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The generalized hybrid orbital (GHO) method provides a way to combine quantum mechanical (QM) and
molecular mechanical (MM) calculations on a single molecular system or supramolecular assembly by providing
an electrostatically stable connection between the QM portion and the MM portion. The GHO method has
previously been developed for semiempirical molecular orbital calculations, on the basis of neglect of diatomic
differential overlap (GHG-NDDO); in the present work, it is extended to the ab initio HartrEeck (HF)

level (GHO-AIHF). First, the theoretical foundation for the GH@IHF extension is discussed, and four
different approaches are proposed to overcome the nonorthogonality between active molecular orbitals (MOs)
and auxiliary MOs. In the first scheme, the auxiliary hybrid basis functions are projected out of the active
QM basis. The second scheme neglects the diatomic differential overlap between the auxiliary basis and the
active QM basis. In the third scheme, hybrid orbitals are constructed frémdibetype symmetric
orthogonalized atomic orbitals on the basis of globaitm orthogonalization. The fourth procedure involves
local Lowdin orthogonalization. The procedures for implementing the four GAMIF schemes are described,
and analytical gradient expressions are derived. The unparametrized-G&H® method is tested for
hydrocarbons with various basis sets, in particular, the geometries and charges are compared with pure QM
calculations for ethane, ethyl radical, amectane, and the method is tested for the torsion potential around
the central bond im-butane. Furthermore, a parametrization of the GHIHF method for the MIDI! basis

is presented and tested for 16 molecules and ions with various functional groups near the QM/MM boundary.
The results show the robustness of the algorithm and illustrate the significant improvement made by introducing
several one-electron integral-scaling parameters. Finally, the energetic performance of the method is tested
by comparing the proton affinities for a set of small model compounds (alcohols, amines, thiols, and acids)
to results obtained from fully QM calculations. We conclude that the GABIF scheme provides a reasonable
fundamental solution to the problem of combining an ab initio quantum mechanical electronic structure
calculation with molecular mechanics.

I. Introduction such as an organometallic complex or a macromolecule, the
. . . boundary may pass through one or more covalent bonds. For
Modeling the energetics and dynamics of macromolecular gyample. in enzymatic reactions, some protein residues (as well
systems and large complexes presents a major challenge fol,g e sybstrate) participate in the chemical reactions, and,
modern theoretical chemistry, because of the size and 'mr'cacytherefore, they must be included in the QM region; thus, the
of the systems. A powerful tool for meeting this challenge is QM/MM boundary must pass through covalent bonds of the
the Co”.‘b'“ed use cilquantum . mgchanlcs _and mc_:lecular protein. The treatment of the QM and MM boundary is far from
mechanlcs. (QM/MM."# The motivation for this comblned straightforward, which represents a major concern in the
approach is that processes involving bond breaking, bond accuracy of combined QM/MM methods. Several different
forming, and electronic excit_ation should be described by QM, methods have been developed to truncaté the QM electronic
whereas much of the remainder of the molecule (or system) wave function gracefully at the QM/MM boundary when it

may be adequately treated by classical force fields, i.e., MM. asses throuah a bond. This paper describes new aporoaches
Thus, combined QM/MM methods synthesize the computational {Jo this problzgn - 1hIs pap ! W app

