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We study the concentration fluctuations for a reversible overall reaction with a rate-determining step occurring
in a system with static disorder described in terms of the random activation energy model. We assume that
the rates of the forward and backward reactions can be expressed as products of random rate coefficients
times concentration dependent factors, which can also depend on nonrandom quasiequilibrium constants such
as adsorption coefficients or Michaelis-Menten constants. Further, we take the activation energies of the
forward and backward processes to have a random component∆E, which is selected from a frozen Maxwell-
Boltzmann distribution. We derive a stochastic evolution equation for the joint probability density of the
reaction extentê and of the random component∆E of the activation barrier. The solution of this stochastic
evolution equation leads to a general expression for the probability densityP (ê,t) of the reaction extentê at
time t. For a long time, the probability densityP (ê,t) of concentration fluctuations approaches its stationary
valuePst(ê), according to a universal power scaling law, which is independent of the detailed kinetics of the
processP (ê,t) ≈ Pst(ê) + t-RC(ê) as t f ∞, whereR is a fractal exponent between 0 and 1 andC(ê) is a
concentration dependent amplitude factor. A similar behavior is displayed by systems approaching a
nonequilibrium steady state. We generalize our analysis to multiple overall reactions and to systems with
dynamic disorder and develop methods for extracting kinetic information from experimental data.

1. Introduction

The random activation energy model is a popular approach
for describing the kinetics of rate processes in systems with
static disorder.1 This model is based on the assumption that the
activation energies of the rate coefficients have random com-
ponents selected from certain probability laws, typically frozen
Maxwell-Boltzmann distributions. The random activation
energy model is essentially a statistical process with multiplica-
tive noise, which leads to serious mathematical difficulties. For
this reason, most studies in this field are based on the assumption
that the concentration fluctuations can be neglected. However,
the study of concentration fluctuations for random activation
energy systems with linear kinetics shows that the coupling of
concentration fluctuations with the fluctuations of the rate
coefficient leads to an intermittent behavior,2 which suggests
that for disordered systems the concentration fluctuations play
a more important role than in ordinary chemical kinetics.

In this article, we study the interaction between the ordinary
concentration fluctuations and the fluctuations of the rate
coefficients described by the random activation energy model
for nonlinear reaction systems described by a single overall
reaction. We show that for such systems the long-time behavior
of the probability of concentration fluctuations and its moments
and cumulants is described by universal power laws in time

with scaling exponents that are independent of the detailed
kinetics of the process. The structure of the paper is the
following. In section 2, we give a general formulation of the
problem. In section 3, we derive general stochastic evolution
equations for static disordered kinetics and show that their
solutions are related to the solutions of stochastic evolution
equations for chemical systems with a single overall reaction
and without disorder. In section 4, we study the asymptotic
behavior for static disordered systems. In section 5, we
investigate the generalization of our approach for systems with
multiple overall reactions and dynamic disorder. Finally in
section 6, we analyze the theoretical and experimental implica-
tions of our theory.

2. Formulation of the Problem

We consider a complex chemical process with a rate-
determining step,3 which can be represented by a single overall
reaction

We assume that the forward and backward reaction ratesr(,
corresponding to the overall process (eq 1), can be represented
as3-4

whereg((A,K ) are complicated functions of the concentration
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vectorA and of the vector ofK of quasiequilibrium constants,
such as adsorption coefficients or Michaelis-Menten constants

are activated overall rate coefficients,A( are pre-exponential
factors,E( and∆E( are deterministic and random components
of the activation energies, respectively,kB is Boltzmann’s
constant, andT is the temperature of the system. According to
the theory of reactions with one rate-determining step,3-4 the
rate coefficientsk( of the forward and backward reactions fulfill
the condition

whereσ* is the stoichiometric number of the rate-determining
step andKeq is the equilibrium constant of the overall reaction
1, which is nonrandom. From eqs 3 and 4, it follows that

because otherwise the equilibrium constantKeq would be
random.

The composition of the system can be represented in terms
of a single chemical variable, the intensive reaction extentê of
the overall reaction 1. We have

By use of the Schroedinger analogy for the chemical master
equation,5 it follows that the composition fluctuations can be
described by the following chemical Hamiltonian operator

where

andΩ is the system size.
We assume1,6 that the random component∆E of the activation

energies is selected from an exponential probability density

where the factorâ ) 1/〈∆E〉 is in general a function of the
system temperatureT which obeys the constraint

If â ) 1/(kBT*) with T* > T, then eq 9 corresponds to a frozen
Maxwell-Boltzmann distribution corresponding to the temper-
atureT*.

