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The vibrational dynamics of nanosystem components are likely to play a critical role in both nanomechanical
and nanoelectronic systems. We demonstrate that vibrational analysis with a lumped-inertia technique can
efficiently and reliably anticipate certain vibrational properties without the need for performing costly
comprehensive full normal-mode computations. Three classes of linear oligomers with potential for application
in nanoelectronics are investigated with this technique. The torsional-twisting frequencies from the lumped-
inertia model accurately reproduce the frequencies computed with full normal-mode analysis based on electronic
structure calculations. The lumped-inertia model reveals the importance of long-range coupling in torsional-
twisting dynamics and affords a partitioning of the effect of phenyl ring substituents on the torsional vibrational
frequencies between inertial and electronic structure contributions.

Introduction

One proposed molecular electronic switching scheme is to
capitalize on changes in conductivity that accompany changes
in the relative alignment of phenyl rings along a polyphenyl
chain. Theoretical work has predicted that the conductivity of
such a conjugated chain may be varied by 104 simply by varying
the torsional alignment of two adjacent phenyl rings.1 More
recent studies have explored the influence of molecular vibra-
tions in general on molecular conductance.2 For thep-benzene-
dithiol molecule, it was reported that none of the normal-mode
vibrations lead to appreciable changes in conductance, owing
to the rigidity of the molecule. By contrast, Di Ventra et al.3

noted that when the molecule is modified with a NO2 substituent
(2-nitro-1,4-benzene-dithiol), twisting of the NO2 substituent can
lead to appreciable changes in the molecular orbital energies
and potentially observable changes in the I/V characteristics.
A stunning example of the influence of vibrational motion on
molecular electron transport has been demonstrated in C60 on a
gold surface.4 The differential conductance through the C60 to
the gold substrate exhibits features with an energy spacing
characteristic of the frequency of the oscillation of the C60

relative to the gold surface, about 1.2 THz.
From the above, it is clear that successful nanomachine

engineering will depend on the ability to reliably anticipate
nanostructure vibrational properties. For nanoelectronics, low-
frequency torsional-twisting modes are of particular relevance.1

The issue of determining low-frequency torsional vibrations also
arises during the parametrization of molecular mechanics force
fields5-7 and are important for developing reliable potential
functions for use in condensed-phase simulations.8 Previously
it has been demonstrated that continuum methods of vibrational
analysis, common in mechanical engineering, may be used
effectively in the description of bending and flexing vibrations

of nanorods and nanotubes.9 In the same spirit, here we borrow
the lumped-inertia technique from mechanical engineering.
Recent engineering applications include: Bapat and Bhutani10

have reported a matrix method for solution to the problem of
torsional vibrations of a multistepped shaft with elastically
attached masses. Li et al.11 proposed the initial parameter method
and the transfer matrix method for use with concentrated
masses coupled by translational springs. A closed form solution
was presented by Qiao et al.12 for torsional vibration of
nonuniform shafts with arbitrary distribution of rigid disks. We
demonstrate that a similar lumped-inertia technique12 is efficient
and accurate for predicting the frequencies of the low frequency
torsional-twisting modes of polyphenylenes and polyethy-
nylphenylenes, species potentially important for nanoelec-
tronics.

Theoretical Methods

To derive force constants and provide benchmark frequencies
against which to test the lumped-inertia model, we used two
standard electronic structure techniques: HFSCF13 with the
3-21G* basis set14,15 and AM1.16 Admittedly, these methods
are very approximate, but they are in common use for molecular
systems and the typical scaling factors are well known.17 The
computations in this study are based mainly on HFSCF. AM1
calculations were used to demonstrate the extension of lumped-
inertia methods to larger systems. Supporting the choice of
HFSCF is the finding by Scott and Radom17 that HF methods
yield low frequencies that are of comparable reliability to those
produced by density functional theory (DFT) calculations. We
carried out test calculations and found similar agreement. (See
subsection 5 of Results and Discussion.) The techniques chosen
here are, of necessity, sufficiently efficient for full normal-
coordinate analysis of oligomers with several primitive units.
This provides a reasonable set of frequency data from which to
derive torsional force constants. Except where specifically noted
to the contrary, all structures were fully optimized and display
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only positive real eigenvalues of the Hessian matrix. The
convergence criterion for structural optimization was set to be
atypically stringent (e0.00001 Hartree/Bohr) for more accurate
treatment of the low-frequency vibrational modes upon subse-
quent frequency analysis. Torsional modes were identified by
visualization.

We have chosen to study torsional modes in three classes of
molecules, shown in Figure 1: (i) single-bond species (Figure
1a), studied by Samanta et al. for molecular wire applications;1

(ii) triple-bond species (Figure 1b), studied by Chen et al. for
molecule electronic device applications;18 and (iii) mixed species
with alternating single- and triple-bond linkages between
adjacent phenyl rings (parts c and d of Figure 1).

