energy of solute polarization, respec-
tively. In molecular solvents, the manifold of nuclear configura-
tions is defined by molecular coordinatesq and molecular
orientationsω: Q ) {q,ω}.

The energy of interactionVi between a solute and a polar
molecular solvent consists of the coupling of the solute electric
field E0i to the solvent nuclear polarizationPn (first summand
in eq 4) and nonpolar interactions (dispersion and induction
forces, second summand in eq 4)

Thermal fluctuations ofVi(Q) result in radiationless transitions
(ET reactions) or bring about inhomogeneous broadening of
optical lines. The traditional Marcus-Hush formulation1 focuses
on the first term in eq 4 as the main source of both effects.
Only the first two cumulants inVi(Q) define the rate constant
or optical band-shape23 in this formulation (Gaussian ap-
proximation). Correspondingly, the theory is formulated in terms
of the average vertical transition energy∆Fi (i ) 1 for CS and
i ) 2 for CR) and the varianceσ(∆V) of the distribution of
energy gaps∆V(Q) ) V2(Q) - V1(Q). The latter property
defines the solvent reorganization energy:

where â ) 1/kBT, kB is Boltzmann’s constant, andT is the
temperature. The free energy barrier for ET is given in terms
of two parameters of the Gaussian approximation as

The average vertical gap is usually split into the equilibrium
free energy gap∆F0 and the reorganization energy:∆F ) ∆F0

( λs; “+” and “-” correspond toi ) 1 (CS) andi ) 2 (CR),
respectively.

The Gaussian fluctuations of the solute-solvent coupling
Vi(Q) in eq 4 is the result of thermal fluctuations of the solvent
nuclear polarization (polar coupling) and of the nonpolar
interaction potential (nonpolar coupling). The former are mainly
generated by correlated orientational motions of the solvent
permanent dipoles, whereas the latter are essentially due to the
density fluctuations of the solvent in solute’s vicinity. If these
two stochastic processes are uncoupled, one can represent the
reorganization energy as a sum of polar (λp) and nonpolar (λnp)
contributions24

Ei[Q] ) Ii + Vi(Q) + Πi(Q) (3)

Vi(Q) ) -∫E0i(r )·Pn(r ) dr + Vi
np(q) (4)

λs ) âσ(∆V)2/2 (5)

∆Fi
act ) ∆Fi

2/4λs (6)
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In the Marcus-Hush formulation,λnp ) 0 andλs ) λp.
A formula for λp, which is the main component ofλs for ET

in polar solvents, can be written in terms of the polarization
correlation function

whereR, â subscripts stand for Cartesian components, angular
brackets mean ensemble average, and∆E0 ) E02 - E01. The
response is local in the continuum approximation and is
proportional to the response function of the nuclear polarization
øp:

When the correlation length of the molecular response is
comparable to the characteristic distance of decay of the
difference field∆E0, the response function should be taken in
a nonlocal form,øp(r ′ - r ′′). In either case, it is generally
difficult to extract the response function of the nuclear polariza-
tion only, and some approximations are commonly adopted. The
most widely used approach is to obtainøp by subtracting the
response function of the electronic solvent polarization,øe, from
the total response functionø incorporating both the nuclear and
electronic polarization

For longitudinal fields∆E0 this approximation results in the
appearance of the Pekar factor inλp in eq 1 whereas the dipolar
field ∆E0 gives thef factor in eq 2.

The Marcus-Hush formulation (eqs 4-6) applies only if the
polarization energyΠi(Q) in eq 3 is either small or does not
change with the electronic transition. The polarization term is
quadratic in the solvent nuclear polarization. The donor-
acceptor energy gap∆E[Q] ) E2(Q) - E1(Q) is then a bilinear
function of the nuclear polarization. A formal description of
this situation leads to a three-parameter theory of ET (Q model)25

with nonparabolic free energy surfaces and the activation barrier
given in the form

The main distinction of the new description compared to the
Marcus-Hush formalism is the appearance of two different
reorganization energiesλi for the forward and backward ET
transitions. As above,∆F0 is the equilibrium free energy gap.
The parametersRi control the extent of deviation between the
two reorganization energies. Both reorganization energies are
defined through the variance of∆E evaluated at the equilibrium
distribution of the solvent in each state

where

The parameterR1 is defined by the relation

andR2 is defined by the relationR2 ) 1 + R1. At λ1 = λ2 one
obtainsR1 f ∞ and eq 11 transforms into eq 6. The main
distinction between eqs 5 and 12 is that in the latter the variance
is taken on the difference energy∆E including the change in
the polarization energyΠ.

III. Dipole Solvation

The instantaneous free energiesEi[Q] are defined in terms
of a partial trace (Trel) of the density matrix in theith electronic
state of the solute over the electronic degrees of freedom of the
solvent molecules

whereHi is the Hamiltonian of the solute in theith state and
the solvent. The necessity to generate free energies of the initial
and final ET states at each nonequilibrium configuration of the
nuclei substantially complicates the treatment of the problem
by both computer simulations and analytical theories. Equation
15 can be solved analytically21 for a few model systems, e.g.,
for the solvent of Drude oscillators modeling the induced solvent
dipoles.26-28 We start our development with the result of
analytical integration in eq 15. The variance of analytically
obtained energiesEi[Q] is calculated on the nuclear configura-
tions generated by Metropolis MC simulations29 used to
calculate the reorganization energies. This two-step procedure
allows us to avoid the complex problem of calculating the
instantaneous free energies from simulations on one hand and
to obtain the average over the many-body nuclear configurations,
hard for analytical treatments, from computer simulations better
suited for this purpose on the other.