Given the above assumptions, the purpose of the present
article is to evaluate the probability densityP(ê,t) of concentra-

tion fluctuations at timet and to evaluate its asymptotic behavior
in the thermodynamic limit and/or for a long time.

3. Stochastic Evolution Equation Approach to Static
Disordered Kinetics

We introduce the joint probability

of the reaction extentê and of the random component∆E of
the energy barriers at timet and the conditional probability

The simplest version of the random activation energy model
assumes static disorder; that is, a fluctuation of the energy
barrier, once it occurs, lasts forever. Under these circumstances,
the probability density of∆E is time invariant and given by eq
9. It follows that

Considering a given random fluctuation∆E of the energy
barriers an evolution equation for the conditional probability
density R(ê|∆E;t) can be derived in terms of the chemical
Hamiltonian (eq 7)

From eqs 3, 4, and 7, we notice that the chemical Hamiltonian
(eq 7) can be expressed as

where

is a random transparence factor and

is the chemical Hamiltonian corresponding to a system without
disorder for which∆E ) 0.

By combining eqs 13-17, we can derive the following
evolution equation for the joint probability densityB(ê,∆E;t)

By assuming that the fluctuations of the energy barriers are
independent of the initial fluctuations of the reaction extentê
at t ) 0, the initial condition for the evolution eq 18 is

Now we consider a system for which the fluctuations of the
energy barriers do not exist, that is,∆E ) 0. Such a system is

k( ) A( exp(-
E( + ∆E(

kBT ) (3)

k+/k- ) (Keq)
1/σ* (4)

∆E+ ) ∆E- ) ∆E (5)

dê ) dAu/(νu
- - νu

+) (6)
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described by the evolution equation

with the initial condition

wherePordered(ê;t) is the probability density of the reaction extent
ê at timet. Equation 20 is a standard chemical master equation
without disorder, which has been extensively studied in the
literature. In some cases, such as first-order reaction networks
or simple irreversible nonlinear kinetics, exact analytical solu-
tions are available. Otherwise an asymptotic solution can be
derived in the thermodynamic limit by means of the eikonal
(Wentzel-Kramers-Brillouin) approximation.5 The eikonal
approximation leads to the following expression for the prob-
ability densityPordered(ê;t)

where

is a nonequilibrium chemical partition function andJ(ê;t) is a
chemical action, which is the solution of the Hamilton-Jacobi
equation

By comparing eqs 18 and 19 with eqs 20 and 21, we notice
that they have exactly the same structure. We notice that we
can express the solution of eqs 20 and 21 in terms of the solution
of eqs 18 and 19. We have

We are interested in the evaluation of the probability

of the reaction extentê at time t for disordered systems. We
obtain

We insert eqs 9 and 16 into eq 27 and use the integration
variableθ ) tø(∆E), resulting in

From eq 28, we can evaluate the moments〈êm(t)〉disorderedof
the intensive reaction extents for the disordered system. We
obtain

where 〈êm(t)〉ordered are the moments of the intensive reaction
extent for the system without disorder. In Appendix A, we derive
similar expressions for the cumulants〈〈êm(t)〉〉disorderedof the
intensive reaction extents

In conclusion, in this section we have derived exact expres-
sions for the time dependence of the probability density of the
intensive reaction extent in a static disordered system and its
moments and cumulants. These results are used in the following
section for the analysis of the asymptotic behavior of concentra-
tion fluctuations in the thermodynamic limit and for a long time.

4. Asymptotic Behavior

We start out by studying the asymptotic behavior of concen-
tration fluctuations in the thermodynamic limit. We consider
large system sizes and arbitrary and finite times and introduce
the extensive reaction extent

In Appendix B, we show that for systems without disorder in
the thermodynamic limit the cumulants〈〈¥m(t)〉〉ordered of the
extensive reaction extent all tend to 0 in the thermodynamic
limit and the concentration fluctuations are nonintermittent.

