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The quantum mechanical effective Hamiltonian of crystal field (EHCF) methodology (previously developed
for describing electronic structure of transition metal complexes) is combined with the Gittd&gpert

version of molecular mechanics (MM) in order to describe multiple potential energy surfaces (PES) of the
Werner-type complexes corresponding to different spin states of the latter. The procedure thus obtained is a
special version of the hybrid quantum mechanics/molecular mechanics approach. The MM part is responsible
for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving
aside the effects of the d shell. The quantum mechanics part (EHCF) is restricted to the metal ion d shell. The
method reproduces with considerable accuracy geometry and spin states of a wide range of Fe(ll) and Co(ll)
complexes of various total spin and coordination polyhedra and containing both monodentate and polydentate
ligands with aliphatic and aromatic nitrogen donor atoms. In this setting, a single MM parameters set is
shown to be sufficient for dealing with all spin states and coordination numbers of the complexes.

1. Introduction the inter-ligand interaction (described through common non-
bonding 6-12 or 6-exp potentials) but repulsion of effective
| interacting centers placed somewhere on the coordination bonds.
This repulsion is suggested by the well-known qualitative theory
by Gillespié” and formulated quantitatively by Kepé&The
approach recently brought insight of coordination geometries
diversity. It allows a proper description of many cases of
significant distortion in coordination geometry (for discussion
and examples see refs 15 and 16). However, being an MM
method, it is unable (and obviously not designed) to describe
spin states of coordination compounds, which is necessary to
discuss magnetic properties, as well as to provide correct
estimates for energetics of a large number of important chemical
and biochemical processes where they take part.

Economical computational tools suitable for estimations of
electronic structure and molecular geometry of transition meta
complexes (TMC) are highly in demand. The molecular
mechanics (MM} both itself and in the molecular dynamics
setting is intensely used in calculations of proteins and other
polyatomic organic molecules. During the past decade, a
considerable number of attempts were made to apply the
conventional MM scheme to the metal ion complexes with
organic ligand€-1! The main problem here is that in TMCs
several electronic states may occur in a narrow energy range
close to its ground state. Sometimes, the potential energy
surfaces (PESs) corresponding to different electronic terms of

the metal ion d shell intersect which results in spin transitidns. s ) ) ]
In organic molecules, this problem normally does not appear 10 incorporate electronic effects of the partially filled d shell

and the MM description is valid since electronically excited N TMC's into the general MM scheme it was proposed in refs
states are well separated from the respective ground state ont9—23 to include the energy of the d shell as a separate

the energy scale. In these cases, a single quantum state of th&ontribution to the_energy. It is_don_e in variance with waig5> o
electronic system suffices for the description of a molecule. Where the accent is put on estimating the spectral characteristics
Clearly, this is not mandatorily true for TMCs. of the d shell at the geometry assessed with use of an MM

Also, within MM, it is hard to get an adequate modeling of treatment. Including the energy of thg d shell explicitly allows
the coordination sphere, in particular, to account for the US to account for electronic structure mflqe_:nce on the geometry
flexibility of coordination polyhedron. The most straightforward ~ Of TMC. These are quantum effects specific for the open d shell
way is to describe deformations of valence angles involving which appear due to p055|b.le degeneracies ofd[ﬁerent eleptronlc
metal atom at the vertex with potential functions more sophis- terms of the latter at certain complex geometries. Experimen-
ticated than harmonic potentials. Also a so-called points-on-a- tally, this would correspond to the Jahfieller complexes and
sphere (POS) approach was propok&dlt suggests the shape 0 Spin active complexes. However, the ligand fleld energy in
of the coordination polyhedron to be ultimately dictated by the "€fs 7,19, 22, 24, and 25 depends only on the distance between

inter-ligand van der Waals-like interactions. Recently, it has been the metal ion and ligand donor atoms, which seems to be an
showrd516that it may be further improved by considering not ©versimplified picture since the effects of the lone pair orienta-
tion on the ligand field must be taken into account.
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or to that of complexes of heavy (second and third transition forming a relatively isolated group: the d shell relatively weakly
row) metals, without addressing different spin states within a affected by the environment.

calculation. In the frame of these attempts, a rather large part In the papers in refs 39 and 40, we proposed and tested a
of the TMC is treated by a QM method leaving to MM only  hybrid QM/MM description of TMCs targeted at first transition
the periphery of the molecule, thus producing a computationally row metal complexes. It is based on the general appfdach
expensive description of the TMC structure. The QM methods molecular electronic structure and potential energy, which makes
used in the QM/MM hybrid schemes for the TMCs are most it possible to apply the QM description to that part of molecule
often based on the SCF approach. It is so for first Gf&flor in which electronic terms are close on the energy scale and to
the semiempirical level of the theofyHowever, the SCF theory  use the MM description for the part where the electronic states
does not apply to the TMCs as thoroughly discussed in ref 43. remain distant in energy. In refs 39 and 40, a combination of
The source of the problem is the strong correlation of electrons the effective Hamiltonian of crystal field (EHCF) metH8dh

in the d shell resulting in an instability of HartreE&ock problem its local versiort? EHCF(L), with the MMGK proceduré has
solutions for the electronic structure of TMCs. Semiempirical been proposed and implemented for a series of Fe(ll) complexes
methods have been proposed recently for electronic structurewith nitrogen-containing ligands. Within the EHCF(L) approach
calculations of TMCs, such as SAM2MNDO/d 3! and PM3- the effective crystal field is presented as a sum of lone pair
(tm)32 employing the NDDO parametrization scheme. However, contributions (see below). This allows for a detailed description
MNDO/d is not parametrized for the transition metals with only of the ligand field dependence not only on the metajand

the exception of Zn. These methods suffer from the defects anddistance but also on the lone pair orientation with respect to
insufficiency of the SCF scheme as well when applied to TMC the metal ion. In the present paper, we report further improve-
with different spin states. For example, in the work in ref 33, ment of the EHCF(L) approach and the results of application
substituted imidazole-like inhibitors binding to cytochrome of the enhanced hybrid method to molecular and electronic
P-450 are modeled by protoporphyrin IX ferric ion with ethyl structure estimates for the series of Fe(ll) and Co (II) complexes
sulfide as a constant second axial ligand. The binding energy of low- and high-spin.

is calculated by the method in ref 30. There the molecule  The paper is organized as follows. In the next section, we
contains the metal ion in the doublet state, and the RHF briefly review the basic features of the EHCF(L) metH&d
calculation is used. However, for some ligands in the SCF UHF Next we describe the improved EHCF(L) approach taking into
calculation, a spin-contaminated state is obtained. Also, opti- account the ligand polarization in TMC. The last section
mized geometries of some complexes differ strongly from the provides the parametrization and application of the EHCF(L)/
experimental ones: for water the calculated distance,@Fés MMGK approach to calculations of several complexes.
smaller than experimental by 0.5 A, whereas for 3-phenylimi-

dazole, the calculated distance-R¢ is shorter by 0.15 A. In 2. Hybrid EHCF(L)/MM Model

th‘? work in ref 34, a large set of nickel(l1) both low- a}nd high- The key point for incorporation of transition metal ions (TMI)
spin complexes with square planar cyclotetraazo ligands are.