accuracy of QM with the computational efficiency of MM for )
large systems. In the type of QM/MM synthesis considered here, ~The most straightforward strategy to treat QM/MM bound-
the system is partitioned into a small subsystem that is treatedaries is the so-called “link atom” approach, whichsiaeH atom
by QM and a large subsystem that is treated by MM. A special t0 cap the free valence of the QM fragmé#tBecause of its
case is the treatment of solvation for which the boundary simplicity, the link atom approach has been widely used in all
between the QM and MM subsystems can be placed betweentypes of QM/MM applications, both at the semiempirical and
solute and solvent molecules that are not covalently bonded toab initio levels. A drawback of the “link atom” method is that
each other. When using QM and MM within a single molecule, it introduces additional degrees of freedom that are not present
in the original molecular system. This introduces complications
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and the link atom; these problems have been thoroughly MM atoms to which it is bonded), and one hopes that this will
discussed?2%354land methods to circumvent the problem have make the parametrization transferable so that one might not need
been proposetf:*2In a so-called “double link atom” approaéh, to perform calculations on new model systems each time the
two link atoms are added at each QM/MM boundary to alleviate GHO method is applied. Furthermore, the hybridization of these
electrostatic unbalance introduced by a single link atom, and orbitals varies dynamically during molecular dynamics simula-
delocalized Gaussian functions are used to correct the strongtions, whereas, in the LSCF and the frozen orbital methods,
polarization near the QM/MM boundary region. Although the the localized orbitals are treated as independent of geometrical
question of correctly balancing the polarization at the QM/MM variations. The active hybrid orbital is allowed to participate in
boundary when one uses link atoms continues to be troublesomethe SCF optimizations, and it mixes freely with other QM basis
meaningful results can be obtained, especially when one functions. The other three hybrid orbitals, which are called
introduces refinements (for example, parametrized treatmentsauxiliary orbitals, do not mix and are excluded from the SCF
of the electrostatic potentials or point charges that are smearedprocedure; however, they provide a quantum mechanical
out near the boundaryy:2%3542However, it is reasonable to  representation of the charge distribution in the bonds of the
ask whether there is a more fundamental way to join the boundary atom to its MM neighbors, and this delocalized
guantum mechanical and classical mechanical regions withoutrepresentation is more robust than using point charges at the
introducing the extra degrees of degrees of freedom that areboundary. In the semiempirical molecular orlfitétamework
associated with nonphysical atoms. for which the method was developed, these treatments neglect

An example of a more fundamental approach that has beendiatomic differential overlap (NDDO).
developed to provide a quantum mechanical description of bonds The GHO boundary treatment has been used successfully in
at the QM/MM boundaries is to use localized orbitals. The first recent enzyme dynamics studies that have been based on
application of this approach was described by Rivail and co- combined QM/MM potential energy surfaces (PESs)*’
workers, using the local self-consistent field (LSCF) algo- These applications used semiempirical QM modelhich
rithm 6925 |n the LSCF framework, the chemical bonds that Often have large errors in quantitative energy calculations; thus,
connect the QM and MM fragments are called frontier bonds, SPecific parametrizatiofi$are typically needed. To overcome
and they are represented by a set of strictly localized bond this I|m|tat|or_1, the present _ar_t|_cle presents an extension of the
orbitals (SLBOs), which are determined by calculations for small GHO formalism to the ab initio HartreeFock (AIHF) level.
model compounds. The strictly localized character of these I addition to be.lng of interest in its own rlght., a formulation
orbitals helps to ensure that they are transferable from the modelPased on AIHF is a first step toward developing methods for
system to the large molecule. The SLBOs are excluded from hybrid DFT and for post-HF correlated methods based on a HF
the self-consistent field (SCF) optimization of the large mol- reference.
ecule, to prevent their mixture with other QM basis functions. ~ The organization of the paper is as follows. The GHOHF
The LSCF method was first developed for semiempirical @lgorithmis presented in Section II. Details of orthogonalization
Hamiltonians, and it was then generalized to ab initio Hartree ~ Procedures are described in Section Ill. For simplicity, the main
Fock (HF), post-HF, and density functional theory (DFT) textis restricted to closed-shell singlets; the changes required
methods with analytical gradient8.Recently, specific force- 10 treat open-shell systems are presented in an appendix. The
field parameters have also been deve|0ped for the LSCFimpIementation of GHGAIHF is discussed in Section IV.
method? Although the LSCF framework is theoretically more ~Section V presents tests of the algorithm with no new
robust than using link atoms, the unavoidable need for model Parameters. Section VI discusses further parametrization by
studies for each individual system is a drawback. To solve this Scaling integrals that involve orbitals at the QM/MM boundary.
problem, Friesner and co-workers parametrized a library of Section VIl contains concluding remarks.
frozen densities for all side chains of amino aciéa. detailed
quantitative test of the LSCF approach showed that, similar to !l. Theory

the link atom method, it can be satisfactory if used with special The presentation of the GHOAIHF method is organized as