For disordered systems in the thermodynamic limit, the
probability of concentration fluctuations does not obey the
eikonal scaling; however, it can be represented as a superposition
of eikonal distributions. We have

Since the eikonal scaling does not hold anymore for disordered
systems, the cumulants〈〈¥m(t)〉〉disorderedof the extensive reaction
extent are in general no longer proportional to the size of the
system. By use of a method similar to the one presented in
Appendix A, it is possible to derive a general formal expression
for the cumulant of orderm. However due to the complexity of
this expression, it is hard to derive the scaling conditions for
the cumulants as a function of the system size in the thermo-
dynamic limit. Nevertheless, it is possible to evaluate these
scaling conditions step by step. We come to

∂
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where E(x;t) is an adjoint stochastic potential introduced in
Appendix B.

From eqs 33 and 34, it follows that for disordered systems
the relative fluctuation of order two

tends toward a constant value asΩ f ∞

It follows that for disordered systems in the thermodynamic
limit the concentration fluctuations are intermittent. Here and
in the following the term intermittent has the usual meaning
from statistical mechanics and theory of turbulence; that is, it
means that in a limit of the thermodynamic type, the relative
fluctuations of different orders of the stochastic variables that
describe the process do not tend toward 0.

The next step of our analysis is to study the scaling behavior
of concentration fluctuations for arbitrary system sizes and a
long time,t f ∞. In Appendix C, we show that for a long time
the probability density of concentration fluctuations tends toward
the time-independent valuePordered(ê;∞) according to a self-
similar negative power law

whereC(ê) is an amplitude factor evaluated in Appendix C in
terms of the eigenvalues of the chemical Hamiltonian (eq 17).
An alternative but equivalent expression forC(ê) can be
evaluated from eq 28. We get

Similar asymptotic expressions can be derived for moments and
cumulants. We obtain

For finite system sizes, the relative fluctuations tend toward
constant values at long times and the concentration fluctuations
are intermittent

However, if both the system size and the time tend to infinity,
the relative fluctuations tend to 0 and the concentration
fluctuations are nonintermittent

In conclusion, in this section we have derived asymptotic
scaling laws for the probability density of concentration
fluctuations and its moments and cumulants for static disordered
systems. For large system sizes and arbitrary times, the
probability density of concentration fluctuations does not obey
eikonal scaling and the concentration fluctuations are intermit-
tent. For a long time and arbitrary system sizes the probability
density of concentration fluctuations and its moments and
cumulants approach time-invariant values according to negative
power scaling laws and the fluctuations are also intermittent.
For both large system sizes and times, the probability density
of concentration fluctuations obey eikonal scaling and the
fluctuations are nonintermittent.

5. Generalizations

In our derivations in sections 3 and 4, we have assumed that
the system evolves toward a state of chemical equilibrium. It is
easy to check that all equations derived in sections 3 and 4 also
hold in the more general case where some constraints are present
that prevent the system from reaching chemical equilibrium and
instead the system approaches a nonequilibrium steady state.

A second generalization is a complex chemical process with
many rate-determining steps, which can be represented by a
set ofR overall reactions3-4

We assume that the forward and backward reaction ratesr(
(w)

corresponding to the overall process (eq 1) can be represented
as

whereg(
(w)(A,K ) are complicated functions of the concentration

vectorA and of the vector ofK of quasiequilibrium constants,
such as adsorption coefficients or Michaelis-Menten constants

are activated overall rate coefficients,A(
(w) are pre-exponential

factors,E(
(w) and ∆E(

(w) are deterministic and random com-
ponents of the activation energies, respectively, and other
symbols have the same significance as before. According to
the theory of multiple rate-determining steps,3-4 the rate
coefficientsk(

(w) of the forward and backward reactions fulfill
the conditions
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where σw* is the stoichiometric number of thewth rate-
determining step andKeq

(w) is the equilibrium constant of the
wth overall reaction 1, which is nonrandom. From eqs 45 and
46, we come to a set of conditions similar to eq 5

because otherwise the equilibrium constantsKeq
(w) would be

random.
The composition of the system can be represented in terms

of R chemical variables, the intensive reaction extentsêw of
the overall reactions 43. We have

The composition fluctuations can be described by a compound
chemical Hamiltonian operator

whereê ) (ê1, ê2, ...)

are chemical Hamiltonians attached to overall reactions (eq 43)
and

By analogy with eq 15, the chemical Hamiltonians attached to
the different overall reactions can be represented as

where

are random transparence factors attached to the overall reactions
(eq 43) and

are individual chemical Hamiltonians attached to the overall
reactions (eq 43) for a system without disorder. The total
chemical Hamiltonian for a system without disorder is given
by

