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We present a novel form of the equation of motion from Bloch-Wangness-Redfield theory (BWRT) that is
in a representation-independent operator form. The equation has no time restrictions on it and incorporates
Boltzmann equilibrium. We show that this new form gives results consistent with traditional BWRT and
limits to BWRT when the additional restrictions and approximations of BWRT are applied to the new equation
of motion. The new form shows how the usual equations for relaxation may be easily modified to include
detailed balance and to avoid the long-standing problem that certain relaxation rates incorrectly become large
when the lattice fluctuation rates become small; that is, the relaxation rates determined from this new approach
avoid the BWRT “catastrophe”. The new formulation leads to a more complete description of both longitudinal
and transverse relaxation in magnetic resonance and takes into account the oscillatory nature of the relaxation
of both transverse and longitudinal components in all motional regimes including the slow motion regime.
The approach is of direct benefit to spectroscopists because it is described in terms of relaxation rates of
observables.

I. Introduction

Density matrix theory has been used in magnetic resonance
(MR) in the form of Bloch-Wangness-Redfield theory
(BWRT).1-3 This theory has had enormous success and has been
of practical utility to spectroscopists. However, there are two
well-recognized flaws with BWRT.4 The first is that it has been
very difficult to reconcile approach of the system to thermal
equilibrium with the original form of the equation of motion.
In the original semiclassical form of BWRT, the system relaxes
to zero not to a Boltzmann type equilibrium. This is equivalent
to saying that detailed balance is not obeyed at finite temper-
ature. A partial solution to this problem suggests that one replace
the density matrix in the relaxation part of the BWRT equation
of motion with the difference between the density matrix and
its value at equilibrium.4 However, this has the problem of still
not fully satisfying detailed balance. Redfield addressed this
issue in his original review article,3 in which he noted the need
for equilibrium terms and suggested where such terms needed
to be placed in the relaxation expressions based primarily on
the original treatment of Bloch.1 The second problem with
BWRT is that the predictions for the transverse relaxation rates
go to infinity when the rates that describe lattice fluctuations
approach zero. We find that both of these problems with BWRT
may be overcome with minimal modifications to the existing
theory. We develop the equations of motion of observables as
well as the equation of motion of the density matrix; all
expressions are kept in operator form and a basis set is never
used to expand operators. We will show that this alternative
formulation allows one to obtain insight over the traditional
approach. This alternative form avoids approximations that are
necessary when working directly with density matrix equations.
We feel that casting the equations of motion in terms of
observables is a more natural way for spectroscopists to think
of relaxation. For the sake of clarity for a more general
readership we do not use the super-operator formalism, which
is the formalism of choice among many of the theoreticians in
this field.5 In the application section we show that the spin-

lattice and spin-spin relaxation rates, traditionally used in
magnetic resonance, can be slightly modified to have more
robust behavior.

Alternative methods have been developed to circumvent the
drawbacks of traditional BWRT. The stochastic Liouville
equation (SLE) approach has been widely used to simulate
spectra where BWRT fails;6-8 by which, variables driven by
random processes are added to the total Hamiltonian represent-
ing bath or lattice coordinates. A SLE equation of motion for
average density matrix components is inferred from a diffusion
equation that governs the distribution of random variables
representing the bath. The incorporation of the diffusion term
for the random variables into the density matrix equation of
motion parallels the derivation of the classical Langevin equation
from Newton’s equation using randomly fluctuating forces.
Defining quantum random bath variables is sufficiently com-
plicated that a semiclassical treatment is typically sought. The
cost of the semiclassical approach is that the equilibrium state
remains undefined. However, unlike traditional BWRT the SLE
does predict evolution of the density matrix even as the rate of
bath fluctuations becomes arbitrarily slow. We compare the
predictions of our reformulation of BWRT for spin-spin
relaxation with the results of the SLE for the simple case of a
two-site exchange process below and find exact correspondence
of the two methods.7,8

The outline of the paper is as follows: In this section we
introduce the basic equations of motion. In section II we develop
the equation of motion for observables and the density matrix
that we will use throughout. In section III we compare our results
to the more traditional development of BWRT. (A more
extensive treatment is found in Appendix C, Supporting
Information.) In section IV we develop a specific form for the
equilibrium quantum correlation functions (QCFs) for the lattice,
following the work of Mazur and co-workers.9 In section V we
use the lattice correlation functions of section IV to obtain
expressions for spin-lattice and spin-spin relaxation rates and
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compare the new results with those of BWRT using a specific
model for the QCF.

The fundamental equation of motion, of the combined system
and lattice is

Here the complete Hamiltonian is the sum of the system (or
spin), Hs, the lattice (or bath),Hl, and the coupling,H′,
Hamiltonians:

where Ho ) Hs + Hl. The system and lattice Hamiltonians
commute, and neither commutes with the coupling Hamiltonian.
All Hamiltonians are in frequency units. We restrict our attention
to coupling Hamiltonians that are bilinear,

HereS is a spin-system, Hermitian operator, andF is a bath-
lattice, or handle, Hermitian operator. The development can be
generalized to include coupling Hamiltonians that are sums of
bilinear terms in a straightforward way. We consider only time
independent Hamiltonians. The extension to time dependent
Hamiltonians is possible, following what is done in other
derivations.10 Our restrictions here are made merely for the
purposes of providing a simplified notation and a clear presenta-
tion of the equations of motion.

Corresponding to every observable of the system is a
Hermitian operator,Os. Any observable can be computed from
the density matrix and the operator:〈Os〉 ) tr{OsF}. The
observables of the system can be written in terms of the
expectation value of appropriate Hermitian operators. The
complete set of all Hermitian operators,{Os}, constitutes an
operator basis set.11 The density matrix equation of motion (1)
can be rewritten into acompletelyequivalent equation in terms
of the evolution of system observables, which is

Here the system variables evolve only under the system
Hamiltonian:

And the lattice variables evolve only under the lattice Hamil-
tonian:

Equation 2 is not a perturbation expansion. It is a reformula-
tion of (1) as an integro-differential equation. Those unfamiliar
with this equivalent form are encouraged to read Appendix A,
Supporting Information. The development thus far parallels the
approach of Zwanzig12 in two respects: The relaxation term is
in the form of a convolution integral over previous history; and
the use of spin-system observables is similar to Zwanzig’s use
of projection operators. In the absence of any lattice coupling,
system observables,〈Os〉, will evolve independently of the lattice
and the first two terms of (2) constitute a proper, completely
coherent equation for evolution of such observables. The

integrand on the rhs of eq 2, containing system-lattice coupling,
leads to relaxation. The process by which (2) was obtained can
be completely reversed to reconstruct eq 1. (See Appendix A.)
We assumed in the development of (2), for simplicity and with
no loss of generality, that the initial condition on the density
matrix is such that the handle operator,F, is mean zero, i.e.,
trl(F̃(t)F(0)) ) 0, where the trace is taken over the lattice
variables.

There are three general properties of eq 2 we wish to
emphasize: The integrand inside the time integral of (2) is a
pure real function of time, as may be seen by complex
conjugation and permutation of operators under the trace. This
guarantees that the values of the integral are always pure real.
Second, the diagonal elements of the density matrix must remain
nonnegative no matter what stateF evolves into (positivity of
the density matrix).11 Positivity of the density matrix is ensured
for eq 2 because of the exact equivalence of (2) with the original
unitary equation of motion (1). Third, because eq 2 is just a
reformulation of eq 1, the right-hand side (rhs) of (2) rigorously
goes to zero when the density matrix is the Boltzmann
equilibrium density matrix for the full HamiltonianH ) Ho +
H′. It is our intention that the approximate equations that we
develop in section II will retain these three features, which are
characteristics of the exact formulation (2). However, we will
use a density matrix that describes the evolution of the spin
system alone. This is achieved by coupling the spin system to
a lattice that is always at equilibrium. The idea of making the
spin-lattice communication one way is common to most
formulations that give an irreversible equation of motion. We
differ, here, by how this assumption is implemented. We believe
that the assumption of a dynamically independent lattice need
not restrict the treatment of the spin system as severely as the
assumptions of BWRT would indicate.

