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The geometric structures and stability of Na+Arn clusters were studied with ab initio molecular orbital methods.
The clusters ofn ) 6, 8, and 10 have a high symmetry ofOh, D4d, andD4d, respectively. On the other hand,
the clusters ofn ) 3 and 4 are deformed from the expected high symmetric configuration. It is the attractive
force between rare gas atoms that breaks the symmetry. The many-body terms also play an important role in
determining the detailed structures. The size dependence of the calculated thermochemical parameters are
consistent with the reported mass spectral pattern which shows the first sequence of the magic number atn
) 6 and 8.

Introduction

The physical and chemical properties of small atomic and
molecular clusters have been the subject of intensive experi-
mental and theoretical investigations in the last twenty years.1-5

The number of atoms in clusters is between those of an isolated
molecule and of bulk matter. The rapid progress in molecular
beam techniques, in combination with laser evaporation tech-
niques, allowed production of clusters for almost every element
in the periodic table as well as their mixed clusters. The charged
clusters are detected with time-of-flight (TOF) mass spectrom-
etry. The intensity distribution of the spectrum reflects the
stability of the clusters. The distribution shows often the irregular
size dependence, and a few stronger peaks are found at the
particular sizes rather than at neighboring sizes, suggesting that
the clusters of those particular sizes are more stable than the
others. The cluster sizes corresponding to such stable structures
are called magic numbers. The sequences of the magic numbers
found in the mass spectra are the fingerprints of the shell closure
either of geometric or electronic structures, or both. Therefore,
the observed sequences of magic number provide information
on geometric and electronic structures of the clusters and thus
on the interaction potential among the constituents of the
clusters.

We report theoretical studies on noble gas clusters doped with
a group 1 metal ion, M+Xn, using ab initio molecular orbital
(MO) methods. Recently, Velegrakis and co-workers6-8

investigated those clusters both experimentally and theoretically.
To analyze their observed mass spectral patterns, they performed
the molecular dynamics (MD) simulation with empirical po-
tential energy functions. However, the potential energy function
used is simply the sum of the pair potentials. Besides, their pair

wise potential function is Lennard-Jonnes type 6-12 functions
both for ion-rare gas atom and for rare gas atom-rare gas atom.
Because the small ion, such as the group 1 metal ion, strongly
polarizes the surrounding rare gas atoms, it is expected that the
interactions between the ion and a polarized atom and among
polarized atoms are important; the former interaction leads to
the 1/R4 dependence in the potential function and the latter
results in many-body effects. In the present work, we examine
the geometric structures and stability with more extensive ab
initio MO methods.

In the structural model of Velegrakis et al.,6 a simple hard
sphere packing model is assumed to be applied for M+Xn as
for pure rare gas clusters; a central metal ion is surrounded by
neutral atoms, and every additional atom occupies the position
that offers the maximum number of neighbors until the atom-
atom distances are too close to each other. For pure rare gas
clusters Xn, with the hard sphere model the structure at the
closure of the geometric shell is icosahedrons, and the sequence
of the magic number is 13, 19, 23, 26, 29, 32....6 So, if the ion
radius of M+ is comparable to the van der Waals radius of the
noble gas X around M+, the similar sequence of the magic
number is expected for M+Xn-1. In most cases, the ionic radius
is not nearly equal to the van der Waals radius of the rare gas
atom. If the hard sphere model can be applied yet, the stable
geometric structures of M+Xn-1 are determined by the ratio of
the ionic radius of the metal ion and the van der Waals radius
of the rare gas atom. By assuming the close contact of the ion
and atoms, the ratio

provides the criteria of the stable geometric structure of the first
shell.6 Here, integerk is the number of rare gas atoms per ring
and one of the two rings is twisted by an angle ofπ/k with
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R* ≡ RM+-X/RX-X e
1
2 {2 + cosπ/k - cos 2π/k

1 - cos 2π/k }1/2
(1)
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respect to the other one; Figure 1 shows the schematic structures
of the hard sphere clusters. When the ratioR* ) RM+-X/RX-X

is smaller than 0.6125 (k ) 2), the geometry for the first closed
shell is tetrahedron. For 0.6125< R* e 0.707 (k ) 3), 0.707
< R* e 0.823 (k ) 4), 0.823< R* e 0.951 (k ) 5), and 0.951
< R* e 1.088 (k ) 6), the corresponding geometries are
octahedron (trigonal antiprism), square antiprism (SA), pen-
tagonal antiprism (PA), and hexagonal antiprism (HA), respec-
tively.7 By adding an atom to the top and bottom of square of
SA, the capped square antiprism (CSA) is a possible configu-
ration under the hard sphere model.