We notice that in general the total Hamiltonian Hdisordered-
[ê,∇ê].... cannot be expressed in a simple way in terms of Hordered-
[ê,∇ê]..... This is possible only if

and

that is, if the fluctuations of the energy barriers are collective
and controlled by a single random component of the activation
energies. If the conditions (eqs 56 and 57) are fulfilled, then
eqs 49 and 57 lead to a condition similar to eq 15

In this case, the theory developed in sections 3 and 4 can be
easily extended for multiple overall reactions. We get the
following expression for the probability density of concentration
fluctuations

which has the same structure as eq 28 with the difference that
the intensive reaction extentê is replaced by the vector of
intensive reaction extentsê.

If for systems without disorder for a long time the probability
of concentration fluctuations evolves toward a stationary value,
then the results about the large size and time behavior derived
in section 4 can be easily extended for multiple overall reactions.
For large size and arbitrary time as well as for long time and
arbitrary size for a disordered system the concentration fluctua-
tions are intermittent. For large sizes and finite time, the eikonal
approximation does not hold. For a long time, the probability
density approaches its stationary value according to a negative
power law. If both the time and the system size are large, then
the eikonal approximation holds and the concentration fluctua-
tions are nonintermittent.

Another generalization corresponds to the case where the
fluctuations of the energy barriers are dynamic, that is, the
fluctuations of the energy barrier are random functions of time.
We consider the case of multiple overall reactions with collective
fluctuations, which includes the model of a single rate-
determining step as a particular case. If the fluctuating com-
ponent∆E of the activaton energy barriers is a random function
of time, the same is true for the transparency factor

It is convenient to introduce a random, intrinsic time scale,θ(t),
which obeys the stochastic evolution equation

From eqs 58 and 61, it follows that, for a given realizationø(t)
of the transparency factor, the conditional probability density
of concentration fluctuationsPdisordered(ê|ø) is the solution of
the master equation
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which has the same structure as the evolution equation for the
probability densityPordered(ê) corresponding to a system without
disorder

It follows that the unconditional probability density of concen-
tration fluctuations for a disordered system,Pdisordered(ê;t), can
be expressed as

where〈...〉 is a dynamic average taken over all possible values
of the random functionø(t).

To evaluate the dynamic average in eq 64, we represent
Pordered(ê;θ) as an inverse Fourier transform

where

is the direct Fourier transform ofPordered(ê;θ). In eq 65 we have
taken into account thatPordered(ê;t < 0) ) 0. Equation 64
becomes

We represent the stochastic properties of the transparence factor
ø(t) in terms of the characteristic functional

whereq(t′) is a test function conjugated to the transparence
factor ø(t′). By assuming that in eq 67 the dynamic average
and the integrals commute, we come to

Equation 69 is the generalization of eqs 28 and 59, for systems
with dynamic disorder. Unlike eqs 28 and 59, in general, eq 69
does not lead to universal relaxation laws for a long time. To
investigate the asymptotic of the probability of concentration
fluctuations, we need a more detailed knowledge of the dynamic
fluctuations of the random energy barriers.

In conclusion, in this section, we have investigated different
generalizations of our approach. The results for a single overall
reaction approaching equilibrium also hold for processes ap-
proaching a nonequilibrium stationary state or for multiple
overall reactions with collective fluctuations of the energy

barriers. It is also possible to derive general expressions of the
probability of concentration fluctuations for systems with
dynamic disorder. Concerning the possible experimental oc-
currence of the various types of disorder considered here, we
emphasize that we are not aware of any experimental studies
for which the collective fluctuations described in this section
have been observed. We think that such collective fluctuations
may exist, especially for processes where the fluctuations of
the energy barriers are caused by the fluctuations of the same
external random parameter, such as a random electromagnetic
field.

6. Experimental Implications

Since most experiments on disordered kinetics deal with
macroscopic (average) concentrations or reaction extents, the
analysis in this section is focused on the study of average values.
For a single overall reaction, the average intensive reaction
extent can be evaluated from eqs 29 and 39

with

whererordered(t) ) r+ - r- is the net reaction rate for a system
without disorder, expressed as a function of time.

Equation 70 is a generalization of similar types of asymptotic
laws derived for special types of reaction kinetics. Negative
power laws of the type (eq 70) have been derived in the literature
both for relaxation processes as well as for first-order, irrevers-
ible reactions in disordered systems.1 More recently, similar
scaling laws have been derived for reversible, first-order
kinetics7 as well as for nonlinear, one-variable reaction kinetics
in disordered systems.8 Equation 70 describes all these situations
as particular cases.

