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The vibrational dynamics of nanosystem components are likely to play a critical role in both nanomechanical
and nanoelectronic systems. We demonstrate that vibrational analysis with a lumped-inertia technique can
efficiently and reliably anticipate certain vibrational properties without the need for performing costly
comprehensive full normal-mode computations. Three classes of linear oligomers with potential for application
in nanoelectronics are investigated with this technique. The torsional-twisting frequencies from the lumped-
inertia model accurately reproduce the frequencies computed with full normal-mode analysis based on electronic
structure calculations. The lumped-inertia model reveals the importance of long-range coupling in torsional-
twisting dynamics and affords a partitioning of the effect of phenyl ring substituents on the torsional vibrational
frequencies between inertial and electronic structure contributions.

Introduction of nanorods and nanotub® the same spirit, here we borrow
. o . the lumped-inertia technique from mechanical engineering.

One proposed molecular electronic switching scheme is t0 Recent engineering applications include: Bapat and Bh%tani
capitalize on changes in conductivity that accompany changespaye reported a matrix method for solution to the problem of
in the relative alignment of phenyl rings along a polyphenyl iqrsjonal vibrations of a multistepped shaft with elastically
chain. Theoretical work has predicted that the conductivity of 5itached masses. Li et!dlproposed the initial parameter method

such a conjugated chain may be varied bysiply by varying and the transfer matrix method for use with concentrated
the torsional alignment of two adjacent phenyl rifgslore  masses coupled by translational springs. A closed form solution
recent studies have explored the influence of molecular vibra- ;45 presented by Qiao et l.for torsional vibration of
tions in general on molecular conductarideor thep-benzene-  honyniform shafts with arbitrary distribution of rigid disks. We

dithiol molecule, it was reported that none of the normal-mode gemonstrate that a similar lumped-inertia techriiseefficient
vibrations lead to appreciable changes in conductance, owingang accurate for predicting the frequencies of the low frequency
to the rigidity of the molecule. By contrast, Di Ventra etal. torsional-twisting modes of polyphenylenes and polyethy-
noted that when the molecule is modified with a N&Dbstituent  y|phenylenes, species potentially important for nanoelec-
(2-nitro-1,4-benzene-dithiol), twisting of the N®ubstituentcan  yonics.
lead to appreciable changes in the molecular orbital energies
and potentially observable changes in the I/V characteristics.
A stunning example of the influence of vibrational motion on
molecular electron transport has been demonstratedoinrCa To derive force constants and provide benchmark frequencies
gold surface. The differential conductance through the,@ against which to test the lumped-inertia model, we used two
the gold substrate exhibits features with an energy spacingstandard electronic structure techniques: HFSGHth the
characteristic of the frequency of the oscillation of they C  3-21G* basis sét1° and AM116 Admittedly, these methods
relative to the gold surface, about 1.2 THz. are very approximate, but they are in common use for molecular
From the above, it is clear that successful nanomachine systems and the typical scaling factors are well knéWhhe
engineering will depend on the ability to reliably anticipate computations in this study are based mainly on HFSCF. AM1
nanostructure vibrational properties. For nanoelectronics, low- calculations were used to demonstrate the extension of lumped-
frequency torsional-twisting modes are of particular relevdnce. inertia methods to larger systems. Supporting the choice of
The issue of determining low-frequency torsional vibrations also HFSCF is the finding by Scott and Raddhthat HF methods
arises during the parametrization of molecular mechanics forceyield low frequencies that are of comparable reliability to those
fields®=7 and are important for developing reliable potential produced by density functional theory (DFT) calculations. We
functions for use in condensed-phase simulatfoRseviously carried out test calculations and found similar agreement. (See
it has been demonstrated that continuum methods of vibrationalsubsection 5 of Results and Discussion.) The techniques chosen
analysis, common in mechanical engineering, may be usedhere are, of necessity, sufficiently efficient for full normal-
effectively in the description of bending and flexing vibrations coordinate analysis of oligomers with several primitive units.
This provides a reasonable set of frequency data from which to
* Author to whom correspondence may be addressed. E-mail: d€rive torsional force constants. Except where specifically noted
sohlbergk@drexel.edu. to the contrary, all structures were fully optimized and display
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Figure 1. Schematic drawings of the three classes of molecules considered in this study. When optimized at the HFSCF level, the structures are
as follows: For the single-bond molecules (a), the dihedral angles arBB%nd—49 to —50°, alternatively, for every other pair of two adjacent

phenyl rings, which renders alternate benzene rings parallel to each other. For triple-bond molecules (b), the dihedral ahgldscdrenakes

all phenyl rings parallel to one another. For the molecules with a mixture of both single and triple bonds (c and d with odd and evenrvalues of
respectively), the dihedral angles areli&tween two adjacent phenyl rings connected with a triple-bond linkage. The dihedral angles-50e 49

for all other pairs of adjacent phenyl rings bonded with a single bond.