care?? follows. In Subsection IIA, a brief review of the principal
The link-atom and LSCF methods continue to be used in elements of the GHO method in given, and some useful terms
various forms. For example, Friesner and co-workers called their and notation used throughout the later discussions are defined.
LSCF library a “frozen orbital” approacH,and Zhang et & In Subsection 11B, the major theoretical concerns are discussed,
developed a “pseudo-bond” method, which is a link-atom and a general overlap constraint is formulated. In Section Il
implementation, in which the link atom is a pseudo-halogen we propose four different strategies for enforcing this constraint.
atom whose lone-pair orbitals and electrons serve as an effective o' The Generalized Hybrid Orbital (GHO) Method with
core potential (ECP). The ECP parameters are adjusted to mimic\eglect of Overlap. Because the GHO algorithm has been
the properties of the original bond. Recently, Swart proposed a presented at the semiempirical level elsewRénme provide
version of the link atom approach called AddReméve. only a brief summary of the major elements relevant to the
Another approach with some similarity to the LSCF method further development in the present article. In this section, we
is the generalized hybrid orbital (GHO) meth®&dIn this describe the case in which the QM system is approximated by
approach, a set of four hybrid orbitals is assigned to each MM neglect of diatomic differential overl&p(NDDO) and the QM/
atom at a QM/MM boundary; such atoms are called boundary MM partition of the molecular system is placed at st C
atoms and are denoted by the symbol B. One of the hybrid atom, which is called a GHO boundary atom B; in principle, B
orbitals, called the active orbital, is directed toward the QM can be any other type of atom or have other hybridizations,
atom to which the B atom is bonded; this atom is denoted by although the present choice is sufficient for treating a large
the symbol A. In the initial application, the boundary atom has number of systems, including most enzyme systems. The B atom
been chosen to be an3s@ atom, although other atoms can is both a QM and an MM atom in the GHO method, and the
also be used. The hybridization scheme is completely determinedQM atom bonded to the B atom is called the frontier atom A.
by the local geometry of four atoms (the B atom and the three The three MM atoms directly bonded to the B atom are denoted
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TABLE 1: Notation

symbol description
B the GHO boundary atom
A the frontier atom, i.e., the QM atom to which the B atom

is directly bonded
fully QM atoms, including the A atom but not the B atom
X,Y,Z thethree MM atoms to which the B atom is directly bonded

Au fully QM basis functions on Q; index = 1—N
e active hybrid basis function on the B atom
b auxiliary hybrid basis on the B atom; the index= 1—3
(or takes the values y, andz)
Xa active basis functiong( plus#g); indexa= 1—(N + 1).
Figure 1. Schematic representation of the QM/MM partition in the Note thatyn+1 = #s.
GHO method. Os the MM partial charge on the B atom

by the symbols X, Y, and Z (see Figure 1). We define atoms the CHARMM parametrization of the MM force field hag
other than B in the QM subsystem as “fully QM atoms”, which = —0.27 for a methyl carbon argk = —0.18 for a methylene

are denoted by the symbol Q, because they are fully treated bycarbon. Thus, the auxiliary orbital occupancy for these two key
guantum mechanics. Let the total number of basis functions oncases is 1.09 and 1.06, respectively. (It should be emphasized
fully QM atoms beN, and denote these by, whereu =1, 2, that all partial atomic charges on MM atoms, including the
..., N. For the GHO boundary atom B, a set of hybrid orbitals boundary atoms, are retained without modification, and they
{8, 7% ny, 7 is constructed by hybridization of the atonsic all interact with QM electrons and nuclei.) Many of the notations
andp valence basis functions on the B atom. The orbjtals defined in this paragraph will be used throughout the remainder
the active hybrid orbital. The other three hybrid orbitals are the of the article; we summarize them in Table 1 for further
auxiliary orbitals, denoted by, (whereb = X, y, 2). A basis reference.

transformation matrixTp, which has been defined in detail The total energy is the sum of the QM energy, the MM
previously?® relates these hybrid orbitals to the atorsiandp energy, and the QM/MM interaction energy:
orbitals on the B atom:
E*= Eom T Ewm + Eommm )
UJ:! S
M| _ T.1 Py @ whereEqw and Eum are the internal energies of the QM and
Ny b py MM subsystems, respectively, with the MM terms that involve
7, P, only QM atoms (i.e., that involve only fully QM atoms and the

boundary atom) removed, ai@wmv contains (i) the interac-
As a result of the hybridizatiods,17x1y.172 is an orthonormal  tion energy of delocalized electrons (including those in auxiliary
set: orbitals) with MM partial charges, (ii) the interaction energy of
QM nuclei with MM partial charges, and (iii) nonbonded van
Sq=WJn=0y  (Wherecd=B,xy,2 (2) der Waals interactions between QM and MM atoms. Because
the NDDO method includes only valence electrons, all QM
The fully QM basis functionsy,) plus the active hybrid basis  nuclear charges (including the nuclear charge on the B atom)
function (78) form the (N + 1)-dimensional active basis space are reduced by the number of core electrons. It is useful to
for the SCF calculation; functions in this active space are rewrite eq 5 as
denoted byy,. The N + 1 occupied and virtual molecular

orbitals that result from diagonalization of the Fock méftif E°'=E"®+ E,,, + Epc (6)
. . . . . . QM,QM/MM

the SCF calculation are linear combinations of these active basis

functions: whereE°™ is the electronic component of the sumEfy and

nuc

component (i) of Equwmm and E gy oumv IS the sum of
components (ii) and (iii) oEqommm and the nucleus repulsion
terms in theEgm term.