We make two standard approximations whose assumptions
are coupled.4,10The first is that the density matrix can be written
as the product of two density matrices: a lattice density matrix,
which is always at equilibrium with its own Hamiltonian, (Hl),
oblivious to the system, and a spin-system density matrix that
is otherwise arbitrary. The second approximation is that equi-
librium for of the spin system is described by a Boltzmann
density matrix with respect to its own Hamiltonian (Hs) and at
the same temperature as the lattice. The separation assumption
is

This assumption or ansatz is used in both magnetic resonance
and the optical literature.5,13 The question then is: Is there an
equation of motion that can sustain both of these requirements
but needs no modification of the convolution form or the
memory form of the relaxation term found in eq 2? Goldman,
in a recent review of BWRT, argues that it not possible and
that one cannot know what happens to the spin density matrix
at early times.10 Our answer is yes, and we set about to find
one such equation. The details are worked out in section II
below. The final equation of motion for any spin-system
observable, developed in section II, is

where

∂F
∂t

) -i[H,F] (1)

H ) Ho + H′

H′ ) SF

d〈Os〉
dt

) -i〈[Os,Hs]〉 -

∫τ)0

t
tr{([Õs(τ),S̃(τ)]S(F̃(τ)F) - (FF̃(τ))S[Õs(τ),S̃(τ)])F(t-τ)} dτ

(2)

S̃(τ) ) Us
†(τ)SUs(τ) where Us(τ) ) e-iτHs

F̃(τ) ) Ul
†(τ)FUl(τ) where Ul(τ) ) e-iτHl

F(t) ) Fs(t)‚Fl
o ) Fs(t) ‚ e-pâ‚Hl

tr{e-pâ‚Hl}
(3)

d〈Os〉
dt

) -i〈[Os,Hs]〉 - Γ[Fs,t] (4)

1590 J. Phys. Chem. A, Vol. 108, No. 9, 2004 Nielsen and Robinson



Equation 5 is the central equation of this paper.Γ[Fs,t] is the relaxation contribution for the spin-system observable of interest and
is a functional of the spin-system density matrix,Fs. The form of the terms in the integrand guarantees thatΓ[Fs,t] is always pure
real.G(τ,â) is a generalized, real-valued, lattice correlation function that depends on both time,τ, and reciprocal temperature,â )
1/kBT, wherekB is Boltzmann’s constant andT is the absolute temperature.G(τ,â) will be given a precise definition in section II in
terms of a quantum correlation function (QCF) that will be further elaborated upon in section IV. Boltzmann equilibrium and
detailed balance enter into the equation of motion through the terms in the exponential operators containingâ. These terms guarantee
that when the system density matrix is at Boltzmann equilibrium the system is stationary; the integrand vanishes andΓ[Fs,t] does
not change as a function of time. Thus, if the initial state is “close” to equilibrium then the system will relax to the equilibrium state
defined by the Boltzmann density matrix for the spin system.

There is an associated equation of motion for the spin-system density matrix as well, which is easily obtained from (4) by projection
of the observables. It is

As noted, the assumption or ansatz of (3) is common to our approach and BWRT.3-5,14 However, there is a distinction to be made
in how this assumption was applied to arrive at eq 5. In BWRT, as will be discussed in section III and Appendix C, a time scale
argument is concomitantly invoked. In BWRT the equations of motion are not to be interpreted on the time scale of lattice fluctuations,
and the assumption of a lattice at constant and separate equilibrium is used to ascertain the solution to the equations of motion in
an asymptotic sense. Goldman, in his extensive discussion of BWRT, emphasizes this point.10 Fo ) Fs

oFl
o appears as a stationary

solution to BWRT for all times; however, this is deceptive because the equation of motion is justified by the time scale argument.
Thus, what constitutes an early time solution to the equation of motion is not well-defined elsewhere.10 We develop an equation of
motion that describes the evolution of the spin system from time zero. We imagine that the system and lattice are in contact and at
equilibrium, in prehistory, where time is less than zero. Then at time zero, a pulse of energy is put selectively into the (spin) system
such that the lattice is transparent to the pulse. The lattice density matrix will be sufficiently close toFl

o because it is composed of
many degrees of freedom. We view the pulse as effectively severing the spin-lattice communication, and ordering the spin density
matrix arbitrarily. The pulse is turned off, and the system then evolves under the full Hamiltonian, where the density matrix isF(0)
) Fs(0)Fl

o at time zero andFs(0) is no longer the system equilibrium density matrix.

II. Derivation of Eqs 4 and 5

The expression we seek is found by treating the effect of the lattice on the (spin) system in terms of quantum correlation functions
(QCFs) defined under lattice equilibrium. To connect with correlation functions for the lattice, we invoke the assumption already
introduced above (3):F(t) ) Fs(t)Fl

o. This allows us to write the trace over the lattice in (2) in terms of correlation functions for of
lattice variables alone at equilibrium. We define the quantum mechanical correlation function, QCF,C(τ) for the lattice variable by
the following relation: C(τ) ) trlatt{(F̃(τ)F)Fl

o} ) 〈F̃(τ)F〉eq.
It follows from this definition and the product form of the density matrixes that trlatt{(F̃(τ)F) F(t-τ)} ) C(τ) Fs(t-τ). From this

definition of the correlation function we notice that the conjugate isC *(τ) ) trlatt{(FF̃(τ))Fl
o}. By assuming that the lattice is always

at equilibrium, the quantum correlation functions represent stationary processes, i.e.,〈F̃(t1) F̃(t2)〉eq ) 〈F̃(t1-t2)F〉eq, and have special
properties, which directly follow from the above definitions. The ones we will use are the following:5,13,14

It may seem a bit odd that the time argument can be complex and that we haveâ in the time argument. The evolution operator,Ul,
and the equilibrium lattice density matrix,Fl

o, both depend onHl as an argument in an exponential. The equilibrium lattice density
matrix can be written in terms of the evolution operator with an imaginary argument. It is this correspondence that allows us to use
imaginary time arguments in the correlation function with units of ipâ. We have included Appendix B (Supporting Information) for
those unfamiliar with these relations.

When the separation ansatz is applied to the relaxation term in (2) it becomes

The functionΓ[Fs,t] represents the relaxation contribution to any spin-system observable from the QCF of the lattice. There is an
equivalent equation then for the spin-system density matrix:

Γ[Fs,t] ) tr
s
{Os∫τ)0

t
G(τ,â)[S,Us(τ)(e-(pâ/2)HsSe(pâ/2)HsFs(t-τ) - Fs(t-τ)e(pâ/2)HsSe-(pâ/2)Hs)Us

†(τ)] dτ} (5)

dFs(t)

dt
) -i[Hs,Fs(t)] - ∫τ)0

t
G(τ,â)([S,Us(τ)(e-(â/2)pHsSe+(â/2)pHsFs(t-τ) - Fs(t-τ)e+(â/2)pHsSe-(â/2)pHs)Us

†(τ)]) dτ (6)

C*(τ) ) C(τ - ipâ)

C*(τ) ) C(-τ) whenτ is pure real

C*(i y) ) C(iy), or C(iy) is real fory real

C* (t - i
pâ
2 ) ) C(t - i

pâ
2 ), or C(t - i

pâ
2 ) is real and is an even function oft

d〈Os〉
dt

) -i〈[Os,Hs]〉 - Γ[Fs,t] (7)

Γ[Fs,t] ) ∫τ)0

t
tr
s
{([Õs(τ),S̃(τ)]SC(τ))Fs(t-τ)} dτ + ∫τ)0

t
tr
s
{Fs(t-τ)(C*(τ)S[S̃(τ),Õs(τ)])} dτ
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The exact form in eq 2 has important features that must also be reflected in the new form of the equation of motion (7). The first
feature is that the two parts of the integrand in (2) and ofΓ[F,t] in (7) are Hermitian conjugates of one another. This implies that
Γ[F,t] is pure real at all times whenOs is a Hermitian operator. The second feature is that the rhs of eq 2 vanishes when the entire
system is at Boltzmann equilibrium. It is desirable that the integrand in (7) should vanish when the spin system is at Boltzmann
equilibrium, because the first term vanishes at equilibrium.

To find a form of the equation of motion (7) that preserves the conjugation symmetry between the two distinct terms and allows
the QCF to be factored, we perform the following change of variables on the two integrals of (7):

In the first integral, we do a change of variables to letz ) τ + iâp/2 and in the second integral we apply the correlation function
identity C*(τ) ) C(τ - ipâ) and then do a change of variables to letz ) τ - iâp/2. With these changes of integration variables on
each of the two parts of the integral we have

The integration of these functions in the complex plane is well behaved, because both the time dependence due to the rotating frame
acting on the spin operators and the lattice correlation functions are entire functions when extended to the complex plane. It seems
reasonable then that the density matrix can be extended as an analytic function into the complex plane.