n-2 (n eeven)
2

only positive real eigenvalues of the Hessian matrix. The the angular positions of each lumped inertia as follows
convergence criterion for structural optimization was set to be

atypically stringent £0.00001 Hartree/Bohr) for more accurate |Jél =Ky (0, — 0,) + ko035 — 0,) + Ky(0, — 0,) + -+ +
treatment of the low-frequency vibrational modes upon subse- (n-1)

quent frequency analysis. Torsional modes were identified by (0 bt _ _ _ +
visualization. k](ej+l 01) kn—l(en 01) (Z k|)01

We have chosen to study torsional modes in three classes of (—1)
molecules, shown in Figure 1: (i) single-bond species (Figure k0. (=1) (1)
1a), studied by Samanta et al. for molecular wire applicattons; Z 1

(ii) triple-bond species (Figure 1b), studied by Chen et al. for

molecule electronic device applicatiotisand (iii) mixed species Ijéi = —ky(6, — 0, ) — ko0 — 0;_,) — ko(6, — 0,_3) —

with alternating single- and triple-bond linkages between

adjacent phenyl rings (parts ¢ and d of Figure 1). ~ k(0 = 0) + k(011 = ) + ko(0;,, = ) +
We note that, if one is principally interested in torsional- (-1 U

twisting modes of these linear oligomers, considerable simpli- K3(045 — 6)) + == k,_;(6, — 6) = Z (K6, — (Z K+

fication of the vibrational analysis can be achieved through = =

application of the lumped-inertia technique. The vibrational (=) (D) _
features for the torsional-twisting modes of the molecule are Z k6 + Z(kﬂjﬂ) 1<j<n (2
described as relative rotations of “lumped inertias” about the m= =

principal axis of the molecule. Each component ring is modeled
as a rigid body with inertia equal to that of the ring and its
attached hydrogens (and any substituents present). Adjacent.

and

inertias are taken to interact with force constants to be derived I'0; = —ky(6, — 6,_1) — k(0, — 6, ) — k3(9 —0h9 —

in the discussion section. This procedure effectively drops the (n-1)

higher-frequency modes from the vibrational analy3isereby e —k,_4(0,— 0) = Z (&0, — (Zk,)e
reducing the vibrational analysis from one dfl 3- 6 normal

modes N is the number of atoms in the molecule)rio— 1 G=n (3)

torsional modesn(is the number of rings in the polyphenyl

chain). For am-ring oligomer, this results in an approximately =~ Symbolically

30-fold decrease in the number of degrees of freedom. Since - ~

vibrational analysis involves matrix diagonalization, which 0=M6 4)

scales with the cube of the number of degrees of freedom, this

simplification can result in a very significant decrease in the whereg; is the angular position of thigh phenyl ring relative

computational expense for large systems and should maketo its position at equilibrium and is the moment of inertia of

accessible even larger systems, for which full normal-mode the jth phenyl ring about the twist axis, which 15, corre-

calculations are intractable. sponding to the moment about the primary axisXis) in our
For ann-ring linear oligomer (single- or triple-bond species) case [, =87 amu R 0 j). k (| =1, 2, ...,n — 1) is the

as presented in Figure 1 (parts a and b), when all long-rangetorsional force constant between the target ring arthiteearest

coupling is considered, the equations of torsional motion neighbor.M is ann x n matrix wheren is the number of rings

(corresponding to the twist modes) may be given in terms of in the molecule under consideration, which is eq 5, shown in
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Chart 1 wheré = |, In the standard way, we write the solution nearest-neighbor interactions. As shown in Table 1, the predicted
to eq 4 in the form frequencies are functions dependent only on a single force
I constank, which is denoted; for single-bond and for triple-
6=Ce ™ (6) bond systems, respectively. We determined the torsional force
~ constants by minimizing the functior{k), the sum-of-squares
whereC is a vector of coefficients, = (=1)2 tis time, and  of the errors in the predicted frequenayued as a function of

v is a vibrational frequenc% It follows that force Constan“($ for 1a ar‘]dkt for 1b)
MC=—"C 7 6 nt
(k) = Z — ofedkl, ) C)
By solving the eigenvalue problem (eq 7), we obtain the =2 i=

eigenvalues? in terms of force constants, ko, ..., kn—1 and

the moment of inertid,, each of which is a multivariable
expression. Specifically, when &llexcept fork; were assumed

to be zeroly = 0 forl = 2, ...,n — 1), that is, when all long-
range coupling is ignored (only nearest-neighbor interactions
are considered), the above matrix simplifies into a tridiagonal
form, and the eigenvalues are of the form

