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In this paper we discuss some aspects regarding the role of the guiding function and the optimization process
in obtaining vibrational spectra of molecules using correlation function quantum Monte Carlo method. We
start with the guiding function most used in these calculations and verify how its parameters affect the
integration of the matrix elements involved in the problem. We then study how the optimization process
influences the accuracy of the results. The results point out that there is an optimum parameterization of the
guiding function, which in turn gives better accuracy and lower statistical errors. They also indicate that in
order to improve the accuracy of the higher excited states, one should include them in the optimization process.

1. Introduction subject in recent papet$!® For the purpose of this paper, we
) perform a systematic study at the VMC level of two diatomic
The quantum Monte Carlo methods (QMC) have been pointed gystems: the Morse potential parameterized for thenblecule
out as an alternative to the traditional methods for computing 54 a two minima model potential. We seek to utilize the
excited states of molecular systems with many degrees Ofsimplicity of the systems to better understand these two
freedom:™*° There are different QMC methodologies that have important aspects of the CFQMC procedure. Our final goal is
been proposed and utilized within this contéxfThe main 4, establish a simple procedure to allow the calculation of the
advantage of the use of stochastic methods is that the compuyited states of polyatomic molecules with spectroscopic
tational effort does not grow exponentially with the number of accuracy using the CFQMC method. The paper is organized as
atoms. Thus, allowing to study systems with more than four ¢,ios. In the next section we briefly present the CFQMC
atoms without major modifications. method. In section 3 we introduce the trial wave function and
One of the QMC methods that has been most used to computethe guiding function used in this work and discuss the
vibrational and ro-vibrational spectra of molecular systems is gptimization procedure. In section 4 we present our results, and
the correlation function quantum Monte Carlo (CFQMC) in the last section we make our final remarks.
method®6:1218 This method combines the conventional basis
set approach with QMC techniques (variational Monte Carlo 2. Correlation Function Quantum Monte Carlo
(VMC) and diffusion Monte Carlo (DMC)) for multidimensional
integral sampling (see ref 11 for a comprehensive review). The
CFQMC method has reached accuracy of about 1% or less for

the systems studied, within a few wavenumberd@ cm). olve any quantum system. The vibrational energy levels of a
But one wishes to reach spectroscopic accuracy of the standard® ya y Ny . 9y -
molecular system are obtained by solving the following eigen-

methods for tri- and tetraatomic systems (less than 11pand )
to calculate properties of highly excited states. To achieve thesevalue problem:
goals two important aspects have to be considered: the proper I:|<I)(R) = E®(R) 1)
integration of the multidimensional integrals, where the guiding

function plays an important role; and the quality of the trial The Hamiltonian operator associated with the relative motion
basis functions. The quality of the basis functions can be of particles (excluding the kinetic energy of the center of mass)
approached from two different points of view, the first one is s given a2

its functional form, and the second one is the optimization

In this section we summarize the CFQMC method to obtain
the vibrational energy levels of molecular systems. We remem-
ber that the method is general and can be applied, a priori, to

procedure. . N-1 p2 X
The aim of this work is two-fold: first the study of the role H=- Z — V" +V(R) )
of the guiding function in the integral sampling and second the =145

study of the optimization procedure of the free parameters of a ) ) ) . .
given trial basis set. The functional form of the basis functions Where i is the ith reduced massy; are the Lapiamzans n
will not be explored here; however, it has been the central three-dimensional (3D) Cartesian coordinatess (R, R, -,
RN-1) is the vectorial representation of tHe - 1) 3D vectors
* Corresponding author, E-mail: prudente@ufba.br. R' written in Cartesian coordinatég(R) is thg potential energy
t Universidade Federal da Bahia. surface (PES), an& and ®(R) are the eigenvalue and the
* Universidade de Bréa. eigenfunction oH. It is important to point out that the removal
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of the center of mass term and even the use a particularand
coordinate system choice is arbitrary and the present procedure

is valid for any choice. _ Hf(R)

Within the spirit of the RayleighRitz variational principle, ELﬂ(R) Tt (R) (11)
the problem is transformed into finding the stationary solutions b
of the functionalJ[®] given by is the local energy associated with thebasis function. The