Cauchy’s integral theorem, which states that the closed-contour integral must be the sum of the residues inside (which is zero in
this case), may be used to rewrite this expression. Cauchy’s integral theorem is applied to these two integrals separately: each
integral is written in terms of the integrals over the real axis and the two integrals going on the imaginary axis from 0 to(ipâ/2
at time 0 and timet. Therefore

The extra integrals, or end-cap integrals, EI, are the integrals along the imaginary time (i.e., temperature) axis. And they may be
written as

Equation 9 may be written as (carrying along the EI terms)

On the basis of our desire to have a form forΓ[Fs,t] that vanishes whenFs ) e-âpHs/zs, we choose to neglect the extra integral, EI,
terms. Direct inspection of the two remaining integrals in (10) shows that the integrands sum to zero when the spin density matrix
is replaced by the Boltzmann equilibrium.

We need to relate the spin density matrix in the complex plane to that on the real axis. There is no exact method for extending
the system density matrix off the real axis. Therefore, we suggest the simple prescription that

This is similar to the principle governing evolution by unitary operators. As an example: when the spin density matrix evolves
under the spin Hamiltonian asF̆s ) -i[Hs,Fs], then it follows thatFs(t) ) Us(τ) Fs(t-τ) Us

†(τ). The approximation in (11) is
analogous to the “slow moving” approximation for real values of the argument of the density matrix, which is based upon the idea
that the density matrix evolution is dominated by the rotating frame motion generated byUs(t). We do not wish to invoke the “slow
moving” approximation for the time arguments (real valued arguments), which is one of the time scale assumptions of BWRT.10

The criterion for “slow evolution” of the density matrix under complex arguments need not in principle be governed by the same
magnitude restriction as the real arguments. If, however, it is assumed that the same restriction applied to both real and complex
numbers, the “time scale” ofpâ is only competitive with frequencies on the order of 1011 to 1013 Hz over temperatures from 1 to

dFs(t)

dt
) -i[Hs,Fs(t)] - ∫τ)0

t
(C(τ)[S,Us(τ)SFs(t-τ)Us

†(τ)] - C*(τ)[S,Us(τ)Fs(t-τ)SUs
†(τ)]) dτ (8)

Γ[Fs,t] ) tr
s{Os{∫z)0+i(pâ/2)

t+i(pâ/2)
C(z - i

pâ
2 )[S,Us(z - i

pâ
2 ) SFs(t - z + i

pâ
2 ) Us

-1(z - i
pâ
2 )] dz -

∫z)0-i(pâ/2)

t-i(pâ/2)
C(z - i

pâ
2 )[S,Us(z + i

pâ
2 ) Fs(t - z - i

pâ
2 )SUs

-1(z + i
pâ
2 )] dz}}

Γ[Fs,t] ) tr
s{Os{∫z)0

t
C(z - i

pâ
2 )[S,Us(z - i

pâ
2 ) SFs(t - z + i

pâ
2 ) Us

-1(z - i
pâ
2 )] dz -

∫z)0

t
C(z - i

pâ
2 )[S,Us(z + i

pâ
2 ) Fs(t - z - i

pâ
2 )SUs

-1(z + i
pâ
2 )] dz}} + EI (9)

EI ) tr
s{Os{∫z)0+i(pâ/2)

0
C(z - i

pâ
2 )[S,Us(z - i

pâ
2 ) SFs(t - z + i

pâ
2 ) Us

-1(z - i
pâ
2 )] dz -

∫z)0-i(pâ/2)

0
C(z - i

pâ
2 )[S,Us(z + i

pâ
2 ) Fs(t - z - i

pâ
2 )SUs

-1(z + i
pâ
2 )] dz}} + tr

s{Os{∫z)t+i0

t+i(pâ/2)
C(z - i

pâ
2 )[S,Us(z - i

pâ
2 ) SFs(t -

z + i
pâ
2 ) Us

-1(z - i
pâ
2 )] dz - ∫z)t+i0

t-i(pâ/2)
C(z - i

pâ
2 )[S,Us(z + i

pâ
2 ) Fs(t - z - i

pâ
2 )SUs

-1(z + i
pâ
2 )] dz}}

Γ[Fs,t] ) tr
s{Os{∫z)0

t
C(z - i

pâ
2 )[S,Us(τ)e-(â/2)pHsSFs(t - τ + i

pâ
2 )e+(â/2)pHsUs

†(τ)] dτ -

∫z)0

t
C(z - i

pâ
2 )[S,Us(τ)e+(â/2)pHsFs(t - τ - i

pâ
2 )Se-(â/2)pHsUs

†(τ)] dτ}} + EI (10)

e-(â/2)pHsFs(t - τ + i
pâ
2 )e+(â/2)pHs f Fs(t - τ) (11)
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400 K, respectively. This means that the “slow moving” approximation would apply for most MR applications (frequencies below
100 GHz) over a wide temperature range.

Therefore, we substitute (11) into (10) and drop the EI terms to obtain

This expression forΓ[Fs,t] is the relaxation part of a practical equation of motion that incorporates the Boltzmann equilibrium in an
operator form and guarantees that the integrand toΓ[Fs,t] vanishes when the (spin) system density matrix is at its own Boltzmann
equilibrium. The Cauchy integral theorem enabled us to transfer the equilibrium property of the lattice to that of the system. Inspection
of the use of the QCF in the derivation of eq 12 illustrates that the complex nature of the QCF was necessary to establish detailed
balance. For example, if the QCF is assumed to be real from the outset, then eq 8 assumes precisely the same form as eq 12, but
with â set equal to zero. The complex valued nature of the QCF arises from the noncommutivity of the lattice operators referring
to different times. Two commonly known formulations of relaxation theory demonstrate this. When transition rates among the
diagonal elements of the density matrix are calculated with Fermi’s Golden rule, the noncommutivity of the lattice operators establishes
the main difference between forward and backward rate processes,15 as shown in Appendix D (Supporting Information). Also, it has
been recognized historically that the quantum nature of the lattice variables are essential for inclusion of equilibrium itself, as
illustrated in the semiclassical formulations of relaxation theory, which lack any sense of equilibrium.3

The form of the QCF of (12) contains a complex argument but is itself always a real valued function. This form ofΓ[Fs,t]
guarantees that the relaxation term is pure real for all time when the spin observable is Hermitian. We note that the original separation
of the density matrix into a product of spin and lattice parts was made to have QCFs defined in terms of the lattice equilibrium
alone. The additional approximations that we have made have been done to restore properties to the relaxation termΓ[F,t] that
existed in the original form and were destroyed by the approximation associated with using equilibrium QCFs of the lattice. The
two additional approximations we made were (1) neglecting the end-cap integrals and (2) rotation of the system density matrix back
to the real axis. The derivation of (5) is complete when we identify the real correlation function,G(τ,â), as

This gives a precise definition of a generalized real correlation function used in (5) in terms of a QCF. The use of the correlation
function (13) in a practical equation of motion is novel to this paper.

InsertingOs ) 1 in eq 12 shows that the trace of the spin-system density matrix is conserved. Whether the convolution eq 12
preserves positivity of the spin-system density matrix remains to be shown. It is well-know that the traditional BWRT equation of
motion need not preserve positivity.13 Necessary and sufficient criteria have been developed that ensure positivity under the assumption
of a Markov master equation (equations of motion containing no memory effects).16 The equation of motion from BWRT is an
example of a master equation that is Markovian, but which does not satisfy the criteria necessary for positivity. The lack of positivity
in the BWRT master equation has been ascribed to the standard approximations that remove memory effects of the type that we
have retained in the convolution equation (12).17 Sufficient conditions for positivity of a class of non-Markovian (convolution)
equations have been developed by extension of the criteria for Markovian master equations, but eq 12 does not fit within this
class.18 The necessary conditions that restrict the form of the integrand of a convolution master equation have not been developed
to our knowledge. We leave the question of whether the particular convolution form (12) guarantees positivity as an open question;
given that there are no relevant general proofs or constructs guaranteed to give both the necessary and sufficient conditions for
positivity within a memory form of the equation of motion. However, as a first step toward showing positivity, the temperature
operators (such as e-(â/2)pHs) can be partitioned equally over all operators in eq 12. Then, for example, the equation of motion
governs e+(â/4)pHsFs(t)e-(â/4)pHs and its Hermitian conjugate. The observablesOs then also similarly transform. Positivity, if provable
for e+(â/4)pHsFs(t)e-(â/4)pHs, then gives positivity of the density matrix because the temperature transformations are positive definite
operators. Therefore, the presence of the temperature-dependent operators would appear to add no more difficulty to the issues of
whether the density matrix will preserve positivity.

