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We present a novel form of the equation of motion from Blettangness Redfield theory (BWRT) that is

in a representation-independent operator form. The equation has no time restrictions on it and incorporates
Boltzmann equilibrium. We show that this new form gives results consistent with traditional BWRT and
limits to BWRT when the additional restrictions and approximations of BWRT are applied to the new equation
of motion. The new form shows how the usual equations for relaxation may be easily modified to include
detailed balance and to avoid the long-standing problem that certain relaxation rates incorrectly become large
when the lattice fluctuation rates become small; that is, the relaxation rates determined from this new approach
avoid the BWRT *“catastrophe”. The new formulation leads to a more complete description of both longitudinal
and transverse relaxation in magnetic resonance and takes into account the oscillatory nature of the relaxation
of both transverse and longitudinal components in all motional regimes including the slow motion regime.
The approach is of direct benefit to spectroscopists because it is described in terms of relaxation rates of
observables.

I. Introduction lattice and spirspin relaxation rates, traditionally used in
Density matrix theory has been used in magnetic resonanceMagnetic resonance, can be slightly modified to have more

(MR) in the form of Bloch-WangnessRedfield theory  roPust behavior.

(BWRT).2~3 This theory has had enormous success and has been Alternative methods have been developed to circumvent the
of practical utility to spectroscopists. However, there are two drawbacks of traditional BWRT. The stochastic Liouville
well-recognized flaws with BWRT The first is that it has been ~ equation (SLE) approach has been widely used to simulate
very difficult to reconcile approach of the system to thermal spectra where BWRT fail%;® by which, variables driven by
equilibrium with the original form of the equation of motion. random processes are added to the total Hamiltonian represent-
In the original semiclassical form of BWRT, the system relaxes ing bath or lattice coordinates. A SLE equation of motion for
to zero not to a Boltzmann type equilibrium. This is equivalent average density matrix components is inferred from a diffusion
to saying that detailed balance is not obeyed at finite temper- equation that governs the distribution of random variables
ature. A partial solution to this problem suggests that one replacerepresenting the bath. The incorporation of the diffusion term
the density matrix in the relaxation part of the BWRT equation for the random variables into the density matrix equation of
of motion with the difference between the density matrix and motion parallels the derivation of the classical Langevin equation
its value at equilibriunt.However, this has the problem of still  from Newton’s equation using randomly fluctuating forces.
not fU”y SatiSfying detailed balance. Redfield addressed this Deﬁning guantum random bath variables is Sufﬁcien“y com-
issue in his original review articfein which he noted the need  pjicated that a semiclassical treatment is typically sought. The
for equilibrium terms and suggested where such terms ngedec@ost of the semiclassical approach is that the equilibrium state
to be placed in the relaxation expressions based primarily onyemains undefined. However, unlike traditional BWRT the SLE
the original treatment of Bloch.The second problem with  j,eg predict evolution of the density matrix even as the rate of
BWRT is that the predictions for the transverse relaxation rates p o1 fluctuations becomes arbitrarily slow. We compare the
go to infinity when t_he rates that describe lattice qu_ctuations predictions of our reformulation of BWRT for spirspin
approach zero. We find that both of these problems with BWRT relaxation with the results of the SLE for the simple case of a

may be overcome with m|n|m_al modlflca'_uons to the existing two-site exchange process below and find exact correspondence
theory. We develop the equations of motion of observables 8S f the two method&s

well as the equation of motion of the density matrix; all . . _ ) .
expressions are kept in operator form and a basis set is never 1€ outline of the paper is as follows: In this section we
used to expand operators. We will show that this alternative introduce the basic equations of motion. In section Il we develop

formulation allows one to obtain insight over the traditional the equation of motion for observables and the density matrix
approach. This alternative form avoids approximations that are that we will use throughout. In section Il we compare our results
necessary when working directly with density matrix equations. to the more traditional development of BWRT. (A more
We feel that casting the equations of motion in terms of extensive treatment is found in Appendix C, Supporting
observables is a more natural way for spectroscopists to think Information.) In section IV we develop a specific form for the
of relaxation. For the sake of clarity for a more general equilibrium quantum correlation functions (QCFs) for the lattice,
readership we do not use the super-operator formalism, whichfollowing the work of Mazur and co-workefsn section V we

is the formalism of choice among many of the theoreticians in use the lattice correlation functions of section IV to obtain
this field? In the application section we show that the spin  expressions for spinlattice and spir-spin relaxation rates and
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compare the new results with those of BWRT using a specific
model for the QCF.

The fundamental equation of motion, of the combined system
and lattice is

L= [,

: &

Here the complete Hamiltonian is the sum of the system (or
spin), Hs, the lattice (or bath)H;, and the couplingH’,
Hamiltonians:

H=H,+H’

whereH, = Hs + H,. The system and lattice Hamiltonians
commute, and neither commutes with the coupling Hamiltonian.
All Hamiltonians are in frequency units. We restrict our attention
to coupling Hamiltonians that are bilinear,

H' = SF

HereSis a spin-system, Hermitian operator, aRds a bath-
lattice, or handle, Hermitian operator. The development can be
generalized to include coupling Hamiltonians that are sums of
bilinear terms in a straightforward way. We consider only time

independent Hamiltonians. The extension to time dependent

Hamiltonians is possible, following what is done in other
derivations'® Our restrictions here are made merely for the
purposes of providing a simplified notation and a clear presenta-
tion of the equations of motion.

Corresponding to every observable of the system is a
Hermitian operatorQs. Any observable can be computed from
the density matrix and the operatof©1= tr{ Oso}. The
observables of the system can be written in terms of the
expectation value of appropriate Hermitian operators. The
complete set of all Hermitian operatof)¢}, constitutes an
operator basis sét.The density matrix equation of motion (1)
can be rewritten into aompletelyequivalent equation in terms
of the evolution of system observables, which is

S

dt

[ (O ZSF@F) — (FE@)IOL) ) plt—1)} «

Here the system variables evolve only under the system
Hamiltonian:

§r) = U{(x)SU(r)

And the lattice variables evolve only under the lattice Hamil-
tonian:

= —i[JO HJ O~

where U(r)=¢ '™

F(r) =U/(@)FU,(r) where U(r)=¢ '™

Equation 2 is not a perturbation expansion. It is a reformula-
tion of (1) as an integro-differential equation. Those unfamiliar
with this equivalent form are encouraged to read Appendix A,
Supporting Information. The development thus far parallels the
approach of Zwanzig in two respects: The relaxation term is
in the form of a convolution integral over previous history; and
the use of spin-system observables is similar to Zwanzig's use
of projection operators. In the absence of any lattice coupling,
system observableSDJJwill evolve independently of the lattice
and the first two terms of (2) constitute a proper, completely
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integrand on the rhs of eq 2, containing systdattice coupling,
leads to relaxation. The process by which (2) was obtained can
be completely reversed to reconstruct eq 1. (See Appendix A.)
We assumed in the development of (2), for simplicity and with
no loss of generality, that the initial condition on the density
matrix is such that the handle operatbr,is mean zerpi.e.,
tn(F(t)p(0)) = 0, where the trace is taken over the lattice
variables.