The typical irregularity in the size dependence of the stability
reflects the geometric and electronic structures and the interac-
tion forces. In the experimental mass spectra, the magic number,
where the irregularity is found, is determined, and then the
structures might be able to be deduced using a model such as
the hard sphere model. In the present study, with accurate ab
initio calculations the size dependence of the geometric struc-
tures and thermochemical stability are examined. In this paper,
we study Na+Arn clusters, of which the ratioRNa+-Ar/RAr-Ar is
0.75 for the ionic radius of six coordinate ion and 0.80 for the
ionic radius of eight coordinate ion.9 It implies that it belongs
to the SA region, independently on the ionic radius used.
Experimentally, the mass spectrum reported by Lu¨der et al.8

shows that the peaks atn ) 6, 8, 10, 13, 16, and 20 are stronger
than the neighboringn. In contrast to the mass distribution of
Na+Arn, the mass pattern of K+Arn is rather monotonic7 till n
) 10 where the peak becomes substantially weaker than atn )
9, and the peaks atn ) 12, 18, and 22 are stronger than the
neighboringn.

Computational Details

The ionization energy of Na is much lower than that of Ar
and therefore the charge is expected to reside on the Na atom.
This implies that Na+ and Ar atoms in Na+Arn are electronically
localized within its own ion and atoms, respectively. However,
the cation Na+ strongly polarizes the orbitals of argon atoms.
Several basis sets for Na+Ar were tested to select the proper
basis set for further studies. The importance of polarization
interaction will be examined in the next section. After a few
test calculations, the 6-311++G(3df) basis set was selected.
Polarization and dispersion interaction in this cluster are
dominant for molecular interaction. Polarization interaction can
be estimated with this basis set, and the dispersion interaction
was evaluated by the second-order Møller-Plesset (MP2)
perturbation theory. Basis set superposition error (BSSE)9 in
this basis set was examined, and it was shown that it can be
almost neglected with the basis sets used.

At first, the initial geometries for Na+Arn (n ) 2∼10) were
determined using the hard sphere packing model. With the
geometries optimized with the MP2(FULL)/6-311++G(3df),
the vibrational analyses were carried out. Up ton ) 6, the
analytical calculations for vibrational analyses were possible.
Since those forn g 7 were not feasible even on our supercom-
puter, the vibrational analyses were numerically calculated for

those clusters. It was confirmed that all harmonic frequencies
are real. Some of the small clusters had an imaginary frequency
at a high-symmetry configuration, so that a careful re-optimiza-
tion was required before reaching a real local minimum.
Calculations for larger clusters were carried out on the VPP5000
at Research Center for Computational Science (RCCS), Okazaki
National Research Institutes. Programs used are GAUSSIAN
9811 registered at RCCS and MOLYX for LP SCF.12

Results and Discussion

Polarization Interaction. First, we examine the levels of
approximation to be used for the system. In their MD simulation,
Prekas et al. used the (6,12) potential energy functions for the
metal ion and a rare gas atom.7 The form of the potential energy
function is for the interaction between the neutral atoms.
Because the ion induces the dipole moment (induced dipole
moment) on the rare gas atom, it is expected that the interaction
between the ion-induced dipole moment (the polarization
interaction) plays a role in the cluster formation. To incorporate
the polarization interaction in the calculations, we need to
carefully examine the type of the basis sets. The potential energy
curves in Figure 2a are calculated with the 6-31++G basis set,
and those in Figure 2b are with the 6-311++G(3df) basis set,
which contains the polarization functions. The binding energies
are evaluated with the SCF level of approximation with and
without the counterpoise (CP) correction.13 In addition, the
energies evaluated with the locally projected (LP) SCF method10

and with the single excitation LP MP2 method14 are shown in
the figures. By adding the polarization functions, the binding

Figure 1. The geometrical model6 of hard sphere packing model for
clusters of the type MXn.