In the GHO formalism, there are two classes of MOs: active
whereynt1 = 778. Each of the three auxiliary basis functions (act) and auxiliary (aux). Consequently, we can write
forms an auxiliary MO by itself, which, for each geometry, is

N N+1
= ZCUiXu T Coitfpg = aniXa (i=22.N+1) (3
u= a=

to be frozen in the SCF procedure: S (7)

P = Ty These energy terms can be further expressed as

Ornia =1 N+1 AN+1

we D Nt (G AR +—Zpg(st||uU) +
Pnra = 1, (4) =1 28
3

The frozen auxiliary MOs provide an effective charge distribu- Zpg'b(bu luv)| (8)
tion to mimic the fractional charges present in the three bonds b=

that are formed by the B atom and its MM neighb$i§ Y, 3

Z}. The occupatiorF’Eb assigned to each auxiliary orbital is g — § pH
chosen to be 4 gg/3, wheregg is the MM partial charge of bZ\ bb
the B atom, so that the MM partial charge on the B atom is

evenly distributed over three auxiliary orbitals. For example, whereP; andH; are elements of the density matfxand the

1 3
(Hbp + Ihp) + E;Pmccubb)] 9)
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conventional one-electron matrid,*243 which contains the polarization functions on the boundary atom would unnecessarily
kinetic energy of electrons and the attraction from QM nuclei; complicate the treatment, we want to allow for different basis
andl represents the energy due to interaction with MM partial sets on the boundary atom and the fully quantum atoms.
charges. The superscript “H” is added to indicate that these Regardless of whether the same basis set is used for the
guantities are evaluated in the hybrid (H) basis. The shorthandboundary atom, there will be an imbalance between the QM

notation of the two-electron integral is defined as fragment and the boundary atom, which may ultimately need
be resolved by parametrizing certain electronic integrals.
(Uv||A0) = (Uvjdo) — l(u,“m) (10a) Nevertheless, one criterion for judging whether the QM and

2

MM regions have been joined in a physically reasonable way
is that any reparametrization should yield good agreement with
full QM calculations. Because parameters are necessarily
involved anyway, it is reasonable to use a representation of the
(uvldo) = ffdfldfzu*(l) v(DA*(2)o(2)  (10Db) boundary atom that is simple and straightforward to implement.
Following this line of reasoning, we decided to forego explicit
consideration of the slcore electrons on B, and we have
assigned an STO-3Gvalence-only (STO-3Gv) minimal basis
set to the B atom. To balance the neglect of core electrons, the
nuclear charge of the boundary atom B, for carbon, is reduced
from 6 to 4. With this choice of basis functions on the B atom,
the formulation of the hybrid basis orbitals in the GHAIHF
*method is greatly simplified. It should be emphasized that we
impose no restrictions on the basis functions for atoms in the
QM region. The basis imbalance between the fully QM atoms

where

andrt; denotes the spatial coordinates of electrohhe active
basis indicegu,v,s,t} all run from 1 toN + 1, and the auxiliary
basis indicegb,c} run from 1 to 3. The SCF procedure only
optimizesE2®tover the active basis space; the endggy, which

is due to auxiliary orbitals, is a fixed constant for a given
geometry, although its derivatives, with respect to nuclear
coordinates, are nonzero because of the transformation matri
Ty. After further basis transformation, the total energy can be
conveniently evaluated in the atomic orbital (AO) basis as

N4 and the boundary atom B may be compensated (if necessary)
Eot="_ pG\UO(HC\yO + F/JUO) + Eyy + EnQuh;’QM/MM (11) by parametrizations Qf the mtegrals_ that involve orbitals on the
206 B atom, as we will discuss in Section VI.
' . . The next major issue to be addressed in extending the GHO
B. Generalized Hybrid Orbitals for a Nonorthogonal method to the ab initio HF level is the treatment of orthogonality