III. Relation of Eq 12 to Previous Treatments

We now compare the equation of motion (5) to the well-known form of BWRT developed by Abragam4 and amplified by Goldman.10

Two additional approximations, extensively discussed in Goldman’s paper,10 are needed to derive the BWRT equation of motion
from (5) and (12). First, the time dependence of the density matrix on the integration variable is removed by the approximate
transformation: Us(τ) Fs(t-τ) Us

†(τ) f Fs(t). Second, the limit of time integration is taken to infinity:∫0
t f ∫0

∞. These two
approximations are generally taken concomitantly because their validity depends on the fast decay of the lattice correlation function,
relative to the spin density matrix. These are similar to the approximations inherent in transition rate theory (Appendix D). With
these approximations eq 5 becomes

The infinite temperature limit gives the conventional “double commutator” form of the master equation that is found when the
lattice is treated semiclassically within the BWRT framework.3 Equation 14 is related to Goldman’s finite temperature master equation10

in Appendix C.

Γ[Fs,t] ) tr
s{Os∫τ)0

t
C(τ - i

pâ
2 )([S,Us(τ)e-(â/2)pHsSe+(â/2)pHsFs(t - τ) Us

†(τ)] - [S,Us(τ) Fs(t - τ)e+(â/2)pHsSe-(â/2)pHsUs
†(τ)]) dτ}

(12)

G(τ,â) ) C(τ - i
pâ
2 ) (13)

d〈Os〉
dt

) -i〈[Os,Hs]〉 - tr
s
{Os∫τ)0

∞
G(τ,â)[S,e-(pâ/2)HsS̃(-τ)e(pâ/2)HsFs(t) - Fs(t)e

(pâ/2)HsS̃(-τ)e-(pâ/2)Hs] dτ} (14)
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The temperature operators, e((pâ/2)Hs, in (14) enforce detailed
balance at finite temperature. Each of the three terms on both
sides of (14) vanishes individually when the spin density matrix
assumes its equilibrium value,Fs(t) f Fo ) e-âpHs/zs. Conse-
quently, the substitutionF f F - Fo can be made in the
integrand on the rhs of eq 14, to give the equivalent form

The linearâ temperature limit of (15) is now considered. The
correlation function (13) is simply Re(C(τ)) in the linearâ limit
(see Appendix B). The temperature operators in the integrand
of (15) are expanded in powers ofâ using the Baker-
Campbell-Hausdorff series.

To achieve simplification of (15), it must be assumed, in
addition, that the density matrix is always sufficiently near
equilibrium thatFs(t) - Fo ) O(gpâ). The latter assumption is
the same as the standard assumptionF(t)Fo

-1 ) 1 + O(gpâ)
) Fo

-1F(t) used in the traditional derivation of the high-
temperature equation of motion of BWRT.4,10

Equation 15, with the assumption that the density matrix is
near equilibrium, and keeping terms only to linear order inâ,
becomes

The derivation of eq 16 shows that the effect of the temperature
operators in (14) is the same as simply inserting the difference
density matrix into the semiclassical double commutator form
of the relaxation term from BWRT. It was demonstrated that
this is only possible, however, by assuming a restricted density
matrix that is near equilibrium, in the high-temperature limit.
In conclusion, eq 12 may be cast in a form identical to BWRT
by applying the same approximations that are used within
BWRT.

IV. Development of the Correlation and Spectral Density
Functions

The previous section developed the master equation under
the approximation that the limit of the time integration could
go to infinity (and the density matrix could be written in terms
of time, independently of the variable of integration). We now
remove those restrictions and go back to the fundamental form
of the equation of motion (eq 5) to develop the lattice correlation
functions that will be used in this master equation. With the
lattice correlation functions we can concretely demonstrate how
(spin) system observables are relaxed by the lattice toward
equilibrium as a function of time. Here we begin with (5) or
(12), which can be written equivalently as

H.C. stands for the Hermitian conjugate of the previous term.
We have already shown that the use of Cauchy’s integral
theorem allowed for the transfer of Boltzmann equilibrium from
the lattice to the (spin) system. The QCF,C(t - ipâ/2), is a
correlation function of the lattice. This correlation function
evolves with frequencies associated with the lattice, not the
system. We now explore how the correlation function transfers
motion from the lattice to the (spin) system. The transfer of
motion is solved in the Abragam-Goldman approach, in which
the time integral is extended to infinity, by the Diracδ function
that arises from a Fourier transform of a complex exponential
at the difference of the (spin) system and lattice frequencies.
The use of theδ function in the context of the Abragam-
Goldman approach is in keeping with the asymptotic solution
found in that work. Physically, however, multiple frequency
modes of the lattice contribute to spin relaxation at early times
and are only limited as time goes to infinity, in keeping with
the Fourier time/frequency relation. Therefore, we explore the
consequences of considering the equations of motion at all times.

To proceed further, we need a model of the QCF,C(t -
ipâ/2), and for this we rely heavily on the work of Mazur.9

The correlation functions that are used in practical formulations
of magnetic resonance represent Gaussian Markov random
processes. Mazur and co-workers have discussed how a me-
chanical model of the lattice (consisting of coupled harmonic
oscillators) can produce the relations among correlation func-
tions necessary for a Gaussian Markov process. Namely,
exponentially decaying correlation functions are obtained in the
limit of an infinite number of bath oscillators for an appropriate
choice of coupling constants among the harmonic oscillators.
Their analysis was carried out for both a classical system, and
a quantum system. To make the connection to a Gaussian
Markov process, in the quantum case, a canonical operator order
of the quantum correlation functions was imposed, with the
result that the ordered correlation functions were real.

Our system is like one oscillator connected to, or part of, a
bath of similar oscillators. We want to know how that one
oscillator evolves. In particular, we seek Markovian behavior,
i.e., a characteristic exponential decay of the oscillator auto-
correlation function as a result of being coupled to all the other
oscillators. This implies a choice of coupling constants among
the oscillators of the system. An alternative, equally valid, view
is from the perspective normal modes, which oscillate with pure
trigonometric correlation functions. Mazur showed that the
choice of classical oscillator coupling constants needed to
reproduce exponential decay of the classical auto correlation
function of any particular oscillator chosen out of the assembly
implies that the normal modes of the lattice have a Lorentzian
power spectrum. The choice of coupling constants of the
oscillators is equivalent to a choice of eigenfrequencies for the
normal modes. The correlation functions are simply a weighted
arithmetic average of the trigonometric mode functions over
the spread of eigenfrequencies.

In the quantum case, with the canonical ordering in force,
the correlation functions are the same simple trigonometric
forms as in the classical case, but now include temperature-
dependent amplitudes. Removing all temperature dependence
from the power spectrum, in the quantum case, necessitates that
the coupling constants would be temperature dependent. To
avoid this problematic state of affairs, Mazur proposed using
the classical spectrum of the eigenfrequencies without modifica-
tion.9 This implies that thepower spectrumof the quantum
correlation functions is Lorentzian with a temperature-dependent
prefactor. The result of this is a quantum correlation function

d〈Os〉
dt

) -i〈[Os,Hs]〉 - tr
s
{Os∫τ)0

∞
G(τ,â)[S,e-(pâ/2)Hs ×

S̃(-τ)e(pâ/2)Hs(Fs(t) - Fo) - (Fs(t) - Fo)e
(pâ/2)Hs ×

S̃(-τ)e-(pâ/2)Hs] dτ} (15)

e-(pâ/2)HsS̃(-τ)e(pâ/2)Hs )

S̃(-τ) + pâ
2

[S̃(-τ),Hs] + O(g(pâ)2)

d〈Os〉
dt

) -i〈[Os,Hs]〉 -

tr
s
{Os∫τ)0

∞
Re(C(τ))[S,[S̃(-τ),Fs(t)-Fo]] dτ} (16)

Γ[Fs,t] ) ∫τ)0

t
C(τ - i

pâ
2 )trs{[Õs(τ),S̃(τ)]e-(pâ/2)HsSe(pâ/2)Hs ×

Fs(t-τ) + H.C.} dτ (17)
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that has both temperature and a correlation time as adjustable
parameters. A correlation time is by definition given by the
coupling constants of the lattice necessary to produce expo-
nential decay at high temperature.