We note that, if one is principally interested in torsional-
twisting modes of these linear oligomers, considerable simpli-
fication of the vibrational analysis can be achieved through
application of the lumped-inertia technique. The vibrational
features for the torsional-twisting modes of the molecule are
described as relative rotations of “lumped inertias” about the
principal axis of the molecule. Each component ring is modeled
as a rigid body with inertia equal to that of the ring and its
attached hydrogens (and any substituents present). Adjacent
inertias are taken to interact with force constants to be derived
in the discussion section. This procedure effectively drops the
higher-frequency modes from the vibrational analysis,19 thereby
reducing the vibrational analysis from one of 3N - 6 normal
modes (N is the number of atoms in the molecule) ton - 1
torsional modes (n is the number of rings in the polyphenyl
chain). For ann-ring oligomer, this results in an approximately
30-fold decrease in the number of degrees of freedom. Since
vibrational analysis involves matrix diagonalization, which
scales with the cube of the number of degrees of freedom, this
simplification can result in a very significant decrease in the
computational expense for large systems and should make
accessible even larger systems, for which full normal-mode
calculations are intractable.

For ann-ring linear oligomer (single- or triple-bond species)
as presented in Figure 1 (parts a and b), when all long-range
coupling is considered, the equations of torsional motion
(corresponding to the twist modes) may be given in terms of

the angular positions of each lumped inertia as follows

and

Symbolically

whereθj is the angular position of thejth phenyl ring relative
to its position at equilibrium andIj is the moment of inertia of
the jth phenyl ring about the twist axis, which isIzz

j corre-
sponding to the moment about the primary axis (z axis) in our
case (Izz

j ) 87 amu Å2 ∀ j). kl (l ) 1, 2, ..., n - 1) is the
torsional force constant between the target ring and itslth-nearest
neighbor.M is ann × n matrix wheren is the number of rings
in the molecule under consideration, which is eq 5, shown in

Figure 1. Schematic drawings of the three classes of molecules considered in this study. When optimized at the HFSCF level, the structures are
as follows: For the single-bond molecules (a), the dihedral angles are 49-50° and-49 to-50°, alternatively, for every other pair of two adjacent
phenyl rings, which renders alternate benzene rings parallel to each other. For triple-bond molecules (b), the dihedral angles are 0°, which makes
all phenyl rings parallel to one another. For the molecules with a mixture of both single and triple bonds (c and d with odd and even values ofn
respectively), the dihedral angles are 0° between two adjacent phenyl rings connected with a triple-bond linkage. The dihedral angles are 49-50°
for all other pairs of adjacent phenyl rings bonded with a single bond.

Ijθ̈1 ) k1(θ2 - θ1) + k2(θ3 - θ1) + k3(θ4 - θ1) + ‚‚‚ +

kj(θj+1 - θ1) + ‚‚‚ + kn-1(θn - θ1) ) -( ∑
l)1

(n-1)

kl)θ1 +

∑
l)1

(n-1)

(klθl+1) (j ) 1) (1)

Ijθ̈j ) -k1(θj - θj-1) - k2(θj - θj-2) - k3(θj - θj-3) -
‚‚‚ - kj-1(θj - θ1) + k1(θj+1 - θj) + k2(θj+2 - θj) +

k3(θj+3 - θj) + ‚‚‚ kn-j(θn - θj) ) ∑
l)1

(j-1)

(klθj-l) - ( ∑
l)1

(j-1)

kl +

∑
m)1

(n-j)

km)θj + ∑
l)1

(n-j)

(klθj+l) (1 < j < n) (2)

Ijθ̈j ) -k1(θn - θn-1) - k2(θn - θn-2) - k3(θn - θn-3) -

‚‚‚ - kn-1(θn - θ1) ) ∑
l)1

(n-1)

(klθn-l) - (∑
l)1

n-1

kl)θn

(j ) n) (3)

θB̈ ) M θB (4)
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Chart 1 whereI ) Izz. In the standard way, we write the solution
to eq 4 in the form

whereCB is a vector of coefficients,i ) (-1)1/2, t is time, and
ν is a vibrational frequency.20 It follows that

By solving the eigenvalue problem (eq 7), we obtain the
eigenvaluesν2 in terms of force constantsk1, k2, ..., kn-1 and
the moment of inertiaIzz, each of which is a multivariable
expression. Specifically, when allkl except fork1 were assumed
to be zero (kl ) 0 for l ) 2, ...,n - 1), that is, when all long-
range coupling is ignored (only nearest-neighbor interactions
are considered), the above matrix simplifies into a tridiagonal
form, and the eigenvalues are of the form

whereWtheo
n,i is the coefficient corresponding to each eigenvalue

νtheo
n,i (k,Izz). The units ofνtheo

n,i (k,Izz) and Izz are in s-1 and amu
Å2, respectively. These eigenvalues contain the frequencies
corresponding to the twist modes and are presented in Table 1
denotedνtheo.