Basis.The formulatiod® of the GHO method that we have just  constraints of MOs. This concern is present not only in the GHO

reviewed was simplified in several ways by the approximations method but also in the LSCF-type methods. The ab initio HF

made in the semiempirical NDDO Hamiltonians. An especially equation® are derived from the variational principle for the

critical issue is that, because all basis functions are assumed taenergy under MO orthonormality constraints:

be orthogonal to each other in these methods, all auxiliary MOs

are automatically orthogonal to active MOs, even though they c'sc=1 (12)

are not eigenvectors of the Fock matrix. Moreover, the quantum . . o

mechanical calculation is semiempirically parametrized in terms WhereC is a matrix whose columns are the MO coefficients

of a small number of quantities such AsUss andUp,* and anq the dagger syr_nbol M d_enotes a transpose. The MOs that

many types of integrals are set equal to Z&rep that only a satisfy orthonormality constraints and diagonalize the Lagrange

small set of integral types must be considered at the GHO multiplier matrix are called canonipal MOs. The canonical MOs

boundary?® Finally, the density force terff5°vanishes in the ~ are unique, except for degeneracies and phase funéﬂ_éﬁm

GHO energy derivative expression (See below)' because theGHO Ca|9u|atlons_, Only a Subset Of the MOS are Can0n|cal MOS

overlap matrix is unity under the NDDO approximation. For The auxiliary orbitals in the GHO method are not orthogonal

ab initio HF theory, all the aforementioned simple features t0 the active MOs because the auxiliary orbitals are not

become more complicated. eigenvectors of the Fock operator. To retain the orthogonality
There are four main aspects that must be considered in theconstraint of eq 12 for active MOs and auxiliary orbitals, the

treatment of the QM/MM boundary in the generalized hybrid following conditions must be imposed, in addition to the SCF

orbital method, to extend the method to ab initio molecular Procedure in the optimization of té + 1 active MOs:

orbital theory. First is the representation of the boundary atom. _

Second is the generality with respect to using arbitrary basis (@al®p) =0

sets for the QM subsystem. Third is the question of whether @=1,2,..N+1,b=N+2,N+3,N+4) (13)

the hybrid orbitals must be explicitly orthogonalized to the

orbitals of the fully QM atoms. Finally, we must mitigate

systematic errors that may occur due to the boundary treatmen

and learn if they can be removed by scaling electronic integrals

that involve the boundary orbitals. G n,C=0 @=1,2 .N+1b=xy2 (14)
In deciding which representation to use for the boundary altfb T ’ "

atom, we note that all combined QM/MM approaches contain  Taking into consideration that the active hybrid basis function
empirical parameters, because these calculations ultimately musf,. (... 1) is constructed as being orthogonal to the other

balance the treatment of a QM fragment and a highly param- 5xiliary basis functions (see eq 2), the portion of eq 14 that
etrized MM component. Nevertheless, we want to gain the mst he enforced separately is

advantages of parameter-free HF calculations in regions removed

from the boundary, and, thus, we want to retain flexibility in Si= 0 n,=0 u=12,..N;b=xy,2 (15)
basis set selection for the QM fragment in regions far from the

boundary. Because reasonably accurate ab initio HF calculations In the present work, four different approaches for enforcing
usually require at least a polarized split valence basis set, buteq 15 are proposed and tested: (i) basis set projection, (ii) the

where g, and ¢y, represent active and auxiliary MOs, respec-
ttively. Equation 13 can be formulated in terms of the mixed
atomic and hybrid basis orbitals:
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neglect of diatomic differential auxiliary overlap, (iii) hybridiza- N+4
tion based on global lwdin orthogonalized atomic orbitals, €= Z CiCiFw, (=N+2,N+3,N+4) (21)
and (iv) hybridization based on local wadlin orthogonalization ur=1

(LLO) near the boundary. The detailed orthogonalization
procedures will be discussed in Section Ill.

The analytical energy gradients in the GHO method are
evaluated as the sum of the conventional HF graéiéhand
a correction term that is due to the basis transformation:

In particular, we evaluate this expression using the hybrid basis,
in which only diagonal Fock elements survive:

¢=Fh(i=N+2,N+3,N+4,b=xy,2 (22)

o o The occupation numbe?’ for an auxiliary orbital is equal to
3Eorb_ gET N 8PA iy 8W o (1 — gs/3.0), as in Subslection lA.
= + Z z a? (16)
aq aq T