Figure 2. Potential energy curves of Na+Ar in the SCF level of
approximation. (a) With the 6-31++G basis set. (b) With the
6-311++G(3df). 0: SCF without CP correction.O: SCF with CP
correction. 4: locally projected SCF.10 3: LP SCF with single
excitation MP2.14
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energy increases by more than 3 times: from 0.87 to 3.00 kcal/
mol with the CP correction. Besides, the CP correction becomes
very small with the 6-311++G(3df) basis set: 0.06 kcal/mol
at the bottom of the curve.

As was previously demonstrated,10 the LP SCF method, which
is equivalent to SCF MI of Gianinetti,15 underestimates the
binding energy. This is particularly true for the smaller basis
set. By adding the single excitation by the second-order
perturbation method (LP MP2),14 the curve becomes close to
the CP corrected curve, particularly for the larger basis set. This
is reasonable because the deficiency in the LP SCF (MI) method
is a direct consequence from the neglect of the charge-transfer
term, as proved analytically.10 With the larger basis set, the
energy differences among four curves are small compared with
the total binding energy, which suggests that the charge-transfer
term is not large; the charge-transfer energy at the infinite
separation is the ionization energy difference of Ar and Na
atoms, which is 10.62 eV.

The polarization interaction is thus taken into account in the
SCF level of approximation by adding 3df functions to the basis
set. Figure 3 shows the potential energy curve evaluated with
the MP2 method (without the CP correction). The binding
energy increases further, and the equilibrium bond distance is
slightly shortened from 2.892 Å (SCF) to 2.792 Å (MP2). For
qualitative discussion, the SCF method might be useful, but for
quantitative analyses, the comparison of Figure 3 and Figure
2b indicates that the electron correlation should be included in
the calculations. So, in the present study, the MP2(FULL)/6-
311++G(3df) level of calculations are used for the geometry
optimization as well as for the harmonic frequency calculation.

For further studies, the curve is fitted to an analytical function;
we selected Murrel’s extended Rydberg function,16

whereF ) R - Req, Req is the equilibrium bond distance and
De

ir is the depth of potential. The coefficientsai and b are
optimized so that the error of the fitting becomes less than 0.02
kcal mol-1. The fitting function converges ati ) 7 for Na+Ar
molecule. Figure 3 shows ab initio result and its fitted curve.
The similar successful fittings are attained for Li+Ar and K+-
Ar as well as for Ar2 with the same form of the function. The
fitting parameters for these molecules are summarized in Table
1.

Magic Number Sequence and the Corresponding Geom-
etry. In the hard sphere model, the ratioRNa+-Ar/RAr-Ar is within
the SA region, which implies the first shell closure isn ) 8 for
Na+Arn. By adding the atoms on the caps, the next magic
number isn ) 10 with the CSA structure. Experimentally, the
reported magic number sequence for the Na+Arn clusters isn
) 6, 8, 10, 16, 20, 23, 25, 26, 29....8 Thus, at least the hard
sphere model is consistent with the second and third magic
numbers atn ) 8 andn ) 10, but not for the first one. Since
no experimental information on the geometric structures is
available other than the mass spectral pattern, the full geometry
optimization for the clusters with the ab initio MO calculations
is essential in confirming the model.

