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In this paper we discuss some aspects regarding the role of the guiding function and the optimization process
in obtaining vibrational spectra of molecules using correlation function quantum Monte Carlo method. We
start with the guiding function most used in these calculations and verify how its parameters affect the
integration of the matrix elements involved in the problem. We then study how the optimization process
influences the accuracy of the results. The results point out that there is an optimum parameterization of the
guiding function, which in turn gives better accuracy and lower statistical errors. They also indicate that in
order to improve the accuracy of the higher excited states, one should include them in the optimization process.

1. Introduction

The quantum Monte Carlo methods (QMC) have been pointed
out as an alternative to the traditional methods for computing
excited states of molecular systems with many degrees of
freedom.1-10 There are different QMC methodologies that have
been proposed and utilized within this context.11 The main
advantage of the use of stochastic methods is that the compu-
tational effort does not grow exponentially with the number of
atoms. Thus, allowing to study systems with more than four
atoms without major modifications.

One of the QMC methods that has been most used to compute
vibrational and ro-vibrational spectra of molecular systems is
the correlation function quantum Monte Carlo (CFQMC)
method.5,6,12-18 This method combines the conventional basis
set approach with QMC techniques (variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC)) for multidimensional
integral sampling (see ref 11 for a comprehensive review). The
CFQMC method has reached accuracy of about 1% or less for
the systems studied, within a few wavenumbers (≈10 cm-1).
But one wishes to reach spectroscopic accuracy of the standard
methods for tri- and tetraatomic systems (less than 1 cm-1) and
to calculate properties of highly excited states. To achieve these
goals two important aspects have to be considered: the proper
integration of the multidimensional integrals, where the guiding
function plays an important role; and the quality of the trial
basis functions. The quality of the basis functions can be
approached from two different points of view, the first one is
its functional form, and the second one is the optimization
procedure.

The aim of this work is two-fold: first the study of the role
of the guiding function in the integral sampling and second the
study of the optimization procedure of the free parameters of a
given trial basis set. The functional form of the basis functions
will not be explored here; however, it has been the central

subject in recent papers.12,19 For the purpose of this paper, we
perform a systematic study at the VMC level of two diatomic
systems: the Morse potential parameterized for the H2 molecule
and a two minima model potential. We seek to utilize the
simplicity of the systems to better understand these two
important aspects of the CFQMC procedure. Our final goal is
to establish a simple procedure to allow the calculation of the
excited states of polyatomic molecules with spectroscopic
accuracy using the CFQMC method. The paper is organized as
follows. In the next section we briefly present the CFQMC
method. In section 3 we introduce the trial wave function and
the guiding function used in this work and discuss the
optimization procedure. In section 4 we present our results, and
in the last section we make our final remarks.

2. Correlation Function Quantum Monte Carlo

In this section we summarize the CFQMC method to obtain
the vibrational energy levels of molecular systems. We remem-
ber that the method is general and can be applied, a priori, to
solve any quantum system. The vibrational energy levels of a
molecular system are obtained by solving the following eigen-
value problem:

The Hamiltonian operator associated with the relative motion
of particles (excluding the kinetic energy of the center of mass)
is given as20

where µi is the ith reduced mass,∇i
2 are the Laplacians in

three-dimensional (3D) Cartesian coordinates,R ) (R1, R2, ‚‚‚,
RN-1) is the vectorial representation of the (N - 1) 3D vectors
Ri written in Cartesian coordinates,V(R) is the potential energy
surface (PES), andE and Φ(R) are the eigenvalue and the
eigenfunction ofĤ. It is important to point out that the removal
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of the center of mass term and even the use a particular
coordinate system choice is arbitrary and the present procedure
is valid for any choice.

Within the spirit of the Rayleigh-Ritz variational principle,
the problem is transformed into finding the stationary solutions
of the functionalJ[Φ] given by

To obtain the eigenenergies and the eigenfunctions numerically,
the wave function is first expanded using a finite basis set
{fR(R)}

where{cR} are the expansion coefficients andM is the number
of elements of the basis set. Then,J[Φ] is required to be
stationary under variations of such coefficients. The variational
procedure converts the problem into that of solving a generalized
eigenvalue problem

wherec is the vector of coefficients,

are the Hamiltonian matrix (H) elements, and

are the overlap matrix (S) elements. An essential key of the
variational procedure is how to compute these integrals with
high precision.