Clearly, based on the above matrix (5), the use of a nearest-
neighbor linear response theory results in a tridiagonal form,
where all elements except those along the diagonal and its
neighboring element(s) are zero. Second- and third-nearest-
neighbor interactions may be taken into account in a straight-
forward manner. The most significant complication is that the
coupling matrix changes from tridiagonal form to penta- and
heptadiagonal form, respectively. Computations at all three
levels of coupling are reported below.

Results and Discussion

Table 2 shows calculated torsional vibration frequencies (ωHF

andωAM1) for n-ring single-bond molecules based on AM1 and
HFSCF calculations. Table 3 shows calculated frequencies for
n-ring triple-bond molecules based on HFSCF calculations.

1. Tridiagonal Analysis. To obtain the force constant(s) for
each of the lumped molecules, the most straightforward tri-
diagonal form was first used, which incorporates only the

nearest-neighbor interactions. As shown in Table 1, the predicted
frequencies are functions dependent only on a single force
constantk, which is denotedks for single-bond andkt for triple-
bond systems, respectively. We determined the torsional force
constants by minimizing the functionε(k), the sum-of-squares
of the errors in the predicted frequency (ωtheo) as a function of
force constant (ks for 1a andkt for 1b)

For single-bond species, based on HFSCF calculations, the
derived force constantks was 13.8 kcal/mol from the entire data
set, whileks ) 14.1, 13.8, 13.9, 13.6, and 13.7 kcal/mol using
only then ) 2, 3, 4, 5, and 6 systems, respectively. Substituting
the derived global force constant (ks ) 13.8) into the theoretical
expressions for the frequencies for each single-bond species (n
) 2-6) presented in Table 1, the theoretical values of the
frequencies for these molecules were obtained (predicted) and
compared to those from the electronic structure calculations.

For the triple-bond species, the force constant (kt) for triple-
bond torsions was derived in the same manner as for the single-
bond torsions and found to have the valuekt ) 1.08 kcal/mol
based on the HFSCF calculations from the entire data set. (This
corresponds to the minimal value of the error function of
frequencyω as a function of force constant (kt) as shown in
expression 9). Thekt values derived from each individual system
with n ) 2-6 are in the range of 0.95-1.11 kcal/mol, which is
in excellent agreement withkt derived from the entire data set,
similar to the situation for single-bond torsions. Note that,
unsurprisingly, the coupling of two rings connected by the
C-CtC-C bond linkage is∼10 times weaker than the
coupling through a single bond only. Theoretical frequencies
are obtained by substituting the theoretical force constant derived
above into the corresponding expressions of frequencies shown
in Table 1. Figure 2 shows the calculated (at HFSCF level,ω1-
ω5 series) and predicted frequencies using the tridiagonal matrix
(ω1′-ω5′ series) and pentadiagonal matrix (ω1′′-ω5′′ series)
for the single-bond linear oligomers (n ) 2-6).

Note in Figure 2 that there are important discrepancies
between the theoretical frequencies from the tridiagonal fitting
and those from the HFSCF calculations for the lowest-frequency
modes. These discrepancies increase in both absolute and
relative importance with increasingn. To investigate this

CHART 1

θB ) CB e-iνt (6)

MCB ) -ν2CB (7)

νtheo
n,i (k,Ixx) ) Wtheo

n,i (k/Izz
n,i)1/2 (8)

ε(k) ) ∑
n)2

6

∑
i)1

n-1

[ωHF
n,i - ωtheo

n,i (k,Izz)]
2 (9)
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phenomenon, we explored whether any of the following possible
physical origins give rise to the discrepancy: (i)n-dependent
force constants, (kn), i.e., force constants that depend on the

length of the molecule; (ii) position-dependentk, i.e., force
constants that depend on the position of the corresponding bond
within the molecule; (iii) mixing of torsional and breathing
modes; and (iv) long-range coupling, i.e., coupling of non-
adjacent rings.

Theoretical and computational analyses reveal that i, ii, and
iii give little or no correction to above discrepancy as we now
summarize briefly.

In case i, we derived a uniquekn for each individual system
of length n. These differed little from the globalk, and their
use in the theoretical expressions did not yield frequencies in
significantly improved agreement with those from the HFSCF
calculations. This result is confirmed by our more elaborate
models below.

In case ii, we derived uniquek values for each symmetry-
unique bond in the molecule. For example, in then ) 4 single-

TABLE 1: Theoretical ( νtheo) Frequencies of Pure Single- and Triple-Bond Species Based on Tridiagonal Fitting

na νtheo (s-1) na νtheo (s-1)