Figure 4 shows the optimized geometries of Na+Arn clusters.
The equilibrium bond distances ofR(Na+-Ar) and some of
R(Ar-Ar) are summarized in Table 2. Na+Ar2 has theD∞h

symmetry, and the equilibrium bond distanceR(Na+-Ar) is
close to that of the diatomic ion. Although all threeR(Na+-
Ar)s in Na+Ar3 are 2.800 Å, three Ar atoms are not equivalent
to each other and the geometry has theC2V symmetry. The
symmetry breaking of Na+Ar3 was unexpected. A careful
recalculation of the harmonic frequencies atD3h configuration

TABLE 1: Parameters of Murrel’s Extended Rydberg Function for M +Ar (M ) Na, Li, K) and Ar 2

Na+Ar Li +Ar K +Ar Ar2

Req/Å 2.792 2.392 3.292 3.792
De

ir/kcal mol-1 -4.078 -6.993 -2.428 -0.3206
a1 1.699 1.675 1.469 2.170
a2 -0.9914 -0.6835 -0.6565 -9.956× 10-2

a3 0.7816 0.7865 0.6690 0.6099
a4 -0.3381 -0.5378 -0.1987 9.931× 10-2

a5 0.1651 0.3136 4.525× 10-2 -3.316× 10-7

a6 -3.996× 10-2 -8.093× 10-2 -2.669× 10-10

a7 4.223× 10-2 8.784× 10-3

a8 1.765× 10-10

b 1.689 1.861 1.660 2.268

Figure 3. Potential energy curves of Na+Ar. 3: the 6-311++G(3df)/
MP2 level of approximation.4: the extended Murrel function.

V(R) ) De
ir(1 + ∑

i)1

aiF) exp(-bF), (2)

Figure 4. The geometries of Na+Arn clusters (n ) 2∼10).
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results in finding a pair of imaginary frequencies. For compari-
son, the geometries of Li+Ar3 and K+Ar3 are optimized; it turns
out that Li+Ar3 is indeed inD3h, while K+Ar3 has a nonplanar
form of C3V. We will discuss in the next subsection what causes
these differences in the stable geometry, depending on the ionic
radius.

With the hard sphere packing model, Na+Ar4 cluster can form
a tetrahedral structure though the rare gas atoms are not at a
close contact to each other. The geometry optimization starting
from a tetrahedral geometry ends at aC2V configuration shown
in Figure 4; theC2 axis is a bisector of two isosceles triangles
formed by two pairs of Na+Ar2. The symmetry breaking takes
place as in Na+Ar3. By addition of another rare gas atom to
Na+Ar4, the geometry of Na+Ar5 is optimized, and it converges
to a high-symmetry configuration ofC4V. Four argon atoms form
a square and an extra atom is located on the C4 axis. The
geometry of the Na+Ar6 cluster is optimized from the octahedral
conformation, which is guessed from the hard sphere packing
model. This time, the octahedral conformation ofOh symmetry
is at a true minimum and is very stable. It may be considered
as a shell closure as discussed below.6

It was difficult to find a stable structure for Na+Ar7. So, we
took a procedure inverted to the ordinal one; an atom is removed
from the optimized Na+Ar8 cluster. As is shown in Figure 4,
the geometry of Na+Ar7 is complicated, but it has relatively
high symmetry (C2V). Four atoms form approximately a square.
The optimized geometry of the Na+Ar8 cluster is a square
antiprism (SA) configuration as is guessed from the hard sphere
packing model. It hasD4d symmetry with the C4 axis passing
through both centers of two pairs of squares. The Na+Ar9

conformer keeps the core of Na+Ar8, having an extra atom as
a cap on the C4 axis. The ninth atom may be regarded as the
first member of the second shell.

The optimized geometry of the Na+Ar10 cluster is the capped
square antiprism (CSA) structure and has theD4d symmetry as
the Na+Ar8 cluster. It is not a pentagonal antiprism (PA). Two
Na+-Ar distances in the Na+Ar10 cluster are 4.177 Å and much
longer than the other Na+-Ar ones (2.980 Å). The structure of
Na+Ar10 is formed by adding an atom at the other end of Na+-
Ar9.

Interaction Potential Energies. The symmetry of Na+Ar3

and Na+Ar4 at the equilibrium configuration is lower than the

expected one as mentioned above. A simple hard sphere packing
model fails in these small clusters. By analyzing the cause of
the symmetry breaking, the factors which determine the stable
geometry might be deduced. Because both Na+ ion and Ar
atoms are closed shell systems and the ionization energy
difference of Na and Ar is large, the leading attractive force
between a Na+ ion and an Ar atom is the charge-induced dipole
interaction, whose analytical form in the perturbation theory is
-RAr/R4. To simulate the ab initio energy accurately, however,
the interaction energy cannot be expanded simply in terms of
the inverse of the bond distanceR. We found that Murrel’s
extended Rydberg function gives the accurate fitting to the MP2
energy curve of Na+ and Ar. Similarly, the same form of the
function can be used for Ar-Ar interaction, although the (6,
12) function is traditionally extensively used.