Treatments of polarizable systems are still very demanding
computationally.30 To obtain good statistics for the second
cumulant of the solute-solvent interaction potential, we consider
here a classical model system of a polarizable point dipole
centered in a spherical solute in a solvent of polarizable dipolar
hard spheres.2,3,31-33 For this model, the integration over the
Drude amplitudes in eq 15 leads to the following exact
expression for the instantaneous solute-solvent coupling19,21

In eq 16,R∞(q) is the reaction field of the induced solvent
dipoles depending on the instantaneous configuration of the
molecular coordinatesq:

The tensorT jk ) ∇j∇k|r j - r k|-1 is the dipolar tensor between
the jth and kth solvent molecules;T0j is the solute-solvent
dipolar tensor. The matrixR(1 - RT)-1 appears as a result of
many-particle induction effects which, in the self-consistent
approximation,17 renormalize the vacuum polarizabilityR to its
condensed-phase value

The induction effects are also responsible for the enhancement
of the solute-solvent coupling through the 2-rank tensor

Finally, the solute-solvent couplingVi[Rp,q] depends on
molecular orientations through the reaction field of the nuclear

e-âEi[Q] ) Trel(e
-âHi) (15)

Vi[Rp,q] ) -m0i‚fei(q)‚Rp - 1
2
m0i‚R∞(q)‚fei(q)‚m0i (16)

R∞(q) ) ∑
j,k

T0j·R(1 - RT)jk
-1·Tk0 (17)

R′ ) 〈R(1 - RT)-1〉 (18)

fei(q) ) [1 - 2R0iR∞(q)]-1 (19)

λs ) λp + λnp (7)

λp ) (â/2)∑
R,â
∫∆E0R(r ′)∆E0â(r ′′)〈δPnR(r ′)δPnâ(r ′′)〉 dr ′ dr ′′

(8)

〈δPnR(r ′)δPnâ(r ′′)〉 ) øpδR,âδ(r ′ - r ′′) (9)

øp ) ø - øe (10)

∆Fi
act ) |Ri|( x|∆F0 - λ1R1

2/R2| - x|Ri|λi)
2 (11)

λi ) âσi(∆E)2/2 (12)

∆E ) ∆I + ∆V + ∆Π (13)

R1 ) ( x3λ1/λ2 - 1)-1 (14)
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solvent polarizationRp defined as the combined electric field
of the solvent condensed-phase dipolesm′j

The dipole momentm′ is usually defined in liquid-state theories
within a self-consistent algorithm.17 In simulations,m′ is given
by the sum of the permanent dipolem and the induced dipole
created by the field of all other dipoles in the solvent

In analyzing the simulation results, the termR(1 - RT)-1 in
eq 21 was replaced by the self-consistent polarizabilityR′
according to eq 18.

The integration over the solvent and solute induced dipoles
in eq 15 also produces the free energy of polarization of the
solute by the nuclear fieldRp of the solvent

The dependence of this term on the state of the solute through
the solute dipolar polarizabilityR0i necessitates the transition
from the Marcus-Hush formulation in eq 6 to the three-
parameter description of the Q model in eq 11.

The second term in eq 16 represents the solute-solvent
induction coupling. If the fluctuations of the reaction fieldRp

are statistically independent from the fluctuations of the reaction
field R∞, the solvent reorganization energy splits into dipolar
and induction components

The reorganization energy components are related to the
variance of∆Vp (first summand in eq 16) and∆Vind (second
summand in eq 16) according to eq 12. Equation 23 is a specific
case of eq 7 when nonpolar interactions include only the
induction forces.

If the nuclear reaction fieldRp obeys the Gaussian statistics,
the variance of the potential difference∆Vp can be calculated
exactly:19,25

The strength of dipole solvation is determined by solute’s dipole
moment and the response coefficienta such that the chemical
potential of solvation isµ ) - am0

2. The electronic and nuclear
contributions toµ have the corresponding response coefficients
ae andap. The chemical potential of electronic,µe, and nuclear,
µp, solvation are thenµe,p ) - ae,pm0

2. Also the parametersfei

andfi are given in terms of these response coefficients and the
solute polarizability according to the following relations

and

wherea ) ap + ae. Finally, ∆m̃0 ) fe2m02 - fe1m01 and∆R̃0

) fe2R02 - fe1R01 are the difference dipole moment and
polarizability “dressed” with the many-body field of the solvent
induced dipoles.

Equation 24 for the reorganization energyλp can be directly
tested on computer simulations provided the response coef-
ficientsae,pare available. They can be obtained from the average
solute-solvent interaction energy as a function of squared solute
dipole m0

2. In the linear response approximation (LRA), one-
half of the interaction energy is equal to the solvation chemical
potential. The total response functiona and the response to
electronic polarizationae can be obtained as slopes of half the
solute-solvent interaction energy

vs m0
2 measured in dipolar-polarizable solvents (a) and in

solvents with zero dipole moment (ae). In eq 56,R0 is the
electric field of the solvent at the center of the solute.