We follow Mazur’s procedure and construct an assembly of
noninteracting two-level systems having level separations
(frequencies) distributed in analogy to the frequencies of the
normal modes in his model. The dynamics of the two-level
assembly in the high-temperature limit are formally equivalent
to the lattice of normal mode eigenfunctions, running at
frequency ωl . The QCF for a two-level system with the
particular operator order indicated is

See Appendix B. Just as Mazur et al. imposed a canonical
ordering to ensure that their correlation functions were real, we
obtain a real form for the expressions used in the relaxation
master equations:

The total correlation function for the assembly is the Lorentzian
weighted average of oscillators over the frequenciesωl . The
power spectrum representation of the lattice correlation function
for the assembly of two-level systems is, in analogy to Mazur’s
development:

It should be noted that the integration limits defining the total
correlation function can be symmetrized due to the frequency
symmetry of the two-level correlation function. This form of
the correlation function vanishes in the zero-temperature limit,
as can be shown using Cauchy’s residue theorem by using the
poles of the Lorentzian part of the integral. The vanishing of
the correlation function is due to the vanishing of the amplitude
of the lattice fluctuation. This is an advantage over alternative
formulations that exhibit residual zero-point energy effects in
the zero-temperature limit, as emphasized by Mazur.9 For low
temperature applications, however, zero-point fluctuations can
be restored in the QCF though a procedure outlined by Mazur.
The difficulty presented by zero-point energy is that the limit
of an infinite lattice is ill-defined because an infinite quantity
of zero-point energies are summed. Intuitively, if the lattice is
limited to a large, but finite, number of oscillators, the truncation
of the lattice size will result in an upper limit to the normal-
mode eigenfrequencies of lattice fluctuations, and therefore, the
integral in (18) must contain a cutoff. To include zero-point
energy, the spectral density in (18) is simultaneously modified
by the addition of Lorentzian-weighted zero-point energy. This
new term would diverge if it were not for the simultaneous
cutoff on the frequency integral. The applications presented

below do not focus on the zero-temperature limit, so the simpler
form of the QCF (18) is used.

In the high-temperature, linearâ, limit (18) becomes a single-
exponential decaying with characteristic time,τc, because
cosh(pω‚â/2) f 1 and the correlation function then becomes
the Fourier transform of a Lorentzian distribution.

Inserting the model correlation function (18) into (17), and
interchanging the order of integration, gives

where the Lorentzian distribution is recognized as the conven-
tional spectral density,J(ω) ) fo2τc/[1 + (ωτc)2] with fo2 )
fSL

2fL2; that is we include both the amplitude of the true lattice-
only fluctuations,fL, with the spin-lattice coupling amplitude,
fSL, inherent from the definition ofH′ ) SF. The finite time
integral now connects the lattice frequencies,ω or ωl , to the
spin-system frequencies,ωs, that are present in the spin operator,
S̃(τ). As will be demonstrated below, as time increases, the finite
time integral selects only those lattice frequencies that match
the spin-system frequencies and reflects the well-known Fourier
time/frequency uncertainty relation that must be present in any
theory that claims to evolve literally from time zero. At early
times all lattice frequencies initially contribute to the total
relaxation through the integral over the spectral density. As time
increases, those frequencies are windowed down to frequencies
near the spin-system frequencies. As time goes to infinity the
windowing becomes a Diracδ and the lattice frequencies that
contribute to relaxation must exactly match the spin-system
frequencies.

The full equation of motion is now

where

This expression is the most profound one of this paper and is
readily adaptable to practical application and usable for a wide
range of problems. The choice of a Lorentzian form forJ(ω)
was for convenience for motivating the result. The form of the
spectral density function,J(ω), is arbitrary (as long as it is real)
and may be chosen as appropriate for the problem of interest.
Moreover,J(ω) may be obtained from the correlation function
in the classical limit.

Three points can be emphasized:
(1) Permuting the spin operators puts the rotating frame back

on the density matrix. The usual time scale assumptions may
be applied to the density matrix and integrand to get back to
the BWRT form discussed above eq 14. The only step that has
been taken is to use a specific form of the lattice correlation
function.

(2) Because the integrand of the relaxation term vanishes
when the Boltzmann spin density matrix is substituted for
Fs(t-τ), Fs(t-τ) may be replaced byFs(t-τ) - Fs

o without
affecting the term. This is the operator analogy to the situation

Γ[Fs,t] ) 1
π∫-∞

∞ J(ω)

cosh(pω‚â/2)
(∫0

t
cos(ω‚τ)tr

s
{[Õs(τ),S̃(τ)] ×

e-(pâ/2)HsSe(pâ/2)HsFs(t-τ) + H.C.} dτ) dω

d〈Os〉
dt

) -i〈[Os,Hs]〉 -

∫0

t
G(τ,â)tr

s
{[Õs(τ),S̃(τ)](e-(pâ/2)HsSe(pâ/2)HsFs(t-τ) -

Fs(t-τ)e(pâ/2)HsSe-(pâ/2)Hs)} dτ (19)

G(τ,â) ) 1
π∫-∞

∞ J(ω)

cosh(pω â/2)
cos(ωτ) dω (20)

Cωl
(t) ) 〈F̃(t)F〉ωl

)

fL
2{cos(ωl ‚t) - i tanh(â

pωl

2 ) sin(ωl ‚t)}

Cωl (τ - i
pâ
2 ) ) fL

2
cos(ωl ‚τ)

cosh(pωl ‚â/2)

G(τ,â) ) Ctotal(τ - i
pâ
2 )

) 2
π∫0

∞ 1/τc

ωl
2 + (1/τc)

2
Cωl (τ - i

pâ
2 ) dωl

) 2
π∫0

∞ 1
cosh(pω‚â/2)

fL
2/τc

ω2 + (1/τc)
2

cos(ω‚τ) dω (18)
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encountered in simple relaxation theory (see Appendix C).
Namely, when rate elements satisfy detailed balance there is
no difference in the governing rate laws if the equilibrium
solution is removed from each element of the relaxation
populations. It is important to realize that this follows from the
fact that detailed balance is included in (19). The conversesif
the form of the relaxation equation containsFs(t-τ) - Fs

o, then
detailed balance holdssis not necessarily true; see Appendices
C and D.

(3) The symmetry of the relaxation term under conjugation
is still preserved. Therefore,Γ[Fs,t] remains pure real in (19).
The construction of the correlation function requires that it
remain pure real regardless of the particular model. This was
required for the QCF,G(t,â), and thus symmetry of the integrand
of the relaxation term,Γ[Fs,t], is preserved and remains pure
real, as was implied in eq 5.

V. Three Examples and Applications to MR

Equation 5 or 19 is unique in that the time is explicitly
retained in the integral and the integrand is a convolution with
the density matrix over all previous times. There has never been
a worked example of relaxation, through equilibrium correlation
functions in the MR literature, which explicitly involves time.
Therefore, it is important to develop simple examples of this
new form of relaxation and compare with previous results
obtained using the more conventional forms. We now consider
the spin-spin relaxation rate,R2 ) 1/T2, and spin-lattice
relaxation rate,R1 ) 1/T1. In all of our examples the spin-system
Hamiltonian will beHs ) ωsSz, and the model for the lattice
(developed in section IV) will be that of an ensemble of two-
state systems, which is coupled to the spin system.