[ll. Orthogonalization Procedures

whereWA%and SA° are the energy-weighted density matfix In this section, we present four different approaches for
and overlap matrix, respectively, in the AO basis; grittnotes enforcing the orthogonality constraints in eq 15. The first one
only the nuclear coordinates of the boundary atom and its MM is to project the auxiliary basis out of the active basis and
neighbors X, Y, and Z. The expressions for energy-gradient develop the MOs by an expansion over the projected active
components for other atoms are unaffected by the GHO basis. The projection operation makes the active basis orthogonal
procedure. Note that thé&WA%/aq term comes from the GHO  to the auxiliary basis, while retaining the strictly localized
basis transformation on the density forces, and it is not presentcharacter of the auxiliary orbitals. The second method involves
in the semiemprical GHO gradient formula, because, in semi- the NDDO approximation at the boundary. Specifically, we
empirical methods, the overlap matrix is assumed to be a unit directly neglect the diatomic differential overlaps between
matrix. In ab initio calculations, the matrix@sandW are further ~ auxiliary hybrid orbitals and basis functions on fully QM atoms;
transformed until the differentiated function is a true variational this is called the neglect of diatomic differential auxiliary overlap
density: (NDDAO) approximation. For consistency, the corresponding
two-electron integrals that involve the two-center charge
Tt 5P distributions between auxiliary orbitals and active QM basis

o TP T’
oP" = ( ) 8TPHTT + TP _q +T aq 1t a7 functions also are neglected. In the third and fourth approaches,

9 9q 9 the hybrid orbitals are developed by hybridization Gfddin>455
WA aTwhTt T Tt wH symmetrically orthogonalized atomic orbitals (OAOs). This
9 Y ( 5 ) = ?)—WHTJr + TWH%— + Ta8 T hybridization scheme is justified by the fact that the symmetric

q q q q q (18) OAOs maximally resemble the original AOs in the least-squares

sense. The hybrid orbitals from OAOs consequently resemble
hybrid orbitals that are based on the original AOs. In the third
method, all basis functions are orthogonal to each other;
however, in the fourth method, orthogonalization is performed

whereT is the total basis transformation matrix from the hybrid
basis to the AO basis:

1. 0 only locally near each boundary.
T :( N T ) (19) A. Projected Basis Method. The essential step of this
0 T approach is to construct a set of basis functions in the QM

o region, orthogonal to the auxiliary orbitals, by the following
We do not need to evaluate the last terms (derivative of a projection:

variational density) in egs 17 and 18, because they have already
been included in the conventional HF gradient calculati8fs. 3 3
The gradients&T/dq) of the basis transformation matrix was  1%,0= (1 — Zﬁn)fllz(lxum_ Zlﬂb[ﬂﬂibwu[ﬂ
derived elsewheré. b= b=
To evaluate the GHOAIHF gradient analytically, according u=12..,Nb=xy,2 (23)
to eq 16, the energy-weighted density matti%© is required.

The energy-weighted density matrix eleme\nﬁf can be where Sy, is the overlap integral betweepn, and 7, and the

fully QM basis functions after the projection are denoted.as

written as The normalization factor is obtained based on the fact that the
N4 hybrid basis functions are constructed to be orthonormal to each
WRO = %%, Gy (20) other (eq 2). Instead of using eq 3, tNet 1 active MOs are
uv IZ expanded over th&l projected fully QM basis functiongy()
and one active hybrid basis functiong:
where the sum includes the auxiliary MQs; andc,; are the N N
respective orbital coefﬁuentgcg‘or atomic basis functlunamq = SCFtCane=S &G (=1, N+1) (24)
v in molecular orbitali; andn’™ ande; denote the occupation & I

number and the orbital energy for molecular orbitalespec-

tively. The orbital energies for thH + 1 active MOs can be ~ where yn+1 = yn+1 = #B. The auxiliary MOs are still the
obtained in the customary way by solving Roothaan’s equ&tion auxiliary hybrid basis functions as expressed in eq 4. The
in the active space. The auxiliary orbital energies are not directly orthogonality between active MOs and auxiliary MOs is
available, because the auxiliary MOs are excluded from the satisfied, because of the orthogonality betwgeandsyy, similar
active SCF space. However, we evaluate the auxiliary orbital to eq 15:

energies explicitly as expectation values of the Fock operator,
which yields Sw=Qm=0  U=12..Nb=xy,2 (25)
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Thus, the overall transformation from thet+ 4 atomic orbitals EPH drop auxiliary EPH
into the projected orthogonal hybrid atomic orbitals can be N+4 N+1

expressed as follows: L . .
(10) Lowdin transform the Fock matrix from the PH basis to