. X into MM is to estimate the energy of the d shell as a function
[)ne(igzlgg gigzaigﬁg?n?ec:}ggfaigg L?ftgr?i??ed;zggrfﬁ; r?f the ligand sphere composition and structure. In this section,
0.12 A for low-spin complexes and 0.07 A for high-spin we review working approximations based on the EHCF(L)

P : L
complexes. The authors concluded that the PM3(tm) method isthe0ry1 and propose the improved EHCF(L) method taking into

inapplicable at least to this class of complexes. Recently, in ref account the ligand polarization.
35, a construction of energy profiles of the different spin states 2.1. Basics of the EHCF(L). The concept of separating

. electron variables is to be employed when a hybrid QM/MM
of the pomplex Fe(hemd](Hys)CO dependmg on the CO method is developet:electrons have to be divided into groups,
separation from the plane of the heme ring has been performed

combining the angular overlap model (AOM) and “diatomics- some of the groups whose excited electronic states are accessible
. 9 i 9 riap m N . in the experiment are treated by a QM method, whereas the
in-molecule” methods. This semiempirical method is param-

) - . behavior of other groups whose excited electronic states lay
etrized by comparison with TDDFT curves for ground states high i : . .
. - L igh in ener and are not accessible in experiment) are
of different total spin. However, it is known that the TDDFT 9 gy ( b )

P . modeled with use of MM. In a TMC comprising one TMI and
approach only partially include correlation effects for the d shell ligands around it, the basis of valence atomic orbitals (AOS)
of the transition metal ion, so the status of these results is '

| E | boint of Vi . irical method containing the 4s-, 4p-, and 3d-AOs of the metal atom (for a
unclear. From a general point of view, semieémpirical methoads .o+ yransition row element) and those of the ligand atoms is

ba;ed on the SCF methodology take into account correlation according to ref 43 divided into the d system which contains
mainly by parametrization rather than by form of the wave . 34 orhitals of the TMI and the | system which contains
function. Thus, having a parametrization capable of describing 4 4p-AOs of the TMI and the valence AOs of the ligand

properly certain spin state of the transition metal ion may not _:oms 1n the EHCE methdd it is shown that the d shell can
result in a correct description of other spin states with a different be described by the effective QM Hamiltoni&lﬁﬁ'

contribution of correlations.

The valence bond approach to the metal bonding proposed 1
in a series of work&3is based on the concept of hybridization ~ HE" = zujgd/m*dm +-5 > wlpnyd,,d,, ', d,, (1)
of s and d-AOs of the metal atom in different ligand o 25mG
environments. These works explore a physical situation different
from that in “first-row” TMC we are mainly concerned with.  whereu, v, p, and# are the 3d-AO indices and, t are the
That of the works in refs 3638 may be qualified as “organo-  spin projection indices, and the standard notation for the two-
metallic” due to direct involvement of the d orbitals into valence electron integral £v | pn) is used. The d electron Coulomb
bond formation which establishes corresponding conditions for interaction term is inherited from the free ion, and the effective
possible hybridization schemes. By contrast, in the “first-row” core attraction parameteti;f;if contain contributions from the
TMCs, the d electrons must be qualified as “non-bonding” thus Coulomb and the resonance interaction of the d and | systems
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UM =0, Uyq + WM+ Wl 4 oV 2) where the coefficientngl form a unitary matrixR* trans-
e " : " forming d orbitals from the global (laboratory) coordinate frame

The term (GCF) to the DCF. The latter is defined so thatatsxis is the
straight line connecting the metal atom with the ligand donor

W™= 0,u( Y GuaPoc) (3  atom.
‘ “ uezsp oo Then, introducing the quantities
is the repulsion of electrons in the d shell from those in the 4s- eM,A = Z\t*LGadv(Ad)th 9)
K . A —LL A
and 4p-AOs of the metal, where o are the indices of metal s

3d- and 4s, 4p-AOs respectivel,, is the Kronecker symbol,

0. is the electror-electron interaction parameter, aRgl, is we obtain
the density matrix diagonal element. The term o A Ae A
old W/Cw Z;’Rﬂz e Ry (10)
V\4w = ZQL\/,IL:V (4)

where the matrix elements;* of the & matrix in the DCF

is the Coulomb potential®, of d electrons interacting with the ~ &r€ labeled by the indicesl’ taking valuesy, 7z, 77y, dxy0x-y,
net chargeQ, on theLth ligand atom, having the standard crystal according to the symmetry of the methbrbitals with respect

field theory form#* The covalence part to thez axis of the DCF. _
The expression eq 9 defines thjg. parameters in terms of

1-n n the quantities which can be calculated within the EHCF(L)
ﬂﬂ"= - Zﬂmﬁvi e (5) method. Their relation with the standard AGMs described
| AE; AEy in details in ref 42. There eqs 9 and 10 have been used to

calculate the values of they ande, parameters for a series of
ultimately comes from the resonance interaction between the dgctahedral complexes with nitrogen containing ligands. That
and | systems, whey&,i (5.i) are the resonance integrals between cajculation was in a good agreement with experiment&dLO
uth (vth) AO of the d shell andth MO of the | systemAEg values (within 10% accuracy).
(AEig) is the charge-transfer energy from the d shell toithe 2.2. Perturbative Estimates of Ligands’ Electronic Struc-
MO or backward,n; (=0 and 1) is the occupation number of  tyre Parameters. In section 2.1, we reviewed the EHCF(L)
theith MO. Summation here is extended to the canonical MOs theory which allows to estimate the crystal field in terms of
(CMO) of the entire | system. This is the essence of the EHCF |oca| electronic structure parameters (ESP) of the ligands. By
method? The procedure expressed by egsblhas been shown  this method, it can be done for arbitrary geometry of the
to be able to reproduce the splitting of d shell levels with a complex, which is prerequisite for developing a hybrid QM/
10% precisiorf34° MM method.

In our paper$P*2we have derived and tested a local version  The natural way to go further with this technique is to apply
of the EHCF method EHCF(L). It was shown that the splitting the perturbation theory to obtain estimates of the | system
parameter 1Dq can be estimated with the error not exceeding Green’s function entering egs 6 and/or 9. It was assumed and
0.1 eV (this accuracy compares to that of the EHCF method reasoned in ref 39 that the bare Green’s function for the | system
itself) by the formula has a block-diagonal form

W' = ;;ﬁuuﬁweﬁﬁ“md) (6) Gho=® G (11)

Nonvanishing blocksg\ correspond to separate ligands (frag-

where A enumerates the ligands, the subscriptesnumerate . . \ X
the one-electron local states referring to the lone pairs (LPs) ments)A containing thedunperturbed diagonal Green's function
aav

residing on the donor atoms, afig is the resonance integral ~ Matrix e_Iements(BQ)(e)LL corresponding to the LE located
between theith AO of the d shell and theth LP. The advanced ~ ©n the ligandA
Green'’s functionG?™(e) for the local state. in eq 6 is given

@),
> GO =Y lm———— ()
nc. R0 — e, O +i0
Glao=-Y——— (7) N | - |
e — (9q— €) wherec; is the same expansion coefficient as in eq 7 but for

the LP of the separate ligamd, ande,;©@ is theith MO energy

wherec; is the coefficient of the LPs expansion over CMOs 0f that same free ligand. Then the eq 6 contains Green'’s function
obtained by the maxP* localization proceduré? gq is the (GQ)(e)f“ﬂ" of the free ligand and the summations in eq 6 is
interaction energy between d electron and electron oritthe  performed over the separate ligantisand their LPs indexed
MO, ande; is the energy of thith CMO of the | system inthe  aslL.
TMC. The Coulomb interaction between the ligands themselves and

The resonance integrahs, in eq 6 can be expressed through between each of them and the metal ion when turned on does
thetl vector of the resonance integrals between the metal d-AOsnot break the block diagonal structure of the bare Green’'s
and theLth LMO taken in the diatomic coordinate frame (DCF) function G'OO. Then the approximate Green'’s function for the |

related to the ligand\ system conserves the form eq 11 but with the poles now
corresponding to the orbital energies of the ligand molecules
B = Z R, (8) in the Coulomb field induced by the central ion and by other

en ligands (\' = A) rather than to those of the free ligands.
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In the following subsection, we consider an implementation
of this approach taking into account the Coulomb field effects
and thus allowing us to express the Green'’s function of the |

system in terms of the Green’s functions of separate ligands.