A linear dependence of the average solute-solvent interaction
energy onm0

2 holds indeed very accurately both in nonpolar
solvents (Figure 1a) and in polar-polarizable solvents (Figure
1b). In this polarity range, the first and second cumulants of
the solute-solvent interaction potential measured on solvent
configurations in equilibrium with the dipolem0 also follow
the relation characteristic of the LRA

A linear trend of the average solvation energy with squared
solute multipole (charge for ion solvation and dipole moment
for dipole solvation) is observed in about all calculations34,35

and simulations32,36,37performed in dense polar and nondipolar
solvents. This linear dependence is often considered to be a
sufficient test of the accuracy of the LRA. In terms of energies,
the quadratic trend with solute multipole is equivalent to eq
28.32 For dynamical solvent response, eq 28 is paralleled by
the equality between the time-dependent Stokes shift and
equilibrium correlation functions of the solute-solvent interac-
tion energy.38 An additional criterion for the linear response
can be formulated in terms of the second cumulants of the
solute-solvent interaction energy. The second cumulant〈(δV0s)2〉x

calculated on solvent configurations in equilibrium with dipole

Figure 1. -â〈V0s〉/2 from eq 27 vs (m0
/)2 ) âm02

2/σ0
3 for a solvent

with m ) 0 (a) and for a solvent with (m*) 2 ) 5.0 (b),R* ) 0 (circles)
and 0.06 (diamonds);R0 ) 0. Dashed lines are regressions with the
slopes 0.617 in (a) and 2.646 (circles) and 2.668 (diamonds) in (b).

1
2

〈V0s〉 ) - 1
2

〈m0·R0〉 (27)

-〈V0s〉 ) â〈(δV0s)
2〉 (28)

Rp ) ∑
j

T0j·m′j (20)

m′j ) mj + ∑
kl

R(1 - RT)jk
-1·Tkl·ml (21)

Πi[Rp] ) -
R0i

2
Rp·fei·Rp (22)

λi ) λp,i + λind (23)

λp,i ) ap(fi/fei)[∆m̃0 + 2apfi∆R̃0m0i]
2 (24)

fei ) [1- 2aeR0i]
-1 (25)

fi ) [1 - 2aR0i]
-1 (26)
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x should be independent ofx in the LRA.39 Taking x ) 0 and
x ) m0, one gets

where〈...〉0 is the statistical ensemble average over the solvent
configurations in equilibrium with zero solute dipole (initial
configuration for a CS reaction).

It turns out that eq 29 holds in a much narrower range of
solvent parameters than does eq 28.33 The comparison of second
cumulants for CS and CR transitions provides also a more
stringent test of nonlinear response in solvation dynamics.40 For
dipole solvation, the difference between two second cumulants
arises from a significant alteration of the local solute-solvent
density profile compared to that in the pure solvent each time
the reduced solute dipole

deviates from the reduced solvent dipole

(either upward or downward). Here,σ0 and σ are the solute
and solvent diameters, respectively. This picture is also seen in
the present simulations. Although a linear trend withm0

2 and
eq 28 both hold accurately for simulations in equilibrium with
dipole momentm0 (local LRA), the second moment does not
show independence ofm0 (global LRA). As a result, the
reorganization energies for CS transition fall below the CR
reorganization energies by as much as 15% at (m*)2 ) 4.0. Since
the LRA holds locally, we will nevertheless consider the solvent
response coefficients as proportionality constants between half
of the average interaction energy andm0

2. However, since the
LRA does not hold globally, separate response coefficients will
be defined for CS and CR transitions. This procedure is
analogous to assuming a time-dependent Gaussian curvature for
nonlinear, nonequilibrium solvation dynamics.41

For the model system of a point dipole at the center of a
spherical solute, an analytical solution for the chemical potential
of solvation in polar solvents is available in terms of Pade´-
truncated perturbation series. It gives the response coefficient
a(y, r0s, F*) depending on the solute size, solvent density, and
the dipolar densityy by the following relation:32,42,43

whereF* ) Fσ3, F is the number density of the solvent, andr0s

) R0/σ + 0.5 is the reduced distance of the closest solute-
solvent approach,R0 ) σ0/2. The total and electronic response
coefficients necessary for the calculation ofλp in eq 24 can be
obtained from eqs 10 and 32 as

Here,ye,prefers to the density of induced and permanent dipoles,
respectively

In eq 32,Reff is the effective radius of a dipolar solute. It depends
on the solvent density andr0s through the solute-solvent radial
distribution functiong0s

(0)(r) (g0s(r) ) 0 at r < σr0s)

Further,I0s
(3) is a perturbation integral defined ong0s

(0)(r) and the
solvent-solvent radial distribution functiongss

(0)(r). Both σ3/
Reff

3 ) I0s
(2) and I0s

(3) are tabulated as polynomials ofF* ) Fσ3

and 1/r0s (Appendix A).24,32 Finally, κ(y, r0s) in eq 32 is an
empirical correction introduced for a better agreement of the
Padéperturbation formula with computer simulations:32,44

For the calculation of the response coefficientsa andap, one
needs an algorithm for the effective condensed-phase dipole
momentm′ and polarizabilityR′ enteringyp and ye in eq 34.
Starting from Wertheim’s renormalized perturbation theory
(RPT)45 several self-consistent schemes to account for multi-
body induction effects on thermodynamics of polarizable liquids
have been proposed.46-48 There are slight and normally insig-
nificant differences in these formulations, and we adopt here
the procedure given by Joslin et al.47 The latter approach allows
one to accommodate nonaxial molecular quadrupoles and
nonisotropic polarizabilities into one self-consistent formulation.
The self-consistent renormalization, following Wertheim,45 is
normally formulated on two levels. The first level includes the
renormalization of the solvent permanent dipole from its gas-
phase valuem to the condensed-phase valuem′ (Wertheim’s
1-RPT). This is achieved by iterative solution of the following
equation:

The scalarC(m′) is obtained by dividing the local electric field
acting on a given molecule in the solvent by the effective dipole
momentm′

where ∆f is the excess free energy per solvent molecule
associated with dipole-dipole interactions between them. Equa-
tions 37 and 38 assume isotropic polarizability used in the
present simulations and can be reformulated for a general case
of anisotropic polarizability.45,47 On the second level of renor-
malization (Wertheim’s 2-RPT), the solvent molecular polar-
izability is renormalized from its gas-phase valueR to the
condensed-phase valueR′. The polarizabilityR in eq 37 is then
replaced withR′ which is given by the relation

For the calculations performed in this paper we used the free
energy of dipole-dipole interactions∆f in Stell’s Pade´ form.49,50

The details of the calculation procedure are outlined in Appendix
B.