The simplest way to estimate the interaction energy of Na+-
Arn is to assume the pair wise potential; the energy is

Figure 5a plots the energyVpair(Na+Ar3) for a planar configu-
ration (Figure 5c); the parameters determined in the present
study are used. Three ofRNa+-Ar j is fixed at 2.800 Å. In the
figure, the potentialVMP2(Na+Ar3) with ab initio MP2(FULL)/
6-311++G(3df) is also shown. Two curves have a saddle point
at the angleθ ) 120° of D3h configuration. Both curves have
two local minima, whose angles are summarized in Table 3.
The difference of the two curves is given in Figure 5b, and it
shows that the nonadditive many-body terms are positive. For
comparison, the corresponding curves for Li+Ar3 and K+Ar3

are shown in Figures 6 and 7.17 The positive many-body terms
are small in absolute values by 1 order of magnitude for all
three cases. The rough shape of the potential curves is
determined by the pair wise interaction, but in details the angles
at the minima are tuned by the many-body terms, in particular
for the deeper minimum. The dominant many-body interaction
is the interaction between the induced dipole moments on the
rare gas atoms, which we discuss later.

Because the Na+-Ar distance is fixed and therefore the ion-
rare gas atom interaction is not dependent on the angle, the shape
of the curveVpair is determined by the Ar-Ar interaction
potentialVAr-Ar, which is attractive in Na+Ar3; the minimum
of the functionVAr-Ar is at 3.792 Å. This attractive interaction
between Ar atoms explains the two minima of the curveVpair.
As shown in Table 3, at the deeper minimum, two short Ar-
Ar distances are almost equal to the equilibrium distance in
VAr-Ar, while at the shallower minimum there is only one short
Ar-Ar pair. The shorter Ar-Ar distances in two local minima

TABLE 2: The Bond Distances of Na+-Ar and Ar -Ar

n R(Na+-Ar) R(Ar-Ar)

1 2.794
2 2.797 5.594
3 2.800, 2.800 4.209, 5.554
4 2.804, 2.808 4.038, 4.135, 5.564
5 2.811, 2.817 3.982, 4.038, 5.631
6 2.820 3.989, 5.641
7 2.878, 2.937, 2.975 3.568, 3.620, 3.635, 3.860, 4.063, 5.184, 5.599,

5.604
8 2.976 3.583, 3.675, 5.067, 5.627
9 2.957, 3.004, 4.080 3.565, 3.639, 3.656, 3.673, 5.042, 5.146, 5.631,

6.245
10 2.980, 4.177 3.617, 3.680, 3.634, 5.115, 5.631, 6.254

TABLE 3: Angles (∠Ar 2MAr 3, ∠Ar 2MAr 1) at Two Local Minima on Vpair(M+Ar 3) and VMP2(M+Ar 3)

shallow deep

∠Ar2M Ar3 ∠Ar2M Ar1 R(Ar-Ar) a ∠Ar2M Ar3 ∠Ar2M Ar1 R(Ar-Ar)a

Li +Ar3 Vpair 115° 122.5° 3.97, 4.13 145° 107.5° 4.49, 3.80
Li +Ar3 VMP2 120° 120° 4.08
Na+Ar3 Vpair 85° 137.5° 3.78, 5.22 190° 8° 5.58, 3.78
Na+Ar3 VMP2 95° 132.5° 4.13, 5.13 165° 97.5° 5.55, 3.78
K+Ar3 Vpair 70° 145° 3.72, 6.19 220° 70° 6.10, 3.72
K+Ar3 VMP2 75° 142.5° 3.95, 6.15 210° 75° 6.27, 3.95

a The first number isR(Ar2-Ar3) and the second isR(Ar2-Ar1) ) R(Ar3-Ar1).