There are three general properties of eq 2 we wish to
emphasize: The integrand inside the time integral of (2) is a
pure real function of time, as may be seen by complex
conjugation and permutation of operators under the trace. This
guarantees that the values of the integral are always pure real.
Second, the diagonal elements of the density matrix must remain
nonnegative no matter what stateevolves into (positivity of
the density matrix}! Positivity of the density matrix is ensured
for eq 2 because of the exact equivalence of (2) with the original
unitary equation of motion (1). Third, because eq 2 is just a
reformulation of eq 1, the right-hand side (rhs) of (2) rigorously
goes to zero when the density matrix is the Boltzmann
equilibrium density matrix for the full Hamiltoniakl = H, +
H'. It is our intention that the approximate equations that we
develop in section Il will retain these three features, which are
characteristics of the exact formulation (2). However, we will
use a density matrix that describes the evolution of the spin
system alone. This is achieved by coupling the spin system to
a lattice that is always at equilibrium. The idea of making the
spin—lattice communication one way is common to most
formulations that give an irreversible equation of motion. We
differ, here, by how this assumption is implemented. We believe
that the assumption of a dynamically independent lattice need
not restrict the treatment of the spin system as severely as the
assumptions of BWRT would indicate.

We make two standard approximations whose assumptions
are coupled:1°The first is that the density matrix can be written
as the product of two density matrices: a lattice density matrix,
which is always at equilibrium with its own Hamiltoniaryj,
oblivious to the system, and a spin-system density matrix that
is otherwise arbitrary. The second approximation is that equi-
librium for of the spin system is described by a Boltzmann
density matrix with respect to its own Hamiltoniadg and at

the same temperature as the lattice. The separation assumption

IS

g MH

wey O

p(t) = pdt)'p” = pdt) *

This assumption or ansatz is used in both magnetic resonance
and the optical literature!® The question then is: Is there an
equation of motion that can sustain both of these requirements
but needs no modification of the convolution form or the
memory form of the relaxation term found in eq 2? Goldman,
in a recent review of BWRT, argues that it not possible and

that one cannot know what happens to the spin density matrix

at early times? Our answer is yes, and we set about to find
one such equation. The details are worked out in section I
below. The final equation of motion for any spin-system
observable, developed in section Il, is

dod
dt

= —i[OsHJ [ Ips ] (4)

coherent equation for evolution of such observables. The where
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[logt] = tH{O, [, GrA)[SULr)(E WPHsse P (1) — p(t-1)e" e WM ul()] ) ©)

Equation 5 is the central equation of this pafgéps,t] is the relaxation contribution for the spin-system observable of interest and
is a functional of the spin-system density matipy, The form of the terms in the integrand guarantees Efjia4t] is always pure
real. G(z,5) is a generalized, real-valued, lattice correlation function that depends on both tiame| reciprocal temperaturg,=
1/ksT, wherekg is Boltzmann’s constant arflis the absolute temperatui®(z,5) will be given a precise definition in section Il in
terms of a quantum correlation function (QCF) that will be further elaborated upon in section IV. Boltzmann equilibrium and
detailed balance enter into the equation of motion through the terms in the exponential operators cght@imdsg terms guarantee
that when the system density matrix is at Boltzmann equilibrium the system is stationary; the integrand vanidtiesthddes
not change as a function of time. Thus, if the initial state is “close” to equilibrium then the system will relax to the equilibrium state
defined by the Boltzmann density matrix for the spin system.

There is an associated equation of motion for the spin-system density matrix as well, which is easily obtained from (4) by projection
of the observables. It is

doy(t)
dt

= —i[Hyp(0] — [ Gz A(SUJr)(e "Mse""PMep (t—1) — p(t—1)e’ P ege MUl dr (6)

As noted, the assumption or ansatz of (3) is common to our approach and BWRHowever, there is a distinction to be made

in how this assumption was applied to arrive at eq 5. In BWRT, as will be discussed in section Il and Appendix C, a time scale
argument is concomitantly invoked. In BWRT the equations of motion are not to be interpreted on the time scale of lattice fluctuations,
and the assumption of a lattice at constant and separate equilibrium is used to ascertain the solution to the equations of motion in
an asymptotic sense. Goldman, in his extensive discussion of BWRT, emphasizes thi8 ppintolo, appears as a stationary
solution to BWRT for all times; however, this is deceptive because the equation of motion is justified by the time scale argument.
Thus, what constitutes an early time solution to the equation of motion is not well-defined elséiW\erelevelop an equation of

motion that describes the evolution of the spin system from time zero. We imagine that the system and lattice are in contact and at
equilibrium, in prehistory, where time is less than zero. Then at time zero, a pulse of energy is put selectively into the (spin) system
such that the lattice is transparent to the pulse. The lattice density matrix will be sufficiently clgbbeoause it is composed of

many degrees of freedom. We view the pulse as effectively severing thelafiine communication, and ordering the spin density

matrix arbitrarily. The pulse is turned off, and the system then evolves under the full Hamiltonian, where the density m@ix is

= ps(0)pf at time zero angs(0) is no longer the system equilibrium density matrix.

Il. Derivation of Egs 4 and 5

The expression we seek is found by treating the effect of the lattice on the (spin) system in terms of quantum correlation functions
(QCFs) defined under lattice equilibrium. To connect with correlation functions for the lattice, we invoke the assumption already
introduced above (3)p(t) = ps(t)p;. This allows us to write the trace over the lattice in (2) in terms of correlation functions for of
lattice variables alone at equilibrium. We define the quantum mechanical correlation functionCQTfer the lattice variable by
the following relation: C(t) = triaed (F(7)F)p{} = [F(7)Fldy

It follows from this definition and the product form of the density matrixes thai{ tF(r)F) p(t—7)} = C(r) ps(t—7). From this
definition of the correlation function we notice that the conjugai€ t§7) = tnatt{(FF(r )p°} By assuming that the lattice is always
at equilibrium, the quantum correlation functions represent stationary processéB(thpF (t2) ldq = [F(t1—t2)Flds and have special
properties, which directly follow from the above definitions. The ones we will use are the follGwiig:

C*(t) = C(r — 1hp)
C*(r)=C(—7) whenrtis pure real
C*(iy) = C(iy), or  C(iy) is real fory real

C*(t - |}%) = C(t — |;%) or C(t - |h7ﬁ) is real and is an even function bf

It may seem a bit odd that the time argument can be complex and that we liralee time argument. The evolution operator,
and the equilibrium lattice density matrig,, both depend o, as an argument in an exponential. The equilibrium lattice density
matrix can be written in terms of the evolution operator with an imaginary argument. It is this correspondence that allows us to use
imaginary time arguments in the correlation function with unitsigf iWe have included Appendix B (Supporting Information) for
those unfamiliar with these relations.

When the separation ansatz is applied to the relaxation term in (2) it becomes

dio.J
dt

Moyt = [ tr{(O42).S@ISADpdt-=1)} dr + [ tr{pt—7)(CHDIHD) O} dr

= —ilJO HJ [+ o t] (7

The functionI[pst] represents the relaxation contribution to any spin-system observable from the QCF of the lattice. There is an
equivalent equation then for the spin-system density matrix:
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p;f) —i[Hapd®] — /_(COISUDSt—7)UL(D)] — CHD)[SULD)pt—7)SU(D)]) dr ®)

The exact form in eq 2 has important features that must also be reflected in the new form of the equation of motion (7). The first
feature is that the two parts of the integrand in (2) and'[gft] in (7) are Hermitian conjugates of one another. This implies that
T'[p.t] is pure real at all times whe@s is a Hermitian operator. The second feature is that the rhs of eq 2 vanishes when the entire
system is at Boltzmann equilibrium. It is desirable that the integrand in (7) should vanish when the spin system is at Boltzmann
equilibrium, because the first term vanishes at equilibrium.