. integral equations 8 and 9 are then evaluated using the random
J] = f P*(R)(H— E) @ (R) dR 3) walk {R1,R2,-+,Rp} generated according to the probability
distribution P(R) = |W(R)|? as follows28
To obtain the eigenenergies and the eigenfunctions numerically,
the wave function is first expanded using a finite basis set 12°
{fa(R)} Hop = B Z‘ Fo(R)F(R)EL4(R) (12)
iE
M
OR)= 5 cf(R) (4  and
a=1 1 p

where{c,} are the expansion coefficients akidis the number S = B iZ‘ Fa(Ri)Fﬂ(Ri) (13)

of elements of the basis set. Thelj®] is required to be

stationary under variations of such coefficients. The variational \herep is the number of random walk steps. In this procedure,
procedure converts the problem into that of solving a generalized gach calculated Hamiltonian and overlap matrix element has a
eigenvalue problem statistical uncertainty which offers an estimate of the precision
He = ESc ®) of the integrz_al calcu_lations. For eqgs 1_2 and 133 the statistical
errors associated with a VMC calculation are giveR8hy

p (FulR)FH(R)E (R))
Hys = [ fA(R)AR(R) dR 6 Et)=—|3 ; -
are the Hamiltonian matrixH) elements, and P ( b Fo(R)F4(R)E, (R-))Z 172
o 1 1 B 1
(14)

Sy = [ fA(RfR(R) dR (7)

are the overlap matrix§) elements. An essential key of the and
variational procedure is how to compute these integrals with
high precision. 1 | 2 (Fu(R)F4R))
The CFQMC consists of employing the quantum Monte Carlo Er(S,;) = — _—
techniques (VMC or DMC) to evaluate the multidimensional pli=t p
integrals (eqs 6 and 7). It differs from the usual QMC metRbds (
I

wherec is the vector of coefficients,

= p

1/2
because it allows one to calculate directly various excited states P Fo(R)F4(R))? (15)
of the system. Usually, the calculation of the eigenvalues for a - p
given Hamiltonian using the CFQMC method is done in two
steps: a VMC step, where a good simple approximation to the |t js important to point out that the guiding function is
excited eigenfunctiongf.} is used; and a DMC step, where  responsible for the efficiency of the Metropolis integration.
the solutions of the variational diagonalization procedure are  The second step (DMC) is to “project” the basis functions
used as the basis functions. This procedure was proposed by ¢,} (where{¢,} are the solutions of the previous step) using
Bernu et aP to reduce the round-off errors and the number of the operatorC(H) = exp(— zH/2). This second step is very
basis functions used in the calculation. important to improve the accuracy of the spectra, within the
The first step (VMC) is to compute the Hamiltonian and same set of trial wave functions. However, as we are more
overlap matrix elements (eq 6 and eq 7, respectively) using theinterested in the basis function optimization we restricted
Metropolis algorithn?2 For this purpose, we have to introduce ourselves to the VMC step. We will not discuss the diffusion
in egs 6 and 7 an assistant probability distributiB(R), which Monte Carlo version of CFQMC any further, and a complete

is named guiding function. The Hamiltonian and the overlap description of the method can be found in refs 5, 11, and 13.
matrix elements are rewritten as

3. Trial Basis Set and Guiding Functions

Hys = [ TP (R)IPF(R)F4(R)E 4(R) dR 8) 3.1. General AspectsThe procedure to build the trial basis
set{f,} and the guiding function?(R) will depend on the
characteristics of the quantum system. However, some general