The CFQMC consists of employing the quantum Monte Carlo
techniques (VMC or DMC) to evaluate the multidimensional
integrals (eqs 6 and 7). It differs from the usual QMC methods21

because it allows one to calculate directly various excited states
of the system. Usually, the calculation of the eigenvalues for a
given Hamiltonian using the CFQMC method is done in two
steps: a VMC step, where a good simple approximation to the
excited eigenfunctions{fR} is used; and a DMC step, where
the solutions of the variational diagonalization procedure are
used as the basis functions. This procedure was proposed by
Bernu et al.6 to reduce the round-off errors and the number of
basis functions used in the calculation.

The first step (VMC) is to compute the Hamiltonian and
overlap matrix elements (eq 6 and eq 7, respectively) using the
Metropolis algorithm.22 For this purpose, we have to introduce
in eqs 6 and 7 an assistant probability distributionΨ(R), which
is named guiding function. The Hamiltonian and the overlap
matrix elements are rewritten as

and

where

and

is the local energy associated with thefâ basis function. The
integral equations 8 and 9 are then evaluated using the random
walk {R1,R2,‚‚‚,Rp} generated according to the probability
distributionP(R) ) |Ψ(R)|2 as follows:28

and

wherep is the number of random walk steps. In this procedure,
each calculated Hamiltonian and overlap matrix element has a
statistical uncertainty which offers an estimate of the precision
of the integral calculations. For eqs 12 and 13, the statistical
errors associated with a VMC calculation are given by28

and

It is important to point out that the guiding function is
responsible for the efficiency of the Metropolis integration.

The second step (DMC) is to “project” the basis functions
{φR} (where{φR} are the solutions of the previous step) using
the operatorC(Ĥ) ) exp(- τĤ/2). This second step is very
important to improve the accuracy of the spectra, within the
same set of trial wave functions. However, as we are more
interested in the basis function optimization we restricted
ourselves to the VMC step. We will not discuss the diffusion
Monte Carlo version of CFQMC any further, and a complete
description of the method can be found in refs 5, 11, and 13.

3. Trial Basis Set and Guiding Functions

3.1. General Aspects.The procedure to build the trial basis
set {fR} and the guiding functionΨ(R) will depend on the
characteristics of the quantum system. However, some general
aspects must always be considered, independent of the physical
system. (i) The guiding function must be positively defined and
nonzero wherever the potential is finite, in order to avoid large
statistical fluctuations. Moreover, it is important to reflect the
properties of the ground and excited states considered in the
calculation. (ii) The trial basis functions need to be generated
in a simple fashion. The trial functions (and their derivatives)

J[Φ] ) ∫ Φ*(R)(Ĥ - E) Φ (R) dR (3)

Φ(R) ) ∑
R ) 1

M

cRfR(R) (4)

Hc ) ESc (5)

HRâ ) ∫ fR*(R)Ĥfâ(R) dR (6)

SRâ ) ∫ fR*(R)fâ(R) dR (7)

HRâ ) ∫ |Ψ(R)|2FR(R)Fâ(R)ELâ(R) dR (8)

SRâ ) ∫ |Ψ(R)|2FR(R)Fâ(R) dR (9)

FR(R) )
fR(R)

Ψ(R)
(10)

ELâ(R) )
Ĥfâ(R)
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(11)
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1

p
∑
i ) 1

p
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SRâ )
1

p
∑
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1

xp
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must be easy to evaluate and must permit an easy generalization
for any multidimensional system. It is also important that a linear
combination of these basis functions describe reasonably well
the ground and excited states of the system. We will address
here these issues for vibrational excited states of molecules.
Examples of trial basis functions and guiding functions for other
quantum problems (including rotational motion) can be found
in refs 11, 23-25.