To find a form of the equation of motion (7) that preserves the conjugation symmetry between the two distinct terms and allows
the QCF to be factored, we perform the following change of variables on the two integrals of (7):

In the first integral, we do a change of variables tozlet t + i34/2 and in the second integral we apply the correlation function
identity C*(7) = C(r — ihf) and then do a change of variables todet v — ifh/2. With these changes of integration variables on
each of the two parts of the integral we have

Tpot] = tr{ { f:;ﬂﬁ;;’mc(z - i%ﬁ)lsus(z - %) Sos(t — 7+ %ﬁ) u;l(z - %)] dz —
i) C( i%ﬁ)[sus(ﬁ |%) ps(t —z- i%)SUS*l(Z_i_ |h7ﬁ)] dz}}

z=0—i(hpI2)

The integration of these functions in the complex plane is well behaved, because both the time dependence due to the rotating frame
acting on the spin operators and the lattice correlation functions are entire functions when extended to the complex plane. It seems
reasonable then that the density matrix can be extended as an analytic function into the complex plane.

Cauchy’s integral theorem, which states that the closed-contour integral must be the sum of the residues inside (which is zero in
this case), may be used to rewrite this expression. Cauchy’s integral theorem is applied to these two integrals separately: each
integral is written in terms of the integrals over the real axis and the two integrals going on the imaginary axis freth8/20
at time 0 and time. Therefore

-l - Bfsole- M-+ M- ]
e (z— |7)[SUS(2+ |h—2ﬁ) ps(t ~z- i%)sugl(ﬁ |h—2ﬁ)] dz}} +EI (9)

The extra integrals, or end-cap integrals, El, are the integrals along the imaginary time (i.e., temperature) axis. And they may be
written as

Elztg{os{fzozoﬁ hﬁ/z)C(Z_l_)[S’U( hﬁ) sps(t—z+|hﬁ)u ( —i%)] dz —
o el S B ] ol 25 e M
N A A A R

2 z=t+i0 2

Equation 9 may be written as (carrying along the EIl terms)
e t] = tr{ os{ f;oc(z - i%)[sus(r)e*w’mssps(t —+ i@)eJr(ﬂ/z)hHSUT(r)] dr —
s —
t hp SHRH [ NP\ o (B12)Hy
fFOc( i )[su (D)e s(t it )Se Ul

dr}} +El (10)

On the basis of our desire to have a form §pst] that vanishes wheps = e #"Hyz, we choose to neglect the extra integral, El,
terms. Direct inspection of the two remaining integrals in (10) shows that the integrands sum to zero when the spin density matrix
is replaced by the Boltzmann equilibrium.

We need to relate the spin density matrix in the complex plane to that on the real axis. There is no exact method for extending
the system density matrix off the real axis. Therefore, we suggest the simple prescription that

e‘“’”ﬁ“s,)s(t —rt i%ﬂ)ew’z)ms — ot — 1) (12)

This is similar to the principle governing evolution by unitary operators. As an example: when the spin density matrix evolves
under the spin Hamiltonian a& = —i[Hsp4], then it follows thatps(t) = Uy(7) ps(t—71) Ul(r). The approximation in (11) is
analogous to the “slow moving” approximation for real values of the argument of the density matrix, which is based upon the idea
that the density matrix evolution is dominated by the rotating frame motion generatégthywe do not wish to invoke the “slow

moving” approximation for the time arguments (real valued arguments), which is one of the time scale assumptions df BWRT.
The criterion for “slow evolution” of the density matrix under complex arguments need not in principle be governed by the same
magnitude restriction as the real arguments. If, however, it is assumed that the same restriction applied to both real and complex
numbers, the “time scale” df is only competitive with frequencies on the order of 4@ 103 Hz over temperatures from 1 to
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400 K, respectively. This means that the “slow moving” approximation would apply for most MR applications (frequencies below
100 GHz) over a wide temperature range.
Therefore, we substitute (11) into (10) and drop the EIl terms to obtain

Tpst] = tsr{ Osf,LoC(r - i%ﬂ)([sus(r)e*“’ZW”SSe*W”SpS(t — 1) Ul(@)] = [SUJ1) pt — )" PPse WMy (o))) dr}
(12)

This expression foF[ps,t] is the relaxation part of a practical equation of motion that incorporates the Boltzmann equilibrium in an
operator form and guarantees that the integrand[tgt] vanishes when the (spin) system density matrix is at its own Boltzmann
equilibrium. The Cauchy integral theorem enabled us to transfer the equilibrium property of the lattice to that of the system. Inspection
of the use of the QCF in the derivation of eq 12 illustrates that the complex nature of the QCF was necessary to establish detailed
balance. For example, if the QCF is assumed to be real from the outset, then eq 8 assumes precisely the same form as eq 12, but
with 3 set equal to zero. The complex valued nature of the QCF arises from the noncommutivity of the lattice operators referring
to different times. Two commonly known formulations of relaxation theory demonstrate this. When transition rates among the
diagonal elements of the density matrix are calculated with Fermi’s Golden rule, the noncommutivity of the lattice operators establishes
the main difference between forward and backward rate proc&sasshown in Appendix D (Supporting Information). Also, it has

been recognized historically that the quantum nature of the lattice variables are essential for inclusion of equilibrium itself, as
illustrated in the semiclassical formulations of relaxation theory, which lack any sense of equiffbrium.

The form of the QCF of (12) contains a complex argument but is itself always a real valued function. This fofpy,f
guarantees that the relaxation term is pure real for all time when the spin observable is Hermitian. We note that the original separation
of the density matrix into a product of spin and lattice parts was made to have QCFs defined in terms of the lattice equilibrium
alone. The additional approximations that we have made have been done to restore properties to the relaxdifprt] térat
existed in the original form and were destroyed by the approximation associated with using equilibrium QCFs of the lattice. The
two additional approximations we made were (1) neglecting the end-cap integrals and (2) rotation of the system density matrix back
to the real axis. The derivation of (5) is complete when we identify the real correlation funGoy), as

G(r,f) = c(z - |7ﬁ) (13)

This gives a precise definition of a generalized real correlation function used in (5) in terms of a QCF. The use of the correlation
function (13) in a practical equation of motion is novel to this paper.