In Figure 2, the response coefficients calculated according
to eq 32 are compared to MC simulations performed in this
study and in a previous publication.20 Note that the chemical
potential of solvation represented by open circles in Figure 2b
have been calculated from the Q model incorporating nonlinear
solvation effects through the Stokes shift and two second

〈(δV0s)
2〉0 ) 〈(δV0s)

2〉 (29)

m0
/ ) (âm0

2

σ0
3 )1/2

(30)

m* ) (âm2

σ3 )1/2

(31)

a(y, r0s, F*) ) Reff
-3y[1 + κ(y, r0s)yσ3I0s

(3)/Reff
3]-1 (32)

ap ) a(ye + yp, R0, F*) - a(ye, R0, F*)

ae ) a(ye, R0, F*) (33)

ye ) (4π/3)FR′

yp ) (4π/9)âF(m′)2 (34)

Reff
-3 ) 3∫0

∞
g0s

(0)(r) (dr/r4) (35)

κ(y, r0s) ) 1 + y
1 + y(1 - 0.35

r0s
)2

(36)

m′ ) m(1 - RC(m′))-1 (37)

C(m′) ) - 1
m′(

∂∆f
∂m′)R,F,â

(38)

R′ ) R(1 - R′C(m′))-1 (39)
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cumulants ofV0s corresponding to CS and CR transitions. In
particular, simulations of dipole solvation in the linear solvation
regime do not show saturation of the chemical potential with
increasingyp as would follow from the Onsager form in eq 2.
Instead, the chemical potential of linear solvation grows
approximately linearly withyp at yp g 3. Only nonlinear
solvation, mostly due to partial dewetting of the solute surface
in strongly polar solvents, leads to saturation of the solvent
response. The Pade´ form has a quadratic dependence on the
solute dipole (µ ∝ m0

2) characteristic of linear response but has
saturation incorporated into it to give an accurate account of
the MC results. The Pade´ form should therefore be considered
as an empirical approximation that is not capable of distinguish-
ing between linear and nonlinear solvation regimes. The
correction factorκ(y, r0s) (eq 36) provides a good global fit of
all simulations in nonpolar/polarizable, polar, and polar/polariz-
able solvents available so far as a function of the dipolar polarity
ye + yp (solid lines in Figure 2). The data for nonpolar solvents
(Figure 2a) are, however, slightly better described by assuming
κ ) 1 (dashed line in Figure 2) as directly follows from a
truncated perturbation expansion for the solvation chemical
potential.32

The induction reorganization component in eq 23 arises from
the modulation of the solute-solvent induction energy gap∆Vind

by the solvent density fluctuations. In perturbation models of
solvation, this component is given as24,51

where the perturbation integralI0s
(4) (Appendix A) is

IV. Results

A. Simulation Procedure. The system investigated in the
present paper consists of a spherical solute of the radiusR0/σ
) 0.9 with a central point dipolem0 and isotropic polarizability
R0 immersed in a solvent ofN ) 500 hard sphere (HS)
molecules of diameterσ with isotropic polarizabilityR, per-
manent dipolem, and the reduced densityFσ3 ) F* ) 0.8. The
simulation box is a unit cube centered at the origin with a single
solute at its center which does not move and only changes its
orientation. The total energy of the mixture includes the dipole-
dipole interactions between permanent,mj

a, and induced,pj
a,

dipoles and the energy of polarizing the molecules (Drude
oscillator model)52-55

where, in our simulations,a, b ) 1, 2 andN1 ) 1, N2 ) N. In
eq 42

is the electric field acting on thejth molecule in the liquid. The
dipolar tensorT jk is taken with the reaction field correction for
the cutoff of the dipolar interaction potential.29 The energy of
the jth particle,-mj

a‚Ej, is updated after each MC move by
iterative calculation of the induced dipoles in the simulation
box.52 The iterations are continued until the relative change in
the square of the fieldEj was less than 10-5.

Two sets of simulations, aimed at studying the effects of the
solvent and solute polarizability separately, have been carried
out. In the first set, we studiedλs at various solvent polariz-
abilities. Two solute configurations were considered. First, a
spherical HS solute with zero dipole (m01 ) 0) and zero
polarizability (R01 ) 0) was placed in solvents of varying
polarizability and constant permanent dipole (âm2/σ3 ) (m*)2

) 4.0). These simulations model the reorganization energy of
the CS reaction (0f m02 transition). The reorganization energy
was calculated on MC configurations as the variance of the

Figure 2. Response coefficientsaeσ3 (a) and aσ3 (b) from MC
simulations (points) and according to eq 32 (solid lines);F* ) 0.8, r0s

) 1.4. In panels a and b, filled squares indicate the simulation results
obtained in polarizable solvents with varyingR at m ) 0. In panel b,
open circles refer to solvents withR ) 0 and varyingm,33 filled
diamonds refer to (m*) 2 ) 5.0 and changingR, and filled squares refer
to m ) 0 and varyingR. The dashed line in panel b indicates
calculations withκ ) 1 in eq 32.

