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We report Monte Carlo simulations of the effect of solute and solvent polarizability on the solvent reorganization
energy of intramolecular electron transfer. In the first set of simulations, the polarizability of the solvent is
varied at constant permanent dipole of the solvent molecules (high-frequency dielectric constants is in the
range 1-2.5). The reorganization energy is calculated on the solvent configurations around a nonpolar solute
(charge separation transition) and around a dipolar solute (charge recombination transition). In both cases,
the variation of the solvent reorganization energy does not exceed 30%, a change much smaller than predicted
by dielectric continuum models. In the second set of simulations, the solute polarizability in the charge-
separated state was varied while keeping the initial state for charge separation at zero dipole moment and
polarizability. The gap between the charge-separation and charge recombination reorganization energies widens

substantially with increasing difference in the polarizability of the initial and final charge-transfer states.
Both the effect of solute and solvent polarizability can be accurately described by analytical theories of solvent

reorganization.

|. Introduction

Existing theories of electron transfer (ET) reactions predict
a substantial effect of the solvent polarizability on the reaction
activation barrier. The main portion of this effect arises from
the solvent reorganization enerdy. The classical Marcus
formulation* predicts that for widely separated donor and
acceptor units (intermolecular E1Jis proportional to the Pekar
factor
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where €., and €5 are the high-frequency and static dielectric
constants, respectively. In highly polar solvents wdth> 1

the factor 1¢sin ¢y is insignificant, and the reorganization energy
depends on the solvent predominantly throaghThe magni-
tude ofis then drops by about a factor of 2 in going frem=

1 toe., = 2 common for molecular solvents. When the distance

between the donor and acceptor is small compared to thePolarizability,

characteristic radius of the doreacceptor complex (DAC)
(intramolecular ET), the relevant solvent polarity factor is
defined by the Onsager reaction figldLippert—Mataga equa-
tion3)
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In this case, the reorganization energy drops by a factor of 1.7
when the high-frequency dielectric constant changes feam
= 1t0e, = 2 ates > 1. Most real ET configurations fall
between these two limiting cases, and according to dielectric

solvation theories, one should expect a significant dependence

of the activation barrier oa..

*To whom correspondence should be addressed. E-mail: dmitrym@
asu.edu.

Despite its significance for the formulation of theories of
solvent effect on ET activation, the dependencéain e., has
never been tested experimentally. The common experimental
setup involves changing solvent for the same ET system, which
alters bothe., andes along with other solvent properties. Linear
trends of the reorganization energy with eitlogh or f 57 are
often observed and are interpreted to support the predictions of
dielectric theories. However, a strong dependencé; o €.
substantially affects the calculated values of the entropy and
volume of reorganization for which dielectric models do not
perform well®®° This fact brings up the question of the actual
dependence ofs on the high-frequency dielectric constant.

The high-frequency dielectric constasy is related to the
solvent molecular polarizability through the Clausius-Mossotti
relation1® Changes in molecular polarizability is the main
source of the variation &, observed among molecular solvents
at ambient conditions. The problem of the effect of solvent
and, related to it, the problem of the effectof
on solvation thermodynamics, is also relevant to theoretical
modeling of reorganization parameters of ET. The inclusion of
solvent polarizability in condensed-phase calculations and/or
simulations is often hard because of the many-body character
of polarizability effects. An approach often employed in
theoretical algorithms to go around the problem is to perform
calculations at zero solvent polarizability and then rescale the
results according to the predictions of dielectric models. An
alternative approach, widely used in calculations involving
complex molecular geometriés?is to represent the reorga-
nization energy as the difference of two equilibrium solvation
free energies calculated for solvation in dielectric media
characterized by the dielectric constaatsand es.

In the absence of direct experimental evidence on the effect
of solvent polarizability on ET rates, computer simulations may

provide the necessary insight. The first microscopic study of

the polarizability effect was given in the simulations by King
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and Warshel? who concluded that increasing solvent polariz- probability of realizing a particular equilibrium or nonequilib-
ability markedly reduceds. This conclusion was challenged rium configuration of nuclear charges and the equilibrium
by Berne and co-worke¥s®who carried out full self-consistent  distribution of induced charges is determined by the instanta-
simulations of electronic transitions in formaldehyde in two neous (partialfree energy of a condensed-phase system. This
types of water models, polarizable and nonpolarizable. Their free energy, obtained by tracing out the electronic degrees of
conclusion was that the change from a polarizable to a freedon?-22depends on the instantaneous nuclear configuration
nonpolarizable water model does not strongly affacfThese of the system. The free energy consists of the energy of all
results were further supported in simulations by Ando, who intermolecular interactions and the free energy of polarization
compared a flexible-charge model of water (TIP3R) with of the electronic shells by the internal electric field in the system.
its fixed-charge analogue (TIP3P) for the calculationlgt® For problems related to electronic transitions in molecules
The polarizable and nonpolarizable models of water used in dissolved in condensed-phase solvents, one considers the
these simulations were parametrized to give the observableinstantaneous free energy of a solute in its electronic state
average dipole moment of bulk wateeZ.5 D), i.e., nonpolar-

izable molecules had a higher permanent dipole moment than E[Q] =I; + Vi(Q) + I1,(Q) 3)
molecules in polarizable solvents.
The conclusion from both Berne et %> and Andd® Here Q denotes the manifold of all nuclear coordinates in the

simulations is that, for the purpose of calculating the reorganiza- system]; is the vacuum energy of the solute iniith electronic
tion energy, the full polarizable solvent is equivalent to a state, and the last two terms describe the selatdvent
nonpolarizable solvent with an effective permanent dipole interaction and the free energy of solute polarization, respec-
moment. This result is not that surprising in view of well- tively. In molecular solvents, the manifold of nuclear configura-
developed self-consistent models of polarizable sol#énts tions is defined by molecular coordinatgsand molecular
employing the idea that a nonpolarizable solvents with an orientationsw: Q = {q,w}.