An important factor for experimental applications is the time
necessary for reaching the scaling asymptotic regime described
by eq 70. If the scaling regime is reached very close to the
stationary regime, the experimental study of the scaling regime
can be very difficult. Fortunately this is not the case. Experi-
mental data reported in the literature1 show that the time
necessary for reaching the scaling regime is of the order of
magnitude of the reaction half time. The same conclusion can
be reached by simple numerical computations for isolated,
irreversible reactions of first and second order. By use of simple
analytic expressions for the average concentrations derived in
our previous publications,7-8 we have done simple numerical
computations which show that, for an irreversible reaction of
first order, the time necessary for reaching the scaling regime
varies between 0.8 and 1.4 half times, depending on the
numerical value of the scaling exponentR; extreme values of
R, close to 0 or unity, lead to shorter times necessary for
reaching the scaling regime, whereas values ofR close to 0.5
lead to longer times. The behavior for second-order reactions
is a bit more complicated; in this case, both the half time and
the time necessary for reaching the scaling regime decrease with
the increase of the initial concentration of the reacting species
but in different proportions. There is no simple relation between
these two times; nevertheless, the time necessary for reaching
the scaling regime has the same order of magnitude for the
reaction half time.

∂

∂θ(t)
Pdisordered(ê|ø) ) -Ω-1Hordered[ê,∇ê]Pdisordered(ê|ø)

(62)

∂

∂t
Pordered(ê) ) -Ω-1Hordered[ê,∇ê]Pordered(ê) (63)

Pdisordered(ê;t) ) 〈Pordered(ê;θ(t))〉 ) 〈Pordered(ê;∫0

t
ø(t′) dt′)〉

(64)

Pordered(ê;θ) ) 1
2π ∫-∞

+∞
d$ exp(-i$θ)Ph ordered(ê;$) )

1
2π ∫-∞

+∞
d$ ∫0

∞
dxexp(i$(x - θ))Pordered(ê;x) (65)

Ph ordered(ê;$) ) ∫0

∞
exp(i$θ)Pordered(ê;θ) dθ (66)

Pdisordered(ê;t) ) 〈 1
2π ∫-∞

+∞
d$ ×

exp(-i$∫0

t
ø(t′) dt′) ∫0

∞
dxexp(i$x)Pordered(ê;x)〉 (67)

S[q(t′)] ) 〈exp(i ∫0

t
q(t′)ø(t′) dt′)〉 (68)

Pdisordered(ê;t) )
1

2π ∫-∞

+∞
d$S [q(t′) ) -i$] ∫0

∞
dxexp(i$x)Pordered(ê;x)

(69)

〈ê(t)〉disordered) 〈ê(t)〉ordered- t-R ∫0

t
θR ∂

∂θ
〈ê(θ)〉ordereddθ ≈

〈ê(∞)〉ordered- t-RB as t f ∞ (70)

B ) ∫0

∞
tR

∂

∂t
〈ê(t)〉ordereddt ) ∫0

∞
tRrordered(t) dt (71)
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The time-dependent factor of the asymptotic kinetic law (eq
70) is universal; that is, for a long time, the power law∼t-R is
independent of the kinetics of the process. The amplitude factor
B, however, depends on the kinetics of the process. Unfortu-
nately, it is hard to extract the kinetic information from the
amplitude factorB. In the following, we come up with simple
rules in the particular case of single species, irreversible (Keq

f ∞), noncatalytic overall reactions with a single determining
step. We assume that the overall reaction can be represented as

and that the kinetics of the process can be represented by the
mass action law and the rate of the process is given by

wherek is the nonrandom part of the rate coefficient. Since in
general the reaction is not elementary, the reaction ordern need
not be equal to the stoichiometric coefficientν. We solve the
deterministic kinetic equation and use the integral kinetic
equation for expressing the reaction the reaction raterorderedas
a function of time. We obtain

whereA0 ) A(0) andh(x) is the Heaviside step function. We
notice that forn < 1 the asymptotic scaling law is approached
after a finite, although usually long, time. From eqs 74-76,
we come to

We suggest the following procedure for extracting kinetic
information from experimental data. The procedure starts with
the evaluation of the scaling exponentR. If the random
activation energy model is correct, then the scaling exponentR
may be dependent on temperature but must be independent of
the initial concentrationA0. A first experimental consistency
test of the model is the fact that repeated experiments at the
same temperature but with different initial concentrationsA0

leads to the same exponentR. If this is the case, the plot lnB
vs ln A0 must be a straight line with a slope 1+ R(1 - n).