InsertingOs = 1 in eq 12 shows that the trace of the spin-system density matrix is conserved. Whether the convolution eq 12
preserves positivity of the spin-system density matrix remains to be shown. It is well-know that the traditional BWRT equation of
motion need not preserve positivityNecessary and sufficient criteria have been developed that ensure positivity under the assumption
of a Markov master equation (equations of motion containing no memory efféctbe equation of motion from BWRT is an
example of a master equation that is Markovian, but which does not satisfy the criteria necessary for positivity. The lack of positivity
in the BWRT master equation has been ascribed to the standard approximations that remove memory effects of the type that we
have retained in the convolution equation (12Bufficient conditions for positivity of a class of non-Markovian (convolution)
equations have been developed by extension of the criteria for Markovian master equations, but eq 12 does not fit within this
class!® The necessary conditions that restrict the form of the integrand of a convolution master equation have not been developed
to our knowledge. We leave the question of whether the particular convolution form (12) guarantees positivity as an open question;
given that there are no relevant general proofs or constructs guaranteed to give both the necessary and sufficient conditions for
positivity within a memory form of the equation of motion. However, as a first step toward showing positivity, the temperature
operators (such as @2 can be partitioned equally over all operators in eq 12. Then, for example, the equation of motion
governs &¥4hHsp (t)e~B4hH;s and its Hermitian conjugate. The observateghen also similarly transform. Positivity, if provable
for et o ((t)e~(B4Hs then gives positivity of the density matrix because the temperature transformations are positive definite
operators. Therefore, the presence of the temperature-dependent operators would appear to add no more difficulty to the issues of
whether the density matrix will preserve positivity.

lll. Relation of Eq 12 to Previous Treatments

We now compare the equation of motion (5) to the well-known form of BWRT developed by Abtagahamplified by Goldmat
Two additional approximations, extensively discussed in Goldman’s pépee, needed to derive the BWRT equation of motion
from (5) and (12). First, the time dependence of the density matrix on the integration variable is removed by the approximate
transformation: Ug(z) ps(t—1) Ul(r) — ps(t). Second, the limit of time integration is taken to infinity, — /5. These two
approximations are generally taken concomitantly because their validity depends on the fast decay of the lattice correlation function,
relative to the spin density matrix. These are similar to the approximations inherent in transition rate theory (Appendix D). With
these approximations eq 5 becomes

doo w0 _ - - _
= T1HOHIO- {0, [~ G(rp)Se “F )" t) — p )" Y —n)e N de} (14)

The infinite temperature limit gives the conventional “double commutator” form of the master equation that is found when the
lattice is treated semiclassically within the BWRT framew®Bquation 14 is related to Goldman'’s finite temperature master eqifation
in Appendix C.
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The temperature operators;®/2Hs in (14) enforce detailed  H.C. stands for the Hermitian conjugate of the previous term.
balance at finite temperature. Each of the three terms on bothWe have already shown that the use of Cauchy’s integral
sides of (14) vanishes individually when the spin density matrix theorem allowed for the transfer of Boltzmann equilibrium from
assumes its equilibrium valugg(t) — p, = € #"Hyz, Conse- the lattice to the (spin) system. The QGE(t — iAB/2), is a
quently, the substitutiop — p — po can be made in the correlation function of the lattice. This correlation function
integrand on the rhs of eq 14, to give the equivalent form evolves with frequencies associated with the lattice, not the

system. We now explore how the correlation function transfers

. - o —(WBI2)Hs motion from the lattice to the (spin) system. The transfer of
dt IO H D tsr{ OSL:OG(T’ﬁ)[S’e x motion is solved in the AbragafGoldman approach, in which
& )\ oMBI2)Hs — — _ (hpI2)Hs the time integral is extended to infinity, by the Dirddunction
e t t e
<=7 (pst) = po) ~ (p f() pf()h o x that arises from a Fourier transform of a complex exponential
-1)e 9 dz} (15) at the difference of the (spin) system and lattice frequencies.

The use of thed function in the context of the Abragam
Goldman approach is in keeping with the asymptotic solution
found in that work. Physically, however, multiple frequency
modes of the lattice contribute to spin relaxation at early times
and are only limited as time goes to infinity, in keeping with
the Fourier time/frequency relation. Therefore, we explore the
e—(hﬁ/Z)Hsé(_T)e(hﬁ/Z)Hs _ consequences of considering the equations of motion at all times.
~ A - To proceed further, we need a model of the QUIf, —
S—1) + 7[8(—1),HJ + O(=(hp)d) ihpB/2), and for this we rely heavily on the work of Mazur.
The correlation functions that are used in practical formulations
To achieve simplification of (15), it must be assumed, in Of magnetic resonance represent Gaussian Markov random
addition, that the density matrix is always sufficiently near Processes. Mazur and co-workers have discussed how a me-
equilibrium thatpg(t) — po = O(=Hg). The latter assumption is ~ chanical model of the lattice (consisting of coupled harmonic

The linears temperature limit of (15) is now considered. The
correlation function (13) is simply R€(7)) in the linearp limit

(see Appendix B). The temperature operators in the integrand
of (15) are expanded in powers ¢f using the Baker
Campbel-Hausdorff series.

the same as the standard assumptfittip, 2 = 1 + O(=hp) oscillators) can produce the relations among correlation func-
= polp(t) used in the traditional derivation of the high- tions necessary for a Gaussian Markov process. Namely,
temperature equation of motion of BWR0 exponentially decaying correlation functions are obtained in the

near equilibrium, and keeping terms only to linear ordegjn  choice of coupling constants among the harmonic oscillators.

becomes Their analysis was carried out for both a classical system, and
a quantum system. To make the connection to a Gaussian
dio O ] Markov process, in the quantum case, a canonical operator order
a —i[OgH{ [+ of the quantum correlation functions was imposed, with the
o - result that the ordered correlation functions were real.
tsr{ OSffzoRe(C(T))[S[S(_T),Ps(t)—Po]] dz} (16) Our system is like one oscillator connected to, or part of, a

bath of similar oscillators. We want to know how that one

The derivation of eq 16 shows that the effect of the temperature pscillator evolves. In particular, we seek Markovian behavior,
operators in (14) is the same as simply inserting the differencej e a characteristic exponential decay of the oscillator auto-
density matrix into the semiclassical double commutator form correlation function as a result of being coupled to all the other
of the relaxation term from BWRT. It was demonstrated that oscillators. This implies a choice of coupling constants among
this is only possible, however, by assuming a restricted density the oscillators of the system. An alternative, equally valid, view
matrix that is near equilibrium, in the high-temperature limit. s from the perspective normal modes, which oscillate with pure
In conclusion, eq 12 may be cast in a form identical to BWRT trigonometric correlation functions. Mazur showed that the
by applying the same approximations that are used within chojce of classical oscillator coupling constants needed to
BWRT. reproduce exponential decay of the classical auto correlation
function of any particular oscillator chosen out of the assembly
implies that the normal modes of the lattice have a Lorentzian
power spectrum. The choice of coupling constants of the

The previous section developed the master equation underoscillators is equivalent to a choice of eigenfrequencies for the
the approximation that the limit of the time integration could normal modes. The correlation functions are simply a weighted
go to infinity (and the density matrix could be written in terms  arithmetic average of the trigonometric mode functions over
of time, independently of the variable of integration). We now the spread of eigenfrequencies.
remove those restrictions and go back to the fundamental form  In the quantum case, with the canonical ordering in force,
of the equation of motion (eq 5) to develop the lattice correlation the correlation functions are the same simple trigonometric
functions that will be used in this master equation. With the forms as in the classical case, but now include temperature-
lattice correlation functions we can concretely demonstrate how dependent amplitudes. Removing all temperature dependence
(spin) system observables are relaxed by the lattice towardfrom the power spectrum, in the quantum case, necessitates that
equilibrium as a function of time. Here we begin with (5) or the coupling constants would be temperature dependent. To