effective permanent dipole is equivalent from the perspective The energy of interactioV, between a solute and a polar
of thermodynamic properties to a polarizable solvent. The molecular solvent consists of the coupling of the solute electric
question we address in this study goes one step further: Whatfield Eg to the solvent nuclear polarizatid®, (first summand

is the effect of the actual change af at constant permanent in eq 4) and nonpolar interactions (dispersion and induction
dipole of the solvent onls? We report Monte Carlo (MC)  forces, second summand in eq 4)

simulations of dipolar solvation in solvents with varying

p_olar_|zab|I|ty. Thg simulation results indicate that the reorga- Vi(Q) = _IEOi(r)'Pn(r) dr + V™(q) (4)
nization energy in strongly polar solvents does decay with

increasing:.. However, the change @t whene, changes from  thermg fluctuations o¥/;(Q) result in radiationless transitions
1 to 2.5 does not exceed 30%, a much weaker variation than(ET reactions) or bring about inhomogeneous broadening of
one would expect from théfactor in eq 2. optical lines. The traditional MarcusHush formulatioh focuses

A general understanding of the effect of molecular polariz- on the first term in eq 4 as the main source of both effects.
ability on the kinetics of ET reactions cannot be achieved only the first two cumulants ivi(Q) define the rate constant
without addl‘eSSIng the problem of the effect of solute p0|aI’iZ- or Optical band_shaﬁé in this formulation (Gaussian ap-
ability on the ET activation barrier. This part of the problem  proximation). Correspondingly, the theory is formulated in terms
has a new flavor due to the fact that electronic transitions can of the average vertical transition energyf; (i = 1 for CS and
actually induce quite substantial changes in the molecularj = 2 for CR) and the variance(AV) of the distribution of

polarizability of the DAC® Analytical theorie$*2° predict a energy gapAV(Q) = V»(Q) — Vi(Q). The latter property
substantial effect of the polarizability change on the activation defines the solvent reorganization energy:

barrier. The key origin of this effect is the change in the solvent

reorganization energy with the solute polarizability. The second A= fof A\/)2/2 (5)

part of this study reports direct MC simulations of the solvent N

o (o e mauhere = 1T o s Bolzman's constan, ant s the

of both the solute dipole moment and dipolar polarizability. A temperature. The free energy bgrner for E.T 'S given in terms
) X of two parameters of the Gaussian approximation as

good agreement between analytical theory and computer

simulations is achieved.

The rest of the paper is organized as follows. A general
discussion of ET thermodynamics in section 2 is followed in
section 3 by a more specific formulation for intramolecular
transitions in dipolar DACs. Section 4 presents the results o
MC simulations in which the solvent polarizability and the
polarizability of the final ET state are separately varied. We
conclude with the discussion of results in section 5.

AF'= AF /4] (6)

The average vertical gap is usually split into the equilibrium
¢ free energy gap\Fo and the reorganization energiF = AFo

+ Ag “+” and “=" correspond td = 1 (CS) and = 2 (CR),

respectively.

The Gaussian fluctuations of the soldtlvent coupling
Vi(Q) in eq 4 is the result of thermal fluctuations of the solvent
nuclear polarization (polar coupling) and of the nonpolar
interaction potential (nonpolar coupling). The former are mainly

The electronic states of the donor and acceptor in a DAC are generated by correlated orientational motions of the solvent
coupled to the electrostatic potential of the solvent produced permanent dipoles, whereas the latter are essentially due to the
by the electronic and nuclear charges on the solvent moleculesdensity fluctuations of the solvent in solute’s vicinity. If these
The electronic shells of both the solvent and the solute are two stochastic processes are uncoupled, one can represent the
inherently polarizable resulting in the creation of induced reorganization energy as a sum of polgy) @nd nonpolarAnp)
charges equilibrated to the instantaneous electric field. The contributiong*

1. Problem Formulation
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As= Ayt Anp (7) anday is defined by the relation; = 1 + oy. At 41 = 4, one
obtainso; — o and eq 11 transforms into eq 6. The main
In the Marcus-Hush formulationi,, = 0 andis = 4. distinction between eqs 5 and 12 is that in the latter the variance
A formula for A, which is the main component af for ET is taken on the difference energyk including the change in

in polar solvents, can be written in terms of the polarization the polarization energyl.

correlation function
[Il. Dipole Solvation

Ap= (ﬁ/Z)ZIAan(r')AEO/;(T")@PM(V')5Pnﬁ(f")mr' dr" The instantaneous free energ®fQ] are defined in terms
@, of a partial trace (Td) of the density matrix in théh electronic
(8) state of the solute over the electronic degrees of freedom of the

. . solvent molecules
wherea, 8 subscripts stand for Cartesian components, angular

brackets mean ensemble average, Aig = Eo, — Eo1. The —BEIQ] _ —BH;
; - ) o . e =Try(e ™) (15)
response is local in the continuum approximation and is

proportional to the response function of the nuclear polarization whereH; is the Hamiltonian of the solute in thHéh state and

Xp- the solvent. The necessity to generate free energies of the initial
, " , " and final ET states at each nonequilibrium configuration of the
[P (r )éPnﬁ(r )szpéavﬁa(r - ©) nuclei substantially complicates the treatment of the problem
by both computer simulations and analytical theories. Equation
15 can be solved analyticafyfor a few model systems, e.g.,
for the solvent of Drude oscillators modeling the induced solvent
dipoles?6-28 We start our development with the result of
analytical integration in eq 15. The variance of analytically
obtained energieg;[Q] is calculated on the nuclear configura-
tions generated by Metropolis MC simulatidhsused to
calculate the reorganization energies. This two-step procedure
allows us to avoid the complex problem of calculating the
instantaneous free energies from simulations on one hand and
to obtain the average over the many-body nuclear configurations,
Yo =X~ Xe (10) ha_rd for anal_ytical treatments, from computer simulations better
suited for this purpose on the other.
For longitudinal fieldsAE, this approximation results in the Treatments ofopolarlzab_le systems are still very demanding
appearance of the Pekar factorijnin eq 1 whereas the dipolar computationally’® To obtain good statistics for the second
field AE, gives thef factor in eq 2. cumulant of the solutesolvent interaction potgntlal, we c_:ons@er
The Marcus-Hush formulation (eqs-46) applies only if the here a clgssmal mpdel systelm of a poIanzabIe. point Q|pole
polarization energyTi(Q) in eq 3 is either small or does not centered in a spherical sol_ute in asolven_t of polqnzable dipolar
change with the eiectronic transition. The polarization term is Nard spheres*3+33 For this model, the integration over the
quadratic in the solvent nuclear polarization. The denor Drude amplitudes in eq 15 leads to the following exact
acceptor energy gadE[Q] = Ex(Q) — E4(Q) is then a bilinear expression for the instantaneous soltgelvent coupling®?!
function of the nuclear polarization. A formal description of 1
this situation leads to a three-parameter theory of ET (Q nmidel) VI[Rp.Al = —mg-fe(a) R, — EmOi-ij(q)'fei(q)-mOi (16)
with nonparabolic free energy surfaces and the activation barrier
given in the form In eq 16,R«(q) is the reaction field of the induced solvent
dipoles depending on the instantaneous configuration of the