Example 1: Spin-Lattice Relaxation for a Spin j System.
The system observable associated with spin-lattice relaxation
is Os ) Sz. For simplicity we consider the spin-lattice coupling
to be of the formH′ ) F ‚ Sx. The integrand of the relaxation
term in (12) is

The effect of finite temperature onSx is

Using the permutation under the trace yields

For the case where the observableOs ) Sz:

The rotated operators then are substituted into the equation of
motion:

As a set of equations for observables, it is difficult to see how
these equations maintain detailed balance. On closer inspection,
however, the form is that which is anticipated by simple rate
theory of diagonal matrix elements (see Appendix C eq C.11
and Appendix D). The set of equations in terms of observables
maintain detailed balance by coupling to other, higher ordered
observables through the temperature dependence in the
tanh[(pâ/2)ωs] term. Notice that there will be an observable in
the integrand of the form〈Sy

2〉(t-τ) for example. To have full
detailed balance then, one would have to generate the equation
of motion for this observable as well, until the complete set of
coupled observables was developed. The anti-commutator in
(23) arises from the conjugation symmetry of the temperature
terms. If the spin-lattice coupling Hamiltonian containedSy

instead ofSx, then the sin(ωsτ) term in the anti-commutator
would appear with a negative sign, whereas the spin operator
in the cos(ωsτ) term would involveSx. Thus, if noncorrelated
fluctuating fields aboutX and Y of equal amplitude are
considered simultaneously, only a cos(ωsτ) term is present in
the anti-commutator. In the spin1/2 case discussed below the
anti-commutator containing the sin(ωsτ) term vanishes identi-
cally, so that assuming fluctuation aboutX alone gives the same
results as if we had included both andX andY fluctuations for
that particular case. The cos(ωsτ) term of the anti-commutator
also simplifies in the spin1/2 case, but in general this term will
couple〈Sz〉 to the expectation values of other, higher order, spin
variables.

Boltzmann equilibrium is still enforced as the stationary
solution. Inserting the equilibrium expectation values of the spin
operators in the integrand shows that the integrand vanishes.
From the operator form, of (19), it is clear that the integrand
must vanish. To emphasize this, we will re-prove the stationary
condition for any spinj in (23). The tanh[(pâ/2)ωs] term arises
naturally for all values of the spin,j.

Equilibrium is whenFo ) e-pâωSz/tr{e-pâωSz}. 〈[Sx,Sy]+〉eq )
0 because aπ/2 frame rotation generated aboutSz may be
inserted in the trace on one of the terms of the anti-commutator,
and does not affectFo; however,Sx f Sy, Sy f - Sx. This
rotation also shows that〈Sx

2〉eq ) 〈Sy
2〉eq, and therefore,

〈[Sy,Sy]+〉eq ) j(j + 1) - 〈Sz
2〉eq. Substitution of these results

into (23) yields the expression for the relaxation at equilibrium:

which must be zero. We now show that the integrand of (24) is
indeed zero.

The functionZ(u) ) ∑m)-j
j e-m‚u ) sinh((j + 1/2)u)/sinh(1/2u)

is the generator of the equilibrium averages, i.e., 〈Sz〉eq )
-(dZ(u)/du)/(Z)|u)pâω, 〈Sz

2〉eq ) (d2Z(u)/du2)/(Z)|u)pâω, etc.
The trigonometric expression forZ(u) follows from the

summation of a geometric series. The vanishing of the integrand
in (24) implies thatZ(u) must also satisfy the differential
equation:

tr
s
{[Õs(τ),S̃(τ)](e-(pâ/2)HsSe(pâ/2)HsFs(t-τ) -

Fs(t-τ)e(pâ/2)HsSe-(pâ/2)Hs)} (21)

e-(pâ/2)HsSe(pâ/2)Hs ) e-(pâ/2)ωsSzSxe
(pâ/2)HsωsSz )

Sx cosh(pâ
2

ωs) - iSy sinh(pâ
2

ωs) (22)

d〈Os〉
dt

) -iωs〈[Os,Sz]〉 -

cosh(pâ
2

ωs)∫τ)0

t
G(τ,â)(〈[[Õs(τ),S̃x(τ)],Sx]〉(t-τ) -

i〈[[Õs(τ),S̃x(τ)],Sy]+〉(t-τ) tanh(pâ
2

ωs)) dτ

[Õs(τ),S̃(τ)] ) U-1(τ)[Sz,Sx]U(τ) ) iS̃y(τ) )
i(Sy cos(ωsτ) + Sx sin(ωsτ))

d〈Sz〉
dt

) -cosh(pâ
2

ωs)∫τ)0

t
G(τ,â)(〈Sz〉(t-τ) cos(ωsτ)) dτ -

cosh(pâ
2

ωs)∫τ)0

t
G(τ,â)(〈[Sy,Sy cos(ωsτ) +

Sx sin(ωsτ)]+〉(t-τ) tanh(pâ
2

ωs)) dτ (23)

Γ[Fo,t] ) cosh(pâ
2

ωs)∫τ)0

t
G(τ,â) cos(ωsτ)(〈Sz〉eq +

tanh(pâ
2

ωs)(j(j + 1) - 〈Sz
2〉eq)) dτ (24)

-Z′ + tanh(u/2)(j(j + 1)Z - Z′′) ) 0
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Direct substitution of the definition ofZ(u) in terms of the sinh
functions into the differential equation shows that it is indeed
a solution. A simpler method is to transform to ln(Z(u)) )
ln(W(u)) - 1/2∫u1/(tanh(u/2)) du ) ln(W(u)) - ln(sinh(u/2)),
which gives the simpler differential equationW′′ - (j + 1/2)2W
) 0.

This differential equation inW is satisfied byW(u) ) sinh((j
+ 1/2)u). Therefore, the expression forZ(u) given by summation
of the geometric series is indeed a solution to the differential
equation, and Boltzmann equilibrium, as defined by the spin
Hamiltonian, is a stationary state for any value ofj.

Example 2: Spin-Lattice Relaxation for Spin 1/2. The case
of j ) 1/2 is useful as a simple case to show how the finite time
integral links spin-system and lattice frequencies. The operators
may be evaluated for the spin1/2 case, from (23) giving

where

It is interesting to view this equation of motion in terms of the
conventional time scale arguments on the density matrix and
integration limits. If

i.e., the density matrix, when viewed in the rotating frame, is
only slowly evolving compared to the time decay ofG(τ,â).

Then from eq 23

The time integral in (26) is now isolated, and in the limit of
infinite time, the integral becomes the inverse Fourier transform
of G(τ,â) at the spin frequencyωs. Thus, as time progresses
the integral selectsJ(ω)/cosh(pâω/2), the spectral density and
its temperature-dependent pre-factor, at the frequencyωs. The
lattice prefactor cancels the factor in front of the integral, leaving
the LorentzianJ(ω) for the relaxation rate.

In finite time the integral in (26) can be stated in a convenient
form and gives a criterion for how fast the infinite time Fourier
transform limit is approached. Using (20) forG(τ,â), the integral
component of (26) becomes

The symmetry of the frequency integration limits was used to
complete the necessary cosine addition formula before perform-
ing theτ integration.

The distribution (or window function), sin((ωs - ω)t)/[π(ωs

- ω)], approaches a Diracδ function as time goes to infinity,
selecting out the lattice spectral density function at the spin-

system frequencyωs. Furthermore, the cosh(pωâ/2) temperature
weighting in the denominator is selected at the spin-system
frequency and cancels the similar term that arose purely from
the action of spin-system operators onS in the numerator of
the relaxation expressions (see (12) and (22)). The distribution
function becomes a good approximation to theδ function when
its width becomes, as a function of time, much less than the
width of J(ω)/cosh(pωâ/2). The time must, at the very least,
exceed the correlation time of the lattice process,τ > τc, as
represented by the lattice spectral density width. Once the time
has exceeded several correlation times the integral converges
to the Fourier transform limit. This is a concrete demonstration
of the well-used approximation in BWRT, namely that the time
in the finite integral may be passed to infinity while the time
derivative on the left-hand side of the equation of motion (26)
is retained at finite time. Goldman emphasizes that this places
a restriction on the interpretation of the equation of motion such
that its solutions must necessarily correspond to the system
response after several lattice time constants10 (p 167b). The
process described by our formulation is intuitive and valid at
all times: Initially, all the lattice modes represented by the
spectral density function must contribute to the spin-system
evolution. The spin system samples the frequency of the lattice,
in effect. The frequency spread presented by the lattice is
resolved into a single component only after a sufficient
interaction time with the spin system.

The extension of time in the integrand of the relaxation
expression to infinity is one of the principal time scale arguments
in the derivation of BWRT, and its basis has been concretely
demonstrated here. The other time scale argument invoked is
the slow evolution of the spin density matrix (as viewed in the
rotation frame) over several correlation times of the lattice. The
lattice must have a weak coupling to the spin system at the
frequency of the rotating frame if the spin density matrix is
expected to be nearly stationary for initial times within several
lattice correlation time constants. The solution in Appendix E
(Supporting Information) to (25) (the complete convolution
equation) reveals that the weak coupling required in BWRT
means that the lattice coupling, considered a coherent field in
the rotating frame, must not cause significant spin precession
over the correlation time or 1. foτc. Neither such restriction is
present in our general formulation. A similar picture arises in
the solution of relaxation of transverse components, discussed
in the next example.