2.3. Approximate Treatment of the | System Electronic
Structure. 2.3.1. Rigid Ligands’ MOs ModelThe simplest
picture of the influence of the central ion on the surrounding
ligands reduces to that of the Coulomb field affecting the
positions of the poles of the Green’s function (orbital energies)
of the free ligand. The form of the CMOs of each ligand is left
unchanged which is a picture of the rigid ligands’ MOs (RLMO)
ref 39. According to ref 52, the effect of the Coulomb field
upon the orbital energies is represented by

GY =@t -0 (13)
where G} is the Green’s function for the free ligand and the
self-energy ternkE® is due to the external Coulomb field. The
perturbed Green'’s functio®® within the first order has the
same form aﬁg\ but its poles are expressed through the orbital
energies of the free ligand© and the self-energy par&iﬂ

6¢=0+30 (14)

The self-energyz is taken as that of a pure electrostatic

interaction between the partial electron densities and effective

point atomic charges by

Zi(if) ~ ’z\PiNahN
S

wherepiy is the partial electron density of thg CMO of the
ligand A on theNth atom of the ligand

2
chi o
€

whereci, are theith MO LCAO coefficients of the free ligand,
and the core Hamiltonian perturbatiohy is

(Zy —ny)
Ry

The atomic quantitieshy are equal to the perturbatiod$iy

of the corresponding core Hamiltonian matrix elements in the
ligand AO basis. This is like that since, within the CNDO
approximatiof® accepted in ref 39, the quantitiés,, are the
same for allo. € N.

(15)

PN = (16)

—&

Qu
" A’¢%’EA’ Ry

N

17)
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ion as a point charge equal to its oxidation degree or formal
charge is habitually called the sparkle mogfelVithin models
of that type, a semiempirical SCF calculation is performed for
the ligands of the complex placed in the electrostatic field
induced by the central ion with its formal charge (“sparkle”).
Thus, the charge redistribution occurring in the ligands is
obtained by performing a standard SCF procedure for them.
Within models of the sparkle family, the effect of the external
Coulomb field does not reduce to the renormalization of the
orbital energies as it is within the RLMO model (see above).
The electron distribution also changes when the ligand molecules
are put into the field. That means that the density matrix of the
system varies and, accordingly, the effective point chaf@es
residing on the atoms of the molecule in eq 17 change. We
will describe this situation by means of polarizability conc&pt.
According to it, the difference between polarized and nonpo-
larized effective charge on atofis

0Q,=Qp— Qg = ZHABahB = ZHAB(ahg +ZBFAC(3QC)
= oas)

where Ilag is atomic mutual polarizability discussed below
whereasdh,? taken from eq 17 can be rewritten as

5h2 = —Zyl'ya — ZQSFBA

Fya= 2/RMA
Fpg=01- 5AA')92/RAB (AcA; BeA")

ZéQA = Z ZxéPm1 =0

The quantitieng in the above equation are the bare effective
charges as they appear from the calculation on a free ligand to
which the atomB belongs. The terndhj is renormalized due

to the electror-electron interactiod ac resulting in the true
(renormalized or dressed) perturbatidns. The quantitydQa

is the change of the effective atomic charge due to polarization,
and 6Py is the change of theth AO orbital density matrix
element. In the matrix form, eq 18 reads

(19)

0Q=0Q — Q°=T1(5h° + I'Q)

0Q = (1 — 1) '11oh° (20)

00

0Q=TI16h° + § (II)"[Ioh°

n=

:ZéQ(n)
These formulas comprise the RLMO model of the electronic "

structure of the | system of the TMC. The RLMO procedure |t formally requires the calculation of the inverse matrix of the
has been implemented in the program suite ECFMM?116s order equal to the number of atoms in the TMC.

application to analysis of molecular geometries are described  Though procedures of that sort are admitted in modern MM
in refs 39 and 40. Despite satisfactory results in geometry and schemes directed to the systems with significant charge redis-
spin states description of some iron(ll) complexes, the main trihytion57 we consider such a procedure to be too resource
conclusion is that the crystal field is reproduced with too large consuming and restrict ourselves by several lower orders with
an error due to the overestimated repulsion of d electrons from respect tdT in the expansion. Then the tedhC corresponds

the ligands lone pairs. Due to that in refs 39 and 40, we had 0 g the first order perturbation by the Coulomb field induced by
scale correspondingly the Racah parameters differently for the metal ion and bare (nonpolarized) ligand charges. The second
complexes with pyridine-like and amino nitrogen donor atoms, grder term corresponds to the perturbation due to the Coulomb

since in.the latter analogou§ error was small. |!1 th.e following field induced by the mutually polarized (upto the first order)
subsection, we propose an improved model taking into accountcparges

polarization effects in the ligand sphere which is able to describe

both types of ligands within a unified parametrization. 6Q(1) = [16h°
2.3.2. Sparkle Model and Its Perturbag¢i Versions.The
model of electronic structure of TMC which considers the metal 6Q@W = MIrsh® (22)
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The atom-atom mutual polarizability matridI has a block-
diagonal form

n=emn*
A

(22)

where A enumerates the ligands.
To evaluateIl®, we consider the mutual atomic orbital

polarizabilitiesIT,”
oP

_ oo

== (23)
where oo and § enumerate AOs, and corresponding mutual

atomic polarizabilitiedTag*©

0Qa

M8 = Shy

(24)

whereA andB enumerate atoms. Turning to the differedég,,
of the electron density on theth AO of atom A and
renormalizingdhgs accordingly to eq 19 results in

0P = Y eny pesllos ONys = D geny pealles (Ohfs +
D 7a0Pu)
u

0Q = IM*O(5h° + 76Q)

wherey, is the intraligand A) two-electron Coulomb integral
that in the CNDO approximation has the form
)7u/i =(1- 5&[3)7&[3 + 6&/37(1(1/2 (25)
The coefficient one-half at the diagonal interaction element in
the above expression reflects the fact that in the single-

determinant approximation with the closed shell only that half
of electron density residing at theth AO contributes to the

energy shift at the same AO which corresponds to the opposite

electron spin projection. Then the expression for the renormal-

ized mutual atomic polarizability matrikI* can be obtained
HA — (1 _ ,}71—[/\(0))*11—1[\(0) (26)

Finally, according to the general formulas given, say, in ref 56,

the matrix element of the bare orbital mutual polarizability
entering eq. 23 is given by

C.C C
A0 = 4 Gty
Qy
keocdevac €k T €

A@0) — A0
=5 5
acApe

whereo andf are the AOs indicesk andex and| ande¢ are
respectively the occupied and vacant MOs indices and orbital
energies, ana, are the MO LCAO coefficients for the free
molecule of the ligand\.