5 aspects must always be considered, independent of the physical
Sy = [ IWR)IF,(RF4R) dR 9) system. (i) The guiding function must be positively defined and
nonzero wherever the potential is finite, in order to avoid large
where statistical fluctuations. Moreover, it is important to reflect the
f properties of the ground and excited states considered in the
(R) = oR) (10) calculation. (i) The trial basis functions need to be generated
¢ Y(R) in a simple fashion. The trial functions (and their derivatives)

and
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must be easy to evaluate and must permit an easy generalizatioMorse potential. For this, we will discuss the size and distribu-
for any multidimensional system. It is also important that a linear tion of the statistical errors of the Hamiltonian and overlap
combination of these basis functions describe reasonably wellmatrix elements (eqs 14 and 15), and we will compare these
the ground and excited states of the system. We will addressCFQMC results with those obtained from a numerically “exact”
here these issues for vibrational excited states of molecules.integration (using the conventional numerical quadrature rules)
Examples of trial basis functions and guiding functions for other for the same basis set. Moreover, we will analyze the behavior
quantum problems (including rotational motion) can be found of the guiding function to obtain the excited vibrational states
in refs 11, 23-25. accurately in the case where the potential curve has more then

3.2. Vibrational States.In CFQMC applications there have  one minimum.
been a few basis functions used to describe the ground and 3.4. Excited States Optimization.Another aspect that we
excited vibrational state eigenfunctioh®:1319n this work we want to stress is how the optimization of the nonlinear
have explored only one of them as we are more interested inparameter§A,,} of the basis set influences the description of
the optimization procedure and not in the particular functional excited states. In traditional ground state QMC calculations, one
form of the basis functions. Moreover, the optimization proce- usually minimizes the total energy of the system (the average
dure, which we will discuss in subsection 3.4, is general and value of the local energyE [W] = HW/W)) with respect to
can be employed for all previously utilized basis sets. The trial the square of the guiding function. Umrigar e€shave shown
basis functions used in the present paper are the ones used bthat the minimization of the variance of the local energy can
Acioli and Soares Net& This basis set has been widely used be a powerful strategy to optimize the trial ground-state function.
to treat di-, tri-, and tetraatomic moleculgsDefining {S} as In another paper, Bressanini and Reyn&idsave discussed
the vibrational coordinate set andax the number of these  some interesting aspects of the VMC method as well as the
coordinate5,§ as the value of thesth coordinate in the different ways to optimize the ground-state trial wave function
minimum of the PES, andS, = S, — $f the basis setis given ~ parameters at the VMC level. In most ground-state QMC
by calculations one minimizes the local energy and/or its variance.

Ceperley and Berrtf have proposed the same procedure in
Ninax the CFQMC method. That is, they minimize the local energy
f,= exp(z ASA,,AS) I_l ASV”"(“) (16) (or its variance) of the trial ground-state wave functigfiR)
v=1 (eq 18) and use these parameters in the excited-state calculation.
Brown et al*2 have minimized the energy of a few excited states.
Silva and Aciolt® have used this procedure in their study of
trial basis sets for determination of vibrational spectra using
CFQMC. Recently, Nightingale and Melik-Alaverdfdrhave
proposed a different procedure for excited states optimization,
based in the minimization of the sum of the squared residuals
with respect to eigenenergies.

In this work we propose a procedure similar to those proposed
by Brown et al. We start from the minimization with respect to
the ground state, using the Umrigar et al. procedure. We then
optimize the nonlinear parametefg,,,} with respect to the
energy of the firshexc excited states, minimizing the functional

v

where the{A,,} are the parameters that will be optimized in
order to improve the accuracy of the excited states, and
represents the set of exponenisthat defines thé, function.

Note that the basis set (eq 16) is defined considering that there
is one minimum in the PES. In subsection 4.2 we will discuss
the difficulties and present a strategy to deal with a two-minima
PES.

3.3. Guiding Function. Another open problem is the choice
of the guiding function®(R) which satisfies the properties
mentioned above. In particular, one wants the guiding function
to be large wherever any excited basis function is large and
small only when all basis functions are small. Bernu €t al

proposed a simple form that has been used in all CFQMC ro- Nexc
vibrational calculations, that is: F{AL} = Z E[{A,}] — Ej{A,}] (20)
W(R) = (fo(R)"" (7) *

where {E[{A.}]} are the eigenvalues of the generalized
where fo(R) is the vibrational ground-state basis function eigenvalue problem (eq 5) for a short VMC calculation. The