AF = || (\|AFy — Ao, %o — loglA)?  (11) molecular coordinates:

The main distinction of the new description compared to the Ro(d) = ZTOj‘a(l —aT) Ty 17)
Marcus-Hush formalism is the appearance of two different I

reorganization energieg for the forward and backward ET
transitions. As aboveAFy is the equilibrium free energy gap.
The parametere; control the extent of deviation between the
two reorganization energies. Both reorganization energies are
defined through the variance AfE evaluated at the equilibrium
distribution of the solvent in each state

When the correlation length of the molecular response is
comparable to the characteristic distance of decay of the
difference fieldAEy, the response function should be taken in
a nonlocal form,x(r' — r'"). In either case, it is generally
difficult to extract the response function of the nuclear polariza-
tion only, and some approximations are commonly adopted. The
most widely used approach is to obtaipn by subtracting the
response function of the electronic solvent polarizatignfrom

the total response functignincorporating both the nuclear and
electronic polarization

The tensoiTj = V;Virj — ri "L is the dipolar tensor between
the jth andkth solvent moleculesT g is the solute-solvent
dipolar tensor. The matrig(1 — oT)~! appears as a result of
many-particle induction effects which, in the self-consistent
approximation’ renormalize the vacuum polarizabilityto its
condensed-phase value

A = Bo,(AE)¥/2 (12) o = ol — aT) 0 (18)
where The induction effects are also responsible for the enhancement
of the solute-solvent coupling through the 2-rank tensor
AE = Al + AV + AIl (13)
fe@) = [1 — 205R.(@)] (19)

The parameteq; is defined by the relation

Finally, the solute-solvent couplingVi[Rp,q] depends on
3 _ p
o = (A, — 1) (14) molecular orientations through the reaction field of the nuclear
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solvent polarizatiorR, defined as the combined electric field T T ' T ' | i
of the solvent condensed-phase dipatgs gl a - 27|
— om’ C\\] //
Ry= D Torm, (20) 5t - '
] 5 -
;_.,I/_ 4= /O' i
The dipole momentn' is usually defined in liquid-state theories g
within a self-consistent algorithAf.In simulationsm’ is given i o s i
by the sum of the permanent dipate and the induced dipole 0 - | . | . I .
created by the field of all other dipoles in the solvent 0 4 8 12
T I T I T I
m=m, + ;a(l —aT), T, m (21) 80 b &
j j ik (|
L ,9// i
In analyzing the simulation results, the temil — oT)™ ! in 2 F - .
eq 21 was replaced by the self-consistent polarizabiity % 40— g/ -
according to eq 18. T //’ 1
The integration over the solvent and solute induced dipoles 20— - 1
in eq 15 also produces the free energy of polarization of the P . | . | . L]
solute by the nuclear fiel®, of the solvent 00 10 20 30
w2
Qo (my
Hi[Rp] == ERp'fei'Rp (22) Figure 1. —pB2 from eq 27 vs If)? = Smoog® for a solvent

with m= 0 (a) and for a solvent witm*)?> = 5.0 (b),a* = 0 (circles)
The dependence of this term on the state of the solute through@"d 0-06 (diamondskw = 0. Dashed lines are regressions with the
the solute dipolar polarizability necessitates the transition S©PeS 0-617 in (a) and 2.646 (circles) and 2.668 (diamonds) in (b).

from the Marcus-Hush formulation in eq 6 to the three- Equation 24 for the reorganization energycan be directly

parameter description of the Q model in eq 11. tested on computer simulations provided the response coef-
~ The second term in eq 16 represents the sels@vent ficientsa, ,are available. They can be obtained from the average
induction coupling. If the fluctuations of the reaction fieRg solute-solvent interaction energy as a function of squared solute

are statistically independent from the fluctuations of the reaction ginole me2. In the linear response approximation (LRA), one-

field R., the solvent reorganization energy splits into dipolar paif of the interaction energy is equal to the solvation chemical
and induction components potential. The total response functi@anand the response to
electronic polarizatiome can be obtained as slopes of half the

2= Api  Aing (23) solute-solvent interaction energy
The reorganization energy components are related to the 1 1
variance ofAV, (first summand in eq 16) and Vi, (second Sl i= = SNg R0 (27)

summand in eq 16) according to eq 12. Equation 23 is a specific
case of eq 7 when nonpolar interactions include only the vs my? measured in dipolarpolarizable solventsaj and in

induction forces. solvents with zero dipole momengd. In eq 56,Rq is the
If the nuclear reaction fiel&R, obeys the Gaussian statistics, electric field of the solvent at the center of the solute.
the variance of the potential differenéé/, can be calculated A linear dependence of the average solgelvent interaction
exactly925 energy onmy? holds indeed very accurately both in nonpolar
solvents (Figure 1a) and in potapolarizable solvents (Figure
Api = a(filf)[AMy + 2apfiA6LOm0i]2 (24) 1b). In this polarity range, the first and second cumulants of

the solute-solvent interaction potential measured on solvent
The strength of dipole solvation is determined by solute’s dipole configurations in equilibrium with the dipoley also follow
moment and the response coefficiaguch that the chemical the relation characteristic of the LRA