3.2. Vibrational States.In CFQMC applications there have
been a few basis functions used to describe the ground and
excited vibrational state eigenfunctions.6,12,13,19In this work we
have explored only one of them as we are more interested in
the optimization procedure and not in the particular functional
form of the basis functions. Moreover, the optimization proce-
dure, which we will discuss in subsection 3.4, is general and
can be employed for all previously utilized basis sets. The trial
basis functions used in the present paper are the ones used by
Acioli and Soares Neto.13 This basis set has been widely used
to treat di-, tri-, and tetraatomic molecules.11 Defining {Sν} as
the vibrational coordinate set andNmax the number of these
coordinates,Sν

0 as the value of theνth coordinate in the
minimum of the PES, and∆Sν ) Sν - Sν

0, the basis set is given
by

where the{Aµν} are the parameters that will be optimized in
order to improve the accuracy of the excited states, andR
represents the set of exponentsnν that defines thefR function.
Note that the basis set (eq 16) is defined considering that there
is one minimum in the PES. In subsection 4.2 we will discuss
the difficulties and present a strategy to deal with a two-minima
PES.

3.3. Guiding Function.Another open problem is the choice
of the guiding functionΨ(R) which satisfies the properties
mentioned above. In particular, one wants the guiding function
to be large wherever any excited basis function is large and
small only when all basis functions are small. Bernu et al.6

proposed a simple form that has been used in all CFQMC ro-
vibrational calculations, that is:

where f0(R) is the vibrational ground-state basis function
(nν ) 0 ∀ ν) given by

The parametern in eq 17 is very important in our study. This
parameter controls the shape of the guiding function; it means
that whenn changes, the width of the functionΨ(R) is modified.
This parameter is set according to the number of desired excited
states. To ensure correct integration of all states included in
the calculation, for example, Bernu et al.6 proposed that the
parametern could be chosen of the following way:

whereΓ is the order of the highest excited local mode exponents
nν desired in the calculation.

Our first goal in this paper is to explore the properties of the
guiding function of the form of eq 17 and the role of the
parametern to assert an accurate integration sampling for the

Morse potential. For this, we will discuss the size and distribu-
tion of the statistical errors of the Hamiltonian and overlap
matrix elements (eqs 14 and 15), and we will compare these
CFQMC results with those obtained from a numerically “exact”
integration (using the conventional numerical quadrature rules)
for the same basis set. Moreover, we will analyze the behavior
of the guiding function to obtain the excited vibrational states
accurately in the case where the potential curve has more then
one minimum.

3.4. Excited States Optimization.Another aspect that we
want to stress is how the optimization of the nonlinear
parameters{Aµν} of the basis set influences the description of
excited states. In traditional ground state QMC calculations, one
usually minimizes the total energy of the system (the average
value of the local energy (EL[Ψ] ) HΨ/Ψ)) with respect to
the square of the guiding function. Umrigar et al.26 have shown
that the minimization of the variance of the local energy can
be a powerful strategy to optimize the trial ground-state function.
In another paper, Bressanini and Reynolds28 have discussed
some interesting aspects of the VMC method as well as the
different ways to optimize the ground-state trial wave function
parameters at the VMC level. In most ground-state QMC
calculations one minimizes the local energy and/or its variance.

Ceperley and Bernu5,6 have proposed the same procedure in
the CFQMC method. That is, they minimize the local energy
(or its variance) of the trial ground-state wave functionf0(R)
(eq 18) and use these parameters in the excited-state calculation.
Brown et al.12 have minimized the energy of a few excited states.
Silva and Acioli19 have used this procedure in their study of
trial basis sets for determination of vibrational spectra using
CFQMC. Recently, Nightingale and Melik-Alaverdian27 have
proposed a different procedure for excited states optimization,
based in the minimization of the sum of the squared residuals
with respect to eigenenergies.

In this work we propose a procedure similar to those proposed
by Brown et al. We start from the minimization with respect to
the ground state, using the Umrigar et al. procedure. We then
optimize the nonlinear parameters{Aµν} with respect to the
energy of the firstnexc excited states, minimizing the functional

where {Ei[{Aµν}]} are the eigenvalues of the generalized
eigenvalue problem (eq 5) for a short VMC calculation. The
difference with respect to the work of Brown et al. is that here
we try to understand qualitatively the effect of the number of
excited states included in the optimization procedure in the
accuracy of the calculation. For this, we will study the difference
of the CFQMC calculations from the exact eigenvalues as a
function of the number of excited states included in the
minimization (nexc). We will also study the shape of the ground-
state trial wave function (eq 18) as a function ofnexc in the
optimization procedure and the behavior when we increase the
number of basis functions.