2 ( 2
Izz

)1/2
(k)1/2 ) 1.414( k

Izz
)1/2

5 (3 - (5)1/2

2Izz
)1/2

(k)1/2 ) 0.618( k
Izz

)1/2

3 ( 1
Izz

)1/2

(k)1/2 ) (ks

Izz
)1/2 (5 - (5)1/2

2Izz
)1/2

(k)1/2 ) 1.176( k
Izz

)1/2

( 3
Izz

)1/2
(k)1/2 ) 1.732( k

Izz
)1/2 (3 + (5)1/2

2Izz
)1/2

(k)1/2 ) 1.618( k
Izz

)1/2

4 (2 - (2)1/2

Izz
)1/2

(k)1/2 ) 0.765( k
Izz

)1/2 (5 + (5)1/2

2Izz
)1/2

(k)1/2 ) 1.902( k
Izz

)1/2

( 2
Izz

)1/2
(k)1/2 ) 1.414( k

Izz
)1/2

6 (2 - (3)1/2

Izz
)1/2

(k)1/2 ) 0.518( k
Izz

)1/2

(2 + (2)1/2

Izz
)1/2

(k)1/2 ) 1.848( k
Izz

)1/2 ( 1
Izz

)1/2
(k)1/2 ) 1.000( k

Izz
)1/2

( 2
Izz

)1/2
(k)1/2 ) 1.414( k

Izz
)1/2

( 3
Izz

)1/2
(k)1/2 ) 1.732( k

Izz
)1/2

(2 + (3)1/2

Izz
)1/2

(k)1/2 ) 1.932( k
Izz

)1/2

a Numbern is the number of phenyl rings contained in the molecule under consideration.νtheo ) ωtheoc (c is the speed of light).

TABLE 2: Calculated Frequencies in cm-1 of Single-Bond
Oligomers at the HFSCF and AM1 Levels

na ωHF (cm-1) ωAM1 (cm-1)

2 61.6 71.0
3 42.7 59.2

74.8 83.2
4 35.5 50.9

61.9 71.1
80.3 86.8

5 28.4 47.3
50.6 62.9
70.3 78.5
82.7 88.5

6 26.2 45.3
45.0 57.5
62.1 71.1
75.7 82.6
83.2 86.6

7 N/Ab 43.9
53.7
65.3
76.5
85.2
87.1

8 N/Ab 43.1
50.9
60.9
71.1
80.1
86.9

101.5

a Numbern is the number of phenyl rings contained in the molecule
under consideration.b Number not available due to computational
expense.

TABLE 3: Calculated Frequencies of Triple-Bond Molecules
at the HFSCF Level

n ωHF (cm-1)

2 16.0
3 13.2

19.4
4 11.0

17.6
23.0

5 9.3
14.5
19.4
23.0

6 5.3
11.5
16.1
20.0
23.1
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bond system, the force constant coupling the 1st and 2nd rings
was taken to equal that coupling the 3rd and 4th rings, but the
force constant coupling the 2nd and 3rd rings was allowed to
be unique. Upon fitting to the HFSCF data, however, the two
force constants optimized to nearly identical values and led to
no improvement in the agreement between the theoretical and
HFSCF frequencies.

In case iii, we observed, by visualization, some degree of
ring “breathing” whereby the phenyl rings expand slightly near
the maximum displacements along the twisting mode and
contract to their normal size in the vicinity of the equilibrium.
(In the case of biphenyl, the equilibrium corresponds to an angle
of about 49° between the planes of the two rings. See also Figure
1.) The C-H bond length as a function of the displacement of
the torsional angle from equilibrium shows harmonic depen-
dence. A displacement of 10 degrees from equilibrium stretches
the C-H (C-C) bonds by 0.223 (0.282)% and displacement
of the torsional angle by 20° results in a stretch of 0.949
(1.146)%. One might speculate that such ring breathing could
change the effective inertia of the ring, thereby altering the
vibrational frequencies. Consider a one-dimensional model of
the effect of this ring breathing and its Taylor series approxima-
tion. The differential equation of motion may be given as

whereR is a small empirical parameter that effectively increases
the magnitude of the denominator for large displacements of
the angular coordinateθ from equilibrium, mimicking an
increase in the inertia I. From this expression, it is clear that
mixing of the ring-breathing mode cannot account for the
observedincreasein the low frequencies over that predicted
with the linear model. First of all, sinceR does not appear in
the leading term of the expansion, it will have no effect on the
frequency of small oscillations. Even if finite displacements are
considered, the second term will have the effect of weakening

the effective restoring force, which would decrease the associ-
ated frequency. This is opposite to the observed result.

To further illustrate the effect of coupling the breathing mode
to the torsional vibrations, a numerical integration was under-
taken to solve the corresponding nonlinear differential equations
for biphenyl (the single-bondn ) 2 species)

whereθ1 andθ2 are the angular coordinate variables of the two
rings on biphenyl. Figure 3 shows the time dependence ofθ1

and θ2 over a few periods of oscillation of biphenyl for the
cases ofR ) 0.0 (period 0.54 ps corresponds toω ) 61 cm-1)
andR ) 0.1 (period 0.61 ps corresponds toω ) 54 cm-1). The
time period whenR is nonzero is larger, and therefore the
frequency is smaller. Thus, the coupling of the ring breathing,
reflected by a nonzero value of parameterR, produces a decrease
in the torsional vibration frequency. This is exactly what is
predicted with a simple analytical model. Therefore, coupling
to the breathing mode does not explain the observed deviation
of the low frequencies from what is predicted by a nearest-
neighbor coupling model.