For single-bond species, based on HFSCF calculations, the
derived force constart was 13.8 kcal/mol from the entire data
set, whileks = 14.1, 13.8, 13.9, 13.6, and 13.7 kcal/mol using
only then=2, 3, 4, 5, and 6 systems, respectively. Substituting
the derived global force constart & 13.8) into the theoretical
expressions for the frequencies for each single-bond speaties (
= 2-6) presented in Table 1, the theoretical values of the

o o(kl )= W o(k/I“' 1/2 ®) frequencies for these molecules were obtained (predicted) and
thed ™ x the compared to those from the electronic structure calculations.
P - . . For the triple-bond species, the force const&)tfér triple-
whereWg,,is the coefficient corresponding to eaf,h eigenvalue bond torsiong was deri\?ed in the same manne?gsofor tﬁe single-
thzreo(k 1) The units ofv.fk.) andl are in s* and amu __bond torsions and found to have the vakye= 1.08 kcal/mol
A%, ‘respectively. These eigenvalues contain the frequenciesy,seq on the HESCF calculations from the entire data set, (This

gorresp;ynding to the twist modes and are presented in Table 1corresponds to the minimal value of the error function of
enotedvineo

frequencyw as a function of force constani;)( as shown in
Clearly, based on the above matrix (5), the use of a nearest- q y rX

) . ! o expression 9). Thig values derived from each individual system
neighbor linear response theory results in a tridiagonal form, \,.h n = 2—6 are in the range of 0.95L.11 kcal/mol, which is

WheLeb all elerlnents except those along éhe dl(?ggngl and 'tsm excellent agreement witk derived from the entire data set,
neighboring element(s) are zero. Second- and third-nearest-ginijar 1 the situation for single-bond torsions. Note that,

neighbor interactions may be taken into account in a straight- unsurprisingly, the coupling of two rings connected by the
forward manner. The most significant complication is that the C—C=C—-C bond linkage is~10 times weaker than the
couplln.g matrix changes from tridiagonal form to penta- and coupling through a single bond only. Theoretical frequencies
heptadiagonal form, respectively. Computations at all three ,pg gptained by substituting the theoretical force constant derived
levels of coupling are reported below. above into the corresponding expressions of frequencies shown
in Table 1. Figure 2 shows the calculated (at HFSCF levét
w5 series) and predicted frequencies using the tridiagonal matrix
Table 2 shows calculated torsional vibration frequencigs: ( (w1 —w5' series) and pentadiagonal matrixl(' —w5'" series)
andwawmi) for n-ring single-bond molecules based on AM1 and for the single-bond linear oligomera & 2—6).
HFSCF calculations. Table 3 shows calculated frequencies for Note in Figure 2 that there are important discrepancies
n-ring triple-bond molecules based on HFSCF calculations.  between the theoretical frequencies from the tridiagonal fitting
1. Tridiagonal Analysis. To obtain the force constant(s) for and those from the HFSCF calculations for the lowest-frequency
each of the lumped molecules, the most straightforward tri- modes. These discrepancies increase in both absolute and
diagonal form was first used, which incorporates only the relative importance with increasing. To investigate this

Results and Discussion
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TABLE 1: Theoretical (vieo) Frequencies of Pure Single- and Triple-Bond Species Based on Tridiagonal Fitting

n? Vtheo (57 1) n? Vtheo (Sil)

2 Kk \1/2 112\ 172 12
2 (I_z) (k)1’2:1.414(cz) 5 (5) (0= 061 E(I%)

12 1/2 1/2\ 1/2 12
(I%)llz(k)mz 1.732({)1/2 3+ (5)1/2)1/2(k) . 515(%)
Z z . IZ
1/2\ 1/2 12 1/2\ 1/2
4 (2 (2) ) 0= 0, 76{ k) 54 ) (0= 1.0 'Lz)

z

ZZ) (02 =141 {Ik)1/2 6 (3)1/2)1/2(@1/2:0.51 lhz)

zZ

( lz)llz(k)llz 1.00 C( k)llz

IZ pa
2\1/2 k \1/2

(Cz) K2 =1. 414(|u)

(%)1 (k)llz 1 73{ kz)llz
IZ z

2_|_ (3)1/2 1/2 k 1/2
(—Izz ) (K2=1.93 T

aNumbern is the number of phenyl rings contained in the molecule under consideragigi= wmes (C is the speed of light).