This is the method for construction the renormalized polar-
izability matrix ITA for the ligandA. The form of the total matrix
IT for the whole TMC is given by eq 22. With use of this matrix,

(27)
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with the inverse matrix in the second row of the same equation.
Then, eqs 1821 comprise the perturbative form of the sparkle
model of the | system’s electronic structure (the PS model).

Thus, in this subsection, we formulated the perturbative
version of the sparkle approximation for the Green’s function
G'O of the | system. It satisfies the requirement imposed above
that the Green'’s function of the | system must be expressed in
terms of those of the free ligands. As we show in section 4.2
below, it yields effective atomic charges of sufficient precision
using the point charges of the free ligand as a zero approxima-
tion. The charges thus obtained are used for calculation of the
Zi(if) term according to eq 15 and for renormalizing the orbital
energies by eq 14. The proposed procedure improves the
junction between the EHCF(L) method playing the role of the
QM procedure and the MM part, as shown below, where details
of the calculations performed within this approximation are
given (section 4).

3. Incorporating EHCF(L) into MM

3.1. Total Energy in the Hybrid EHCF(L)/MM Model.
The total energy of a TMC in itsith electronic state in the
EHCF(L)/MM approximation is taken as in ref 23 where it is
shown to be

E, = E_+ E'(n); EF'(n) = W HE"IWiD (28)
where W is the nth eigenfunction of the effective d shell
HamiItoniaanff eqg 1 obtained from the full Cl expansion of
the d system wave function. Thus, the teEﬁ'T'(n) is the d
shell energy calculated as thth eigenvalue of the effective d
shell Hamiltonian. The ligand enerdy is replaced byEww,
the MM energy of the ligands. In the present work, we assume
that the effective d shell Hamiltonian is estimated by the EHCF-
(L) method described in the previous section. The contribution
Egﬁ(n) apparently is not a MM-like “force field” and has a
different structure.

To obtain the effective Hamiltonian for the d shell used in
eq 28 the electronic structure parameters (ESP’s) of the | system
must be used in eqs#4, 9, and 10. These ESP’s are condensed
in the | system Green’s function. In the previous section, we
presented general formulas which comprise the perturbation
approach to evaluation of the Green’s function of the | system
using those of the separate free ligands as a zero approximation.
Estimates of the | system Green’s function following the
prescriptions of section 2.1 can be performed for arbitrary
molecular geometry. Inserting this approximate form of the |
system Green’s function into the EHCF(L) formulas, egs 9 and
10 yield the required estimate for the crystal field acting on the
d shell of a central TMI in terms of the separate increments of
the lone pairs for each molecular configuration of the TMC.

The RLMO and PS models represent the Green’s function
G'0 originated from eqgs 1113 including only the ligand MO
energy shifts b;Ei(if) eq 15 calculated with use of the effective
atomic charges. The latter are the charges for either free ligands
or those polarized by metal ion and other ligands for the RLMO
or PS models, respectively. That all comprises the two versions
of the hybrid EHCF(L)/MM approach to evaluation of the PES
of TMCs. The RLMO approach was thoroughly investigated
in refs 39 and 40, so in the present paper, we focused on the

we can obtain renormalized atomic charges by eq 20. This modelPS model implementation.
can be termed here as the PS model (PS stands for perturbative 3.2 Parameters Used in the EHCF(L)/MMGK Approach.

sparkle). Specifically, the RSapproximation level of the PS

The EHCF(L)/MMGK method described above in general terms

model stands for the charge corrections of the series eq 20 upis a specific case of a general hybrid scheme involving QM
to thenth order, whereas PS itself stands for the exact expressionand MM components which both require extensive parametriza-
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our case, these are the subsets related to the QM description of E
the d shell, the parameters of the MM part, and those relevant
to the junction between the MM and QM subsystems.

3.2.1. d Shell Parameter$he d shell parameters are taken
from the original EHCF method ref 43 without changes. These 1 2
are the specific exponents of atomic d orbitals and d electron Eimp = §Kimp‘§
core attraction parameteyyy for each metal atom. The Coulomb
repulsion of d electrons is characterized by three parameters:the energy of improper torsion (out-of-plane) interaction.
0dd @and the Racah paramet&sndC. In the general theoretical Bonding interaction of metal valence 4s and 4p subshells with
setting of the EHCF method, the Racah parameters must beligands is currently modeled within the MM part of the
taken standard for the free ions as tabulated, say, in ref 44.combined EHCF(L)/MM scheme through the Morse potential
Pragmatically, however, the values specific for the complex are
used in order to reach better agreement between theoretical and E, = Djle " — 1)? (30)
experimental spectr& 8 In the context of the present study
directed toward uniform description of a wide range of The use of the Morse function is necessary to interpolate energy
complexes with many different ligands, only the single values values in a wide range of variations of the metdbnor atom
of the Racah parameters common for all complexes of a given separations in different TMC spin states. It should be noted that
metal ion make sense. For the complexes of Fe (Il), the Racahour goal here is to employ a single parameter set for any spin
parameterd, = 917 cntt and Co = 4040 cni for the free state whereas in other approach used for the TMC structure

tion. The entire set of parameters consists of three subsets. In ro\12 ro\®
nb = €jj a1 P
ij ij

the energy of nonbonded interaction

Fet cation are used like in refs 43 and-429. In refs 45-48 calculations there are separate sets for the low- and high-spin
where the EHCF method has been employed for electronic states’

spectra calculations of some €6 complexes, various values The arrangement of the donor atoms around the metal is
of the Racah parameters have been used. For example, in thelictated by mutual repulsion between the effective centers lying
case of the complex [Cog}f~, these values wei@ = 780 cnr! on the M—L bonds on the distanags from the metal ion. This
andC = 3432 cn1,*” whereas for the complexes CofB)s>" term implicitly partially accounts for the electronic effects in

and [Co(NH)e]?* the values oB = 850 cnt* andC = 3935 the coordination sphere which could not be described within
cm ! andB = 885 cm! abndC = 4099 cn! were used,  the standalone EHCF formalism (which gives only the d shell
respectively®® The free C8* ion Racah parameters aBg = energy). The energy of the bond repulsion in the coordination
971 cnr! and Co = 4366 cntl.44 For the considered set of  sphere is then

Co(ll) complexes, the specific single set of these parameters

for the Ca* ion B = 800 cnt! andC = 3800 cn! is used Eirjepz AiAj/RJG (31)
both for the low- and high-spin complexes with different

coordination numbers and geometries. The employed Racahwhere

parameters are somewhat reduced as compared to the free ion

values. 2= P r P — 2 ol o COSEKMX
3.2.2. MM ParametersThe organic part of a molecule and R el bef el COSEGM)
metal ion coordination sphere (leaving out effects of the d shell) I eff = RIM=X)d, o
is described in the present hybrid procedure in terms of the
MMGK method15.16 andR(M—X;) is the actuaM—X; bond lengthA;, A;, desi, and
Within it the total conformation energy of a molecule is defrj are the GK force field parameters, characterizing energy
of repulsion ) and positions of the repulsion centedz).
E. =SE +SE._ + +SNSE,.+SE_ + The MM parameters for the organic part of the molecule were
MY z ® z o zEmrS z " z P primarily taken from the CHARMM force fiel&8° whereas
zErep (29) specific metal-dependent parameters must be fitted within
i different versions of the EHCF(L)/MM method separately
where the energy terms (force fields) are (compare ref 40 and the present work). We note once again
1 that the single parameters set is used for all spin states of the
E,= éKr(r — o)’ TMI under consideration.