IV. Development of the Correlation and Spectral Density
Functions

(12), which can be written equivalently as avoid this problematic state of affairs, Mazur proposed using
" the classical spectrum of the eigenfrequencies without modifica-
Ip.t] = j; ioc(t - i7ﬁ)tr{[Os(z),é(f)]e*(hﬁlz)"'sse(hf”z)“s x tion.? This implies that thepower spectrunof the quantum
- S

correlation functions is Lorentzian with a temperature-dependent
pt—=7) + H.C} dr (17) prefactor. The result of this is a quantum correlation function
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that has both temperature and a correlation time as adjustablebelow do not focus on the zero-temperature limit, so the simpler
parameters. A correlation time is by definition given by the form of the QCF (18) is used.
coupling constants of the lattice necessary to produce expo- Inthe high-temperature, liner limit (18) becomes a single-
nential decay at high temperature. exponential decaying with characteristic time, because
We follow Mazur’s procedure and construct an assembly of coshfiw+(/2) — 1 and the correlation function then becomes
noninteracting two-level systems having level separations the Fourier transform of a Lorentzian distribution.
(frequencies) distributed in analogy to the frequencies of the Inserting the model correlation function (18) into (17), and
normal modes in his model. The dynamics of the two-level interchanging the order of integration, gives
assembly in the high-temperature limit are formally equivalent ()
to the lattice of normal mode eigenfunctions, running at _ 1/ J(w t . Ay E
frequency w,. The QCF for a two-level system with the Tpst] = nf—wcoshﬁw.ﬁ/z)(ﬁcos@ r)tsr{ [OL2).S(1)] %
particular operator order indicated is e_(hﬂ/Z)HSSe(hﬁ/z)Hsps(t_T) 4 H.C} dr) do
Cw/(t) - DF(t)FgJ/ - where the Lorentzian distribution is recognized as the conven-
ho tional spectral densityJ(w) = f2rd[1 + ith f,2 =
) : A .. p Y(w) = fPrd[1 + (wto)?] with fo
fi {COS@/'D - tam'(ﬂ7) S'”(‘”/'t)} fs 22 that is we include both the amplitude of the true lattice-
only fluctuationsf, with the spin-lattice coupling amplitude,
See Appendix B. Just as Mazur et al. imposed a canonical fs., inherent from the definition oH’ = SF. The finite time
ordering to ensure that their correlation functions were real, we integral now connects the lattice frequenciesor ,, to the
obtain a real form for the expressions used in the relaxation Spin-system frequenciess, that are present in the spin operator,

master equations: ). As will be demonstrated below, as time increases, the finite
time integral selects only those lattice frequencies that match
cos@ 1) the spin-system frequencies and reflects the well-known Fourier
C (r - Ih—ﬂ) =fi—— time/frequency uncertainty relation that must be present in an
W, 2] * coshtw,B2) quency Y P y

theory that claims to evolve literally from time zero. At early

) ) ] . times all lattice frequencies initially contribute to the total
Th(_a total correlation functl_on for the assembly is the_Lorent2|an relaxation through the integral over the spectral density. As time
weighted average of osullqtors over thg frequenm}as-rhe . increases, those frequencies are windowed down to frequencies
power spectrum representation of the lattice correlation function a5 the spin-system frequencies. As time goes to infinity the
for the assembly of two-level systems is, in analogy to Mazur's \indowing becomes a Dira and the lattice frequencies that

development: contribute to relaxation must exactly match the spin-system
5 frequencies.

G(r,f) = Ctota|(f — |7ﬁ) The full equation of motion is now

0 1/t d[(DsD_ .
e Yoo, 2 o
7w+ AT 2 t =\ = —(hpI2)HsanhBI2)Hs
, J.G( P [OL0) X0)](e Se pt—7) —

1 1:L /Tc

_2p= . A\ (BI2Hscy— (12

nﬁJ coshbw*B12) o? + (1/1,)? costrr) e (18) Pt = )} dr (19)

where

It should be noted that the integration limits defining the total
correlation function can be symmetrized due to the frequency 1 poo J(w)
symmetry of the two-level correlation function. This form of G(r.p) = ;f ~»coshfiw 5/2)
the correlation function vanishes in the zero-temperature limit,
as can be shown using Cauchy’s residue theorem by using theThis expression is the most profound one of this paper and is
poles of the Lorentzian part of the integral. The vanishing of readily adaptable to practical application and usable for a wide
the correlation function is due to the vanishing of the amplitude range of problems. The choice of a Lorentzian form Jan)
of the lattice fluctuation. This is an advantage over alternative was for convenience for motivating the result. The form of the
formulations that exhibit residual zero-point energy effects in spectral density functiod(w), is arbitrary (as long as it is real)
the zero-temperature limit, as emphasized by Md#tor low and may be chosen as appropriate for the problem of interest.
temperature applications, however, zero-point fluctuations can Moreover,J(w) may be obtained from the correlation function
be restored in the QCF though a procedure outlined by Mazur. in the classical limit.
The difficulty presented by zero-point energy is that the limit ~ Three points can be emphasized:
of an infinite lattice is ill-defined because an infinite quantity (1) Permuting the spin operators puts the rotating frame back
of zero-point energies are summed. Intuitively, if the lattice is on the density matrix. The usual time scale assumptions may
limited to a large, but finite, number of oscillators, the truncation be applied to the density matrix and integrand to get back to
of the lattice size will result in an upper limit to the normal- the BWRT form discussed above eq 14. The only step that has
mode eigenfrequencies of lattice fluctuations, and therefore, thebeen taken is to use a specific form of the lattice correlation
integral in (18) must contain a cutoff. To include zero-point function.
energy, the spectral density in (18) is simultaneously modified  (2) Because the integrand of the relaxation term vanishes
by the addition of Lorentzian-weighted zero-point energy. This when the Boltzmann spin density matrix is substituted for
new term would diverge if it were not for the simultaneous pg(t—1), ps(t—7) may be replaced by{t—7) — pL without
cutoff on the frequency integral. The applications presented affecting the term. This is the operator analogy to the situation

cosr) dw (20)
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encountered in simple relaxation theory (see Appendix C). d[$,0
Namely, when rate elements satisfy detailed balance there isT =

no difference in the governing rate laws if the equilibrium

solution is removed from each element of the relaxation

populations. It is important to realize that this follows from the
fact that detailed balance is included in (19). The conveifse
the form of the relaxation equation contajné—1) — p<°, then
detailed balance holdss notnecessarily true; see Appendices
C and D.

Nielsen and Robinson

—cos %w) [ G B cosoe) dr —
cosr(h?ﬂws) /. t:OG(t,,B)([ﬂS/,Sy cosr) +
S sin@], Gy tanr(%ﬁws)) dr (23)

As a set of equations for observables, it is difficult to see how
these equations maintain detailed balance. On closer inspection,

(3) The symmetry of the relaxation term under conjugation . yever, the form is that which is anticipated by simple rate

is still preserved. Thereford;[pst] remains pure real in (19).

The construction of the correlation function requires that it
remain pure real regardless of the particular model. This was

required for the QCFG(t,53), and thus symmetry of the integrand
of the relaxation termI'[pst], is preserved and remains pure
real, as was implied in eq 5.