Figure 3. Polar component of the reorganization energy,λp,i, for charge
separation (crosses,i ) 1) and charge recombination (squares,i ) 2)
obtained from MC simulations at different values ofε∞. Circles refer
to λp,2 for CR calculated according to eq 47; (m*) 2 ) 4.0, (m0

/)2 )
24.7,R0 ) 0, F* ) 0.8. The solid line refers to the analytical theory
with the linear response function in the Pade´ form (eq 32). The dashed
line represents the result of dielectric continuum calculation according
to eq 48.

λind ) (fe2m02
2 - fe1m01

2)2
â(ε∞ - 1)2

200πε∞F*σ6
I0s
(4) (40)

I0s
(4) ) 9σ9∫0

∞ dr

r10
g0s

(0)(r) (41)

Utot ) -
1

2
∑
a,b

∑
i,j)1

Na,Nb

(mi
a + pi

a)‚T ij‚(mj
b + pj

b) +

1

2
∑

a
∑
j)1

Na (pi
a)2

2Ra

) -
1

2
∑

a
∑
j)1

Na

mj
a‚Ej (42)

Ej ) ∑
a,k

T jk·(mk
a + pk

a) (43)
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difference interaction potential

where

and

Herem02 is the solute dipole in the charge-separated state. The
same potential difference was used to calculate its variance on
the solvent configurations in equilibrium with the solute bearing
R02 ) 0 and the dipole momentm02 (âm02

2/σ0
3 ) 24.7). This

procedure gives the reorganization energy of the CR reaction
(m02 f 0 transition). To produce sufficient statistics, simulations
of the typical length of 6× 105 cycles were run (440 h on the
Alpha/833MHz processor) with 2× 105 production cycles. The
simulation results are listed in Table 1.

The second set of simulations was carried out for a varying
solute polarizability at constant solvent polarizability (R/σ3 )
0.06) and constant solvent dipole ((m*)2 ) 5.0). As above, CS
and CR configurations corresponding, respectively, tom01 ) 0
andâm02

2/σ0
3 ) 30.9 were sampled (Table 2). These simulations

were (8-15)× 105 cycles long with 2× 105 production cycles.
The higher the value of the solute polarizability, the longer it
took to converge the reorganization energy. The dependence
on the solute dipole (Figure 1) givesaeσ3 ) 0.106 atR/σ3 )
0.06 andm* ) 0 and (ap + ae)σ3 ) 0.457 atR/σ3 ) 0.06 and
(m*)2 ) 5.0.

B. Solvent Polarizability. Figure 2 supports the conclusion
of previous simulation studies of solvation14-16 and self-
consistent theories of polarizable liquids17 that the chemical
potential of solvation in nonpolarizable and polarizable dipolar
solvents follows the same fundamental law as a function of the
polarity parameteryp + ye. Indeed, results of previous simula-
tions of nonpolarizable solvents33 (open circles) and the results
of this study for polar/polarizable (filled diamonds) and non-
polar/polarizable (filled squares) solvents all fall on the same
theoretical line (eq 32) as a function ofyp + ye (Figure 2). This
result suggests that one fundamental function describes both
electronic and nuclear solvation. Therefore, solvation by solely
nuclear degrees of freedom can be obtained by subtracting the
chemical potential of electronic solvation from the total chemical
potential as suggested by eq 10

The direct calculation ofλp for CR coincides very accurately
with the calculation according to eq 47 and both results are in
good agreement with the analytical theory (eq 32) shown by
the solid line in Figure 3. This is the first direct confirmation
of the accuracy of eq 47 obtained from computer simulations.

The self-consistent calculations of the effective solvent dipole
momentm′ have been performed here by using the 1-RPT (eq
37) and 2-RPT (eq 39) schemes and compared to direct
calculations from MC simulations (third and fourth columns in
Table 1, respectively). We found that the 2-RPT renormalization
(not shown in Table 1) involving renormalization of the
molecular polarizability noticeably overestimates the values of
yp compared to simulations. On the other hand, the 1-RPT
scheme (eq 37) provides accurateyp for all values ofR* except
the largest one on our list, which is actually very improbable

TABLE 1: MC Simulation Results at Varying Solvent Polarizability: ( m02
/ )2 ) 24.7,r0 ) 0, (m*) 2 ) 4.0, r0s ) 1.4, G* ) 0.8

R* a ε∞
b yp

c yp
d - âµe - âµe

f âλp,2
g âλp,2

h âλp,1
i âλp,2

j âλ2
k âλ1

l âλind
m âλind

n âλind
o

0.0 1.0 4.47 4.47 62.8 0.0 62.8 62.8 58.6 63.2 62.8 58.6 0.0 0.0 0.0
0.02 1.216 5.21 5.19 63.9 5.8 58.1 54.5 56.6 57.7 56.1 56.5 0.1 0.1 0.2
0.04 1.464 6.21 6.24 64.0 10.6 54.9 52.6 47.6 54.4 55.2 48.2 0.3 0.7 0.7
0.06 1.755 7.60 7.67 65.8 15.1 50.2 48.7 44.1 51.5 51.7 45.6 0.7 1.6 1.6
0.08 2.099 9.57 10.32 66.8 19.4 47.3 45.9 38.1 48.9 52.6 40.5 1.4 2.2 2.9
0.10 2.512 12.48 14.96 67.0 23.5 43.5 39.2 22.6 46.5 46.0 25.7 1.6 3.1 4.5