(n, = 0 O ») given by difference with respect to the work of Brown et al. is that here
we try to understand qualitatively the effect of the number of

f(R) = exp(z ASA, ,AS) (18) excited states included in the optimization procedure in the

v accuracy of the calculation. For this, we will study the difference

) ) ) ) ) of the CFQMC calculations from the exact eigenvalues as a
The parameten in eq 17 is very important in our study. This  fynction of the number of excited states included in the
parameter controls the shape of the guiding function; it means yinimization flex). We will also study the shape of the ground-
that whem changes, the width of the functid#(R) is modified. state trial wave function (eq 18) as a function rafe in the

This parameter is set according to the number of desired excitedgptimization procedure and the behavior when we increase the
states. To ensure correct integration of all states included in humber of basis functions.

the calculation, for example, Bernu etfaproposed that the
parametemn could be chosen of the following way: 4. Results

n=r2 (19) 4.1. Morse Potential (H). In this section we discuss the
results for the vibrational spectrum of the Morse potential
whereT is the order of the highest excited local mode exponents
n, desired in the calculation. V(r) =D{1— exp[- p(r — re[,)]}2 (21)
Ouir first goal in this paper is to explore the properties of the
guiding function of the form of eq 17 and the role of the with D¢ = 0.1744,5 = 1.02764,r. = 1.40201, and for the
parameten to assert an accurate integration sampling for the reduced mass we used = 918.57635. These parameters
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TABLE 1: Difference between the Exact Vibrational States of the Morse Potential (H) and the CFQMC Ones Calculated
Using Different Number of Excited States in the Optimizatior?

|c|CFQMC

v Nexc =0 Nexc = 3 Nexc=5 Nexc =7 Nexc = 10 Nexc = 12 Nexc = 16 exact

0 0.02(0.91) 0.01(0.52) 0.01(0.62) 0.02(0.56) 0.00(0.54) 0.06(0.77) —0.04(0.57) 2165.95
1 0.03(0.69) 0.02(0.43) 0.01(0.59) 0.03(0.46) 0.00(0.30) 0.03(0.58) —0.60(0.84) 6308.60
2 0.04(0.78) 0.01(0.40) 0.01(0.48) 0.01(0.41) —0.06(0.33) —0.02(0.51) —5.25(2.00) 10198.93
3 —0.05(0.69) 0.00(0.35) 0.02(0.38) 0.00(0.38) —0.36(0.41) —0.45(0.62) —18.01(4.49) 13836.94
4 —2.85(0.87) 0.00(0.32) 0.02(0.35) —0.01(0.37) —1.44(0.74) —2.51(1.02) —37.23(6.99) 17222.63
5 —46.42(2.70) —0.39(0.34) 0.00(0.41) —0.04(0.36) —3.61(1.24) —6.86(1.63) —82.44(6.49) 20356.00
6 —330.88(6.29) —10.05(1.22) —0.12(0.39) —0.13(0.38) —6.19(1.85) —12.26(2.94) —194.30(7.81) 23237.05
7 —1190.18(10.88) —113.50(5.31) —2.37(0.62) —0.35(0.44) —10.09(1.74) —17.69(4.15) —364.27(13.02) 25865.79
8 —2787.06(14.99) —592.08(15.29) —43.53(2.24) —15.82(1.52) —19.54(1.75) —26.00(4.23) —525.09(29.80) 28242.20

aNumbers in parentheses denote the error bars and the results aretin cm

describe theH, molecule and are given in atomic units. For To understand the direct relationship between the integration
this case, the vibrational eigenvalues (in atomic units) assumeof Hys and S, matrix elements and the final CFQMC results

the following analytical forré® (eigenvalues and statistical error bars), we have calculated the
following quantity??
_ I i R\ L
SRS RV - TR N o e i e Y
Sl HEY)/@ 9
under the condition e
with the respective statistical error bars given by
n< V4D 1 23)
po 2 Hao | _ St Er(Hag ) — How' ENS%)
Ed—ouc| = o (25)
This leads to a total of 17 vibrational bound states. o (M9