potential of solvation is& = — amy?. The electronic and nuclear
contributions tqu have the corresponding response coefficients — [ = BOve)°D (28)
a. anday. The chemical potential of electronjgs, and nuclear,
Up, SOlvation are thepe p = — a. gne?. Also the parameterfy; A linear trend of the average solvation energy with squared
andf; are given in terms of these response coefficients and the solute multipole (charge for ion solvation and dipole moment
solute polarizability according to the following relations for dipole solvation) is observed in about all calculatit?d
and simulation®-3-3"performed in dense polar and nondipolar
f,=[1— 2a0,] " (25) solvents. This linear dependence is often considered to be a
sufficient test of the accuracy of the LRA. In terms of energies,
and the quadratic trend with solute multipole is equivalent to eq
2832 For dynamical solvent response, eq 28 is paralleled by
f=[1- 2aoLOi]’l (26) the equality between the time-dependent Stokes shift and
equilibrium correlation functions of the solutsolvent interac-
wherea = a, + @ Finally, Aifip = feaMg2 — feimor and Adg tion energy?® An additional criterion for the linear response

= fextoz — fe1001 are the difference dipole moment and can be formulated in terms of the second cumulants of the
polarizability “dressed” with the many-body field of the solvent solute-solvent interaction energy. The second cumulihto)?[y
induced dipoles. calculated on solvent configurations in equilibrium with dipole
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x should be independent afin the LRAS3® Takingx = 0 and
X = M, one gets

[QOv)’H§ = Wovey’D (29)

where[l..[d is the statistical ensemble average over the solvent

configurations in equilibrium with zero solute dipole (initial
configuration for a CS reaction).

It turns out that eq 29 holds in a much narrower range of
solvent parameters than does e28he comparison of second

J. Phys. Chem. A, Vol. 108, No. 11, 2002091

In eq 32,Rett is the effective radius of a dipolar solute. It depends

on the solvent density ards through the solutesolvent radial

distribution functionggos(r) (gos(r) = 0 atr < argpy)

Ry >=3 J0f2(r) (dr/r®) (35)
Further,1$ is a perturbation integral defined gf’(r) and the
solvent-solvent radial distribution functiorgg?(r). Both ¢%/
Rer® = 12 and 1 are tabulated as polynomials pf = po®

cumulants for CS and CR transitions provides also a more and 1fos (Appendix A)2432 Finally, «(y, ro9 in eq 32 is an

stringent test of nonlinear response in solvation dynafiEsr

empirical correction introduced for a better agreement of the

dipole solvation, the difference between two second cumulants Padeperturbation formula with computer simulatioffs!*

arises from a significant alteration of the local sotuselvent

density profile compared to that in the pure solvent each time

the reduced solute dipole

2\1/2
My
M= (—3) (30)
0o
deviates from the reduced solvent dipole
B ﬂl’nz 1/2

(either upward or downward). Herep and o are the solute

_ y ~0.392
k(y, rod =1+ 1+y(1 foj (36)

For the calculation of the response coefficiemenda,, one
needs an algorithm for the effective condensed-phase dipole
momentm’ and polarizabilityo' enteringy, andye in eq 34.
Starting from Wertheim’s renormalized perturbation theory
(RPTY® several self-consistent schemes to account for multi-
body induction effects on thermodynamics of polarizable liquids
have been proposef.“® There are slight and normally insig-
nificant differences in these formulations, and we adopt here
the procedure given by Joslin et*alThe latter approach allows

one to accommodate nonaxial molecular quadrupoles and

and solvent diameters, respectively. This picture is also seen inponjsotropic polarizabilities into one self-consistent formulation.

the present simulations. Although a linear trend wii? and

eq 28 both hold accurately for simulations in equilibrium with
dipole momentm, (local LRA), the second moment does not
show independence afy (global LRA). As a result, the
reorganization energies for CS transition fall below the CR
reorganization energies by as much as 15%&{= 4.0. Since
the LRA holds locally, we will nevertheless consider the solvent

response coefficients as proportionality constants between half

of the average interaction energy amgf. However, since the
LRA does not hold globally, separate response coefficients will
be defined for CS and CR transitions. This procedure is

The self-consistent renormalization, following Werthefnis
normally formulated on two levels. The first level includes the
renormalization of the solvent permanent dipole from its gas-
phase valuenm to the condensed-phase valoe (Wertheim’s
1-RPT). This is achieved by iterative solution of the following
equation:

m =m(1— aC(m))™* (37)
The scalaiC(m') is obtained by dividing the local electric field
acting on a given molecule in the solvent by the effective dipole

analogous to assuming a time-dependent Gaussian curvature fomomentm'

nonlinear, nonequilibrium solvation dynamits.

For the model system of a point dipole at the center of a
spherical solute, an analytical solution for the chemical potential
of solvation in polar solvents is available in terms of Rade
truncated perturbation series. It gives the response coefficien
a(y, ros, p*) depending on the solute size, solvent density, an
the dipolar density by the following relatior?2:4243

a(Yy, s 0%) = Reyr YL + k(y, rodyo Il 2R (32)

wherep* = pa?, p is the number density of the solvent, amd

= Ro/o + 0.5 is the reduced distance of the closest setute
solvent approactRy = 0o/2. The total and electronic response
coefficients necessary for the calculationgfin eq 24 can be
obtained from eqs 10 and 32 as

3, = a&Ye T Yp Roy 0*) — aYer Ry, %)
3 = aA(Ye Ry, 0¥) (33)

Here,ye prefers to the density of induced and permanent dipoles,
respectively

Y, = (47/3)pot

Y, = (4/9)Bp(m)* (34)

c(m) = — %(3—“(

=i (38)

{where Af is the excess free energy per solvent molecule
g associated with dipotedipole interactions between them. Equa-

tions 37 and 38 assume isotropic polarizability used in the
present simulations and can be reformulated for a general case
of anisotropic polarizability>4” On the second level of renor-
malization (Wertheim’s 2-RPT), the solvent molecular polar-
izability is renormalized from its gas-phase valoeto the
condensed-phase valué The polarizabilityo. in eq 37 is then
replaced witha' which is given by the relation
o =a(l— o'C(m))* (39)
For the calculations performed in this paper we used the free
energy of dipole-dipole interactionéf in Stell's Paddiorm 49:50
The details of the calculation procedure are outlined in Appendix
B.