24 (2 1/2\1/2 12
@ ) = 184K
7z

z

TABLE 2: Calculated Frequencies in cnt?! of Single-Bond TABLE 3: Calculated Frequencies of Triple-Bond Molecules
Oligomers at the HFSCF and AM1 Levels at the HFSCF Level
n2 wue (cm™1) wamz (cm™Y) n wue (cm™1)
2 61.6 71.0 2 16.0
3 42.7 59.2 3 13.2
74.8 83.2 19.4
4 35.5 50.9 4 11.0
61.9 71.1 17.6
80.3 86.8 23.0
5 28.4 47.3 5 9.3
50.6 62.9 14.5
70.3 78.5 194
82.7 88.5 23.0
6 26.2 45.3 6 5.3
45.0 57.5 11.5
62.1 71.1 16.1
75.7 82.6 20.0
83.2 86.6 23.1
7 N/AP 43.9
53.7 length of the molecule; (i) position-dependeti.e., force
65.3 " .
76.5 constants that depend on the position of the corresponding bond
85.2 within the molecule; (iii) mixing of torsional and breathing
87.1 modes; and (iv) long-range coupling, i.e., coupling of non-
8 N/A® 43.1 adjacent rings.
28'3 Theoretical and computational analyses reveal that i, ii, and
711 iii give little or no correction to above discrepancy as we now
80.1 summarize briefly.
18?-9 In case i, we derived a uniqué for each individual system
015 of lengthn. These differed little from the globa, and their

@ Numbern is the number of phenyl rings contained in the molecule use in the theoretical expressions did not yield frequencies in
under consideratiort. Number not available due to computational  sjgnificantly improved agreement with those from the HFSCF

expense. calculations. This result is confirmed by our more elaborate
phenomenon, we explored whether any of the following possible models below.
physical origins give rise to the discrepancy: rfiflependent In case ii, we derived uniquke values for each symmetry-

force constants,k{), i.e., force constants that depend on the unique bond in the molecule. For example, in the 4 single-
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Figure 3. Time dependence of the angular coordinate variables

and@, over a few periods of oscillation of biphenyl.is an empirical
parameter that sets the strength of the coupling between the torsional
and breathing vibrations of the phenyl rings. feor= 0.0, the period

n is 0.54 ps, corresponding to = 61 cnT?, and fora. = 0.1, the period
Figure 2. Calculated frequencies for single-bond linear oligomers S 0-61 ps, corresponding = 54 cnr*. Note that coupling to ring
(n = 2—6) in cnr! from HFSCF computationd{l—w5 series, solid bre_athmg has the effect of decreasing the frequency of torsional
lines) and theoretical values from the ti X' —w5' series, dotted lines) ~ ©scillation.
and penta-¢@1"'—w5" series, dashed lines) fittings. The heptadiagonal
data are not shown but would be visually indistinguishable from the
HFSCF data. Line segments connect points of differerihat are
computed with the same theoretical model.

the effective restoring force, which would decrease the associ-
ated frequency. This is opposite to the observed result.

To further illustrate the effect of coupling the breathing mode
to the torsional vibrations, a numerical integration was under-
bond system, the force constant coupling the 1st and 2nd ringstaken to solve the corresponding nonlinear differential equations
was taken to equal that coupling the 3rd and 4th rings, but the for biphenyl (the single-bond = 2 species)
force constant coupling the 2nd and 3rd rings was allowed to

be unique. Upon fitting to the HFSCF data, however, the two d%6,/d? = —k(0, — O)/[I + (6, — 6,)7]  (11a)
force constants optimized to nearly identical values and led to
no improvement in the agreement between the theoretical and d?,/dt* = k(0, — 0)/[1 + a (0, — 6,)3 (11b)

HFSCF frequencies.