4. Results

4.1. Morse Potential (H2). In this section we discuss the
results for the vibrational spectrum of the Morse potential

with De ) 0.1744,â ) 1.02764,re ) 1.40201, and for the
reduced mass we usedµ ) 918.57635. These parameters

fR ) exp(∑
ν,η

∆SνAν η∆Sη) ∏
ν ) 1

Nmax

∆Sν
nν(R) (16)

Ψ(R) ) (f0(R))1/n (17)

f0(R) ) exp(∑
ν,η

∆SνAν η∆Sη) (18)

n ) Γ1/2 (19)

F[{Aµν}] ) ∑
i ) 1

nexc

Ei[{Aµν}] - E0[{Aµν}] (20)

V(r) ) De{1 - exp[- â(r - req)]}
2 (21)
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describe theH2 molecule and are given in atomic units. For
this case, the vibrational eigenvalues (in atomic units) assume
the following analytical form30

under the condition

This leads to a total of 17 vibrational bound states.
The first and important aspects analyzed are the size of the

statistical error and the accuracy of the CFQMC results as a
function of the exponentn in the guiding function (eq 17). For
this, we have used 21 basis functions to compute the eigenvalues
of H2 by employing the CFQMC procedure and using an “exact”
quadrature integration (EQI) of eqs 6 and 7 as a comparison.
For eachn ) 3, 4, 6, 8, 10, 15, and 20 in the guiding function,
the CFQMC eigenvalues and the respective statistical error bars
(Eν

QMC ( Er(Eν
QMC)) were computed from 32 different random

walks where we set for each of them a different seed for the
random number generator as well as a different starting point.
The results31 indicate that the relative errors between the EQI
and the CFQMC for all 21 eigenvalues (∆Eν ) (Eν

EQI - Eν
QMC)/

Eν
EQI) and the respective relative statistical error bars (Er-

(Eν
QMC)/Eν

EQI) depend strongly onn. For certain eigenvalues,
the difference among the statistical error bars for differentn
can arrive up to 102. For example, for the 16th excited state,
we have obtained that the relative statistical error bars are
2.5 × 10-2, 4.0× 10-3, 1.1× 10-3, 7.4× 10-4, 4.9× 10-4,
4.9 × 10-4, and 3.9× 10-4 for n ) 3, 4, 6, 8, 10, 15, and 20,
respectively. Moreover, we have observed that forn ) 3 the
CFQMC eigenvalues are well below those obtained from the
“exact” quadrature integration; this difference for the 8th excited
state is≈124 cm-1, while for the 15th excited state it is≈264
cm-1. This is due to the fact that the matrix elements associated
with the higher excited basis functions are poorly integrated,
as we will discuss below. Although forn ) 8 the results look
already satisfactory (with the relative statistical error bars around
10-4), the best results are achieved forn ) 20 considering both
the relative errors and the statistical error bars. Another
important aspect to point out is that the statistical error of a
given state indicates very well the precision of the result because
the relative errors are always inside of the statistical error bars.
Using the previoulsy defined rule of thumb of Bernu et al. (eq
19), the parametern should be approximately 4, for the 21 basis
functions that we used in this calculation.

To understand the direct relationship between the integration
of HRâ andSRâ matrix elements and the final CFQMC results
(eigenvalues and statistical error bars), we have calculated the
following quantity32