a R* ) R/σ3. b Calculated from the Clausius-Mossotti equation.c Calculated using the 1-RPT Wertheim theory according to ref 47.d Obtained
from simulations by using the average dipole momentm′ ) 〈|m + p|〉 from simulated configurations in the equationyp ) (4π/9)âF(m′)2. e The total
chemical potential of solvation calculated as (LRA)µ ) 〈V0s〉/2. f The chemical potential of solvation due to the induced dipoles of the solvent.
Calculated asµe ) 〈V0s〉/2 from simulations performed in solvents withm* ) 0. g From eq 47.h From simulations as the variance of the solute-
solvent coupling in eq 44 evaluated for solvent configurations in equilibrium with a a polar solute (CR configuration of the solute).i From simulations
as the variance of the solute-solvent coupling in eq 44 evaluated for solvent configurations in equilibrium with non-polar solute (CS configuration
of the solute).j From eqs 24, 32, and 33.k From simulations as the variance of the potential∆V (eq 44) evaluated on solvent configurations in
equilibrium with the polar solute (CR configuration of the solute).l From simulations as the variance of the potential∆V (eq 44) evaluated on
solvent configurations in equilibrium with the non-polar solute (CS configuration of the solute).m From simulations as the variance of∆Vind in the
CR configuration of the solute.n From simulations as the variance of∆Vind in the CS configuration of the solute.o Analytical theory, eq 40.

TABLE 2: MC Simulation Results at Varying Solute Polarizability: ( m02
/ )2 ) 30.9, (m*) 2 ) 5.0, r/σ3 ) 0.06

R0
/a âλ1

b âλ2
c âλp,1

d âλp,2
e âλp,1

f âλp,2
g âλind

h âλind
i âpωst

j γk

0.00 57.0 68.8 54.7 63.6 54.7 63.2 2.1 1.5 122 1.003
0.02 57.5 69.6 55.1 62.8 55.2 66.5 2.1 1.4 127 1.000
0.04 58.0 68.5 55.6 63.1 55.7 70.0 2.1 0.8 141 0.988
0.06 58.5 73.3 56.0 67.5 56.1 73.9 2.2 1.0 145 0.985
0.08 59.0 79.8 56.5 76.3 56.6 78.0 2.2 0.9 145 0.989
0.10 59.5 85.4 56.9 78.9 57.1 82.3 2.2 1.0 152 0.985
0.12 60.0 87.6 57.4 81.5 57.6 87.2 2.3 1.8 152 0.989

a R0
/ ) R0/σ3. b CS transition, from simulations as the variance of∆E in eq 12.c CR transition, from simulations as the variance of∆E. d CS

transition, from simulations as the variance of∆Vp (eq 45).e CR transition, from simulations as the variance of∆Vp (eq 45).f CS transition, calculated
from eq 24 withapσ3 ) 0.351 andaeσ3 ) 0.106.g CR transition, calculated from eq 24 withapσ3 ) 0.304 andaeσ3 ) 0.106.h Induction reorganization
energy for CS transitions.i Induction reorganization energy for CR transitions.j Stokes shift.k Calculated according to eq 49.

∆V[Rp,q] ) ∆Vp + ∆Vind (44)

∆Vp ) -m02·fe2·Rp (45)

∆Vind ) - 1
2
m02·R∞·fe2·m02 (46)

λp ) -µ + µe (47)
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for commonly used solvents (R* = 1/16 for most molecular
liquids). A similarly good agreement between 1-RPT scheme
and simulations of thermodynamics and effective dipole moment
of model polarizable liquids has been recently obtained by
Boublik and Winkelmann.56

The Marcus-Hush formulation applies when the solute
polarizability does not change with the electronic transition. The
reorganization energy should then be independent of solute’s
electronic state, i.e., be the same for CS and CR transitions.
This prediction holds approximately for the simulation data
(Table 1, cf. crosses to squares in Figure 3). A downward
deviation of CS reorganization energy from the CR reorganiza-
tion energy by about 15% is caused by nonlinear solvation by
permanent solvent dipoles. The deviation between CS and CR
reorganization energies becomes particularly noticeable atR*
) 0.10. At this polarizability, the dipole-dipole attractions
between dipolesm′ are strong pulling the solvent molecules from
the nonpolar solute’s surface. The resulting dewetting of solute’s
surface leads to a lower coordination number of a nonpolar
solute compared to a polar solute. The solvating strength of the
solvent is reduced resulting in a lower reorganization energy.

Table 1 also presents the splitting of the reorganization energy
into the polar and induction components assuming that the
modulation of the induction potential and fluctuations of the
nuclear reaction field are statistically independent (eq 23). The
additive splitting of λs into λp and λind holds well for CS
transitions, and the simulated induction reorganization energies
agree remarkably well with eq 40 (cf. two last columns in Table
1). The downward deviation of the last two numbers for CS
λind can again be traced back to dewetting of solute’s surface.
For CR transitions, however,λs > λp + λind at all R > 0. One
can conclude that induction and polar solvation are coupled
through the solvent density fluctuations in the presence of a
polar solute thus violating the additivity assumption.

The dashed line in Figure 3 refers to the result of dielectric
continuum calculation using thef factor from eq 2. Since the
static dielectric constant is very high for the fluid of dipolar
spheres lacking the quadrupole moment,17,57 the dashed line is
plotted assumingεs f ∞ for the continuumλp:

The main qualitative result of this comparison is that the
Lippert-Mataga formula forλp substantially overestimates the
slope of its dependence onε∞.