In case iv, we found that inclusion of long-range coupling
completely resolves the issue, as we now present in detail.

2. Pentadiagonal Fitting.With the second-nearest-neighbor
coupling taken into account, the matrix presented in eq 5
becomes pentadiagonal in form. By solving the corresponding
eigenvalue problem, the theoretical frequencies for each system
are functions in terms of two force constants, the primary one
k1 and the secondary onek2, which account for the nearest- and
second-nearest-neighbor interactions, respectively. By minimi-
zation the same sum-of-squares of the errors function presented
in eq 9, the force constants were derived for each system. Table
4 presents the force constants derived from the pentadiagonal
fitting of the HFSCF results for single bond species. The
secondary force constant (ks2), which is an indication of the
strength of the long-range coupling, is 10 times lower than that
of the primary one (ks1). As n increases,ks2 becomes larger and

Figure 2. Calculated frequencies for single-bond linear oligomers
(n ) 2-6) in cm-1 from HFSCF computation (ω1-ω5 series, solid
lines) and theoretical values from the tri- (ω1′-ω5′ series, dotted lines)
and penta- (ω1′′-ω5′′ series, dashed lines) fittings. The heptadiagonal
data are not shown but would be visually indistinguishable from the
HFSCF data. Line segments connect points of differentn that are
computed with the same theoretical model.

θB̈ ) -kθ/(I + Rθ2) ≈ -kθ/I + 6Rkθ3/I2 (10)

Figure 3. Time dependence of the angular coordinate variablesθ1

andθ2 over a few periods of oscillation of biphenyl.R is an empirical
parameter that sets the strength of the coupling between the torsional
and breathing vibrations of the phenyl rings. ForR ) 0.0, the period
is 0.54 ps, corresponding toω ) 61 cm-1, and forR ) 0.1, the period
is 0.61 ps, correspondingω ) 54 cm-1. Note that coupling to ring
breathing has the effect of decreasing the frequency of torsional
oscillation.

d2θ1/dt2 ) -ks(θ2 - θ1)/[I + R(θ2 - θ1)
2] (11a)

d2θ2/dt2 ) ks(θ2 - θ1)/[I + R(θ2 - θ1)
2] (11b)
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therefore the contribution from the long-range coupling becomes
more important. This result is consistent with the expected more
significant conjugation in longer systems (in hindsight, a
chemically intuitive result).

The calculated (at HFSCF level,ω1-ω5 series) and predicted
(ω1′′-ω5′′ series) frequencies for the single-bond linear oli-
gomers (n ) 2-6) based on pentadiagonal fitting are shown in
Figure 2. The predicted frequencies are in excellent agreement
with the ones from HFSCF calculations, indicating that the
lumped-inertia treatment accurately recovers the torsional-
twisting frequencies for the singe-bond species.

For the triple-bond molecules, the primary and secondary
force constantskt1 andkt2 were found using the same procedure.
The derived force constants forn ) 2-6 systems are provided
in Table 5.

By substituting the force constants acquired here into the
expressions for the theoretical frequencies derived from the
pentadiagonal fitting, the predicted frequencies were obtained
for each species and are presented in Figure 4 together with
the calculated frequencies. Again, similar to the situation for
the single-bond systems, the predicted frequencies agree well
with the calculated ones at the HFSCF level. The lumped-inertia
pentadiagonal fitting successfully recovers the torsional-twisting
frequencies for the triple bond systems. Note that in both the
single-bonded and triple-bonded species,k1 is almost invariant
with n, consistent with our earlier conclusion that a length-
dependent force constant is not at the root of the unexpectedly
high, low-frequency vibrations.

3. Heptadiagonal Fitting. It may be seen in Figure 2 that,
for then ) 6 system, there is some residual discrepancy between
the theoretical frequency using the pentadiagonal matrix and
HFSCF frequency for the lowest-frequency torsional-twisting
mode. Given the observed importance of long-range coupling,
we carried out calculations including second- and third-nearest-
neighbor coupling. This results in a heptadiagonal matrix form
involving primary (k1), secondary (k2), and tertiary (k3) force
constants. The best-fit force constants for then ) 6 single-
bond system are given parenthetically in Table 4. The derived
theoretical frequencies are visually indistinguishable from the
HFSCF data when superimposed upon Figure 2, which indicates

that the inclusion of this extra-long-range coupling yields
excellent agreement between the theoretical and HFSCF results.
Obviously, by including sufficiently many fitting parameters,
the theoretical model can recover the computed vibrational
frequencies, but the results presented herein show clearly that
long-range coupling is at play in the torsional-twisting dynamics
of polyphenylenes.