with the respective statistical error bars given by

for each diagonal element of the Hamiltonian and overlap matrix
(Er(HRR

QMC) and Er(SRR
QMC) are given by eqs 14 and 15, respec-

tively). This way we can highlight the quality of the integration
of each matrix element. For example, the statistical errors of
the HRR/SRR for the first diagonal element are 6.1× 10-4,
6.7 × 10-4, 7.4× 10-4, 8.0× 10-4, 8.4× 10-4, 9.3× 10-4,
and 1.0× 10-3 for n ) 3, 4, 6, 8, 10, 15, and 20, respectively,
while those for the 9th diagonal element are 1.9× 10-3, 1.1×
10-3, 1.0 × 10-3, 9.4 × 10-4, 9.2 × 10-4, 9.1 × 10-4, and
9.3 × 10-4, and for the 18th diagonal element the statistical
errors are 9.9× 10-3, 4.6 × 10-3, 2.2 × 10-3, 1.4 × 10-3,
1.1 × 10-3, 1.0 × 10-3, and 9.9× 10-4, respectively. These
indicate that for the highly excited basis functions the integration
is done better forn g 8, while for the first diagonal elements
the ones forn e 6 are a little better. So, it is important to balance
between these two opposite situations (particularly, in our
analysis from now on we decided to usen ) 10). Moreover,
we can note that the relative error in the eigenvalues is, in
general, of the same order of magnitude of the relative error in
the integration of theH andS matrix elements.

Now we turn our attention to the optimization procedure
discussed in subsection 3.4. In Table 1 we display the difference
between the CFQMC and the exact eigenvalues of the first nine
states as a function of the number of excited states included in
the optimization (nexc in eq 20). All CFQMC results are
computed using 21 basis functions. The average difference of
the CFQMC results from the exact ones for these states are
484.5, 79.6, 5.1, 1.8, 4.6, 7.3, and 137.4 cm-1, for nexc ) 0, 3,
5, 7, 10, 12, and 16, respectively, while the average statistical
errors are 4.3, 2.7, 0.7, 0.5, 1.0, 1.8, and 8.0 cm-1.

One can see that the inclusion of more states improves the
accuracy of the results up to an idealnexc, in this casenexc ) 7.
This can be better seen in Figure 1. In this figure we plot the
difference of the CFQMC results from the exact ones for the
first 12 bound states of the system as a function ofnexc. The

TABLE 1: Difference between the Exact Vibrational States of the Morse Potential (H2) and the CFQMC Ones Calculated
Using Different Number of Excited States in the Optimizationa

|c|CFQMC

ν nexc ) 0 nexc ) 3 nexc ) 5 nexc ) 7 nexc ) 10 nexc ) 12 nexc ) 16 exact

0 0.02(0.91) 0.01(0.52) 0.01(0.62) 0.02(0.56) 0.00(0.54) 0.06(0.77) -0.04(0.57) 2165.95
1 0.03(0.69) 0.02(0.43) 0.01(0.59) 0.03(0.46) 0.00(0.30) 0.03(0.58) -0.60(0.84) 6308.60
2 0.04(0.78) 0.01(0.40) 0.01(0.48) 0.01(0.41) -0.06(0.33) -0.02(0.51) -5.25(2.00) 10198.93
3 -0.05(0.69) 0.00(0.35) 0.02(0.38) 0.00(0.38) -0.36(0.41) -0.45(0.62) -18.01(4.49) 13836.94
4 -2.85(0.87) 0.00(0.32) 0.02(0.35) -0.01(0.37) -1.44(0.74) -2.51(1.02) -37.23(6.99) 17222.63
5 -46.42(2.70) -0.39(0.34) 0.00(0.41) -0.04(0.36) -3.61(1.24) -6.86(1.63) -82.44(6.49) 20356.00
6 -330.88(6.29) -10.05(1.22) -0.12(0.39) -0.13(0.38) -6.19(1.85) -12.26(2.94) -194.30(7.81) 23237.05
7 -1190.18(10.88) -113.50(5.31) -2.37(0.62) -0.35(0.44) -10.09(1.74) -17.69(4.15) -364.27(13.02) 25865.79
8 -2787.06(14.99) -592.08(15.29) -43.53(2.24) -15.82(1.52) -19.54(1.75) -26.00(4.23) -525.09(29.80) 28242.20

a Numbers in parentheses denote the error bars and the results are in cm-1.

En ) De (n + 1
2) x2â2

Deµ
- (n + 1

2)1/2 â2

2µ
n ) 0, 1, ... (22)

n <
x2µDe

â
- 1

2
(23)

∆(HRR

SRR
) )

(HRR
EQI/SRR

EQI - HRR
QMC/SRR

QMC)

HRR
EQI/SRR

EQI
(24)

Er(HRR
QMC

SRR
QMC) )

SRR
QMC Er(HRR

QMC) - HRR
QMC Er(SRR

QMC)

(SRR
QMC)2

(25)
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trend is that the higher excited states improve asnexc grows.
However, the low and intermediate states are worsened after a
thresholdnexc≈10.