C. Solute Polarizability. The results of simulations ofλs at
constant solvent parameters and varying polarizability of the
solute in the final ET state are listed in Table 2. In modeling
CS transitions, we assume that the ET system goes from an
initial nonpolar, nonpolarizable state withm01 ) 0, R01 ) 0 to
a polar-polarizable state withm02/m ) 6.0 and varyingR02.
CR refers to the backward transition. As in the case of
simulations with changing solvent polarizability, we notice that
the splitting of the total reorganization energyλs into two
separate components arising from nuclear polarization and
induction interactions (eq 23) is inaccurate for CR transitions.
On the contrary, eq 23 holds well for CS transitions (Table 2).
This indicates that the nonadditive character of induction and
polar contributions to the reorganization energy is caused by
the mixing of the fluctuations of induction and polar interaction
energies through density fluctuations of the solvent in the
presence of a polar solute.

The theoretical prediction for the component of solvent
reorganization energyλp arising from fluctuations of the nuclear

reaction fieldRp (eq 24, solid lines in Figure 4) turns out to be
quite accurate when tested against simulations. We stress that
the response coefficientsae,p used to calculateλp in eq 24 are
obtained here directly from simulations. The analysis given in
Figure 4 is therefore a direct test of eq 24 independent of
solvation models which may be applied to calculateae,p. For
(m*)2 ) 5.0 andR* ) 0.06 taken for the solvent parameters in
this set of simulations the effective dipolar density isyp ) 9.61.
In this polarity range, nonlinear solvation caused by partial
dewetting of solute’s surface becomes noticeable bringing the
CS reorganization energy below the corresponding CR reorga-
nization energy by about 17-20% even at∆R0 ) 0. To account
for this effect, two different values of the nuclear solvation
coefficient,apσ3 ) 0.351 andapσ3 ) 0.304, were adopted for
the calculation ofλp for CR and CS, respectively. The first
coefficient is obtained from the dependence of the average
solvation energy on the solute dipole (Figure 1). The second
coefficient is obtained from the value of solvation energy atR0

) 0. Within simulation uncertainties, there is a good agreement
between the analytical prediction (eq 24) and simulated re-
organization energies (Figure 4).

The consistency of the Q model leading to eq 24 requires
that the reorganization energies for CS and CR transitions are
related to the Stokes shiftpωst ) |〈∆V〉0 - 〈∆V〉| by the
parameterγ identically equal to unity in the Q model

The last column in Table 2 lists parametersγ obtained from
CS and CR reorganization energies and the Stokes shift. As is
seen, eq 49 holds very accurately indeed.

V. Discussion

Since the understanding of the role of nuclear solvent modes
in producing Stokes shifts of optical spectral lines3 and the
reorganization energy of radiationless transitions1 was achieved
in 1950s, the problem of extracting the nuclear component of
the solvent response has been involved in all realistic calcula-
tions of these properties. The most widely used approach to
this problem is to subtract the response of the fast electronic
subsystem of the solvent from the total solvent response (eq 10
for the response function and eq 47 for the reorganization
energy). Although widely used for calculations of complex
molecular systems, the approach itself has never been tested

Figure 4. Full reorganization energiesλi (open points) and polar
reorganization energiesλp,i (filled points) for charge separation (squares,
i ) 1) and charge recombination (circles,i ) 2) obtained from MC
simulations as a function ofR0/σ3. The solid lines correspond toλp,i

calculated from eq 24 for CS (lower curve) and CR (upper curve). The
response coefficients entering eq 24 are obtained from MC simulations;
(m*) 2 ) 5.0, R* ) 0.06,F* ) 0.8, r0s ) 1.4.

λp )
m02

2

R0
3 [0.5-

ε∞ - 1

2ε∞ + 1] (48)

γ )
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(λs
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3
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3
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on computer simulations and/or experiment. The present simula-
tions provide the first direct test of eqs 10 and 47 convincingly
testifying to their accuracy.

The next, more practical, step is to provide an accurate
algorithms for calculating the total and electronic responses of
the solvent. For this task, continuum solvation models predict
a very significant variation of the solvent reorganization energy
with the high-frequency dielectric constantε∞. This prediction
is not supported by the current simulations. Instead of a two-
times drop of the reorganization energy predicted by the
Lippert-Mataga equation (eq 2) whenε∞ changes from 1.0 to
2.5, a modest decrease by about 30% is obtained in MC
simulations. The failure of dielectric models is caused by the
incorrect calculation of both the total solvation free energy (µ
in eq 47) and its electronic component (µe in eq 47). Although
µe from simulations shows a linear trend with (ε∞ - 1)/(2ε∞ +
1), as predicted by the Onsager model (not shown here), the
slope is too high. An accurate formalism to calculate the
electronic response is provided by the perturbation expansion
(eq 32, Figure 2a). On the other hand, the componentµ from
continuum models essentially does not change withε∞ in highly
polar solvents (see eq 48), whereasµ from simulations increases
by about 7% in the range ofε∞ given in Table 1. The
combination of two errors (in calculatingµe andµ) leads to a
much stronger dependence ofλs on ε∞ in continuum theories
than is obtained from both simulations and microscopic analyti-
cal models (Figure 3). The analytical Pade´ approximation for
the dipolar solvation energetics (eq 32) has been previously
applied to the interpretation of experimental charge-transfer
kinetic data.58 This is the first extensive test of the model on
computer simulations confirming its accuracy in a broad range
of solvent polarities.