3.2.3. Junction ParametersSince the EHCF(L)/MMGK
approach is a specific case of a general QM/MM scheme, where
the entire system is divided into two parts, namely the d shell
and the | system, their interaction requires separate attention.

1 5 Within the standard EHCF model, this interaction ultimately
Eang= 5Ko(6 — 60) results in the d shell splitting. In the QM/MM context, the
intersystem interacton is habitually termed as a junction. Not

the energy of valence angle bending as in ref 1. The valence!ike in other hybrid QW/MM schemes, the form of the junction
angles involving the metal ion as a vertex are not considered in the present EHCF(L)/MM scheme is not taken ad hoc but is

as they ar e described through the Gillespie-Kepertie(see  9given by the EHCF® and EHCF(L}**? theories. The precise
below eq 31) numerical values of the junction-related quantities are calculated

on the basis of the theory reviewed above. An important

_ component of this theory is that certain type of electronic

Erors _%Vo(l + cosi(¢ + ) structure underlying the MM part of the system is assumed.

Parameters characterizing this implied electronic structure of
the energy of torsion interaction the | system are used in order to estimate the intersystem

the energy of bond stretching (except metadonor atom bonds,
see below)
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junction. These two kinds of parameters corresponding, respec-TABLE 1: Parameters of the Morse and Gillespie-Kepert
tively, to the d-I interaction itself and to the | system electronic E_oten(tjlaEIsS'faor the EHCF(L)-PS1/MMGK Model of the
structure (ESP’s) are characterized below. 'gan S

d—I Interaction Parametersin the original EHCF theory, metal ";‘tom . DI;) LA ri\ . IQG/ |
the specific parameters describing the interaction between the_'°"___ YP€  kcalimo cal A%mol __ d
d and | systems were fit to reproduce the d level splitting for F&"  NA 80.5 173  1.890 41.4 1
; i Fet N3 70.0 1.73 1.956 34.2 1
octahedral complexes with a specific donor atom. The set of
the int tem inferacti ters includ do C* NA 1100 120 1.86 44.8 1
e intersystem interaction parameters includesgthendgpg St N3 1180 156 188 472 1

parameters of the Coulomb interaction between the d shell and

transition metal valence s an%gp electrons. These parametery,q 5g calculated preliminary. Al of the mutual polarizabilities
are taken from the Oleari’'s wofR,the valence state ionization  paqyeen atoms of the different ligands are neglected since they

potentials for the_d she_II and the donor atoms are _taken from have too small values. It was checked by direct test calculation
ref 61, and the dimensionless factdtig. characteristic for a ¢ ihe entire polarizability matrix of separate ligands.

metal-donor atom pair, scaling the resonance interaction. These Then it is possible to calculate the polarized charges in all of
parameters are transferred from the. original EFCI6 the the required orders by eq 21 starting from the bare ones. In
EHCF(L)/M.M without chang.e. The orbital exponents necessary fact, the second order in eq 21 and complete summation of the
for calculating the overlap integrals employed throughout the pert’urbation series by eq 20 give very close results. In most

arametrizing the resonance integrals are also taken from ref ' o .
P g 9 cases, the second or even the first-order polarization suffice for

43 as they are there. our purposes (see the next section).
ESPs of the | System. RLMO ModEehe ESPs of the | system

required for the calculation of the effective Hamiltonian eq 1
are the one-electron densities (effective charges), orbital ener-

gies, and MO LCAO expansion coefficients. The original  |n our present study, the basic procedure for treating PES of
EHCF*3 method employs the CNDO approximatfin order TMC within a general QM/MM-like framework is constructed.
to estimate these quantities. They are calculated for arbitrary To summarize, we reformulated in the local forme(iin terms
molecular geometry by the approximate SCF procedure extendedyf the effective field increments induced by the lone pairs of
to the entire | system. The local version of the EHCF employed the ligands) the semiempirical EHCF theory which previously
in the present work additionally requires a set of expansion allowed us to calculate with quite good accuracy the crystal
coefficients for each local state (LMOs) related to the LP field induced by the ligands on the TMC's d shells. This gave
involved in the complex formation (located on the donor atoms), us explicit formulas for the crystal field matrix expressed
as parameters. The expansion coefficients of the LP over thethrough the ESPs of the free ligands and the procedure to
donor atom AOs having the dominating contribution to the LP calculate them. In the framework of our approach, the crystal
and calculated within the ligand fixed coordinate frame (LFCF) field matrix is calculated for arbitrary arrangement and orienta-
are treated as ESPs of the | system as well. These quantitiegion of the ligands around the central TMI.
proposed in ref 42 are calculated separately for the free ligand 4 1. Implementation. In the present work, we constructed a
molecules and are fed to the EHCF(L)/MM procedure as procedure combining the EHCF(L) approach and the specific
parameters. form of the MM (MMGK ref 16) by eq 28. It is implemented

In the RLMO approximation of ref 39, the orbital energies within the ECFMM 1.1 packagé which allows gradient
are estimated perturbatively which is more economical from minimization for the energy eq 28. The package also allows us
the computational point of view but requires a larger number to consider ligands or their fragments also as rigid bodies. As
of parameters. Within the RLMO model, the electronic structure a consequence, the number of geometry variables considerably
of the free ligand prototype is supposed to be unchanged duringdecreases which allows us to speed up the minimization.
the complex formation. Thus, for the EHCF(L) calculations, Technically, the ligand geometries employed within the rigid
we use the charge distribution calculated for the free ligand body scheme are first pre-optimized with use of the MM
itself, i.e., the effective point charges which are found from the potentials only, and in the further calculations, their internal
CNDO calculation on the free ligand and consider them as ESPsgeometry is fixed. The PS1 and PS2 orders for charges as well
for the | system. Also the orbital energies of the ligand MOs as the exact PS calculation of the PS model are implemented
having nonzero contribution to the LP of the donor atom in the ECFMM package. In our calculations, we used the PS1
calculated for the free ligand are to be fed to the EHCF(L)/ model. Parameters fitted within the EHCF(L)-PS1/MMGK
MM procedure. They are used to estimate the positions of the model for pairs metal atomdonor atom, where metal is Fe(ll)
poles of the Green’s function in the Coulomb field of the charges or Co(ll) and donor atom types (MMGK) are NA and N3, that
within the complex according to the formula eq 14 with use of is spg- and sp-hybridized nitrogen, are present in Table 1.
the partial densitiepiy introduced above in eq 16 which are  Names and Cambridge Crystal Structure Data Bank (CCSDB)
also considered as parameters. All these quantities are calculatedodes of the calculated complexes are listed in Table 2.
separately with use of the CNDO parametrization for the free 4.2, Numerical Simulation with Use of the PS ModelAs
ligands. it is stated in section 2.1, the effective charges and orbital

ESPs of the | System. PS Mod&he PS model of the energies of the | system are needed to estimate the EHCF. In
electronic structure of the | system includes ESPs which are the EHCF method of ref 43, these quantities are calculated with
the same as in the RLMO model. The difference with the latter the use of the semiempirical SCF procedure (CNDO). We
is that the effective charges used in eqs-22 are renormalized  compared the free ligand charges and the charges calculated
due to polarization by the Coulomb interaction between the within the SCF sparkle estimates and PS estimates according
ligands themselves and with the metal ion. By eq 22 the matrix to the procedure described in section 2.3.2. The results are
of mutual atomic polarizabilities for the whole | system is presented in Table 3. Numeration of the ligand atoms can be
constructed from the polarizability matrixes of the free ligands found in Figure 6.