To understand this trend we plot the ground-state trial function
(nν(i) ) 0 in eq 16) fornexc ) 0, 7, and 16 in Figure 2. For
nexc ) 0 the function is centered near the minimum of the well;
as we increasenexc the function is centered at larger interatomic
separations and becomes broader. To improve the higher excited
states, the basis sets need to describe the states at larger
interatomic separations. But as the function becomes broader
and off centered, the approximation of the low-lying states is
worse. The optimum parameters, for this trial wave function,
will be a balance of these two regimes. For the case studied the
optimum result is achieved when we include seven excited states
in the optimizations procedure. Moreover, we reach the spec-
troscopic accuracy (∆Eν < 1 cm-1) for the first eight states
using only 21 basis functions.

However, the optimum parameters for the problem using 21
basis functions will not be the best parameters for a basis set
with a larger number of functions. This aspect can be seen in
Table 2, where we show the differences of the CFQMC results
calculated using 31 basis functions from the exact ones for
different optimized parameters (nexc ) 7, 12, and 16). In this
case, we can see that the better results are from thenexc ) 12.
The average difference for the 12 first states are 31.9, 0.4, and
8.1 cm-1 for nexc ) 7, 12, and 16, respectively. And the average
statistical errors are 2.5, 0.8, and 4.1 cm-1, respectively. Note
that we obtain the spectroscopic accuracy for the first 11 states
using the optimized parameters fornexc ) 12. In Figure 3, we
display the differences of our CFQMC results withnexc ) 12
optimized parameters from the exact ones for the first 13 states
as a function of the number of the basis functions. This is an

indication that one needs to be very careful before pointing out
a general rule about this behavior. However, we note that this
optimization procedure yields more accurate results and goes
toward our main goal of reaching spectroscopic accuracy with
QMC.

4.2. Two Minima Model Potential. Now we focus our
attention in a model potential that has more than one minimum.
This type of potential is very important in physical chemistry
due to the fact that these potentials are related to systems that
have different isomeric forms, such as HCN and HCCH. The
model potential that we proposed is given by

with D1 ) 4.0, â1 ) 0.2, r1 ) 7.5, D2 ) 2, â2 ) 0.09, and
r2 ) 25.0 (arbitrary units). We usedµ ) 1.0 andp ) 1.0. The
potential is shown in Figure 4.

The focus in this system is the study of the role of the guiding
function to accurately obtain all the excited states. This system
has three different sets of states. The first is a set mostly
localized in the first well, which we call the Morse states. The
second is mostly localized in the second minimum, which we
call the harmonic states. The third set is composed of states
with amplitude in both wells, which we call mixed states. The
guiding function and the basis functions should be flexible
enough to describe all the states.

Figure 1. Difference of the CFQMC and exact vibrational energy levels
of the Morse potential for different excited states optimized parameters
(first 13 states): (empty square)nexc ) 0, (full square)nexc ) 3, (empty
circle) nexc ) 5, (full circle) nexc ) 7, (empty up triangle)nexc ) 10,
(full up triangle)nexc ) 12, and (full down triangle)nexc ) 16.

Figure 2. Trial ground-state wave functions for different number of
excited states included in the optimization procedure.

TABLE 2: Difference between the CFQMC and Exact
Vibrational States of the Morse Potential (H2) for CFQMC
Calculations Using 31 Basis Functions with Different
Number of Excited States in the Optimizationa

CFQMC

n nexc ) 7 nexc ) 12 nexc ) 16 exact

0 -0.1(0.5) 0.0(0.8) -0.1(0.2) 2165.9
1 0.0(0.6) 0.0(0.5) -0.2(0.6) 6308.6
2 0.0(0.6) 0.0(0.4) -0.1(0.4) 10198.9
3 0.0(0.6) 0.0(0.4) 0.0(0.2) 13836.9
4 0.0(0.5) 0.0(0.4) 0.2(0.2) 17222.6
5 0.0(0.5) 0.0(0.4) 1.1(0.7) 20356.0
6 0.0(0.6) 0.0(0.3) 4.4(1.8) 23237.1
7 0.0(0.6) 0.0(0.4) 9.8(3.5) 25865.8
8 0.0(0.6) 0.1(0.4) 14.4(5.1) 28242.2
9 2.7(0.9) 0.3(0.8) 17.5(8.3) 30366.3