On the qualitative level, the most interesting finding of the
simulations is a noticeable increase of the total solvent response
(µ) with increasingε∞. This is the result of a linear dependence
of the LRA solvation chemical potential on the solvent polarity
parameteryp + ye for highly polar solvents contrasting with a
fast transition to saturation in dielectric theories.33,57In view of
the importance of accurate estimates of the dependence of
solvation energetics in general andλs in particular on ε∞,
especially for treating solvation at elevated pressure and
temperature, experimental verification of the results reported
here is required. The dependence ofλs on ε∞ in real charge-
transfer systems can be measured by combined alteration of
temperature and pressure keeping the total static dielectric
constantεs invariant (similarly to the isodielectric approach used
in photoisomerization kinetics59) and varying onlyε∞.

In contrast to a relatively weak effect of the alteration of
solvent polarizability on both CS and CR reorganization
energies, changing the solute polarizability makes a very
significant effect on the CR reorganization energy. The re-
organization energy is affected by solute polarizability through
the free energy of solute’s self-polarization quadratic in the
nuclear reaction field of the solvent (eq 22). The charge-
separated state is characterized by a large dipole moment
resulting in a large reaction field and high sensitivity of the
corresponding reorganization energy to polarizability. A non-
polar state of the solute (CS state in this study) does not produce
a substantial reaction field thus leading to a small polarization
term and low sensitivity of the reorganization energy to
polarizability.

An analytical theory of ET19 provides a route (eq 24) for the
calculation of reorganization energy in polarizable dipolar
solutes. The simulation data presented here aim at direct testing

of this equation with all parameters necessary for the calculations
obtained from simulations. A good agreement between the
analytical theory and simulation results has been achieved
(Figure 4). The present study thus confirms the earlier prediction
of analytical models19,25 of a significant gap between CS and
CR reorganization energies in asymmetric ET systems leading
to a pronounced asymmetry of the free energy surfaces of ET.60
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Appendix A

The perturbation integrals in eqs 32 and 40 are calculated by
using the HS solute-solvent distribution function obtained from
the solution of the Percus-Yevick equation with the contact-
value correction according to ref 61. The numerical integration
is fitted to the polynomials in 1/r0s and F* according to the
following relations

where each of the functionsa(F*), b(F*), and c(F*) is a third-
order polynomial inF*, for example

The coefficientsan, bn, and cn for each perturbation integral
are listed in Table 3.

Appendix B

The calculation of the effective liquid-state dipolem′ and
polarizabilityR′ requires the free energy of interaction between
effective dipolesm′ in eq 38. A convenient approximation for
this property is available from the Pade´ truncation of the
perturbation expansion for the free energy per solvent molecule:

where each termfn in the expansion is of thenth order in the

TABLE 3: Coefficients of the Density Expansion for the
Perturbation Integrals Used in the Calculation of λs

a

integral coefficients 0 1 2 3

I0s
(2) a 0.0 1.935 -0.972 0.398

b 0.0 -1.675 2.183 -0.831
c 0.0 0.439 -1.051 0.465

I0s
(3) a 1.0 0.602 -0.381 -0.061

b -9/16 0.255 0.848 -0.107
c 1/32 -0.256 -0.23 0.098

I0s
(4) a 0.0 3.212 2.862 -0.695

b 0.0 -2.580 -4.349 3.066
c 0.0 0.608 1.564 -1.447

a The columns labeled 0, 1, 2, and 3 stand for the corresponding
powers in the polynomial expansions inF* as in eq A2.

I0s
(2)(r0s, F*) ) 1

r0s
3

+
a(F*)

r0s
4

+
b(F*)

r0s
5

+
c(F*)

r0s
6

I0s
(3)(r0s, F*) )

a(F*)

r0s
3

+
b(F*)

r0s
4

+
c(F*)

r0s
6

I0s
(4)(r0s, F*) ) 1

r0s
9

+
a(F*)

r0s
10

+
b(F*)

r0s
11

+
c(F*)

r0s
12

(A1)

a(F*) ) a0 + a1F* + a2(F*) 2 + a3(F*) 3 (A2)

â∆f ) f2 + f3 + ... (B1)
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dipole-dipole interaction potential. The perturbation expansion
is formally diverging at high polarities, but divergence can be
eliminated in the Pade´ approximant50

In the case of dipole-dipole interaction, the perturbation terms
f2 and f3 are given by the product of powers of the reduced
densityF*, reduced dipole momentm*, and two perturbation
integrals which are defined solely in terms of the reduced density
F*:

The perturbation integralsIss
(2,3) are calculated from the sol-

vent-solvent distribution functiongss
(0). According to Larsen et

al.,49 they can be approximated by polynomial expansions in
F*:

In self-consistent calculations of the liquid-state dipole moment
m′ according to eq 37 the reduced dipole moment (m*)2 in eq
B3 is replaced withâ(m′)2/σ3.47
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â∆fP ) f2(1 - f3/f2)
-1 (B2)

f2 ) -(F*m*4/6)Iss
(2)(F*)

f3 ) (F*2m*6/54)Iss
(3)(F*) (B3)

Iss
(2)(F*) ) 4.1888+ 2.8287F* + 0.8331F*2 +

0.0317F*3 + 0.0858F*4 - 0.0846F*5

Iss
(3)(F*) ) 16.4493+ 19.8096F* - 7.4085F*2 -

1.0792F*3 - 0.9901F*4 - 1.0249F*5 (B4)
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