The first and important aspects analyzed are the size of the

statistical error and the accuracy of the CFQMC results as afor each diagonal element of the Hamiltonian and overlap matrix

function of the exponent in the guiding function (eq 17). For (Er(HS(Q"C) and Er@&"c) are given by egs 14 and 15, respec-

this, we have used 21 basis functions to compute the eigenvalueg;yely). This way we can highlight the quality of the integration
of Hz by employing the CFQMC procedure and using an “exact” ot each matrix element. For example, the statistical errors of
quadrature integration (EQI) of eqs 6 and 7 as a comparison. e Hao/Swa for the first diagonal element are 64 1074,

For eacm = 3, 4, 6, 8, 10, 15, and 20 in the guiding function, 6.7x 1074 7.4x 1074 8.0x 104 8.4 x 104 9.3x 1074,

the CFQMC eigenvalues and the respective statistical error bars;nq 1.0x 10-3 for n = 3, 4, 6, 8, 10, 15, and 20, respectively,
(EXC + Er(E?M)) were computed from 32 different random  while those for the 9th diagonal element are £.90-3, 1.1 x
walks where we set for each of them a different seed for the 103 1.0 x 1073, 9.4 x 1074 9.2 x 1074, 9.1 x 104, and

random number generator as well as a different starting point. 9 3 «x 104, and for the 18th diagonal element the statistical
The resultd! indicate that the relative errors between the EQl grrors are 9.9¢ 1073, 4.6 x 103, 2.2 x 1073, 1.4 x 1073,

and the CFQMC for all 21 eigenvaluesE, = (E; ' — EXV¢)/ 1.1 x 103 1.0 x 1073, and 9.9x 1074, respectively. These
E-?) and the respective relative statistical error baEs- (indicate that for the highly excited basis functions the integration
(ESMC)/EEQ') depend strongly om. For certain eigenvalues, is done better fon > 8, while for the first diagonal elements
the difference among the statistical error bars for different  the ones fon < 6 are a little better. So, it is important to balance
can arrive up to 19 For example, for the 16th excited state, between these two opposite situations (particularly, in our
we have obtained that the relative statistical error bars are analysis from now on we decided to use= 10). Moreover,

25x 102 40x 108 1.1x 108 7.4x 104 4.9x 104, we can note that the relative error in the eigenvalues is, in
49 x 104 and 3.9x 10*forn= 3, 4, 6, 8, 10, 15, and 20, general, of the same order of magnitude of the relative error in
respectively. Moreover, we have observed thatrfer 3 the the integration of théd and S matrix elements.

CFQMC eigenvalues are well below those obtained from the Now we turn our attention to the optimization procedure
“exact” quadrature integration; this difference for the 8th excited discussed in subsection 3.4. In Table 1 we display the difference
state is124 cnrl, while for the 15th excited state it 264 between the CFQMC and the exact eigenvalues of the first nine
cm~L. This is due to the fact that the matrix elements associated states as a function of the number of excited states included in
with the higher excited basis functions are poorly integrated, the optimization exc in eq 20). All CFQMC results are

as we will discuss below. Although for = 8 the results look computed using 21 basis functions. The average difference of
already satisfactory (with the relative statistical error bars around the CFQMC results from the exact ones for these states are
1074), the best results are achieved for= 20 considering both 4845, 79.6,5.1, 1.8, 4.6, 7.3, and 137.4¢énfor neyc = 0, 3,

the relative errors and the statistical error bars. Another 5, 7, 10, 12, and 16, respectively, while the average statistical
important aspect to point out is that the statistical error of a errors are 4.3, 2.7, 0.7, 0.5, 1.0, 1.8, and 8.0tm