In case iii, we observed, by visualization, some degree of \yhereg, and#, are the angular coordinate variables of the two
ring “breathing” whereby the phenyl rings expand slightly near rings on biphenyl. Figure 3 shows the time dependencg, of
the maximum displacements along the twisting mode and and 6, over a few periods of oscillation of biphenyl for the
contract to their normal size in the vicinity of the equilibrium. ¢ases ofy = 0.0 (period 0.54 ps correspondsdo= 61 cn?)

(In the case of biphenyl, the equilibrium corresponds to an angle gndo = 0.1 (period 0.61 ps correspondsdo= 54 cntl). The

of about 49 between the planes of the two rings. See also Figure time period wheno. is nonzero is larger, and therefore the
1.) The C-H bond length as a function of the displacement of frequency is smaller. Thus, the coupling of the ring breathing,
the torsional angle from equilibrium shows harmonic depen- reflected by a nonzero value of parameteproduces a decrease
dence. A displacement of 10 degrees from equilibrium stretchesin the torsional vibration frequency. This is exactly what is
the C-H (C—C) bonds by 0.223 (0.282)% and displacement predicted with a simple analytical model. Therefore, coupling
of the torsional angle by 20results in a stretch of 0.949 o the breathing mode does not explain the observed deviation

(1.146)%. One might speculate that such ring breathing could of the low frequencies from what is predicted by a nearest-
change the effective inertia of the ring, thereby altering the neighbor coupling model.

vibrational frequencies. Consider a one-dimensional model of In case iV, we found that inclusion of |Ong_range Coup"ng
the effect of this ring breathing and its Taylor series approxima- completely resolves the issue, as we now present in detail.
tion. The differential equation of motion may be given as 2. Pentadiagonal Fitting.With the second-nearest-neighbor
coupling taken into account, the matrix presented in eq 5
becomes pentadiagonal in form. By solving the corresponding
eigenvalue problem, the theoretical frequencies for each system
wherea. is a small empirical parameter that effectively increases are functions in terms of two force constants, the primary one
the magnitude of the denominator for large displacements of k; and the secondary otg, which account for the nearest- and
the angular coordinat® from equilibrium, mimicking an second-nearest-neighbor interactions, respectively. By minimi-
increase in the inertia I. From this expression, it is clear that zation the same sum-of-squares of the errors function presented
mixing of the ring-breathing mode cannot account for the ineq 9, the force constants were derived for each system. Table
observedincreasein the low frequencies over that predicted 4 presents the force constants derived from the pentadiagonal
with the linear model. First of all, since does not appear in  fitting of the HFSCF results for single bond species. The
the leading term of the expansion, it will have no effect on the secondary force constarksf), which is an indication of the
frequency of small oscillations. Even if finite displacements are strength of the long-range coupling, is 10 times lower than that
considered, the second term will have the effect of weakening of the primary oneks;). As nincreasesks, becomes larger and

B = —koI(l + a0?) ~ —koll + 6ako¥? (10)
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TABLE 4: Predicted Force Constants Based on the
Pentadiagonal (Heptadiagonal forn = 6 Species) Fitting of
HFSCF Results for Single-Bond Species

no secondary force constdas. © ksz is the tertiary force constant from
the heptadiagonal fitting.

—* ol
n k51 ksz ——
2 14.1 N/A vz
3 13.2 -0.1 . ™ 3
4 13.9 0.6 I —z—
5 13.6 0.6 5 o4
6 13.7 (13.7) 0.8 (0.3k{z= 0.6)) = = w5
@ For then = 2 species, there is no second-nearest neighbor therefore 2 o o’
- S
=

TABLE 5: Predicted Force Constants Based on

Pentadiagonal Fitting of HFSCF Results for Triple-Bond T o
Species —o— .,
5

n ka k2

2 1.0 N/AE

3 1.0 0.2

5 1.0 0.2 n

6 11 0.0 Figure 4. Frequencies calculated at the HFSCF lewel{ w5 series,

a For then = 2 species, there is no second-nearest neighbor therefore S0lid lines) and predictedu(l' ~w5' series, dashed lines) using the
no secondary force constarié| pentadiagonal matrix for triple bond linear oligomers= 2—6) in
' cm L,

therefore the contribution from the long-range coupling becomes TABLE 6: Predicted Force Constants Based on the
more important. This result is consistent with the expected more Pentadiagonal Fitting of AM1 Results for Single-Bond
significant conjugation in longer systems (in hindsight, a Species

chemically intuitive result). N ko1 Ks2

The calculated (at HFSCF levell—w5 series) and predicted 5 188 NS
(w1"—wh" series) frequencies for the single-bond linear oli- 3 17.2 4.5
gomers f = 2—6) based on pentadiagonal fitting are shown in 4 15.4 5.2
Figure 2. The predicted frequencies are in excellent agreement 5 14.6 5.3
with the ones from HFSCF calculations, indicating that the 6 131 6.4
lumped-inertia treatment accurately recovers the torsional- g ﬁ'g g'g

twisting frequencies for the singe-bond species.
For the triple-bond molecules, the primary and secondary *For then = 2 species, there is no second-nearest neighbor therefore
force constantk, andke were found using the same procedure. " Secondary force constant.
The derived force constants for= 2—6 systems are provided
in Table 5.