4. Results and Discussion
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TABLE 2: Ligand Names and CCSD Reference Codes for the Calculated Molecules

ground CCSD
no. ligand name state spin (exp.) refcode ref.
1 tris(2,2-bipyridine) 0 NUZKOI 62
2 bis(tris(2-pyridyl)amine) 0 PYAMFE 63
3 bis(tris(2,2-bipyrimidine) 0 RIJLAX 64
4 tris(5,8,6,8-tetramethyl-3,3bi-1,2,4-triazine) 0 HEYRAE 65
5 bis(2-(pyrazin-2-ylamino}4-(pyridin-2-yl)thiazole) 0 RIZSOI 66
6 bis(2,2:6',6"-terpyridine) 0 ZIMBUS 67
7 exo-(6,13-diamino-6,13-dimethyl-1,4,8,11-tetra-azatetradecane) 0 PAZXAP 25
8 bis(1,4,7-triazacyclononane) 0 DETTOL 68
9 (1,4,7-tris(2-pyridylmethyh-1,4,7-triazacyclononane) 0 DUCFOW 69
10 bis(2,2-dipicolylamine-N,N,N"") 0 JALJAH 70
11 hexapyridine 2 PYFEFE 71
12 tris(6-methyl-2,2bipyridine-N,N) 2 VEWVEY 72
13 hexakis(1-methylimidazole) 2 MIMFEA 73
14 hexakis(isoxazole-N) 2 QAHPIY 74
15 tris(2,2-bibenzimidazole) 2 VEYTEY 75
16 tris(2,2-bi-imidazole-N,N) 2 ZIMMAJ 76
17 tris(2-(1,5-dimethyltriazol-3-yl)pyridine) 2 YIVSEB 77
18 bis(tris(3,5-dimethyl-1-pyrazolyl)methane-N,N") 2 XEFDER 78
19 delta-(1,4,7-tris(2-aminophenyl},4,7-triazacyclononane) 2 LOTSES 79
20 tris(ethylenediamine) 2 ZIWDUG 80
21 bis(bis(1-methylimidazol-2-ylmethyl)amine-N,N'"") 2 NARWIM 81
22 bis(tris(2-pyridylmethyl)amine-N,\N"") 2 NELGIU 82
23 bis(4,6-diphenyl-2,%6',2"'-terpyridine) 2 JOJQEE 84
24 0 JOIMUQ 84
25 bis(2,6-bis(pyrazol-1-yl)pyridine) 2 XENBEX01 85
26 0 XENBEX03 85
27 tris(3-(pyridin-2-yly-1,2,4-triazole-N,N 2 QALMAR 86
28 0 QALMARO1 86
29 tetrakis(2-pyridylmethyl)ethylenediamine 2 KEZPEK 87
30 0 KEZPIOO01 87
31 tris(2,2-bipyridine) 3/2 CAMHED 88
32 bis(2,2:6',6"'-terpyridine) 3/2 CAPSAN 89
33 hexakis-imidazole 3/2 ROJXET 90
34 tetrakis(1,2-dimethylimidazole3N 3/2 FUJHAT 91
35 (4,14,19-tris(methoxymethyl)-1,4,6,9,12,14,19,21-octa-azabicyclo(7.7.7)tricosane) 3/2 NEBLIP 92
36 1,4,8,11-tetra-azacyclotetradecane 1/2 COANEC 93
37 aqua-12,14-dimethyl-1,4,8,11-tetra-azacyclotetradeca-11,13-diene 1/2 MTZCOF 94
38 (3-(1-(methylamino)ethylidene)L 1-(1-(methylimino)ethyl)- 1/2 FAZPUR 96
2,12-dimethyl-1,5,9,13-tetra-azacyclohexadeca-1,4,9,12-tetraene-N)
39 aqua-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradeca-4,11-diene 1/2 JASKUJ 95
40 (5,7,12,14-tetramethyl-2,3:9,10-dibenzo-1,4,8,11-tetra-aza(14)annulene) 1/2 JUHTIP 97

The data of Table 3 show that the free ligand effective atomic  In conclusion, the first-order polarized point charges as well
charges (column 1) are quite strongly affected by the interaction as the orbital energies eq 15 using these charges of eq 21 are
with metal ion described by the SCF sparkle procedure (column found to be in fair agreement with those from a semiempirical
2). The difference between the results of the SCF sparkle modelSCF procedure corresponding to the sparkle model.

(column 2) and the charges obtained by the PS1 model (column 4 3 EHCF(L)-PS1/MMGK Model. 4.3.1. Spin States and
3) is however small especially for charges of the peripheral Geometry of Iron(ll) Complexe@he methodology described
atoms. Charges on the donor atoms in column 3 are slightly 5pove was applied to 30 complexes ofFéisted in Table 2

larger than these in column 2, but the difference is also small. together with the ligand names, relevant Cambridge Crystal
On the other hand, the difference between SCF sparkle (columng;,cture Data Bank (CCSDB) reference codes, and the

2) and free ligand (column 1) charges are close to the difference xperimental spins of the ground states. The ligands are shown
between columns 3 and 1. One can see that whatever methocga

f taking i he ch lizati X h n Figure 6. The series contains compounds with monodentate
of taking Into account the charge renormalization gives rather 4 nolydentate ligands of both low- and high-spin ground
close results when it goes about the charges on all the ligand

states.
atoms except the donor ones. However, 90% of the d level E . | ies of the ab | K
splitting comes from the covalent contribution eq 5 so even large xperimental geometries of the above complexes were taken

error in the donor atom charges does not destroy the overall oM the CCSDB. Hydrogen atoms were added where necessary.
estimate of the effective crystal field. For complexes 2330 that exhibit spin-crossover, crystal