given state indicates very well the precision of the result because One can see that the inclusion of more states improves the
the relative errors are always inside of the statistical error bars. accuracy of the results up to an ideglc, in this cas@ex. = 7.
Using the previoulsy defined rule of thumb of Bernu et al. (eq This can be better seen in Figure 1. In this figure we plot the
19), the parameter should be approximately 4, for the 21 basis difference of the CFQMC results from the exact ones for the
functions that we used in this calculation. first 12 bound states of the system as a functiomgf. The
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TABLE 2: Difference between the CFQMC and Exact
Vibrational States of the Morse Potential (H;) for CFQMC
Calculations Using 31 Basis Functions with Different
o Number of Excited States in the Optimizatior?
£~ 400 P CFQMC
g : L n Nexc=7 Nexe = 12 Nexc = 16 exact
f 0 —0.1(0.5) 0.0(0.8) —0.1(0.2) 2165.9
1 0.0(0.6) 0.0(0.5) —0.2(0.6) 6308.6
2 0.0(0.6) 0.0(0.4) —0.1(0.4) 10198.9
3 0.0(0.6) 0.0(0.4) 0.0(0.2) 13836.9
- nn g 4 0.0(0.5) 0.0(0.4) 0.2(0.2) 17222.6
0o 2 4 6 8 10 12 5 0.0(0.5) 0.0(0.4) 1.1(0.7) 20356.0
6 0.0(0.6) 0.0(0.3) 4.4(1.8) 23237.1
v 7 0.0(0.6) 0.0(0.4) 9.8(3.5) 25865.8
Figure 1. Difference of the CFQMC and exact vibrational energy levels 8 0.0(0.6) 0.1(0.4) 14.4(5.1) 28242.2
of the Morse potential for different excited states optimized parameters 9 2.7(0.9) 0.3(0.8) 17.5(8.3) 30366.3
(first 13 states): (empty squarey.= 0, (full squarele.= 3, (empty 10 49.4(3.6) 0.6(1.3) 21.3(12.6) 32238.1
circle) nexe = 5, (full circle) nexc = 7, (empty up trianglefexc = 10, 11 330.8(15.0) 4.1(3.9) 28.5(15.3) 33857.5
(full up triangle) nex = 12, and (full down triangle}ie,c = 16. aNumbers in parentheses denote the error bars and the results are
in cm L,
—n,.=0
s R = 7 H T
== Ny =16 i [
80 | P A
g .
E 40 / b
=1 Y
< - Ji
20 - .
%0 1.0 2.0 3.0 40 5.0 - ¢ !
e olam et oo et .t
Figure 2. Trial ground-state wave functions for different number of i
excited states included in the optimization procedure. e 2 4 6B M0 2
v
trend is that the higher excited states improvengg grows. Figure 3. Difference between the CFQMC withy. = 12 optimized
However, the low and intermediate states are worsened after aParameters and exact vibrational energy levels of the Morse potential
thresholdne10. for different number of the basis functions (first 13 states): (full square)

. . . 21 basis functions, (full circle) 26 basis functions, and (full up triangle)
To understand this trend we plot the ground-state trial function 31 pasis functions.

(n,(i) = 0 in eq 16) fornexc = 0, 7, and 16 in Figure 2. For

Nexc = 0 the function is centered near the minimum of the well; - jndication that one needs to be very careful before pointing out
as we increasgexc the function is centered at larger interatomic 5 general rule about this behavior. However, we note that this
separations and becomes broader. To improve the higher excitethptimization procedure yields more accurate results and goes

states, the basis sets need to describe the states at largapward our main goal of reaching spectroscopic accuracy with
interatomic separations. But as the function becomes broadergic.

and off centered, the approximation of the low-lying states is
worse. The optimum parameters, for this trial wave function,
will be a balance of these two regimes. For the case studied th
optimum result is achieved when we include seven excited stat
in the optimizations procedure. Moreover, we reach the spe
troscopic accuracyAE, < 1 cnt?) for the first eight states
using only 21 basis functions.