By substituting the force constants acquired here into the that the inclusion of this extra-long-range coupling yields

excellent agreement between the theoretical and HFSCF results.

expressions for the theoretical frequencies derived from the Obviously. by includi ficientl fitti ¢
pentadiagonal fitting, the predicted frequencies were obtained viously, Dy Including sufficiently many fiting parameters,
the theoretical model can recover the computed vibrational

for each species and are presented in Figure 4 together withf ies. but th it ted herein sh learly that
the calculated frequencies. Again, similar to the situation for requencies, but the results presented herein show clearly tha

the single-bond systems, the predicted frequencies agree Wenlong-range coupling is at play in the torsional-twisting dynamics

with the calculated ones at the HFSCF level. The lumped-inertia ©f POlyPhenylenes.

pentadiagonal fitting successfully recovers the torsional-twisting 10 demonstrate how the lumped-inertia technique might be
frequencies for the triple bond systems. Note that in both the applied to larger oligomersi(> 6), we repeated the procedure
single-bonded and triple-bonded specleds almost invariant ~ using full normal-coordinate analysis on oligomers= 1, 2,

with n, consistent with our earlier conclusion that a length- -, 8 of the single-bond species at the semiempirical AM1
dependent force constant is not at the root of the unexpectedlylevel of theory, which is sufficiently efficient for practical
high, low-frequency vibrations. calculations on larger systems. Table 6 shows the predicted force

3. Heptadiagonal Fitting. It may be seen in Figure 2 that, —constants based on pentadiagonal fitting using the AM1 results.
for then = 6 system, there is some residual discrepancy betweenlt reveals the same phenomenon as when HFSCF data is used,
the theoretical frequency using the pentadiagonal matrix and that the contribution from long-range coupling becomes gener-
HFSCF frequency for the lowest-frequency torsional-twisting ally more important with increasing. The absolute value of
mode. Given the observed importance of long-range coupling, the predicted secondary force constdgi based on AM1
we carried out calculations including second- and third-nearest- computation is predicted to be about 10 times higher than that
neighbor coupling. This results in a heptadiagonal matrix form from HFSCF computation for the same system, suggesting that
involving primary i), secondaryky), and tertiary ks) force AM1 overestimates the long-range coupling. Unfortunately, we
constants. The best-fit force constants for the= 6 single- were unable to extend the treatment to larger oligomers of the
bond system are given parenthetically in Table 4. The derived triple-bonded species with AM1 semiempirical calculations as
theoretical frequencies are visually indistinguishable from the we did in the case of the single bond oligomers. All frequencies
HFSCF data when superimposed upon Figure 2, which indicatesfor torsional-twisting modes of the triple-bond systems from
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5 . . . T T . T TABLE 7: Calculated (onr) and Predicted (@pred)
I i Frequencies of the Mixed System at HFSCF Level
f—é At i n owr (cm™) Wpred(CM™Y) % error
= B 3 14.5 14.1 2.76
LS 3k | 61.8 61.5 0.49
> 4 10.9 11.4 4.59
s 1 60.8 60.9 0.16
5 61.8 62.0 0.32
o 5 11.3 9.4 16.80
= 15.1 15.6 3.31
< 61.6 61.1 0.81
= 62.6 62.4 0.32
6 N/A 8.0 N/A

14.1

dihedral: degrees ggg

Figure 5. Relative energies from restricted optimizations of biphenyl 62:6

at both HF and DFT levels, denoted ¥F,:and DFTgiop, respectively.

Energies at each level are referenced to the lowest-energy structure at > The RMS error is 6%° Numbern is the number of phenyl rings
the same level. contained in the molecule under consideration.

The equation for vibration motions shown in eq 4 also applies,
AM1 calculations are almost the same45.0 cnt?) for all and the matrixM is
values ofn, which is physically nonsensible.