The values of the orbital energies are obtained from eq 15 Structures for both low- and high-spin states are known which
that is the first-order correction to the orbital energy for the &llows fora detailed comparison of the results of our calculations
MO in the field induced by all of the charges of the complex With experiment (at least in terms of molecular geometry).
except those in the ligand under consideration itself. The charges As a test, we calculated the 0§ parameter for octahedral
in eq 15 are taken from the PS1 model. Orbital energies are complex 11 as a function of the metalitrogen distance with
close to those obtained within the sparkle SCF scheme (seeuse of the EHCF(L)-PS1 and by the original EHCF procedure.
Table 4). Thus, such an approximation for the orbital energies It was found that for the “interesting” range of the interatomic
of the ligands is shown to simulate the results of the SCF sparkle separations (about 2 A) either first or second perturbation orders
model. of the EHCF(L)-PS1 model employed in the present work fairly
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TABLE 3: Comparison of Effective Charges on the Ligands
Obtained by Different Models

free  sparkle EHCF(L) 0Q
ligand SCF PS1
atom (1) @) ®) -1 G-0n 6-O9
Bipyridine in1
N -0.157 -0.412 -0.370 -0.255 -0.213 0.042
C(1) 0.095 0.121 0.084 0.026 —0.011 —0.037
C(2) 0.081 0.140 0.130 0.059 0.049-0.010
C(3) —0.030 -0.014 -—0.020 0.016 0.010 —0.006
C(4) 0.035 0.083 0.070 0.048 0.035-0.013
C() —0.035 -0.017 -0.010 0.018 0.025 0.007
Terpyridine in6
N(1) —0.150 —0.403 -0.389 —0.253 —0.239 0.014
N(2) —0.158 -0.448 —0.432 —0.290 -0.274 0.016
C(1) 0.098 0.115 0.122 0.017 0.024 0.007
C(2) 0.087 0.143 0.139 0.056 0.052—0.004
C(3) —0.028 -0.014 -—0.018 0.014 0.010 —0.004
C(4) 0.032 0.082 0.070 0.050 0.038-0.012
C() —0.035 -0.014 -—0.018 0.021 0.017 —0.004
C(6) 0.098 0.137 0.137 0.039 0.039 0.000
C(7) —0.035 -0.020 —0.020 0.015 0.015 0.000
C(8) 0.031 0.083 0.071 0.052 0.040—-0.012
Pyridine in11
N —0.149 -0.373 —-0.348 —0.224 -0.199 0.025
C(1) 0.090 0.116 0.134 0.026 0.044 0.018
C(2) —0.015 -0.005 -—0.010 0.010 0.005 —0.005
C(3) 0.041 0.079 0.077 0.038 0.036—0.002
Methyl-bipyridine in12
N(1) —-0.147 -0.375 —-0.323 —-0.228 -0.176 0.052
N(2) —0.177 -0.407 -0.341 —0.230 -0.164 0.066
C(1) 0.102 0.112 0.125 0.010 0.023 0.013
C(2) 0.107 0.127 0.136 0.020 0.029 0.009
C(3) —0.031 -0.012 -0.017 0.019 0.014 —0.005
C(4) 0.051 0.077 0.080 0.026 0.029 0.003
C() —0.046 -0.017 -—0.033 0.029 0.013 —0.016
C(6) 0.101 0.118 0.096 0.017 —0.005 —0.022
C(7) 0.128 0.161 0.129 0.033 0.001-0.032
C(8) —0.042 -0.030 0.073 0.012 0.115 0.103
C(9) 0.048 0.082 0.101 0.034 0.053 0.019
C(10) —0.039 -—0.027 0.043 0.012 0.082 0.070
C(11) 0.009 —-0.069 —0.064 —0.078 -0.073 0.005
Ethylenediamine i20
N(1) —0.236 —-0.436 —0.416 —0.200 -0.180 0.020
C(1) 0.080 0.067 0.068 —0.013 —0.012 0.001
N(@2) —0.234 -0.429 -0412 -0.195 -0.178 0.017
C(2) 0.084 0.070 0.067 —0.014 -0.017 -0.003

TABLE 4: Comparison of Orbital Energies (a.u.) of the
Ligands Obtained by Different Models

MO free sparkle EHCF(L)
number ligand SCF PS1
Bipyridine in1
1 —1.9351 —2.2389 —2.2198
6 —1.3104 —1.5962 —1.5578
14 —0.8627 —1.1505 —1.1475
23 —0.5522 —0.8385 —0.7965
28 —0.4563 —0.7593 —0.7223
(HOMO)
Pyridine in11
1 —1.8319 —2.0728 —2.0683
2 —1.3946 —1.6510 —1.6447
4 —1.1013 —1.3178 —1.3152
6 —1.0037 —1.2336 —1.2295
9 —0.7026 —0.9566 —0.9524
11 —0.6526 —0.8776 —0.8745
15 —0.4826 —0.7188 —0.7146
(HOMO)
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are able to use a single parameter set on the metal d shell for
ligands containing both the NA (3pand N3 (sp) nitrogen atom
types.

Parametrizations for the NA and N3 atom types were
performed separately. The proposed EHCF(L)-PS1 method was
initially applied to a test set of the Fecomplexes. The test
set comprised complexes 1, 2, 12, and 13 (for NA) and 7, 19,
and 20 (for N3). Structures of the test set with different spin
states (singlet and quintet) were optimized by an analytical
gradient procedure starting from the experimental structures with
rigid (preliminary optimized with pure MMGK) ligands.
Optimization is performed until root-mean-squared (RMS)
energy gradient is smaller than 0.1 kcal ok L. Criteria for
good parametrization are the correct ground spin state and small
difference in molecular geometry of coordination sphere (bond
lengths and valence angles on metal atom). Obtained parameters
are presented in Table 1. One can see that the rigidity of the
metak-ligand bond, measured Hye0? for the N3 type atom
parameter, is only slightly smaller than that for the NA type
atom. Geometry optimization for the rest of the series of the
investigated complexes was performed by the same scheme but
with the use of the parameters already defined.

Below we consider the results of our calculations of Fe(ll)
complexes of Table 2. The possible terms or spin states
considered in calculations are quintéT4) and singlet ¥Ag)
prototypes for approximately octahedral coordination of the Fe
ion. For visualization, we put the inverse empirical distribution
function for root-mean-squared differences (RMSD), separately
for high- and low-state molecules and for the whole data set
(Figures 2-4), in the normal scale together with its linear fit to
test whether our results may deviate systematically from
experimental data. In general, plot of the empirical distribution
function (error function) is a good statistical test on systematic
error in the calculations. It characterizes both the range of
observed errors and the possibility to meet them in our sample.
It is supposed that the random errors are normally distributed
with zero dispersion. Thus, it is clear from the linear fit plots
in Figures 2-4 that systematic error is small for the whole data
set, whereas for the separate low- and high-spin sets, they are
larger. It can be seen also that for the low-spin complexes the
Fe—N bond lengths are on the average somewhat too long,
whereas for the high-spin ones, these lengths are somewhat too
short. By linear fit, we also obtained the most probable value
for RMSD, that is, the inverse coefficient of the linear fit. Thus,
the geometry of both low- and high-spin molecules is calculated
with the RMSD for the FeN bond lengths to be about 0.05
A. If only the low-spin molecules are considered then RMSD
is 0.034 A, whereas for the high-spin molecules, only the RMSD
is about 0.05 A,

The detailed results of calculations can be found in Tables 5
and 6 of the Supporting Information, where calculated metal
donor atom bond lengths and averaged valence angles centered
on metal atom are given for different spin states of the metal
together with corresponding experimental crystal structure
values.