The solution of the convolution form of relaxation, (25), for
the longitudinal magnetization is given in Appendix E, in the
high-temperature limit. The general solution contains three
exponentials and contains, in general, oscillatory components
as well as exponential decay. The method of solution is similar
to that used for the relaxation of the transverse magnetization
discussed in the next example below. The principal regime of
interest is when the spin-lattice coupling energy is a perturba-
tion of the basic Zeeman spin Hamiltonian, that is,ωs > fo.
With this restriction, the short correlation time (1. τc fo) and
the long correlation (τc fo . 1) limits are each dominated by a
single rate:

It is tempting to combine both limits into one expression:

d〈Sz〉
dt

) -cosh(pâ
2

ωs)∫τ)0

t
G(τ,â) cos(ωsτ)(〈Sz〉(t-τ) -

〈Sz〉eq) dτ (25)

〈Sz〉eq ) -(1/2) tanh(pâ
2

ωs)

〈Sz〉(t-τ) ) tr{SzF(t-τ)} ) tr{S̃z(-τ)U(τ) F(t-τ) U-1(τ)}

) tr{SzU(τ) F(t-τ) U-1(τ)} ≈ tr{SzF(t)} ) 〈Sz〉(t)

d〈Sz〉
dt

=

-cosh(pâ
2

ωs)(∫τ)0

t
G(τ,â) cos(ωsτ) dτ)(〈Sz〉 - 〈Sz〉eq) (26)

∫τ)0

t
G(τ,â) cos(ωsτ) dτ )

∫-∞

∞ J(ω)

cosh(pω â/2)(sin((ωs - ω)t)

π(ωs - ω) ) dω
R1 )

fo
2/τc

ωs
2 + (1/τc)

2|
1.τc fo

or
fo

2/τc

ωs
2 + fo

2|
τc fo.1

R1 =
fo

2/τc

ωs
2 + (1/τc)

2 + fo
2

)
τc fo

2

1 + (τcωs)
2 + (τc fo)

2
(27)
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One motivation for this form is that it represents the solution
for the rates to the linearized cubic equation given in Appendix
E. This expression also applies in the intermediate regime, where
τc fo ≈ 1 as long asωs > fo. Whenωs, fo, and 1/τc are nearly
equal, a single spectral density is not appropriate, due to the
presence of two other competitive rate components. These extra
rates are due to coherent precession, which results from the
contribution of the fluctuating field in the rotating frame, and
are characterized as damped oscillation (see the general solution
in Appendix E). The relative amplitudes of the pure decay and
the oscillatory components are governed by a complicated
competition ofωs with fo andτc. Whenfo . ωs, the rates are
similar to the transverse (spin-spin) mechanism. In this regime,
the “fast motion” case (1. τc fo) is dominated by the rateτc fo2,
alone. In the slow motion limit (τc fo . 1) relaxation is a mixture
of pure decay and oscillatory components and does not have a
single spectral density. In the no motion limit, the “perturbation”
is coherently coupled to the evolution of the observable. The
result obtained by the complete solution, Appendix E, is identical
to that obtained from first principles (eq 1) in this limit.
Therefore, the general solution limits to the exact, oscillatory
answer as the correlation time goes to infinity, where there is
no damped relaxation, orRe{R1} ) 0.

Example 3: Spin-Spin Relaxation for Spin 1/2. Relaxation
of the X component of the spin system is given as a result of
the field fluctuations along Z. The coupling Hamiltonian is of
the formH′ ) FSz. The Zeeman magnetic field is still oriented
along Z. The equation of motion for theX andY components,
which follow from (21) and (12), are

or

The connection with the conventional BWRT result is obtained
by again applying the time scale assumption thatUs(τ) F(t-τ)
Us(-τ) f F(t). So that

As time goes to infinity the integral becomes the inverse Fourier
transform, and the zero-frequency term of the spectral density
function is selected.

This is the famous result for the relaxation rate of the transverse
components from BWRT. We note that the result has the
problem that the relaxation rate diverges as the correlation time
becomes large; this is the “BWRT Catastrophe”.

We now revisit (28) without invoking the traditional BWRT
approximations. In so doing it is convenient to go into a rotating
frame. The equation of motion is a convolution of the density
matrix. The rotating frame is determined by the properties of
the observables, not the density matrix. HereSx andSy are known
to transform simply under a rotation generated about Z because
of their commutation properties with the generator of the
rotation,Sz. In general, a set of spin observables is constructed
from the spherical tensor operators. Spherical tensor operators
transform under rotation such that a frame change is possible
in general.19 Therefore, this problem is illustrative of a much
larger class of problems that are of practical use. The expectation
of Sx in the rotating frame is

The spin operators transform such that

The vector notation simplifies the algebra that follows. IfR(-
t) is applied to both sides of the equation of motion written in
vector form:

Then it follows that

because

Denoting the expectation values in the rotating frame by〈Sx̃〉(t)

≡ tr{SxF̃(t)}, the equation of motion for〈Sx̃〉 becomes, for
example

When this equation of motion is compared to the analogue for
〈Sz〉 given above, in (25), two differences become evident. First,
the equilibrium state for〈Sx̃〉 is zero. Second, there is no spin-
system frequency present (because the density matrix has been
transformed into the rotating frame). Both of these differences
are also characteristic of conventional BWRT and are well-
known properties of the transverse magnetization. However, the

d〈Sx〉
dt

) -iωs〈-iSy〉 -

∫τ)0

t
G(τ,â) tr{[Sx,Sz]SzUs(τ) F(t - τ) Us

-1(τ) + H.C.} dτ

d〈Sy〉
dt

) -iωs〈iSx〉 -

∫τ)0

t
G(τ,â) tr{[Sy,Sz]SzUs(τ) F(t - τ) Us

-1(τ) + H.C.} dτ

d〈Sx〉
dt

) -ωs〈Sy〉 -

∫τ)0

t
G(τ,â) tr{SxUs(τ) F(t - τ) Us

-1(τ)} dτ

d〈Sy〉
dt

) ωs〈Sx〉 -

∫τ)0

t
G(τ,â) tr{SyUs(τ) F(t - τ) Us

-1(τ)} dτ (28)

d〈Sx〉
dt

) -ωs〈Sy〉 - (∫τ)0

t
G(τ,â) dτ)〈Sx〉

d〈Sy〉
dt

) ωs〈Sx〉 - (∫τ)0

t
G(τ,â) dτ)〈Sy〉

lim
tf∞

∫τ)0

t
G(τ,â) dτ )

J(0)

cosh(pâ
2

0)
) fo

2τc

tr{SxF̃(t)} ) tr{SxUs
-1(t) F(t) Us(t)} )

tr{Us(t)SxUs
-1(t) F(t)} ) 〈S̃x(-t )〉

(〈S̃x(t)〉
〈S̃y(t)〉 ) ) (cos(ωst) -sin(ωst)

sin(ωst) cos(ωst) )(〈Sx〉
〈Sy〉 ) ≡ R(t)〈SB〉

R(-t)
d〈SB〉
dt

) R(-t)(0 -ωs

ωs 0 )〈SB〉 -

∫τ)0

t
G(τ,â) R(-t)〈S̃B(τ)〉(t-τ) dτ

d(tr{SBF̃(t)})
dt

) -∫τ)0

t
G(τ,â) tr{SBF̃(t-τ)} dτ

dR(-t)
dt

) ωs(-sin(ωst) cos(ωst)
-cos(ωst) -sin(ωst) ) ) -R(-t)(0 -ωs

ωs 0 )

d〈Sx̃〉
dt

) -∫τ)0

t
G(τ,â) 〈Sx̃〉(t-τ) dτ )

-∫τ)0

t
G(t-τ,â) 〈Sx̃〉(τ) dτ (29)
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relaxation term has the form of a convolution. As will be shown,
the convolution form of the relaxation term, unique to our
formulation, prevents the “BWRT Catastrophe” and provides
the fully coherent, correct form of the solution in the long
correlation time limit.