From AM1 calculations, as shown in Table 2, we note that Ylmixfodd: an

the lowest computed frequencies appear to be approaching & —k, kK 0 eee e 0 I
constant €45 cntl) with increasingn, while the predicted k  —k—k k 0 e 0
frequencies continue to decrease. This could be a shortcoming 0 k —k,—k k 0 0
of the lumped-inertia model; however, it is more likely thatthe |~
AM1 method fails to accurately capture the lowest-frequency 0 0 k —k—k k 0 0
vibrations. The complete failure of the AM1 method for the 0 0 k K-k k 0
triple bond species lends credence to the latter possibility. As

reported previousl§t-23 the energy barriers to internal rotation | ° 0 N Kk 5
are often underestimated by AM1 and may arise from an IO '''''' 0 k k

inadequacy of the AM1 empirical nuclear repulsion functions. (12
4. Validation. For validation, we first note that the primary . .

force constants derived here are all quite similar for systems of Whenn is an odd number for a molecule such as presented in

similar chemistry. Furthermore, the force constant of 14.1 kcal/ Figure 1c, and itis

mol, obtained here fon = 2 single-bond system, is in good

agreement with the value of 14.6 kcal/mol, derived by calculat- i'miwwn: an: I
ing the second derivative of expression ks ks 0 0
kK —k—k k 0 0
m q 0 k —ks—k K 0 0
V(¢) = Zavn(l — cosng) 0 0 ks —k—k k 0 0
&
0 0 k —ks—k Kk 0 0
wheren = 2, 4, and 6 and/; = 0.10,V, = —1.90, andV3 = 0 0 Ks —k—k k 0
—0.27 results from a B3LYP/6-3#1G(d,p) calculation provided 0 0 K —ks =k ks
in ref 24. 0 0 Ks —Ks
As mentioned above, for single-bond polyphenyl molecules, (13

the adjacent rings are offset by45° to each other in the
optimized structures. As a validation check, constrained opti- whenn is an even number for a molecule such as presented in
mizations were performed at both the B3LYP and HF levels Figure 1 d. Hereks andk; are the averaged theoretical force
for biphenyl, with the dihedral angle between the two phenyl constants oven = 2—6 systems for the single-bond and triple-
rings fixed at O, 5, 10, ..., 85, and 98uccessively (at a°5 bond torsions, respectively, derived from the pentadiagonal
interval). As shown in Figure 5, in the lowest-energy config- fitting, which are 13.8 kcal/mol foks and 1.03 kcal/mol fok;,
uration, biphenyl adopts a very similar offset structure at the respectively. Substitution of these valueskgfand k; into the
HF and DFT levels, a dihedral angle of 45 and,5@spectively. expressions of theoretical frequencies obtained based on ma-
Note also that the curvatures of the two potentials at their trixes 10 and 11, the frequenciasyfeg were predicted for the
respective minima are similar. The trends in structural preferencemixed systems. Table 7 shows the results together with the
captured here are consistent with those reported by Karpfen etcalculated values at the HFSCF level denatgg. The predicted
al2 frequencies are in good agreement with those from full normal-
5. Mixed Systems with Alternating Single- and Triple- mode calculations. The frequencies of molecule witi 6 or
Bond Linkage. For the mixed system with both single- and more can be easily predicted with the same procedure, but the
triple-bond linkages between adjacent rings, the second-neareselectronic-structure computations become increasingly demand-
neighbor is sufficiently far from the target ring to reduce long- ing and were not performed in our study.
range coupling; therefore, the tridiagonal matrix is an appropriate ~ As a further test of the lumped-inertia technique, the same
form for the treatment of the ring coupling in such systems. procedures were applied on the triple-bond species 8) with
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O—=0—0
O—Cr—=0
= O =

O O

Figure 6. Schematic drawings of the substituted species<(¥, Me). When optimized at the HFSCF level, all phenyl rings are parallel to one
another.