7=Ty (26) the orthogonalized hybrid (OH) basis:
wherey is a column matrix of the projected orbitals apds FOH — (gPH y~1/2¢PH H\—1/2
the column matrix of the atomic orbitals. The transformation v = (S RS
matrix is given below: . . o . .
g (11) Diagonalize the Fock matrix in the OH basis to obtain
Iy O a new set of active MOs by solving Roothaan’s equation in the
T= (0 Tb)M (27) (N + 1)-dimensional active space:
whereTy, is the 4 x 4 hybridization transformation matrix and FrriCo = Ctle

M relates the hybrid (H) basis to the projected hybrid (PH) basis:
(12) Back Lavdin transform the MOs to the PH basis:

C 0 . 0 000
0 & . 0 0000 = (St e
C
M= 8 8 - 8 01 % % % (28) (13) Form the active density matrix in the PH basi/,.
_ _ o (14) Add the diagonal auxiliary densitiy, to the active
€Sy ~CGSx . TGSk 0 1 0 0 density matrix, i.e., form the total density matrix in the PH
TGSy TGSy . TGSy 0010 basis: PR},
—CS, GS, .. &S 0 0 0 1 (15) Transform the density matrix back to the AO basis:

wherec, (u=1, 2, ...,,N) in eq 28 is the normalization factor pAO _ TpPH Tt
for the projected basig,: N+4 — TEN+a

3 (16) Compute the total energy and test for SCF convergence.
c,=1- Zaib)_m (u=1,2,..N) (29) If not yet converged, go to step (7).
b= To derive the analytical gradient expression for the GHO
. . ) AIHF method based on the projected basis, we start from eq
Because the hybrid basis functions are not changed by thels, and derivatives oR*%and WACare expressed as
projection operation, their transformation matrix is a unit
submatrix inM. The projection operation makes the active basis 4pR0 K (TPPHT*) -

PH t
orthogonal to the auxiliary basis but retains the strictly localized ﬂpPHTT + T&TT + TpPHﬂ

character of the auxiliary orbitals. aq aq aq aq aq
The algorithm for the SCF procedure using the projected (30)
hybrid basis function is given below: AO PHT- T
(1) Form the projection matri# according to eqs 28 and W™ _ oW il ) =
29. aq aq 1
(2) Form the total transformation matfxfrom the AO basis AT, prrt WL pHOT
to the PH basis using eq 27. an AT aq W aq (31)

(3) Transform the overlap matrix to the PH basis:
where basis transformation matrixis defined in eq 27. The
Sf,il =T' O+ n derivatives on the transformation matfixcan be written as
(4) Drop columns and rows corresponding to the auxiliary aT (I 0 \oMm 00
orbitals to obtain the reduced overlap matrix for the active 8_01_ 0o T, 8_q 0 aT,/aq M (32)
orbitals S} :
. drop auxiliary _py, whereM is the proje;ctiqn transformation matrix defined by eqs
33+4 — S?,H 28 and 29. The derivatives of elementdMncan be formulated
as
(5) Form the Laovdin transformation matrix for the active

PH basis: 8{;,) 2 S
(6) Guess the total density matrix in the AO basiZ?,. ac a1 - ZSib) s 3
(7) Form the total Fock matrix in the AO basi§a.,. Tu b= —&Ys, _ub (33)
(8) Transform the Fock matrix from the AO basis to the PH aq aq “bZl b q
basis: (=S, s s,
u u b
Frl, =TRRQ,T Taq g G (34)

(9) Drop columns and rows corresponding to auxiliary orbitals Recall thatSy, is the overlap integral betweegn andsy in the
to obtain the reduced Fock matrix for the active orbife§,: hybrid basis; thus,
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Of'N
O R S

aq aq
Iy 0\
8(0 T )SAO(N 0 )+(|N $ )Tﬁ
0 Iy/) aq

i T)SAoa( )

The partial derivatives in the first and third terms only operate
on the lower right-hand element of the matrices.