The integral form of the equation of motion can be converted
to a differential equation, as illustrated in Appendix E, by direct
differentiation of both sides if the time derivative ofG(t,â) is
known. We use the high-temperature limit of (18). The factor
1/cosh(pωâ/2) has a spectral width on the order of 1/pâ so that
if 1 . pâ/τc then G(t,âf0) ) fo2e-t/τc. This criterion means
that correlation times must be larger than 10-14 s at room
temperature, a criterion easily met, for example, by a rotational
correlation function of a small molecule in water (considered
as representative of the time scale of motion).

Upon differentiation the equation of motion (29) becomes

where the boundary condition is inherited from the original
equation of motion.

The general solution contains exponentials with “rates”

This is a complete description of the relaxation of the transverse
component of the (spin) system that covers the full range of
possible correlation times. The rates may become imaginary
when the correlation time is long, and this leads to damped
oscillation. These rates are identical to the rates from the
stochastic Liouville equation (SLE) of Kubo for a stochastically
modulated two-state oscillator.7 For this case the SLE has the
form

whereX(t) is the average value of the oscillator coordinate for
each state as a function of time. To make the comparison with
the spin relaxation problem treated here, the exchange rate,γ,
is identified with the reciprocal of the correlation time and
Kubo’s ω1 ) fo. The eigenvalues of the matrix on the rhs of
the SLE give the relaxation rates and are found to be identical
to the rates obtained from our convolution equation. This
correspondence is expected, given that our lattice is composed
of two-state systems as well. The two states ofX in eq 31
correspond to the two possible states of traverse spin precession
(as seen in the rotating frame) that result from the two possible
lattice states.

We now consider the individual cases of eq 30. There are
three specific solutions of (30) depending on the relative
magnitudes ofτc and fo.

In this case both relaxation rates are pure real. In the limiting

case1/2 . τc fo the radical may be expanded to second order in
this product with the result

The first term is recognized as the rate from the conventional
form of BWRT due to the zero-frequency component of the
spectral density function. The second rate is larger than the first
(faster decay) and is minor because its amplitude is weighted
by (τc fo)2.

This limit, easily found from case 1, is

In the limiting case 2τc fo . 1

Here the terms oscillate, and the real part of the relaxation rate,
the damping term, depends inversely on the correlation time,
as opposed to case 1 where the relaxation rate was proportional
to the correlation time. The physical interpretation of this answer
is that the correlation time is so long or the amplitude of
fluctuation is so strong that the fluctuating field causes ap-
preciable coherent precession over a time period up to the lattice
correlation time. Exactly the same answer is obtained for theY
component〈Sỹ〉. Both directions of induced precession are
statistically present with equal probability because the fluctua-
tions of fo have zero mean. As a result, the induced average
oscillation of〈Sx̃〉 is linearly polarized, as viewed in the rotating
frame. This coherence has an analogue in Kubo’s solution for
the motion of a stochastically modulated oscillator. In the regime
wheret , τc it is found that “dynamical coherence is dominant
for the short time approximation.”20 The lattice amplitudes are
assumed to be Gaussian distributed in the typical applications
of Kubo, in contrast to the simple two-state distribution of our
lattice. Our results exhibit the same persistence of coherence in
the large correlation time limit that is found with the more
complex models of the lattice considered by Kubo.

This example illustrates:
(1) Passage to the rotating frame is possible because an

external rotation of the spin observables is generated by a
transformation that acts on the spin operators, not the density
matrix. This is particular to the physical properties of spherical
tensor operators and their linear combinations.21 If the funda-
mental equation of motion (5) were rewritten as a density matrix
equation of motion (6), the ability to transform to a rotating
frame would be lost. The convolution nature of these equations
makes it impossible to perform a simple frame rotation directly
on the density matrix. The ability to perform a frame change in
the observables formalism underscores the importance of the
observable formalism used in this paper.

d2〈Sx̃〉

dt2
+ 1

τc

d〈Sx̃〉
dt

+ fo
2〈Sx̃〉 ) 0 with

d〈Sx̃〉
dt |

t)0
) 0

(30)

R2
( ) 1

2τc
( x( 1

2τc
)2

- fo
2

Ẋ(t) ) [i(ω1 0
0 -ω1

) + γ
2(-1 1

1 -1)]X(t) (31)

Case 1: 1 > 2τc fo

〈Sx̃〉 ) 〈Sx̃〉t)0 e-t/2τc(cosh( t
2τc

x1 - (2τc fo)
2) +

1

x1 - (2τc fo)
2
sinh( t

2τc
x1 - (2τc fo)

2))

〈Sx̃〉 ) 〈Sx̃〉t)0((1 + (τc fo)
2)e-τcfo2t - (τc fo)

2e-(1/τc-τc fo2)t)

Case 2: 2τc fo ) 1

〈Sx̃〉 ) 〈Sx̃〉t)0e
-t/2τc(1 + t/2τc)

Case 3: 2τc fo > 1

〈Sx̃〉 ) 〈Sx̃〉t)0e
-t/2τc(cos( t

2τc
x(2τc fo)

2 - 1) +

1

x(2τc fo)
2 - 1

sin( t
2τc

x(2τc fo)
2 - 1))

〈Sx̃〉 ) 〈Sx̃〉t)0e
-t/2τc(cos(fot) + 1

2τc fo
sin(fot))
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(2) The conventional result of BWRT for spin-spin relaxation
is obtained in the fast motion limit, i.e., when 1. τc fo and the
effectiveR2 relaxation rate isτc fo2.

(3) The effectiveR2 rate in the slow motion limit 2τc fo . 1
does not diverge but is given by 1/(2τc). This relaxation rate is
also accompanied by amplitude modulation with frequencyfo.
The same result was found for the spin-lattice relaxation in
the limit of vanishing Larmor frequency (Appendix E).

The pure decay component ofR2 may be summarized by the
expression

although the oscillatory behavior whenτc fo . 1 must be
emphasized. The form of the relaxation rate constant suggested
by (32) conveys the character of the change in the rate constant
from the fast to the slow motion region but does not take into
account the abrupt change in the real part of the relaxation rates
when 1= 2τc fo. In the no motion case, we recover the exact
answer, which would be obtained by making the lattice fully
coherent and solving for the evolution of the transverse
components directly from (1). This solution, in the no motion
limit, is a coherent free induction decay, or FID, with no
damping, oscillating at frequencyfo. This result is in marked
contrast to the predictions of BWRT in which the relaxation
rate constant becomes infinite without oscillation.

VI. Conclusions

We have developed a novel equation for relaxation of a
system in the presence of a lattice. The issue of how to choose
a QCF, and what form to put into the master equation, has
always been a difficult one. We have given a precise definition
of the form of the QCF needed in relaxation theory: One that
guarantees the QCF will always be pure real, as seen in (18)
and that guarantees that relaxation rates will be pure real as
well for real observables of Hermitian operators. The form we
have developed in eq 5 guarantees detailed balance. In terms
of the operator formalism, when the (spin) system is at its own
Boltzmann equilibrium at the temperature of the lattice, then
relaxation no longer contributes to the evolution of system
observables. A consequence of finite temperature in the equation
of motion is the presence of cross relaxation terms that couple
the expectation value of the spin operators to higher-order
moments of the spin operators, as can be seen in eq 23. This
work provides a practical, usable formulation of the effects of
temperature on relaxation. The additional difficulty of working
with the equations as a convolution, integro-differential equation,
can be surmounted. The results are important to practicing
spectroscopists because they make clear that relaxation rates
can be well defined in nearly any dynamics limit. This theory
does contain approximations. However, it is not a perturbation
theory valid only in the high temperature, short correlation time
limit like BWRT. This theory is valid at finite temperature and
limits to the proper equation of motion when the correlation

time of the lattice fluctuations becomes infinitely long. The only
approximation made was to admit a theory that used equilibrium
lattice QCFs. The approximations made subsequently (mainly
to neglect the EI terms and return the density matrix to the real
axis) restoredproperties to the equation of motion lost due to
the initial approximation. Although we chose a particularly
simple form for the QCF, (18) (one in which the QCF vanishes
at low temperature), any number of forms could be chosen. This
work provides a well-defined way to include the QCF into the
relaxation part of the equation of motion. One of the practical
consequences of this work may be simply stated that the
amplitude of the fluctuation,fo, may be considered to be
equivalent to a frequency that can be included in the denomina-
tor of any existing spectral density function as done in (27)
and (32). The presence of this term guarantees that the spectral
density functions are valid in all motional regimes and prevents
the catastrophe of BWRT.
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