(2.5)-

TABLE 8: Calculated (ca) and Predicted (@preq) Frequencies of the Substituted System at the HFSCF Level

substituent Wcaic (CM™) Wpred (CM™Y) substituent Wcaic (CM™) Wpred (CM™1)
—H 13.2 11.2 —F ((2,5))° 17.3 11.7
19.6 194 20.7 14.9
—F 13.8 11.7 —Me ((2,6))° 14.1 11.7
18.6 16.4 16.2 14.9
—Me2 12.1 11.7 —Me ((2,5))° 10.9 11.7
13.6 16.4 14.1 14.9
—F ((2,6))° 15.0 11.7
20.6 14.9

2 Species with one substituertX. ® Species with two substituentsX.

TABLE 9: Calculated and Predicted Frequencies for Substituted Biphenyl

—Xa On? WHE° 14 ke wu(Kave)' wi2(Koiph )9 Aw;" Aw)

1 —OH 0.12 48.8 65.5 1.56 10 46.6 49.2 217 —0.46
2 —NH; —0.16 47.9 63.8 1.4% 1¢° 47.2 49.9 0.70 —-1.97
3 —CHjs —0.07 48.6 63.0 1.4% 10° 475 50.2 1.06 —-1.62
4 —0OCHg 0.12 44.1 72.6 1.4% 1¢° 44.3 46.8 —0.18 —2.68
5 —H 0 60.1 44.0 1.59x 1P 56.9 60.1 3.21 0.00
6 -F 0.34 47.8 66.8 153 10° 46.2 48.8 1.64 —0.96
7 —Cl 0.37 42.9 76.5 14% 10° 43.1 45.6 —0.19 —2.63
8 —OCOCH; 0.39 42.0 80.9 143 1¢° 41.9 44.3 0.05 —-2.31
9 —CHCl, 0.31 39.4 84.7 13% 1¢° 41.0 43.3 —-1.61 —-3.93
10 —CHF, 0.29 41.6 80.2 1.3% 1¢° 42.1 44.5 —0.55 —2.92
11 —COOH 0.35 414 79.4 1.36 10° 42.3 44.7 —0.95 —-3.33
12 —CCls 0.4 39.6 85.2 1.3% 10° 40.9 43.2 -1.29 —3.59
13 —COCH; 0.38 43.2 78.8 146 10° 425 44.9 0.63 -1.77
14 —CRK; 0.43 40.1 824 1.3% 1¢° 41.6 43.9 —1.49 —3.83
15 —CN 0.56 42.4 75.7 1.36 10° 43.4 45.8 —0.95 —3.40
16 —NO; 0.71 41.3 79.3 1.3% 10° 42.4 44.8 —1.09 —3.48
Kave= 1.42x 1P

kbiph: 1.59 x 105

average difference 0.07 —2.43

a Substituent? Substituent parametét. ¢ Frequency from HF calculatiomyr in cm™1. ¢ Reduced moment of inertia of the entire molecule in
amu 2. eForce constank based on HF frequency in cthamu 2. fTheoretical frequencyy in cm™ using averaged force constate
9 Theoretical frequencyy, in cm™ using the force constant of unsubstituted biphenyl molelige " Difference betweemwr andwy. 1 Difference
betweenwur and we.

one or two substituents on the middle phenyl ring, as shown 87 amu &. For the monosubstituted system witheXF, 1,,=
schematically in Figure 6. 183 amu &, andl,,= 184 amu & for X = CHs. For the dual-

The torsional frequencies for these molecules were predictedsubstituted systent;, = 280 amu & for both X = F and CH.
by assuming that the introduction of a substituent on the middle In the case of a single substituent, the axis of symmetry is lost
phenyl ring does not affect the force constant of the bond so there are no true purely torsional modes. The deviation of
between adjacent rings, but changes only the moment of inertiathe principle moment from the molecular axis is small, however,
representing the functionalized ring. (This approximation is and the procedure has reasonable predictive power. As shown
discussed in detail below.) For an unfunctionalized ring= in Table 8, the agreement of the predicted frequencies with those
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65.00 - structure calculations and normal-coordinate analysis are trac-
table and allows for straightforward prediction of the torsional-
twisting frequencies for oligomers of essential arbitrary length.
The method is validated by the accurate prediction of the
torsional vibrational frequencies for oligomers with mixed
single- and triple-bond linkages between adjacent phenyl rings.
Excellent accuracy is achieved when coupling through next-
nearest-neighbor rings is included (a pentadiagonal matrix form)
and demonstrates that the long-range coupling plays an impor-
tant role in the torsional-twisting dynamics of these systems.
Application of the technique to substituted biphenyls allows for
substituent index a partitioning of the changes in torsional frequencies that take
Figure 7. Frequencies from HE calculationg:s, predicted frequencies place upon substitution into contributions from changes to the

wy using the averaged force constdals and predicted frequencies  INertial moments and changes to the electronic structure.
e using the force constant for unsubstituted biphedyh.

frequency cm”
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