Calculated geometries of this series of the complexes, in
general, agree rather well with the experimental data. We
especially notice that complexes with ligands containing dif-
ferent types of donor atoms (NA and N3) in the single molecule
are calculated correctly. However, making parametrization, we

coincide with the standard EHCF curve which for the purposes should keep in mind that the crystal structure can be a result of
of the present paper is considered as the exact one. Thus, it isot only metal interaction with the ligands but also of

not necessary to use the renormalized Racah parameters, whicintermolecular interactions among the crystal neighbors. Thus,
we used in refs 39 and 40. So, unlike the RLMO mdfele

major deviations from the experimental geometry may be a
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Figure 1. Ligands used in calculations. Donor atoms are marked explicitly (*).

result of crystal surrounding influence, especially that of similar result, since in all of the cases the high-spin form of the
counterions (see discussion in ref 40). Statistical analysis of isolated molecular metal containing complex cations have lower
obtained results performed above shows that geometry structureznergy. Analysis of effects of counteranions upon the spin forms
details are in good agreement with crystal data. However, in in the spin-crossover compounds is given in ref 40.
complexes 46 with low-spin experimental structure, our
method gives the wrong ground-spin state but the correct
geometry for the experimental low-spin state. For the high-spin

We checked also the energy splitting between ground states
and excited states of different symmetry and spin in the studied
. complexes and found that these states are considerably separated
complexes 1122 as well as for the low-spin complexes3 P y sep

and 710, we obtain both the correct ground spin state and In energy (at least, bWZ? kcal/mc_)l)._ i .

acceptable geometry. It can be concluded that current param- 10 conclude, we notice that it is the first time when a
etrization of the EHCF(L)-PS1 method is somewhat biased calculation is performed for such a wide range of Fe(ll)
toward the high-spin states. This manifests itself in the fact that complexes (27 individual molecules) of different ground state
the calculated high-spin state equilibrium geometries correspondspins within single parametrization and reproduces ground state
to noticeably shorter FeN bond lengths than the experimental spin as well as the geometry of the crystal structure with
ones. Technically, the reason may be the stiffness of the Morsereasonable accuracy. However, it is still hardly possible to
potential employed to model the +& bonding MM energy compare our results with any other semiempirical methods,
increment. For the complexes with spin isomers, we obtained because, the authors were not in a position to find any pure
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Figure 2. Empirical distribution function for RMSD bond lengths of
both high- and low-spin Fe(ll) complexes in the normal scale.
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Figure 3. Empirical distribution function for RMSD bond lengths of
low-spin Fe(ll) complexes in the normal scale.
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Figure 4. Empirical distribution function for RMSD bond lengths of
high-spin Fe(ll) complexes in the normal scale.

0.1

semiempirical method which would be able even to calculate
the series of complexes we considered.

4.3.2. Spin States and Geometry of Cobalt(Il) Complexes.
Within the proposed version of the EHCF(L) method, we also
calculated a series of €ocomplexes with different shapes of
coordination polyhedra. For an illustrative presentation of the
results, we also constructed the empirical distribution function
in normal scale together with its linear fit, as we did for Fe(ll)
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Figure 5. Empirical distribution function for RMSD bond lengths of
both high- and low-spin Co(ll) complexes in the normal scale.

for the whole data set (Figures-%). The detailed results of
calculations can be seen in Table 7 of the Supporting Informa-
tion.

We tried to have maximal diverse test calculation. Thus, we
selected octahedral 3B3, tetrahedral 34, and pyramidal 35
high-spin (quartet with the prototype stdtg) complexes, the
low-spin square pyramidal 38 complex, and square planar
complexes 3637 and 39-40 (doublet with the prototype state
2Tig). The entire set of the Cb complexes was used for
parametrization of the NA and N3 atom types. With use of the
Racah parameter8 = 800 cnt! and C = 3800 cnt?, the
ground spin states are reproduced for the whole set of the
compexes calculated at their experimental geometries. This
parametrization allows us to obtain even more precise results
than those for the P& complexes with the RMSB-= 0.044 A
for the bond lengths of the whole data set.

In the high-spin complexes 3135, the structure and spin
states are correctly predicted with RMSP0.054 A for Co-N
bond lengths (Figure 6). Interestingly, complex 32 is known to
be near the spin crossover point in the solufidAccording to
our calculations, the energy difference between quartet and
doublet minima for this complex is the smallest among all of
the complexes 3135 and is equal to 3.7 kcal/mol, whereas in
other cases, it is more than 10 kcal/mol (see Table 7 of the
Supporting Information).

Remarkably enough that the same parametrization allows us
to reproduce the ground-state spin for the low-spin compounds
36—40 provided the calculation is performed with due caution.
Particularly, in complexes 37 and 39, we have to include in the
molecule a water ligand lying above the square plane by 2.21
A and 2.28 A correspondingly, taken from the experimental
crystal structure of the complexes, for correct calculation of the
crystal field. Its position was fixed during the optimization
procedure. On the contrary, the unit cell of the complex 36
contains two CI@~ counterions which were considered in ref
93 as extremely weakly bonded (the bond distance- Co
O(CIO4) is 2.409 A). We optimize the ion complex 36 itself
and that including two CI@ anions fixed at their positions
taken from the experimental unit cell. By our calculation, the
optimized geometry and spin of the ground state for the
molecule 36 and that with counteranions are entirely the same.
For the low-spin complexes 3610, the average RMSD for the

complexes, separately for high- and low-state molecules andCo—N bond lengths is 0.036 A (Figure 7), so for the square
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Figure 6. Empirical distribution function for RMSD bond lengths of low-spin Co(ll) complexes in the normal scale.
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Figure 7. Empirical distribution function for RMSD bond lengths of high-spin Co(ll) complexes in the normal scale.

pyramidal 38 and the square planar 40, the geometry was alsdike description for the PES of different spin states of the iron-
correctly predicted. (I1) and cobalt(ll) complexes with nitrogen-containing ligands
The results show that the proposed method can be used foris achieved with use of the single spin-independent parametriza-

precise calculation on geometry and spin states of*Co tion specific for each metal atom and MM type of the donor
complexes with different coordination numbers and coordination atom.

patterns. The proposed methodology thus covers in a uniform  The ysed EHCF(L) procedure allows for a detailed description
way different ground-state spins and even coordination nUMbers ¢ the d shell energy as a function of composition and geometry
of the cobalt(l) complexes. of the ligand sphere, taking into account the correlation of
electrons in the d shell by using the full CI wave function for
them. This allows us to handle correctly the reaction of the d

On the basis of the above analysis, it can be stated that theshell to subtle changes of the crystal field induced by the
concert usage of the EHCF(L)-PS1 procedure as a QM surrounding and by this to be sure that the spin intersection
component for describing the geometry dependence of the dpoint is correctly located. The proposed method originated from
shell energy together with the MMGK procedure as the MM the EHCF theory and can be also applied to the description of
component for describing the ligand energy, a unified QM/MM- the low-lying excited states of certain TMCs.

5. Conclusion
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On the other hand, due attention is paid to reproducing the

J. Phys. Chem. A, Vol. 108, No. 30, 2008363

(33) Pudzianowski, A. Tint. J. Quantum Chen002 88, 147.

dependence of the crystal field itself on the tiny ligand geometry 38(34) Adam, K. R.; Atkinson, 1. M.; Lindoy, L. FJ. Mol. Struct 1996

and ESPs variations. The explicit forms for the crystal field

4, 183.
(35) Margulis, C. J.; Guallar, V.; Sim, E.; Friesner, R. A.; Berne, B. J.

matrix elements reproduce their dependence not only onJ. Phys. Chem. R002 106 8038.

interatomic separations but also on all kinds of valence angles.
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