From this slope, we can evaluate the reaction ordern. FromB,
R, and n, we can evaluate the nonrandom partk of the rate
coefficient by using eqs 77-79.

The experimental study of the variation of the scaling
exponent with temperature,R ) R(T), leads to information about
the distribution of the random energy barriers. IfR(T) is a linear
function of the absolute temperature, then the random compo-
nent ∆E of the energy barriers is distributed according to a
Maxwell-Boltzmann energy law1,9,10

“frozen” at a constant characteristic temperature

If the scaling exponentR ) R(T) is a nonlinear function of
temperature, then the distribution of energy barriers, although
still exponential, is not characterized by a constant characteristic
temperature.

If the distribution of energy barriers is not exponential, then
the universal scaling law (eq 70) is not valid anymore. In this
case, it is of interest to evaluate the distribution of energy
barriers from experimental data. For an arbitrary distribution
of energy barriersP(∆E) d∆E, eq 27 is replaced by

where

is the probability density of the transparence factorø. From eq
82 we get the following expression for the average integral
kinetic law

Now we represent the average integral kinetic law for a system
without disorder,〈ê(t)〉ordered by an inverse Fourier transform
(see also eqs 65 and 66)

where

is the direct Fourier transform of the integral kinetic law for a
system without disorder,〈ê(t)〉ordered. In eq 85, we have taken
into account that〈ê(t < 0)〉ordered ) 0. By combining eqs 84
and 85, we come to

Next we introduce the characteristic function

P(∆E) d∆E ) (kBT*)
-1 exp(-∆E/(kBT*)) d∆E (80)

T* ) 1/(∂R/∂T) (81)

Pdisordered(ê;t) ) ∫0

∞
Pordered(ê;tø(∆E))P(∆E) d∆E )

∫0

1
Pordered(ê;tø)F(ø) dø (82)

F(ø) ) ∫0

∞
δ[ø - exp(-∆E/(kBT))]P(∆E) d∆E )

kBT

ø
P[kBTln(1/ø)] (83)

〈ê(t)〉disordered) ∫0

1
〈ê(tø)〉orderedF(ø) dø (84)

〈ê(t)〉ordered) 1
2π ∫-∞

+∞
d$ exp(-i$t)〈êh($)〉orderedd$ (85)

〈êh($)〉ordered) ∫0

∞
exp(i$t)〈ê(t)〉ordereddt (86)

〈ê(t)〉disordered)
1

2π ∫-∞

+∞
d$ ∫0

1
dø ×

exp(-i$øt)〈êh($)〉orderedF(ø) (87)

νA f Products (72)

rordered) kAn (73)

rordered(t) )

k(A0)
n[1 - (1 - n)(A0)

-(1-n)kt]-n/(1-n) h( (A0)
1-n

(1 - n)k
- t)

for n < 1 (74)

rordered(t) ) A0k exp(-kt) for n ) 1 (75)

rordered(t) ) k(A0)
n[1 + (n - 1)(A0)

n-1kt]-n/(n-1)

for n > 1 (76)

B ) k-R(A0)
1+R(1-n)

Γ(1 + R)Γ( 1
1 - n)

(1 - n)1+RΓ(1 + R + 1
1 - n)

for n < 1 (77)

B ) k-RA0Γ(1 + R) for n ) 1 (78)

B ) k-R(A0)
1+R(1-n)

Γ(1 + R)Γ( 1
n - 1

- R)
(n - 1)1+RΓ( n

n - 1)
for n > 1 and

1
n - 1

> R (79)
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of the probability densityF(ø) of the transparence factor. In eq
88, we have taken into account thatF(ø > 1) ) 0. By using eq
88, eq 87 becomes

Equations 84 and 89 are linear integral equations for the
probability densityF(ø) of the transparence factor and its
characteristic functionFj(σ). By solving these equations numeri-
cally, we can evaluate the functionsF(ø) andFj(σ). Further on,
by applying eq 83, we can compute the probability density of
the random component of the energy barrier