However, the optimum parameters for the problem using 21
basis functions will not be the best parameters for a basis set
with a larger number of functions. This aspect can be seen in
Table 2, where we show the differences of the CFQMC results With D1 = 4.0, 5 = 0.2,r; = 7.5,D, = 2, f = 0.09, and
calculated using 31 basis functions from the exact ones for 2 = 25.0 (arbitrary units). We used= 1.0 andh = 1.0. The
different optimized parameterse. = 7, 12, and 16). In this  potential is shown in Figure 4.
case, we can see that the better results are fromghe= 12. The focus in this system is the study of the role of the guiding
The average difference for the 12 first states are 31.9, 0.4, andfunction to accurately obtain all the excited states. This system
8.1 cnmfor nexe= 7, 12, and 16, respectively. And the average has three different sets of states. The first is a set mostly
statistical errors are 2.5, 0.8, and 4.1 ¢nprespectively. Note localized in the first well, which we call the Morse states. The
that we obtain the spectroscopic accuracy for the first 11 statessecond is mostly localized in the second minimum, which we
using the optimized parameters fag. = 12. In Figure 3, we call the harmonic states. The third set is composed of states
display the differences of our CFQMC results witky. = 12 with amplitude in both wells, which we call mixed states. The
optimized parameters from the exact ones for the first 13 statesguiding function and the basis functions should be flexible
as a function of the number of the basis functions. This is an enough to describe all the states.

4.2. Two Minima Model Potential. Now we focus our
attention in a model potential that has more than one minimum.
®This type of potential is very important in physical chemistry
©Sdue to the fact that these potentials are related to systems that
- have different isomeric forms, such as HCN and HCCH. The
model potential that we proposed is given by

V(r)=D,(1— e P2 —p, — D (26)
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5.0 We used 21 basis functions centered in each well. The
parameters for the function centered in the first wgl= 7.59
andA; = 0.12, for the second set we used= 26.0 andA; =

0.05. For the guiding function we uséd= 0.05 andr. = 8.5.

This expansion produces a better integration as we can see in
the results, the spectra of the right side in Figure 5, which display
all 17 bound states. This kind of wave functions can also be
used in the simple one minimum potential and should improve
the quality of the highly excited states.

V(r) (a.u.)
o
o

0.0 10.0 200 300 5. Concluding Remarks

r(a.u.)

Figure 4. Modified two-minima potential from the eq 26. In this paper we have presented a systematic study of the
i influence of the guiding function in the integration sampling
-—_ and of the optimization procedure of the trial basis function
-fo000 F O — 1 parameters considering a small set of excited states in order to
obtain vibrational spectra with spectroscopic accuracy using
correlation function quantum Monte Carlo method. We studied
1 two simple one-dimensional models, the Morse potential and a
modified Morse potential, with an additional Gaussian mini-
. -~ — ZIZ=TZ mum.
500000 —_—_—— e . We have made several conclusions. (i) There is an optimum
value of the exponent parameternf the guiding function in
eq 17. This value depends of the number of the excited states
considered but it is larger than the square root of the number of
excited states included in the basis set. (ii) The procedure of
S ——— o optimizing only the ground state is good to describe the low
lying states of the system. However, to describe higher excited
states one should include an excited-state optimization. More-
over, given a basis set, there is an optimum number of excited
states that should be included in the optimization procedure.
We usen = 8 in the guiding function (eq 17) and 21 basis (iii) When we increase the number of basis functions it becomes
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Eigenstates (a
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Figure 5. Vibrational spectra of the modified potential with different
guiding and basis functions.

functions of the type clear that this number is smaller than the total number of basis
functions. (iv) If the problem is more complex, with more than
f(r)=(-— rQ"ae*A(r*fe)z (27) one minimum, both the guiding function and the trial basis set

must be flexible enough and have non-negligible amplitude in

In the first calculation we used the basis functions and the all the regions of interest.
guiding function centered in the first wellA = 0.2525 and, Although we restricted ourselves to simple one-dimensional
= 7.59. In the second calculation we used the basis functionsproblems, all the conclusions drawn for both the guiding
and the guiding function centered in the second wAlk= 0.2 function and the optimization of excited states should apply for
andre = 24.664. In the third calculation we used a function systems with more dimensions. Preliminary calculations for the
centered between wellsA = 0.2 andr. = 8.17. water molecule show that this is indeed the case.

The results are shown on Figure 5. The exact results are 17
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equally spaced DVR grid points (which were developed by  Supporting Information Available: Two tables of ex-
Colbert and Mille?®) and integrate in the interval = [0.0, panded results data. This material is available free of charge
100.0] (in arbitrary units). In the first CFQMC calculation we Via the Internet at http://pubs.acs.org.
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