V. Three Examples and Applications to MR

Equation 5 or 19 is unique in that the time is explicitly

theory of diagonal matrix elements (see Appendix C eq C.11
and Appendix D). The set of equations in terms of observables
maintain detailed balance by coupling to other, higher ordered
observables through the temperature dependence in the
tanh[(5/2)w¢] term. Notice that there will be an observable in
the integrand of the form$2(} r for example. To have full
detailed balance then, one would have to generate the equation
of motion for this observable as well, until the complete set of
coupled observables was developed. The anti-commutator in

retained in the integral and the integrand is a convolution with (23) arises from the conjugation symmetry of the temperature
the density matrix over all previous times. There has never beenterms. If the spirr-lattice coupling Hamiltonian containe§,
a worked example of relaxation, through equilibrium correlation instead ofS,, then the sinpsr) term in the anti-commutator

functions in the MR literature, which explicitly involves time.

would appear with a negative sign, whereas the spin operator

Therefore, it is important to develop simple examples of this in the cos@sr) term would involveS,. Thus, if noncorrelated
new form of relaxation and compare with previous results fluctuating fields aboutX and Y of equal amplitude are
obtained using the more conventional forms. We now consider considered simultaneously, only a cosf) term is present in

the spin-spin relaxation rateR, = 1/T,, and spin-lattice

relaxation rateR; = 1/T;. In all of our examples the spin-system

Hamiltonian will beHs = w<S,, and the model for the lattice

(developed in section 1V) will be that of an ensemble of two-

state systems, which is coupled to the spin system.
Example 1: Spin—Lattice Relaxation for a Spinj System.

The system observable associated with spéttice relaxation

is Os = S,. For simplicity we consider the spitiattice coupling

to be of the formH’' = F - S.. The integrand of the relaxation

term in (12) is

tr{[O4o).8ml(e” s p () -
pot—n)e P Fsem W) (21)

The effect of finite temperature o is

o (WI2HgehI2b: — o (hBi2osSig oAIDHSS: —
S cosl(%ws) —i§ sin){h?ﬂws) (22)
Using the permutation under the trace yields

dod |
o = —iw{J0,S] [+

costf Loy [ Gl A0 S@SIG - -
iMOLr) §®1.S1 Gy tanr(%ﬁws)) dr

For the case where the observallle= S

[O42).82)] = U (0[S, SIU() = i§(r) =
i(§ cosgr) + S sin(wgr))

the anti-commutator. In the spith, case discussed below the
anti-commutator containing the sing) term vanishes identi-
cally, so that assuming fluctuation abotalone gives the same
results as if we had included both akandY fluctuations for
that particular case. The cesf) term of the anti-commutator
also simplifies in the spi#/, case, but in general this term will
couplel$[to the expectation values of other, higher order, spin
variables.

Boltzmann equilibrium is still enforced as the stationary
solution. Inserting the equilibrium expectation values of the spin
operators in the integrand shows that the integrand vanishes.
From the operator form, of (19), it is clear that the integrand
must vanish. To emphasize this, we will re-prove the stationary
condition for any spin in (23). The tanh{/2)w4] term arises
naturally for all values of the spin,

Equilibrium is whenp, = e "oS/tr{ e "2S} . [1S,S]+ g =
0 because ar/2 frame rotation generated aboB8t may be
inserted in the trace on one of the terms of the anti-commutator,
and does not affech,; however,S, — S, § — — S This
rotation also shows thaf$2ld; = [$2d, and therefore,
0S,S]+dq = j( + 1) — [B2ldq Substitution of these results
into (23) yields the expression for the relaxation at equilibrium:

p,t] = cosr(%ws) /. LOG(T,ﬂ) COS@J)([Sz@qJF
tanr(%ﬂws)(j(j +1)— [gzgo)) dr (24)

which must be zero. We now show that the integrand of (24) is
indeed zero. .

The functionZ(u) = 3},__e ™! = sinh(§ + /2)u)/sinh(/>u)
is the generator of the equilibrium averages,, il&ldq =
—(dZ(u)/AW/(Z) lu=rp, (B 1dq = (PZ(U)/AW)/(Z)| =g, ETC.

The trigonometric expression farZ(u) follows from the
summation of a geometric series. The vanishing of the integrand
in (24) implies thatZ(u) must also satisfy the differential
equation:

The rotated operators then are substituted into the equation of

motion:

~Z + tanh@2)(( + 1)2 — 2") =0
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Direct substitution of the definition df(u) in terms of the sinh
functions into the differential equation shows that it is indeed
a solution. A simpler method is to transform to Z(()) =
IN(W(u)) — Yo'/ (tanh@@/2)) du = In(W(u)) — In(sinh@/2)),
which gives the simpler differential equatio’ — (j + %2)?W
= 0.

This differential equation iW is satisfied byW(u) = sinh((
+ 1/x)u). Therefore, the expression féfu) given by summation
of the geometric series is indeed a solution to the differential
equation, and Boltzmann equilibrium, as defined by the spin
Hamiltonian, is a stationary state for any valuej.of

Example 2: Spin—Lattice Relaxation for Spin ¥/,. The case
of j = Y, is useful as a simple case to show how the finite time

J. Phys. Chem. A, Vol. 108, No. 9, 2004597

system frequencys. Furthermore, the cosli5/2) temperature
weighting in the denominator is selected at the spin-system
frequency and cancels the similar term that arose purely from
the action of spin-system operators 8nn the numerator of
the relaxation expressions (see (12) and (22)). The distribution
function becomes a good approximation to éhfeinction when

its width becomes, as a function of time, much less than the
width of J(w)/coshfiw(/2). The time must, at the very least,
exceed the correlation time of the lattice process; 7., as
represented by the lattice spectral density width. Once the time
has exceeded several correlation times the integral converges
to the Fourier transform limit. This is a concrete demonstration
of the well-used approximation in BWRT, namely that the time

integral links spin-system and lattice frequencies. The operatorsin the finite integral may be passed to infinity while the time

may be evaluated for the splf case, from (23) giving

digo t
ol o S5

[SZQD) dr (25)
where

(1/2) tanr(%ﬁws)

It is interesting to view this equation of motion in terms of the
conventional time scale arguments on the density matrix and
integration limits. If

(S = tr{Spt=-2)} = tr{S(~)U() p(t—7) U ()}
= tr{SU(2) p(t—7) U (0)} ~ tr{Sp(t)} = [S[{,

i.e., the density matrix, when viewed in the rotating frame, is
only slowly evolving compared to the time decay®(r,).
Then from eq 23

dis,0
Tdt T
_cosr@ws)( [ G(x) cosog) dn)([S0- [S[1) (26)

[5dq

The time integral in (26) is now isolated, and in the limit of
infinite time, the integral becomes the inverse Fourier transform
of G(z,8) at the spin frequencws. Thus, as time progresses
the integral selectd(w)/coshfifw/2), the spectral density and
its temperature-dependent pre-factor, at the frequencyhe
lattice prefactor cancels the factor in front of the integral, leaving
the LorentzianJ(w) for the relaxation rate.