Vpair(Na+ Arn) ) ∑
j)1

n

Vion-Ar(RNa+-Ar j) + ∑
j<k

n

VAr-Ar(RArk-Ar j)

(3)
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are equal to each other. This is also true for K+Ar3. Both in
Na+Ar3 and K+Ar3, the attractive interaction among three Ar
atoms are so dominant that if the many-body terms are excluded,
the metal ion is located outside of the triangle formed by three

Ar atoms, as the angle∠Ar2MAr3 at the deeper minimum is
larger than 180°. With MP2 full geometry optimization for
K+-Ar3 by removing the planar restriction, the ion lies on the
top of an equilateral triangle of Ar3, the geometry having
C3V symmetry and all threeRAr-Ar being 3.949 Å,17 equal
to the shorterRAr-Ar at the local minima in the planar
model.

For Li+Ar3, the situation is slightly different because of
the small ionic radius of Li+; the equilibrium distance of
the diatomic ion Li+Ar is 2.392 Å. The shorter Ar-Ar dis-
tance at the deep minimum is 3.800 Å and is almost equal
to the corresponding distance in Na+Ar3. The Ar-Ar in-
teraction is still attractive, but the angular dependence ofVpair

is weak at 100° < ∠Ar2MAr3 < 150° as seen in Figure
6a.

The many-body (nonadditive) terms, which are estimated by
the differenceVMP2 - Vpair, are important in determining the
true minimum of the potential energy surface, although the
absolute value is small, which is seen in Figures 5b, 6b, and
7b. The terms at∠Ar2MAr3 ) 120° are 1.23 kcal/mol for Li+-
Ar3, 0.53 kcal/mol for Na+Ar3, and 0.18 kcal/mol for K+Ar3.
With the ab initio MP2 calculation, the many-body terms contain
various terms, including the electron delocalization over three
or four atoms (ion). In the second-order perturbation theory for
molecular interaction, the leading many-body term is supposed
to be the induced dipole-induced dipole interaction. The
induced dipole moment is proportional toRAr/Rion-Ar

2. There-

Figure 5. (a) The potential energy curves of Na+Ar3 as a function of
the angle∠Ar2NaAr3. All of the bond lengthsR(Na-Ar) is fixed at
2.800 Å. O: MP2/6-311++G(3df). 0: Vpair(Na+Ar3), a sum of the
paired potential energy functions determined for diatomic molecules.
(b) The differenceVMP2(Na+Ar3) - Vpair(Na+Ar3). (c) The planar
geometry of M+Ar3.

Figure 6. (a) The potential energy curves of Li+Ar3 as a function of
the angle∠Ar2LiAr 3. All of the bond lengthsR(Li-Ar) is fixed at
2.356 Å. O: MP2/6-311++G(3df). 0: Vpair(Li +Ar3), a sum of the
paired potential energy functions determined for diatomic molecules.
(b) 0: the differenceVMP2(Li +Ar3) - Vpair(Li +Ar3). O: a plot of eq 4.
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fore, the terms decrease with the ionic radius. In the present
planar M+Ar3 model, the term is given as

where the absolute-induced dipole moment is|µi| ) RAr/Rion-Ar
2.

For the model configuration in Figure 5c, the function can be
written as

which has a single minimum atθ ) 120°. In Figure 6b, the
function is plotted by assuming thatRA

2/R7 ) 1.23 kcal/mol,
which is determined as the plots ofVid-id and VMP2 - Vpair

coincide to each other at the bottom. Both plots have a minimum
at θ ) 120°, and the curves are close to each other between
110° and 150°. Outside of these angles, where the distances
between argon atoms are short, two curves differ very much.
The difference is prominent for Na+Ar3 and K+Ar3 becauseVMP2

- Vpair has two minima as is seen in Figure 5b and 7b. These
differences imply that there are the many-body terms other than
Vid-id, however small they are in absolute values. The ratio of
VMP2 - Vpair at θ ) 120° for Li+Ar3, Na+Ar3, and K+Ar3 is
1.23:0.53:0.19 (kcal/mol)) 1:0.43:0.15, which deviates, al-
though not very much, from the ratio of 1/RM+-Ar

7, (1/2.356)7:
(1/2.800)7: (1/3.245)7 ) 1:0.30:0.11. Although further numerical
and theoretical studies are required to identify the cause of the
many-body interaction terms, the double minima inVMP2 - Vpair

for Na+Ar3 and K+Ar3, similar toVpair, suggest that three-body
terms among three argon atoms may contribute to it.