In Figure 2, the response coefficients calculated according
to eq 32 are compared to MC simulations performed in this
study and in a previous publicatidf Note that the chemical
potential of solvation represented by open circles in Figure 2b
have been calculated from the Q model incorporating nonlinear
solvation effects through the Stokes shift and two second
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Figure 2. Response coefficientas® (a) and ac® (b) from MC
simulations (points) and according to eq 32 (solid lin@%)= 0.8, ros

= 1.4. In panels a and b, filled squares indicate the simulation results
obtained in polarizable solvents with varyiogatm = 0. In panel b,
open circles refer to solvents with = 0 and varyingm,® filled
diamonds refer tonf*)?2 = 5.0 and changing, and filled squares refer

to m = 0 and varyinga. The dashed line in panel b indicates
calculations withk = 1 in eq 32.

cumulants ofygs corresponding to CS and CR transitions. In
particular, simulations of dipole solvation in the linear solvation
regime do not show saturation of the chemical potential with
increasingy, as would follow from the Onsager form in eq 2.

Instead, the chemical potential of linear solvation grows
approximately linearly withy, at y, = 3. Only nonlinear

solvation, mostly due to partial dewetting of the solute surface |

in strongly polar solvents, leads to saturation of the solvent
response. The Paderm has a quadratic dependence on the
solute dipole £ O m¢?) characteristic of linear response but has
saturation incorporated into it to give an accurate account of
the MC results. The Paderm should therefore be considered
as an empirical approximation that is not capable of distinguish-
ing between linear and nonlinear solvation regimes. The
correction factok(y, rog (eq 36) provides a good global fit of
all simulations in nonpolar/polarizable, polar, and polar/polariz-
able solvents available so far as a function of the dipolar polarity
Ye + ¥p (solid lines in Figure 2). The data for nonpolar solvents

Gupta and Matyushov

2.5

Figure 3. Polar component of the reorganization energy, for charge
separation (crosses= 1) and charge recombination (squares; 2)
obtained from MC simulations at different valueseaf Circles refer

to Ap2 for CR calculated according to eq 412 = 4.0, (1) =
24.7,00 = 0, p* = 0.8. The solid line refers to the analytical theory
with the linear response function in the Pddem (eq 32). The dashed
line represents the result of dielectric continuum calculation according
to eq 48.

IV. Results

A. Simulation Procedure. The system investigated in the
present paper consists of a spherical solute of the raRljtas
= 0.9 with a central point dipoley and isotropic polarizability
oo immersed in a solvent oN = 500 hard sphere (HS)
molecules of diametes with isotropic polarizabilitya, per-
manent dipolen, and the reduced densipy® = p* = 0.8. The
simulation box is a unit cube centered at the origin with a single
solute at its center which does not move and only changes its
orientation. The total energy of the mixture includes the dipole
dipole interactions between permanemt, and inducedpja,
dipoles and the energy of polarizing the molecules (Drude
oscillator modef?—5°

Na,Np

52 2 mi+ pO)-Ty(my' +pp) +
abi|=

1_ Ny

where, in our simulationg, b=1, 2 andN; = 1, N, = N. In
eq 42

tot —

1k
-3 > > miE (42)
a |=

E = ZTjk'(mﬁ + PR (43)
a

(Figure 2a) are, however, slightly better described by assumingijs the electric field acting on thi¢h molecule in the liquid. The

¥ = 1 (dashed line in Figure 2) as directly follows from a
truncated perturbation expansion for the solvation chemical
potential3?

The induction reorganization component in eq 23 arises from
the modulation of the solutesolvent induction energy gajVing
by the solvent density fluctuations. In perturbation models of
solvation, this component is givenZ48!

Blea =17

Aing = (Fogo2 — foimp D) (40)
ind edTh2 elMo1 2007'L'Ewp* 06 Os
where the perturbation integrlsg’s) (Appendix A) is
@ _ g9 [~ dr ©
IOS =90 j(‘) r10g05(r) (41)

dipolar tensofT i is taken with the reaction field correction for
the cutoff of the dipolar interaction potent® The energy of
the jth particle,—mja-Ej, is updated after each MC move by
iterative calculation of the induced dipoles in the simulation
box 52 The iterations are continued until the relative change in
the square of the fieltj was less than 10.

Two sets of simulations, aimed at studying the effects of the
solvent and solute polarizability separately, have been carried
out. In the first set, we studiedk at various solvent polariz-
abilities. Two solute configurations were considered. First, a
spherical HS solute with zero dipolenz = 0) and zero
polarizability (o1 = 0) was placed in solvents of varying
polarizability and constant permanent dipgimg/o® = (m*)2
= 4.0). These simulations model the reorganization energy of
the CS reaction (6~ my, transition). The reorganization energy
was calculated on MC configurations as the variance of the
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TABLE 1: MC Simulation Results at Varying Solvent Polarizability: ( mj,)? = 24.7,00 = 0, (M*)2 = 4.0,res = 1.4, p* = 0.8