In finite time the integral in (26) can be stated in a convenient
form and gives a criterion for how fast the infinite time Fourier
transform limit is approached. Using (20) 16(z,5), the integral
component of (26) becomes

[ G(x,p) cosogr) dr =
0 Jo)  [sin(@,— o))
S ~=coshfiw fI2)\ m(ws— w)

The symmetry of the frequency integration limits was used to
complete the necessary cosine addition formula before perform-
ing thet integration.

The distribution (or window function), sinf — w)t)/[7(ws
— w)], approaches a Diraé function as time goes to infinity,
selecting out the lattice spectral density function at the spin-

derivative on the left-hand side of the equation of motion (26)
is retained at finite time. Goldman emphasizes that this places
a restriction on the interpretation of the equation of motion such
that its solutions must necessarily correspond to the system
response after several lattice time consténfp 167b). The
process described by our formulation is intuitive and valid at
all times: Initially, all the lattice modes represented by the
spectral density function must contribute to the spin-system
evolution. The spin system samples the frequency of the lattice,
in effect. The frequency spread presented by the lattice is
resolved into a single component only after a sufficient
interaction time with the spin system.

The extension of time in the integrand of the relaxation
expression to infinity is one of the principal time scale arguments
in the derivation of BWRT, and its basis has been concretely
demonstrated here. The other time scale argument invoked is
the slow evolution of the spin density matrix (as viewed in the
rotation frame) over several correlation times of the lattice. The
lattice must have a weak coupling to the spin system at the
frequency of the rotating frame if the spin density matrix is
expected to be nearly stationary for initial times within several
lattice correlation time constants. The solution in Appendix E
(Supporting Information) to (25) (the complete convolution
equation) reveals that the weak coupling required in BWRT
means that the lattice coupling, considered a coherent field in
the rotating frame, must not cause significant spin precession
over the correlation time or 2% fyz.. Neither such restriction is
present in our general formulation. A similar picture arises in
the solution of relaxation of transverse components, discussed
in the next example.

The solution of the convolution form of relaxation, (25), for
the longitudinal magnetization is given in Appendix E, in the
high-temperature limit. The general solution contains three
exponentials and contains, in general, oscillatory components
as well as exponential decay. The method of solution is similar
to that used for the relaxation of the transverse magnetization
discussed in the next example below. The principal regime of
interest is when the spirlattice coupling energy is a perturba-
tion of the basic Zeeman spin Hamiltonian, thatds, > f,.

With this restriction, the short correlation time ¥t z.f,;) and
the long correlation:f, > 1) limits are each dominated by a
single rate:

f 2z,

B f %z,
ol + (Ut ., ¢ 2

a)sz-l-f

o r.f>1

1

It is tempting to combine both limits into one expression:
7 f2

2
fo/Tc c'o

024 WY+ 1+ (rw)?+ (1 L)

(27)

R,
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One motivation for this form is that it represents the solution .ot J(0) 2
for the rates to the linearized cubic equation given in Appendix ![‘;f;:oG(T'ﬁ) dr = T RBA =f7
E. This expression also applies in the intermediate regime, where COS"‘70)

7.fo & 1 as long asvs > fo. Whenws, fo, and 1t are nearly

equal, a single spectral density is not appropriate, due to theThijs is the famous result for the relaxation rate of the transverse
presence of two other competitive rate components. These extracomponents from BWRT. We note that the result has the
rates are due to coherent precession, which results from theproblem that the relaxation rate diverges as the correlation time
contribution of the fluctuating field in the rotating frame, and pecomes large; this is the “BWRT Catastrophe”.

are characterized as damped oscillation (see the general solution We now revisit (28) without invoking the traditional BWRT

in Appendix E). The relative amplitudes of the pure decay and approximations. In so doing it is convenient to go into a rotating
the oscillatory components are governed by a complicated frame. The equation of motion is a convolution of the density
competition ofws with f, andzc. Whenf, > ws, the rates are matrix. The rotating frame is determined by the properties of
similar to the transverse (spispin) mechanism. In this regime,  the observables, not the density matrix. HerandS, are known

the “fast motion” case (& 7.fo) is dominated by the rate s, to transform simply under a rotation generated about Z because
alone. In the slow motion limitz¢f, > 1) relaxation is a mixture  of their commutation properties with the generator of the
of pure decay and oscillatory components and does not have gotation,S,. In general, a set of spin observables is constructed
single spectral density. In the no motion limit, the “perturbation” from the spherical tensor operators. Spherical tensor operators
is coherently coupled to the evolution of the observable. The transform under rotation such that a frame change is possible
result obtained by the complete solution, Appendix E, is identical in general® Therefore, this problem is illustrative of a much

to that obtained from first principles (eq 1) in this limit. |arger class of problems that are of practical use. The expectation
Therefore, the general solution limits to the exact, oscillatory of S in the rotating frame is
answer as the correlation time goes to infinity, where there is

no damped relaxation, ore{ Ry} = 0. tr{ SH(t)} = tr{ S(Usfl(t) p(t) Ut} =
Example 3: Spin—Spin Relaxation for Spin/,. Relaxation 1 e
of the X component of the spin system is given as a result of r{UOSU, (1) p(0} = IB(~1)0

the field fluctuations along Z. The coupling Hamiltonian is of .
the formH’ = FS,. The Zeeman magnetic field is still oriented 1€ SPin operators transform such that

along Z. The equation of motion for th€andY components, (@(t) (cos@ f) —sin@ t))(ES(
s s = R(t)(80
3

which follow from (21) and (12), are

FMg  \sin@d) cospd)
dﬁmz —io3-i§0- The vector notation simplifies the algebra that followsR(f
dt s t) is applied to both sides of the equation of motion written in
S8 t{[S,S]SU®) p(t = 1) Ug H(z) + H.Cy dr  vector form:
d{0 _ @D_ N 0 —wg) =
[ 6@ {[S,SISULD) p(t — 7) U (2) + H.C} dr [ G R-DE(D)_, dr
or Then it follows that
a5 5 w = — [ G(e,8) tr{ Sp(t—7)} cr
dt s
JL @A HSUL) plt — 1) U ) dr - PEPUSE
drR(—t)  [—sin(@d) cosed) | 0 —w,
dé_I?D: SO dt Y\ -cos@wd) —sin(wst)) - _R(_t)(ws 0 )

t _ . . . .
J; =OG(7vﬁ) tr{ gus(f) p(t — 7) Ug 1(,)} dr (28) BenotmNg the expectation values in the rotating framei,
= tr{Sp(t)}, the equation of motion fof&Jbecomes, for

The connection with the conventional BWRT result is obtained example

by again applying the time scale assumption thgt) p(t—1) ds0 .
Us(—7) — p(t). So that —==—[_G(t,p) B, dr=

dt
ds,0 . — " G(t-1,8) dr (29)
%‘f‘ = —0f30- (/_ G(tp) &S0 JeesRUme ) B0
d[SJD When this equation of motion is compared to the analogue for
L t [5[given above, in (25), two differences become evident. First,

Tdt oS- (fr=OG(r’ﬁ) dr)[ﬂi/D the[?aquilibrium stat((e fo)E&[Iis zero. Second, there is no spin-

system frequency present (because the density matrix has been
As time goes to infinity the integral becomes the inverse Fourier transformed into the rotating frame). Both of these differences
transform, and the zero-frequency term of the spectral density are also characteristic of conventional BWRT and are well-
function is selected. known properties of the transverse magnetization. However, the
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relaxation term has the form of a convolution. As will be shown,
the convolution form of the relaxation term, unique to our
formulation, prevents the “BWRT Catastrophe” and provides
the fully coherent, correct form of the solution in the long
correlation time limit.