10 49.4(3.6) 0.6(1.3) 21.3(12.6) 32238.1
11 330.8(15.0) 4.1(3.9) 28.5(15.3) 33857.5

a Numbers in parentheses denote the error bars and the results are
in cm-1.

Figure 3. Difference between the CFQMC withnexc ) 12 optimized
parameters and exact vibrational energy levels of the Morse potential
for different number of the basis functions (first 13 states): (full square)
21 basis functions, (full circle) 26 basis functions, and (full up triangle)
31 basis functions.

V(r) ) D1(1 - e-â1(r-r1))2 - D1 - D2e
-â2(r-r2)2

(26)
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We usen ) 8 in the guiding function (eq 17) and 21 basis
functions of the type

In the first calculation we used the basis functions and the
guiding function centered in the first well:A ) 0.2525 andre

) 7.59. In the second calculation we used the basis functions
and the guiding function centered in the second well:A ) 0.2
and re ) 24.664. In the third calculation we used a function
centered between wells:A ) 0.2 andre ) 8.17.

The results are shown on Figure 5. The exact results are 17
bound states and they were obtained employing the discrete
variable representation (DVR) method. The DVR method is a
useful approach to solve the Schro¨dinger equation and has been
used in many different subjects.33-38 Particularly, we use 800
equally spaced DVR grid points (which were developed by
Colbert and Miller33) and integrate in the intervalr ) [0.0,
100.0] (in arbitrary units). In the first CFQMC calculation we
obtained 9 bound states, in the second one we obtained 5 bound
states, and in the third one we obtained 16 states. This shows
that in order to describe a system with more than one minimum,
both the guiding function and the trial basis set need to be broad
enough and should be centered in a region so that they
reasonably describe all the states of interest.

To describe the bound states of the system we propose a
different basis set which is composed of a set of functions
centered in the first well and another set centered in the second
well. These basis functions are given by

We used a guiding function given by eqs 17 and 27 withre

chosen to be centered between wells.

We used 21 basis functions centered in each well. The
parameters for the function centered in the first wellre1 ) 7.59
andA1 ) 0.12, for the second set we usedre2 ) 26.0 andA2 )
0.05. For the guiding function we usedA ) 0.05 andre ) 8.5.
This expansion produces a better integration as we can see in
the results, the spectra of the right side in Figure 5, which display
all 17 bound states. This kind of wave functions can also be
used in the simple one minimum potential and should improve
the quality of the highly excited states.

5. Concluding Remarks

In this paper we have presented a systematic study of the
influence of the guiding function in the integration sampling
and of the optimization procedure of the trial basis function
parameters considering a small set of excited states in order to
obtain vibrational spectra with spectroscopic accuracy using
correlation function quantum Monte Carlo method. We studied
two simple one-dimensional models, the Morse potential and a
modified Morse potential, with an additional Gaussian mini-
mum.

We have made several conclusions. (i) There is an optimum
value of the exponent parametern of the guiding function in
eq 17. This value depends of the number of the excited states
considered but it is larger than the square root of the number of
excited states included in the basis set. (ii) The procedure of
optimizing only the ground state is good to describe the low
lying states of the system. However, to describe higher excited
states one should include an excited-state optimization. More-
over, given a basis set, there is an optimum number of excited
states that should be included in the optimization procedure.
(iii) When we increase the number of basis functions it becomes
clear that this number is smaller than the total number of basis
functions. (iv) If the problem is more complex, with more than
one minimum, both the guiding function and the trial basis set
must be flexible enough and have non-negligible amplitude in
all the regions of interest.

Although we restricted ourselves to simple one-dimensional
problems, all the conclusions drawn for both the guiding
function and the optimization of excited states should apply for
systems with more dimensions. Preliminary calculations for the
water molecule show that this is indeed the case.
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