(x*a

€w Yo© Yp* —put = pud  PAE Pl Bhed PApd PR A Blind™  PAind"  Bhind®
0.0 1.0 4.47 4.47 62.8 0.0 62.8 62.8 58.6 63.2 62.8 58.6 0.0 0.0 0.0
0.02 1.216 5.21 5.19 63.9 5.8 58.1 54.5 56.6 57.7 56.1 56.5 0.1 0.1 0.2
0.04 1.464 6.21 6.24 64.0 10.6 54.9 52.6 47.6 54.4 55.2 48.2 0.3 0.7 0.7
0.06 1.755 7.60 7.67 65.8 15.1 50.2 48.7 44.1 51.5 51.7 45.6 0.7 1.6 1.6
0.08 2.099 9.57 10.32 66.8 19.4 47.3 459 38.1 48.9 52.6 40.5 1.4 2.2 2.9
0.10 2.512 12.48 14.96 67.0 23.5 43.5 39.2 22.6 46.5 46.0 25.7 1.6 3.1 4.5

ag* = o/o®. P Calculated from the Clausius-Mossotti equatib@alculated using the 1-RPT Wertheim theory according to ref' @btained
from simulations by using the average dipole monmant [Jm + p|Cfrom simulated configurations in the equatign= (47/9)5p(m')2. © The total

chemical potential of solvation calculated as (LRA) [2od72. f The chemical potential of solvation due to the induced dipoles of the solvent.
Calculated agie = [od/2 from simulations performed in solvents witht = 0. 9 From eq 47" From simulations as the variance of the solute-
solvent coupling in eq 44 evaluated for solvent configurations in equilibriutn ava polar solute (CR configuration of the solutéjrom simulations

as the variance of the solute-solvent coupling in eq 44 evaluated for solvent configurations in equilibrium with non-polar solute (CS configuration
of the solute)! From eqgs 24, 32, and 38From simulations as the variance of the potentid (eq 44) evaluated on solvent configurations in

equilibrium with the polar solute (CR configuration of the solutéjrom simulations as the variance of the potenti®d (eq 44) evaluated on
solvent configurations in equilibrium with the non-polar solute (CS configuration of the sofufepm simulations as the variance A¥inq in the
CR configuration of the soluté.From simulations as the variance AVi,q in the CS configuration of the solute Analytical theory, eq 40.

TABLE 2: MC Simulation Results at Varying Solute Polarizability: ( mg,)? = 30.9, (n*)2 = 5.0, a/o® = 0.06

*a
%

PP

BA* fﬂp,ld Bhp® ﬂ}m,lf PAp® Blind" Blind Phost a
0.00 57.0 68.8 54.7 63.6 54.7 63.2 2.1 1.5 122 1.003
0.02 57.5 69.6 55.1 62.8 55.2 66.5 2.1 1.4 127 1.000
0.04 58.0 68.5 55.6 63.1 55.7 70.0 2.1 0.8 141 0.988
0.06 58.5 73.3 56.0 67.5 56.1 73.9 2.2 1.0 145 0.985
0.08 59.0 79.8 56.5 76.3 56.6 78.0 2.2 0.9 145 0.989
0.10 59.5 854 56.9 78.9 57.1 82.3 2.2 1.0 152 0.985
0.12 60.0 87.6 57.4 81.5 57.6 87.2 2.3 1.8 152 0.989

aqg* = aplo®. P CS transition, from simulations as the varianceAdd in eq 12.¢ CR transition, from simulations as the varianceAd. ¢ CS
transition, from simulations as the variance’df, (eq 45).¢ CR transition, from simulations as the variance\df, (eq 45)." CS transition, calculated
from eq 24 withay,o® = 0.351 andh.o® = 0.106.9 CR transition, calculated from eq 24 witho® = 0.304 andh.o® = 0.106." Induction reorganization
energy for CS transitiongInduction reorganization energy for CR transitionStokes shiftk Calculated according to eq 49.

difference interaction potential B. Solvent Polarizability. Figure 2 supports the conclusion
of previous simulation studies of solvatidn'® and self-
consistent theories of polarizable ligutéithat the chemical
potential of solvation in nonpolarizable and polarizable dipolar
solvents follows the same fundamental law as a function of the
polarity parametey, + Y. Indeed, results of previous simula-
tions of nonpolarizable solverdopen circles) and the results
of this study for polar/polarizable (filled diamonds) and non-
polar/polarizable (filled squares) solvents all fall on the same
theoretical line (eq 32) as a functionyf+ ye (Figure 2). This
result suggests that one fundamental function describes both
electronic and nuclear solvation. Therefore, solvation by solely
nuclear degrees of freedom can be obtained by subtracting the
Heremo, is the solute dipole in the charge-separated state. The chemical potential of electronic solvation from the total chemical
same potential difference was used to calculate its variance onPotential as suggested by eq 10
the solvent configurations in equilibrium with the solute bearing
002 = 0 and the dipole momenty, (Bmo2og® = 24.7). This
procedure gives the reorganization energy of the CR reaction
(mo2— O transition). To produce sufficient statistics, simulations The direct calculation of, for CR coincides very accurately
of the typical length of 6x 10 cycles were run (440 h on the  with the calculation according to eq 47 and both results are in
Alpha/833MHz processor) with 2 1C° production cycles. The  good agreement with the analytical theory (eq 32) shown by
simulation results are listed in Table 1. the solid line in Figure 3. This is the first direct confirmation
The second set of simulations was carried out for a varying of the accuracy of eq 47 obtained from computer simulations.
solute polarizability at constant solvent polarizability¢® = The self-consistent calculations of the effective solvent dipole
0.06) and constant solvent dipolent) 2 = 5.0). As above, CS momentm’ have been performed here by using the 1-RPT (eq
and CR configurations corresponding, respectivelyngp= 0 37) and 2-RPT (eq 39) schemes and compared to direct
andpmy/oe® = 30.9 were sampled (Table 2). These simulations calculations from MC simulations (third and fourth columns in
were (8-15) x 1CP cycles long with 2x 10° production cycles. Table 1, respectively). We found that the 2-RPT renormalization
The higher the value of the solute polarizability, the longer it (not shown in Table 1) involving renormalization of the
took to converge the reorganization energy. The dependencemolecular polarizability noticeably overestimates the values of
on the solute dipole (Figure 1) givego® = 0.106 ata/o® = yp compared to simulations. On the other hand, the 1-RPT
0.06 andm* = 0 and @, + a.)o® = 0.457 ata/o® = 0.06 and scheme (eq 37) provides accurggdor all values ofo* except
(m*)2 =5.0. the largest one on our list, which is actually very improbable

AVIR,,q] = AV, + AV, (44)

where

AV,

p— m02'fe2'Rp

(45)

and

1
AVjpg = — émoz'Roo'fez'moz

(46)

Tp=—t+ g (47)
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for commonly used solventsxf = 1/16 for most molecular
liquids). A similarly good agreement between 1-RPT scheme
and simulations of thermodynamics and effective dipole moment
of model polarizable liquids has been recently obtained by
Boublik and Winkelmani{®