To demonstrate how the lumped-inertia technique might be
applied to larger oligomers (n > 6), we repeated the procedure
using full normal-coordinate analysis on oligomersn ) 1, 2,
..., 8 of the single-bond species at the semiempirical AM116

level of theory, which is sufficiently efficient for practical
calculations on larger systems. Table 6 shows the predicted force
constants based on pentadiagonal fitting using the AM1 results.
It reveals the same phenomenon as when HFSCF data is used,
that the contribution from long-range coupling becomes gener-
ally more important with increasingn. The absolute value of
the predicted secondary force constantks2 based on AM1
computation is predicted to be about 10 times higher than that
from HFSCF computation for the same system, suggesting that
AM1 overestimates the long-range coupling. Unfortunately, we
were unable to extend the treatment to larger oligomers of the
triple-bonded species with AM1 semiempirical calculations as
we did in the case of the single bond oligomers. All frequencies
for torsional-twisting modes of the triple-bond systems from

TABLE 4: Predicted Force Constants Based on the
Pentadiagonal (Heptadiagonal forn ) 6 Species) Fitting of
HFSCF Results for Single-Bond Species

n ks1 ks2

2 14.1 N/Aa

3 13.2 -0.1
4 13.9 0.6
5 13.6 0.6
6 13.7 (13.7) 0.8 (0.3, (ks3 ) 0.6))

a For then ) 2 species, there is no second-nearest neighbor therefore
no secondary force constantks2. b ks3 is the tertiary force constant from
the heptadiagonal fitting.

TABLE 5: Predicted Force Constants Based on
Pentadiagonal Fitting of HFSCF Results for Triple-Bond
Species

n kt1 kt2

2 1.0 N/Aa

3 1.0 0.2
4 1.1 0.1
5 1.0 0.2
6 1.1 0.0

a For then ) 2 species, there is no second-nearest neighbor therefore
no secondary force constant (kt2).

Figure 4. Frequencies calculated at the HFSCF level (ω1-ω5 series,
solid lines) and predicted (ω1′-ω5′ series, dashed lines) using the
pentadiagonal matrix for triple bond linear oligomers (n ) 2-6) in
cm-1.

TABLE 6: Predicted Force Constants Based on the
Pentadiagonal Fitting of AM1 Results for Single-Bond
Species

N ks1 ks2

2 18.8 N/Aa

3 17.2 4.5
4 15.4 5.2
5 14.6 5.3
6 13.1 6.4
7 12.9 6.4
8 14.8 5.9

a For then ) 2 species, there is no second-nearest neighbor therefore
no secondary force constant.
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AM1 calculations are almost the same (∼45.0 cm-1) for all
values ofn, which is physically nonsensible.

From AM1 calculations, as shown in Table 2, we note that
the lowest computed frequencies appear to be approaching a
constant (∼45 cm-1) with increasingn, while the predicted
frequencies continue to decrease. This could be a shortcoming
of the lumped-inertia model; however, it is more likely that the
AM1 method fails to accurately capture the lowest-frequency
vibrations. The complete failure of the AM1 method for the
triple bond species lends credence to the latter possibility. As
reported previously,21-23 the energy barriers to internal rotation
are often underestimated by AM1 and may arise from an
inadequacy of the AM1 empirical nuclear repulsion functions.

4. Validation. For validation, we first note that the primary
force constants derived here are all quite similar for systems of
similar chemistry. Furthermore, the force constant of 14.1 kcal/
mol, obtained here forn ) 2 single-bond system, is in good
agreement with the value of 14.6 kcal/mol, derived by calculat-
ing the second derivative of expression

wheren ) 2, 4, and 6 andV1 ) 0.10,V2 ) -1.90, andV3 )
-0.27 results from a B3LYP/6-311+G(d,p) calculation provided
in ref 24.

As mentioned above, for single-bond polyphenyl molecules,
the adjacent rings are offset by∼45° to each other in the
optimized structures. As a validation check, constrained opti-
mizations were performed at both the B3LYP and HF levels
for biphenyl, with the dihedral angle between the two phenyl
rings fixed at 0, 5, 10, ..., 85, and 90° successively (at a 5°
interval). As shown in Figure 5, in the lowest-energy config-
uration, biphenyl adopts a very similar offset structure at the
HF and DFT levels, a dihedral angle of 45 and 50°, respectively.
Note also that the curvatures of the two potentials at their
respective minima are similar. The trends in structural preference
captured here are consistent with those reported by Karpfen et
al.24

5. Mixed Systems with Alternating Single- and Triple-
Bond Linkage. For the mixed system with both single- and
triple-bond linkages between adjacent rings, the second-nearest
neighbor is sufficiently far from the target ring to reduce long-
range coupling; therefore, the tridiagonal matrix is an appropriate
form for the treatment of the ring coupling in such systems.

The equation for vibration motions shown in eq 4 also applies,
and the matrixM is

whenn is an odd number for a molecule such as presented in
Figure 1c, and it is

whenn is an even number for a molecule such as presented in
Figure 1 d. Hereks and kt are the averaged theoretical force
constants overn ) 2-6 systems for the single-bond and triple-
bond torsions, respectively, derived from the pentadiagonal
fitting, which are 13.8 kcal/mol forks and 1.03 kcal/mol forkt,
respectively. Substitution of these values ofks andkt into the
expressions of theoretical frequencies obtained based on ma-
trixes 10 and 11, the frequencies (ωpred) were predicted for the
mixed systems. Table 7 shows the results together with the
calculated values at the HFSCF level denotedωHF. The predicted
frequencies are in good agreement with those from full normal-
mode calculations. The frequencies of molecule withn ) 6 or
more can be easily predicted with the same procedure, but the
electronic-structure computations become increasingly demand-
ing and were not performed in our study.