Thermochemical Parameters and Magic Numbers of
Na+Ar n Clusters. A few thermochemical parameters for an
addition reaction of an Ar atom to Na+Arn-1,

are evaluated using the calculated harmonic frequencies. The
equilibrium constantK

is estimated with the changes of Gibbs free energies (∆Gn,n-1),
enthalpies (∆Hn,n-1), and entropies (∆Sn,n-1) between Na+Arn

and Na+Arn-1 + Ar. Figure 8 shows lnK plots versus 1/T
between 10 and 100 K. They are all linear in this temperature
region. It is because all of the vibrational modes have low
frequencies; the largest forn ) 6 is 146 cm-1. In Table 4, the
least-squares fitted〈∆Hn,n-1〉 and〈∆Sn,n-1〉 are given; they are
practically equal to∆Hn,n-1

50K and∆Sn,n-1
50K. In the table, the

Figure 7. (a) The potential energy curves of K+Ar3 as a function of
the angle∠Ar2KAr3. All of the bond lengthsR(K-Ar) are fixed at
3.245 Å.O: MP2/6-311++G(3df).0: Vpair(K+Ar3), a sum of the paired
potential energy functions determined for diatomic molecules. (b) The
differenceVMP2(K+Ar3) - Vpair(K+Ar3).

Figure 8. The van’t Hoff plot of Na+Arn-1 + Ar f Na+Arn.

TABLE 4: The Total Energy Difference (∆En,n-1/kcal
mol-1) and Enthalpy and Entropy Changes (〈∆Hn,n-1〉/kcal
mol-1 and 〈∆Sn,n-1〉/cal K-1mol-1) in Reaction Na+Ar n-1 +
Ar f Na+Ar n

a

n ∆En,n-1 〈∆Hn,n-1〉 〈∆Sn,n-1〉
1 -4.08 -3.97 -10.75
2 -4.08 -3.94 -17.24
3 -4.02 -3.89 -11.77
4 -4.21 -4.05 -18.95
5 -4.19 -4.05 -20.96
6 -4.37 -4.23 -27.34
7 -2.60 -2.43 -21.73
8 -3.05 -2.94 -26.96
9 -2.28 -2.20 -19.83

10 -2.30 -2.19 -24.09

a The changes〈∆Hn,n-1〉 ) 〈Hn - Hn-1〉 and〈∆Sn,n-1〉 ) 〈Sn - Sn-1〉
are estimated with a least-squares fitting of eq 6.

Na+Arn-1 + Ar f Na+Arn (5)

ln K ) -
∆Gn,n-1

RT
) -

∆Hn,n-1

RT
+

∆Sn,n-1

R
(6)

Vid-id(R,θ)

) 2

R3
Ar1-Ar2

{µ1‚µ2 - 3(µ1‚
RAr1-Ar2

RAr1-Ar2
)(µ2‚

RAr1-Ar2

RAr1-Ar2
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incremental binding energy∆En,n-1 is also given, which is in
parallel with∆Hn,n-1. For n ) 1-6, the lines almost coincide
with each other. The slopes of the line forn ) 7, 9, and 10 are
much smaller than those forn e 6, while that forn ) 8 is
between them. It is the geometric changes that reflect the
incremental enthalpy change∆Hn,n-1 and binding energy change
∆En,n-1 at n ) 7. The octahedral Na+Ar6 is very stable, and
〈∆Hn,n-1〉 for n ) 6 is the largest-4.23 kcal mol-1 among the
calculated ones. There are 12 of the attractive short Ar-Ar pairs,
and their distance is as short as forn ) 5 (see Table 2). Forn
) 7, on the other hand, the ion-argon distances increase
because of the congestion of argon atoms, which is seen in the
shorter Ar-Ar distances thanReq of Ar2 as shown in Table 2.
So the stability gain by adding an atom is small.