The Marcus-Hush formulation applies when the solute
polarizability does not change with the electronic transition. The
reorganization energy should then be independent of solute’s
electronic state, i.e., be the same for CS and CR transitions.
This prediction holds approximately for the simulation data
(Table 1, cf. crosses to squares in Figure 3). A downward
deviation of CS reorganization energy from the CR reorganiza-
tion energy by about 15% is caused by nonlinear solvation by

Gupta and Matyushov

0.05
3
O(O/G

Figure 4. Full reorganization energies (open points) and polar

permanent solvent dipoles. The deviation between CS and CRreorganization energids; (filled points) for charge separation (squares,

reorganization energies becomes particularly noticeabte* at

= 0.10. At this polarizability, the dipotedipole attractions
between dipolest are strong pulling the solvent molecules from
the nonpolar solute’s surface. The resulting dewetting of solute’s
surface leads to a lower coordination number of a nonpolar
solute compared to a polar solute. The solvating strength of the
solvent is reduced resulting in a lower reorganization energy.

Table 1 also presents the splitting of the reorganization energy
into the polar and induction components assuming that the
modulation of the induction potential and fluctuations of the
nuclear reaction field are statistically independent (eq 23). The
additive splitting of As into A, and Aing holds well for CS
transitions, and the simulated induction reorganization energies
agree remarkably well with eq 40 (cf. two last columns in Table
1). The downward deviation of the last two numbers for CS
Aind Can again be traced back to dewetting of solute’s surface.
For CR transitions, howeveks > A, + Aing at alloc > 0. One
can conclude that induction and polar solvation are coupled
through the solvent density fluctuations in the presence of a
polar solute thus violating the additivity assumption.

The dashed line in Figure 3 refers to the result of dielectric
continuum calculation using thiefactor from eq 2. Since the
static dielectric constant is very high for the fluid of dipolar
spheres lacking the quadrupole mom¥¥¥,the dashed line is
plotted assumings — o for the continuuniy:

2
_ Moz [
p 3
R’
The main qualitative result of this comparison is that the
Lippert—Mataga formula foil, substantially overestimates the
slope of its dependence en.
C. Solute Polarizability. The results of simulations df; at

constant solvent parameters and varying polarizability of the
solute in the final ET state are listed in Table 2. In modeling

eoo
0.5—-

A 2¢,+1

(48)

CS transitions, we assume that the ET system goes from an

initial nonpolar, nonpolarizable state withy; = 0, o,o; = 0 to

a polar-polarizable state wittmgz/m = 6.0 and varyingoo,.

CR refers to the backward transition. As in the case of
simulations with changing solvent polarizability, we notice that
the splitting of the total reorganization energdy into two
separate components arising from nuclear polarization and
induction interactions (eq 23) is inaccurate for CR transitions.
On the contrary, eq 23 holds well for CS transitions (Table 2).

i = 1) and charge recombination (circless= 2) obtained from MC
simulations as a function af¢/c®. The solid lines correspond t;
calculated from eq 24 for CS (lower curve) and CR (upper curve). The
response coefficients entering eq 24 are obtained from MC simulations;
(m*)2 = 5.0,a* = 0.06,p* = 0.8,r9s = 1.4.

reaction fieldR, (eq 24, solid lines in Figure 4) turns out to be
quite accurate when tested against simulations. We stress that
the response coefficients , used to calculaté, in eq 24 are
obtained here directly from simulations. The analysis given in
Figure 4 is therefore a direct test of eq 24 independent of
solvation models which may be applied to calculatg For
(m*)2 = 5.0 ando* = 0.06 taken for the solvent parameters in
this set of simulations the effective dipolar densityjs= 9.61.

In this polarity range, nonlinear solvation caused by partial
dewetting of solute’s surface becomes noticeable bringing the
CS reorganization energy below the corresponding CR reorga-
nization energy by about +720% even at\ap = 0. To account

for this effect, two different values of the nuclear solvation
coefficient,a,o® = 0.351 anda,0® = 0.304, were adopted for
the calculation ofl, for CR and CS, respectively. The first
coefficient is obtained from the dependence of the average
solvation energy on the solute dipole (Figure 1). The second
coefficient is obtained from the value of solvation energgat

= 0. Within simulation uncertainties, there is a good agreement
between the analytical prediction (eq 24) and simulated re-
organization energies (Figure 4).

The consistency of the Q model leading to eq 24 requires
that the reorganization energies for CS and CR transitions are
related to the Stokes shifiwg = |[AVIJ — [AVI by the
parametety identically equal to unity in the Q model

U o

= =1
v ISR WS+ hoo)®

(49)

The last column in Table 2 lists parameterobtained from
CS and CR reorganization energies and the Stokes shift. As is
seen, eq 49 holds very accurately indeed.

V. Discussion

Since the understanding of the role of nuclear solvent modes
in producing Stokes shifts of optical spectral lihesd the
reorganization energy of radiationless transittomas achieved
in 1950s, the problem of extracting the nuclear component of

This indicates that the nonadditive character of induction and the solvent response has been involved in all realistic calcula-
polar contributions to the reorganization energy is caused by tions of these properties. The most widely used approach to
the mixing of the fluctuations of induction and polar interaction this problem is to subtract the response of the fast electronic
energies through density fluctuations of the solvent in the subsystem of the solvent from the total solvent response (eq 10
presence of a polar solute. for the response function and eq 47 for the reorganization
The theoretical prediction for the component of solvent energy). Although widely used for calculations of complex
reorganization energy arising from fluctuations of the nuclear  molecular systems, the approach itself has never been tested
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on computer simulations and/or experiment. The present simula-TABLE 3: Coefficients of the Density Expansion for the

tions provide the first direct test of eqs 10 and 47 convincingly
testifying to their accuracy.