As a further test of the lumped-inertia technique, the same
procedures were applied on the triple-bond species (n ) 3) with

Figure 5. Relative energies from restricted optimizations of biphenyl
at both HF and DFT levels, denoted HFsgloptand DFTsglopt, respectively.
Energies at each level are referenced to the lowest-energy structure at
the same level.

V(φ) ) ∑
n)1

m 1

2
Vn(1 - cosnφ)

TABLE 7: Calculated (ωHF) and Predicted (ωpred)
Frequencies of the Mixed System at HFSCF Levela

nb ωHF (cm-1) ωpred (cm-1) % error

3 14.5 14.1 2.76
61.8 61.5 0.49

4 10.9 11.4 4.59
60.8 60.9 0.16
61.8 62.0 0.32

5 11.3 9.4 16.80
15.1 15.6 3.31
61.6 61.1 0.81
62.6 62.4 0.32

6 N/A 8.0 N/A
14.1
60.9
61.5
62.6

a The RMS error is 6%.b Numbern is the number of phenyl rings
contained in the molecule under consideration.

Mmix-odd ) (1/I)

[-ks ks 0 ‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ 0
ks -ks - kt kt 0 ‚‚‚ ‚‚‚ ‚‚‚ 0
0 kt -ks - kt ks 0 ‚‚‚ ‚‚‚ 0
‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚
0 ‚‚‚ 0 ks -ks - kt kt 0 0
0 ‚‚‚ ‚‚‚ 0 kt -ks - kt ks 0
0 ‚‚‚ ‚‚‚ ‚‚‚ 0 ks -ks - kt kt

0 ‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ 0 kt -kt

]
(12)

Mmix-eVen ) (1/I)‚

[-ks ks 0 ‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ 0
ks -ks - kt kt 0 ‚‚‚ ‚‚‚ ‚‚‚ 0
0 kt -ks - kt ks 0 ‚‚‚ ‚‚‚ 0
0 0 ks -ks - kt kt 0 ‚‚‚ 0
‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚
0 ‚‚‚ 0 kt -ks - kt ks 0 0
0 ‚‚‚ ‚‚‚ 0 ks -ks - kt kt 0
0 ‚‚‚ ‚‚‚ ‚‚‚ 0 kt -ks - kt ks

0 ‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ 0 ks -ks

]
(13)
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one or two substituents on the middle phenyl ring, as shown
schematically in Figure 6.

The torsional frequencies for these molecules were predicted
by assuming that the introduction of a substituent on the middle
phenyl ring does not affect the force constant of the bond
between adjacent rings, but changes only the moment of inertia
representing the functionalized ring. (This approximation is
discussed in detail below.) For an unfunctionalized ring,Izz )

87 amu Å2. For the monosubstituted system with X) F, Izz )
183 amu Å2, andIzz ) 184 amu Å2 for X ) CH3. For the dual-
substituted system,Izz ) 280 amu Å2 for both X ) F and CH3.
In the case of a single substituent, the axis of symmetry is lost
so there are no true purely torsional modes. The deviation of
the principle moment from the molecular axis is small, however,
and the procedure has reasonable predictive power. As shown
in Table 8, the agreement of the predicted frequencies with those

Figure 6. Schematic drawings of the substituted species (X) F, Me). When optimized at the HFSCF level, all phenyl rings are parallel to one
another.

TABLE 8: Calculated (ωcalc) and Predicted (ωpred) Frequencies of the Substituted System at the HFSCF Level

substituent ωcalc (cm-1) ωpred (cm-1) substituent ωcalc (cm-1) ωpred (cm-1)

-H 13.2 11.2 -F ((2,5)-)b 17.3 11.7
19.6 19.4 20.7 14.9

-Fa 13.8 11.7 -Me ((2,6)-)b 14.1 11.7
18.6 16.4 16.2 14.9

-Mea 12.1 11.7 -Me ((2,5)-)b 10.9 11.7
13.6 16.4 14.1 14.9

-F ((2,6)-)b 15.0 11.7
20.6 14.9

a Species with one substituent-X. b Species with two substituents-X.