If experimental data are not accurate the evaluation of the
functionsF(ø) andFj(σ) may not be possible. However, the first
few moments of the transparency factor can still be evaluated
from eq 89. We recall the moment expansion of the character-
istic functionFj(σ)

where

are the positive integer moments of the transparence factor and
use a Taylor expansion of the average kinetic curve〈ê(t)〉disordered

We insert eqs 91 and 93 into eq 89, resulting in

From eq 94, we obtain the following equations for the moments

An alternative set of equations for the moments can be obtained
by applying a similar procedure to the integral eq 84

In conclusion, in this section we have investigated some
experimental implications of our theory. We have introduced a
consistency test for the validity of the random activation energy
model in its simplest form, which assumes an exponential
distribution of energy barriers. For simple kinetic models, we
have introduced a simple procedure, which makes it possible
to evaluate the kinetic parameters of the process, from the
amplitude factor of the scaling law. For the case where the
distribution of the energy barriers is not exponential, we have
a general approach which makes it possible to evaluate the
probability densities of the transparence factors and of the
activation barriers from experimental data. We have also
introduced a method for the direct evaluation of the moments
of the transparence factors from experimental data.
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Appendix A

In this appendix, we evaluate the cumulants of the intensive
reaction extentê. We introduce the cumulant generating function
of the reaction extent for the disordered system

and the moment-generating function for the reaction extent for
a system without disorder

Here F is the Fourier variable conjugated to the intensive
reaction extentê, 〈〈êm(t)〉〉disordered are the cumulants of the
reaction extent in the disordered system, and〈êm(t)〉orderedare
the moments of the reaction extent in the ordered system. By
combining eqs 28, A.1, and A.2, we come to

By changing the order of summation and the summation labels
in eq A.3 and comparing the result with the expansion in eq
A.1, we can compute the cumulants〈〈êm(t)〉〉disordered. We come
to

Hdisordered(F;t) ) ln{∫Pdisordered(ê;t) exp(iFê) dê} )

∑
m)1

∞ im

m!
〈〈êm(t)〉〉disordered (A.1)

Gordered(F;t) ) ∫Pordered(ê;t) exp(iFê) dê )

1 + ∑
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∞ im

m!
〈êm(t)〉ordered (A.2)
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t
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∞ (iF)ε
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∑wεw)ε

ε!

∏wεw!
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w)1

m

×

{∫0

t
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from which, integrating by parts, we obtain eq 30.

Appendix B

We introduce the characteristic function of the extensive
reaction extent¥ ) Ωê

and evaluate it in the eikonal approximation. We insert eq 22
into eq B.1 and evaluate the integral by using the steepest
descent approximation. We obtain

where

and

is the inverse function of-J (ê;t)/∂ê. The cumulants
〈〈¥m(t)〉〉orderedcan be evaluated by expanding lnGordered(b;t) in
a Taylor series. We have

By combining eqs B.2, B.3, and B.5, we come to

We notice that for systems without disorder the relative
fluctuations of different orders

tend to 0 in the thermodynamic limit; that is, for systems without
disorder, the fluctuations are nonintermittent.

Appendix C

In this Appendix, we consider the more general case of a
system with many overall reactions and with collective fluctua-
tions of the energy barrier. The case of a single overall reaction
considered in section 4 is included as a particular case.

The time dependence of the probability of concentration
fluctuations in the ordered system is given by

where λu and λ are the eigenvalues from the discrete and
continuous spectrum of the chemical Hamiltonian. The smallest
discrete eigenvalue isλ0 ) 0, and simple; all other eigenvalues,
discrete or continuous, have positive real parts; these restrictions
ensure that for large amounts of time the state probability
evolves toward a time-independent value. For systems with
detailed balance, the eigenvalues are discrete and real. Multiple
eigenvalues may occur, but they are rather unlikely and are
therefore neglected in eq 1. By inserting eq C.1 into eq 28, we
come to

where γ(x,y) is the incompleteγ function. By use of the
asymptotic properties of the incomplete gamma function, it
follows that

where

and Γ(x) is the complete gamma function. A similar analysis
can be carried out for the moments and the cumulants.

The contribution of multiple eigenvalues, if they exist, can
be analyzed in a similar way. A discrete eigenvalueλu

(m) with
multiplicity m leads to contributions toPordered(ê;t) containing
exponential terms modulated by polynomials

Such terms lead to contributions toPdisordered(ê;t) which scale
as t-R as t f ∞. We have

which, once again, leads to the asymptotic law C.3.
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