The next, more practical, step is to provide an accurate
algorithms for calculating the total and electronic responses of
the solvent. For this task, continuum solvation models predict
a very significant variation of the solvent reorganization energy
with the high-frequency dielectric constant This prediction
is not supported by the current simulations. Instead of a two-
times drop of the reorganization energy predicted by the
Lippert—Mataga equation (eq 2) wher changes from 1.0 to
2.5, a modest decrease by about 30% is obtained in MC
simulations. The failure of dielectric models is caused by the
incorrect calculation of both the total solvation free enengy (
in eq 47) and its electronic componept (n eq 47). Although
ue from simulations shows a linear trend with,(— 1)/(2¢. +

Perturbation Integrals Used in the Calculation of A&

integral  coefficients 0 1 2 3
12 a 0.0 1935 -0.972 0.398
b 0.0 —1.675 2.183 -0.831
c 0.0 0.439 -—1.051 0.465
19 a 1.0 0.602 -0.381 —0.061
b —9/16 0.255 0.848 —0.107
c 1/32 —-0.256 —0.23 0.098
159 a 0.0 3.212 2.862 —0.695
b 0.0 —2.580 —4.349 3.066
c 0.0 0.608 1564 —1.447

2The columns labeled 0, 1, 2, and 3 stand for the corresponding
powers in the polynomial expansions gh as in eq A2.

of this equation with all parameters necessary for the calculations
obtained from simulations. A good agreement between the

1), as predicted by the Onsager model (not shown here), theanalytical theory and simulation results has been achieved

slope is too high. An accurate formalism to calculate the

(Figure 4). The present study thus confirms the earlier prediction

electronic response is provided by the perturbation expansionof analytical modef$25 of a significant gap between CS and

(eq 32, Figure 2a). On the other hand, the compopeindom
continuum models essentially does not change witim highly
polar solvents (see eq 48), whergasom simulations increases
by about 7% in the range of. given in Table 1. The
combination of two errors (in calculating. andu) leads to a
much stronger dependence &fon €. in continuum theories
than is obtained from both simulations and microscopic analyti-
cal models (Figure 3). The analytical Paalgproximation for

the dipolar solvation energetics (eq 32) has been previously

applied to the interpretation of experimental charge-transfer
kinetic dateb® This is the first extensive test of the model on
computer simulations confirming its accuracy in a broad range
of solvent polarities.

On the qualitative level, the most interesting finding of the

CR reorganization energies in asymmetric ET systems leading
to a pronounced asymmetry of the free energy surfaces 6P ET.
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Appendix A

The perturbation integrals in eqs 32 and 40 are calculated by
using the HS solutesolvent distribution function obtained from
the solution of the Percusrevick equation with the contact-
value correction according to ref 61. The numerical integration

simulations is a noticeable increase of the total solvent responsgs fitted to the polynomials in t4s and p* according to the

(«) with increasinge.. This is the result of a linear dependence
of the LRA solvation chemical potential on the solvent polarity
parametely, + Ye for highly polar solvents contrasting with a
fast transition to saturation in dielectric theorfé8? In view of

the importance of accurate estimates of the dependence of

solvation energetics in general ard in particular one,
especially for treating solvation at elevated pressure and
temperature, experimental verification of the results reported
here is required. The dependencelgfon €. in real charge-

transfer systems can be measured by combined alteration of
temperature and pressure keeping the total static dielectric

constanks invariant (similarly to the isodielectric approach used
in photoisomerization kineti€® and varying onlye...

In contrast to a relatively weak effect of the alteration of
solvent polarizability on both CS and CR reorganization
energies, changing the solute polarizability makes a very
significant effect on the CR reorganization energy. The re-
organization energy is affected by solute polarizability through
the free energy of solute’s self-polarization quadratic in the
nuclear reaction field of the solvent (eq 22). The charge-

following relations

1, ale*) | b(p*) | c(p¥)
IEJZS)(rOS’ p*) = _3 + 4 + 5 + 6
0s Fos Fos los
a(p*) | blp*) | c(p*)
105 0%) = =5+ = +
Fos Fos los
4 _ 1 ale*) | blp*) | c(p¥)
|E)S)(r05, [ T 11 T (A1)
0s 0s 0s 0s

where each of the functiorep*), b(p*), and c(p*) is a third-
order polynomial inp*, for example

a(p*) = ap + ayp* +ap")’ + a0’ (A2)

The coefficientsa,, b, andc, for each perturbation integral
are listed in Table 3.

separated state is characterized by a large dipole momentAppendix B

resulting in a large reaction field and high sensitivity of the
corresponding reorganization energy to polarizability. A non-
polar state of the solute (CS state in this study) does not produc
a substantial reaction field thus leading to a small polarization
term and low sensitivity of the reorganization energy to
polarizability.
An analytical theory of ET° provides a route (eq 24) for the

calculation of reorganization energy in polarizable dipolar

The calculation of the effective liquid-state dipaié and

epoIarizabiIityoU requires the free energy of interaction between

effective dipolesf in eq 38. A convenient approximation for
this property is available from the Padeuncation of the
perturbation expansion for the free energy per solvent molecule:

BAF=1,+f,+ ... (B1)

solutes. The simulation data presented here aim at direct testingvhere each terrfy, in the expansion is of thaeth order in the
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dipole—dipole interaction potential. The perturbation expansion
is formally diverging at high polarities, but divergence can be
eliminated in the Padapproximarf?

BAfp = (1 — fff) ™! (B2)

In the case of dipotedipole interaction, the perturbation terms
f, and f3 are given by the product of powers of the reduced
density p*, reduced dipole momenti*, and two perturbation
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p*:

f,= —(o*m6) 2(0*)

fy = (o*2m¥/54) (%) (B3)

The perturbation integralt2® are calculated from the sol-
vent-solvent distribution functiorgg;). According to Larsen et
al.*® they can be approximated by polynomial expansions in

*

o*:

19(o*) = 4.1888+ 2.8287%* + 0.833%*2 +
0.031%*° + 0.0858** — 0.0846*°

1¥(p*) = 16.4493+ 19.8096* — 7.408%*” —
1.0792*% — 0.990%** — 1.0249*° (B4)

In self-consistent calculations of the liquid-state dipole moment
m’ according to eq 37 the reduced dipole momert)¢ in eq
B3 is replaced with3(m')%/a3.47
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