TABLE 9: Calculated and Predicted Frequencies for Substituted Biphenyl

-Xa σm
b ωHF

c Id ke ωt1(kave)f ωt2(kbiph)g ∆ω1
h ∆ω2

j

1 -OH 0.12 48.8 65.5 1.56× 105 46.6 49.2 2.17 -0.46
2 -NH2 -0.16 47.9 63.8 1.47× 105 47.2 49.9 0.70 -1.97
3 -CH3 -0.07 48.6 63.0 1.49× 105 47.5 50.2 1.06 -1.62
4 -OCH3 0.12 44.1 72.6 1.41× 105 44.3 46.8 -0.18 -2.68
5 -H 0 60.1 44.0 1.59× 105 56.9 60.1 3.21 0.00
6 -F 0.34 47.8 66.8 1.53× 105 46.2 48.8 1.64 -0.96
7 -Cl 0.37 42.9 76.5 1.41× 105 43.1 45.6 -0.19 -2.63
8 -OCOCH3 0.39 42.0 80.9 1.43× 105 41.9 44.3 0.05 -2.31
9 -CHCl2 0.31 39.4 84.7 1.31× 105 41.0 43.3 -1.61 -3.93
10 -CHF2 0.29 41.6 80.2 1.39× 105 42.1 44.5 -0.55 -2.92
11 -COOH 0.35 41.4 79.4 1.36× 105 42.3 44.7 -0.95 -3.33
12 -CCl3 0.4 39.6 85.2 1.33× 105 40.9 43.2 -1.29 -3.59
13 -COCH3 0.38 43.2 78.8 1.46× 105 42.5 44.9 0.63 -1.77
14 -CF3 0.43 40.1 82.4 1.32× 105 41.6 43.9 -1.49 -3.83
15 -CN 0.56 42.4 75.7 1.36× 105 43.4 45.8 -0.95 -3.40
16 -NO2 0.71 41.3 79.3 1.35× 105 42.4 44.8 -1.09 -3.48
kave) 1.42× 105

kbiph ) 1.59× 105

average difference 0.07 -2.43

a Substituent.b Substituent parameter.25 c Frequency from HF calculationωHF in cm-1. d Reduced moment of inertia of the entire molecule in
amu Å2. e Force constantk based on HF frequency in cm-2 amu Å2. f Theoretical frequencyωt1 in cm-1 using averaged force constantkave.
g Theoretical frequencyωt2 in cm-1 using the force constant of unsubstituted biphenyl moleculekbiph. h Difference betweenωHF andωt1. j Difference
betweenωHF andωt2.
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from HFSCF calculations is quite good. Note that the greatest
disagreement is for the F--substituted species. With the highest
electronegativity of all elements, fluorine can be expected to
have a larger-than-average effect on the electronic structure of
the system, and therefore the assumption that the force constant
is independent of substituent is likely less valid.

6. Effect of Substituents on Torsional Frequencies and
Force Constants. Calculations were undertaken for dual-
substituted, single- and triple-bonded two-ring (n ) 2) systems
to investigate the effect of the presence of substituents on the
force constant and torsional frequencies. The 15 substituents
considered are listed in Table 9, together with the calculated
torsional vibrational frequencies at the HF levelωHF, predicted
frequenciesωt1 using the average force constantkave, and
predicted frequenciesωt2 using the force constant of unsubsti-
tuted biphenylkbiph. Note that the predictions are excellent. If
the force constant for unsubstituted biphenyl is used, the average
difference between theoretical frequencies and the ones from
HF calculations,ωHF - ωt1, is just 2.43 cm-1. If the average
force constant is used, the differenceωHF - ωt2 drops to 0.07
cm-1. Figure 7 shows the three sets of frequenciesωHF, ωt1,
andωt2 for the 16 single-bond molecules, with the horizontal
axis in the same order shown in Table 9. Obviously, the
predicted frequencies track the HF values very well.

The results shown in Table 9 indicate that the relative standard
variation in the HF-calculated frequencyω is 11.8%, but the
relative standard deviation in force constantk is only 5.9%. Note
that the frequency includes contributions from both changes in
inertiaandchanges in electronic structure, but force constantk
has had the contributions from changes in inertia divided out,
so its variation is entirely due to electronic structure effects.
Upon the addition of substituents, changes in the torsional
frequencies appear to be governed heavily by the changes in
the inertias. This result supports the use ofk from the
unsubstituted species to estimate the frequencies of substituted
species by changing only the inertia becausek depends weakly
on the substituent.

Conclusions

We have applied the lumped-inertia method to torsional-
twisting modes of low molecular weight polyphenylene and
polyethynylphenylene. The method may be parametrized with
very simple systems, for which full ab initio quantum electronic-

structure calculations and normal-coordinate analysis are trac-
table and allows for straightforward prediction of the torsional-
twisting frequencies for oligomers of essential arbitrary length.
The method is validated by the accurate prediction of the
torsional vibrational frequencies for oligomers with mixed
single- and triple-bond linkages between adjacent phenyl rings.
Excellent accuracy is achieved when coupling through next-
nearest-neighbor rings is included (a pentadiagonal matrix form)
and demonstrates that the long-range coupling plays an impor-
tant role in the torsional-twisting dynamics of these systems.
Application of the technique to substituted biphenyls allows for
a partitioning of the changes in torsional frequencies that take
place upon substitution into contributions from changes to the
inertial moments and changes to the electronic structure.
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