The integral form of the equation of motion can be converted

to a differential equation, as illustrated in Appendix E, by direct
differentiation of both sides if the time derivative G{t,) is
known. We use the high-temperature limit of (18). The factor
1/coshhwf/2) has a spectral width on the order ofif/so that

if 1 > hplz. then G(t,—0) = f,2e V. This criterion means
that correlation times must be larger than~¥0s at room

temperature, a criterion easily met, for example, by a rotational

correlation function of a small molecule in water (considered
as representative of the time scale of motion).
Upon differentiation the equation of motion (29) becomes

dZE@D 1 di50 dis,

dt2 T_c_+f [$kD:0 F

with =0

(30)

where the boundary condition is inherited from the original
equation of motion.
The general solution contains exponentials with “rates”

R
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casel/, > 1.f, the radical may be expanded to second order in
this product with the result

_ (TC fO)Ze—(l/TC—TC foz)t)

[SL= BLLo(2 + (z,f))e ™"

The first term is recognized as the rate from the conventional
form of BWRT due to the zero-frequency component of the
spectral density function. The second rate is larger than the first
(faster decay) and is minor because its amplitude is weighted
by (zcfo)®.

Case2: 2. f,=1

This limit, easily found from case 1, is
[S0= [SLLe (1 + t/2r,)

Case3: 2¢f,>1

50 Emoe“’z“(cos(%J(zrcfoTﬂ) .
Jeer iy - ))

;SI n(
Jerty -1\

In the limiting case 2:f, > 1

B [@;Loe‘””c(cos@) +1 sin(fot))

(31)

component of the (spin) system that covers the full range of
stochastic Liouville equation (SLE) of Kubo for a stochastically @s opposed to case 1 where the relaxation rate was proportional
preciable coherent precession over a time period up to the lattice
each state as a function of time. To make the comparison with tions of f, have zero mean. As a result, the induced average
the SLE give the relaxation rates and are found to be identical wheret < 7 it is found that “dynamical coherence is dominant
correspond to the two possible states of traverse spin precessiofattice. Our results exhibit the same persistence of coherence in
three specific solutions of (30) depending on the relative (1) Passage to the rotating frame is possible because an
Case 1: 1> 2¢.f,
tensor operators and their linear combinati®hi.the funda-
makes it impossible to perform a simple frame rotation directly

1 1)2 2
— =+ —| —f
27, (ZTC) ©
This is a complete description of the relaxation of the transverse
possible correlation times. The rates may become imaginary ] )
when the correlation time is long, and this leads to damped Here the terms oscillate, and the real part of the relaxation rate,
oscillation. These rates are identical to the rates from the the damping term, depends inversely on the correlation time,
modulated two-state oscillatdrEor this case the SLE has the 1o the correlation time. The physical interpretation of this answer
form is that the correlation time is so long or the amplitude of
fluctuation is so strong that the fluctuating field causes ap-
X(t @10 )yl 1 X(t
®) = 0 —w, 2\1 ®) correlation time. Exactly the same answer is obtained foivthe
component[§L] Both directions of induced precession are
whereX(t) is the average value of the oscillator coordinate for Statistically present with equal probability because the fluctua-
the spin relaxation problem treated here, the exchangeyate, oscillation_of[&[is linearly polarized, as vi_ewed in the rota_lting
is identified with the reciprocal of the correlation time and frame. This coherence has an analogue in Kubo’s solution for
Kubo's w1 = f,. The eigenvalues of the matrix on the rhs of the motion of a stochastically modulated oscillator. In the regime
to the rates obtained from our convolution equation. This for the short time approximatior?? The lattice amplitudes are
correspondence is expected, given that our lattice is composedassumed to be Gaussian distributed in the typical applications
of two-state systems as well. The two statesXoin eq 31 of Kubo, in contrast to the simple two-state distribution of our
(as seen in the rotating frame) that result from the two possible the large correlation time limit that is found with the more
lattice states. complex models of the lattice considered by Kubo.
We now consider the individual cases of eq 30. There are  This example illustrates:
magnitudes of. andfo. external rotation of the spin observables is generated by a
transformation that acts on the spin operators, not the density
matrix. This is particular to the physical properties of spherical
F= B, e U2 cos)'( t —\/1— (ZTCfO)Z) + mental equation of motion (5) were rewritten as a density matrix
2t equation of motion (6), the ability to transform to a rotating
frame would be lost. The convolution nature of these equations
sml-(—«/ — (2z.f,) )
on the density matrix. The ability to perform a frame change in
the observables formalism underscores the importance of the
In this case both relaxation rates are pure real. In the limiting observable formalism used in this paper.

(2‘( f.)
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(2) The conventional result of BWRT for spitspin relaxation
is obtained in the fast mation limit, i.e., wherst t.f, and the
effective R, relaxation rate igfo2.

(3) The effectiveR; rate in the slow motion limit 2:f, > 1
does not diverge but is given by 1#2. This relaxation rate is
also accompanied by amplitude modulation with frequefacy
The same result was found for the spiattice relaxation in
the limit of vanishing Larmor frequency (Appendix E).

The pure decay component& may be summarized by the
expression

~h 20y >

R,

although the oscillatory behavior whenf, > 1 must be

Nielsen and Robinson

time of the lattice fluctuations becomes infinitely long. The only
approximation made was to admit a theory that used equilibrium
lattice QCFs. The approximations made subsequently (mainly
to neglect the El terms and return the density matrix to the real
axis) restoredproperties to the equation of motion lost due to
the initial approximation. Although we chose a particularly
simple form for the QCF, (18) (one in which the QCF vanishes
at low temperature), any number of forms could be chosen. This
work provides a well-defined way to include the QCF into the
relaxation part of the equation of motion. One of the practical
consequences of this work may be simply stated that the
amplitude of the fluctuationf,, may be considered to be
equivalent to a frequency that can be included in the denomina-
tor of any existing spectral density function as done in (27)
and (32). The presence of this term guarantees that the spectral
density functions are valid in all motional regimes and prevents

emphasized. The form of the relaxation rate constant suggestedhe catastrophe of BWRT.
by (32) conveys the character of the change in the rate constant

from the fast to the slow motion region but does not take into
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account the abrupt change in the real part of the relaxation ratesGM65944, the AFOSR and NIEHS.

when 1= 2z.f,. In the no motion case, we recover the exact
answer, which would be obtained by making the lattice fully

coherent and solving for the evolution of the transverse

components directly from (1). This solution, in the no motion
limit, is a coherent free induction decay, or FID, with no
damping, oscillating at frequendy. This result is in marked
contrast to the predictions of BWRT in which the relaxation
rate constant becomes infinite without oscillation.

VI. Conclusions

We have developed a novel equation for relaxation of a

Supporting Information Available: Text giving the equiva-
lence of egs 1 and 2 in the main text, properties of the quantum
correlation functions, derivations of BWRT, transition state
theory and density matrix formulation, and relaxation of
longitudinal magnetization for spith,. This material is available
free of charge via the Internet at http://pubs.acs.org.
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