The incremental enthalpy change slightly increases forn )
8, although the ion-argon distances are further lengthened. The
structure is SA. For Na+Ar9, an atom is on the top of cap, far
apart from the ionic center Na+. The capping Ar atom is
regarded as the first member belonging to the second shell. The
change〈∆H9,8〉 is smaller than〈∆H7,6〉. By adding one more
cap to Na+Ar9, Na+Ar10 of CSA configuration is formed; the
change〈∆H10,9〉 is nearly equal to〈∆H9,8〉.

To compare the above results with the results calculated using
the MD simulation by Prekas et al.,7 the second difference of
the total energy∆2E(N), defined as

is evaluated and is shown in Figure 9, along with the second
difference of entropy change. Both diagrams show clear
distinction atn ) 6 and 8, where the geometric shell closes by
forming the octahedral (triangle antiprism) and square antiprism
configuration. This is consistent with the reported mass spec-
trum,8 which shows the relatively stronger peaks atn ) 6, 8,
and 10 than at the neighboringn, although we have not evaluated
∆2E(10).

In their MD simulation, Prekas et al. used the ratioR* ≡
RM+-X/RX-X and ε* ≡ εM+-X/εX-X as parameters, whereε is
the parameter of the (6, 12) function. They showed theR* and
ε* dependence of∆2E(N). Although the ratio is 0.75 (or 0.80)
for Na+Arn, our calculated∆2E(N) is more similar to their
∆2E(N) for R* ) 0.73 than forR* ) 0.75 withε* ) 10. In the
MD, there is a clear difference in∆2E(N) for the twoR*; for
R* ) 0.73,∆2E(6) is about twice as large as∆2E(8), as in our
calculated∆2E(N) in Figure 9. On the other hand, forR* )
0.75, ∆2E(6) is about a half of∆2E(8). Probably because the
potential energy function ofε* ) 10 is weaker for the ion-
rare gas atom in the MD than ours,∆2E(N) by the simulation
with the apparent smaller ionic radius (thus smallerR*) becomes
similar to our ∆2E(N). In our calculations, the difference of
∆2E(6) and ∆2E(8) results from the extra stability of the
octahedron (trigonal antiprism) structure of Na+Ar6, in which
all of equivalent argon atoms are attractive to each other. On
the other hand, in the square antiprism structure of Na+Ar8,
even for the longer Na+-Ar distance, there are too close Ar-
Ar pairs, whose distance is 3.583 Å, shorter thanReq() 3.792
Å) of Ar2; the Ar-Ar distance is at the repulsive wall of the
potential energy function.

Conclusion and Future Works

For Na+Arn clusters in our ab initio calculations, the large
stability changes are atn ) 6 and 8, which is consistent with
the characteristics of the reported mass spectrum pattern. They
correspond to the compact geometric structure of trigonal and
square antiprisms (TA and SA). The attractive interaction among
rare gas atoms plays an important role in determining the
geometric structure, though if too congested, the interaction
becomes repulsive. In the absolute values, the pair wise
interaction dominates most of the binding energy, but the
detailed analysis of the symmetry breaking of M+Ar3 (M ) Li,
Na, and K) reveals that the many-body interaction is important
in determining the geometric structure. The induced dipole-
induced dipole interaction is dominant in the many-body terms,
but there are extra terms. Detailed investigations are needed by
using the energy decomposition schemes18-20 in the correlated
level of theories. Our locally projected perturbation expansion
can be applied for the analysis.14 In our estimation for
thermochemical parameters, the harmonic approximation is used
but it is expected to be a crude approximation. In future works,
molecular dynamics with accurate many-body potential energy
functions should be carried out. As shown in M+Ar3, the
comparison with the clusters Li+Arn and K+Arn are interesting
even for the most stable conformation. In particular, the
interaction among argon atoms is dominant in K+Arn, which
might be related to the observed difference in the mass patterns
in Na+Arn and K+Arn. Clusters with various values ofR* rather
than boundaries should be studied with more realistic many-
body interaction energy functions.
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