B. NDDAO Approximation. If the MO expansion strictly
follow eqs 3 and 4, as we discussed in Section IIB, eq 15 is a
necessary and sufficient condition to ensure that the auxiliary
MOs are orthogonal to the active MOs. The simplest approach
is to follow semiempirical approximations, in which the orbital
orthogonality of eq 15 is ensured by neglecting the diatomic
differential overlap between the auxiliary orbitajsand basis
functionsy, on QM atoms. This is called the neglect of diatomic
differential auxiliary overlap (NDDAO) approximation. For
consistency, two-electron integrals that involve the differential

Iy O
oT

Iy 0
oq

)+

(39)

overlapyun, also are neglected, because such a charge distribu-

tion vanishes under the NDDAO approximation:
(Xuﬂb'XY) =0

where X and Y denote any basis functions. To elucidate the
effects of the NDDAO approximation on the SCF procedure
and the GHO energy, we first write the Fock matrix in the hybrid
basis, without any approximation:

(36)

N+1

+ZP

FH __HH

uy

’(St|UU) - —(sutv)]

1
bZ‘PEb[(bbwv) - 5(bu|bu)] (37)

Fop = Hpb + zP ’(uy|bb) ——(ub|ub)]

ur=1

2 PﬁB[(ume) - —(ub|Bb)] + PQB[(Bme)

5(Bb|Bb)] + P?C’(cc|bb)—£(cb|cb)] (38)

N+1

H H H 1
Fig = He + Zpst (suB) — —(su|tB) +
S&=

ZP [(bb|uB) ——(bU|bB)] (39)

N+1

Pl =His + 3P [(stlBB) - —(sB|tB)]

Pgb[(buBB) - 5(bB|bB)] (40)

where the indicegu,v} for fully QM basis function run from
1toNin eqgs 3739. Note that other off-diagonal terms of the
Fock matrix that involvern, (Fit, Fh, and Fi\) are not

presented explicitly here, because they neither participate in the
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SCF iteration (dropped as auxiliary entries) nor enter the energy
evaluation (weighted by zero densiti@ﬁ). Because there is

no yuhy differential overlap in eq 40, thESB term remains
unchanged. According to eq 36, the exchange integbal®4)

in eq 37, (bjvb) and (b|Bb) in eq 38, and§u|bB) in eq 39
should be neglected, as a consequence of the NDDAO ap-
proximation. However, we do not neglect thebBb) and
(bubB) terms, because it is more complicated to code this
because of the occurrence of three hybrid orbitals. Therefore,
only egs 37 and 38 are affected by the NDDAO approximation
as implemented here. The modified Fock matrix then can be
written as the sum of the original Fock matrix and a correction
term:

(FHANDDAO — pH oy — ZP H(bulby) (41)

(Fr)"PPC = iy + = ZPUU(ubWb)

uu 1

(42)

Although integrals yblvb) in eqs 41 and 42 are expressed in
the hybrid basis, one can easily rewrite them in terms of the
readily available AO integrals:

sp onB

(ubjzb) = Z (To)an(To)an(Aulo) (43)

Combining eqs 4143, the modified Fock matrix, using the
NDDAO approximation, can be expressed as

sp onB

ot = Zpbb Z (T)an(Tp)opAulov)  (44)

(FH)NDDAO

1 sponB
(F™> = Fip 23 Pu Z (T Toap(Whlvo) (45)

UU—

With the NDDAO correction terms added in, the electron
electron repulsion between electrons present in auxiliary orbitals
and the orbitals on fully QM atoms is increased, and exchange
between such orbitals is eliminated under the NDDAO assump-
tion. The modified electrostatic fields due to the NDDAO
approximation are consistently reflected in the modified Fock
matrix. Before finalizing the algorithm, we note that the one-
electron integrals that involvey, (H.,, H,, andHi) are not
necessarily kept unchanged if one neglectsthyg differential
overlap; however, no further modifications on them are needed
in GHO, because of the same reasons as those foF{pe
terms.

Next, we present a practical procedure to perform a GHO
AIHF calculation using the NDDAO approximation. We define
the total transformation matriX between the AO basis and
the hybrid basis as

)

The SCF procedure for the NDDAO method is modified
correspondingly as follows:
(1) Transform the overlap matrix to the hybrid basis:

g:j =T' $4T

Tz(INO

0 T (46)



Combining HF Wave Functions and Molecular Mechanics

(2) Drop columns and rows for auxiliary entries of overlap
matrix in the hybrid basis:

$:+4 drop auxiliary $:+1

(3) Form the Lavdin transformation matrix for the active
hybrid basis: §,,) Y2

(4) Guess the total density matrix in the AO basi&?,.

(5) Form the total Fock matrix in the AO basi&a>,.

(6) Transform the Fock matrix in the AO basis to the hybrid
basis:

H _ +1tAO
I:N+4 =T FN+4T

(7) Modify the total Fock matrix in the hybrid basis according
to eqs 44 and 45, to take into consideration the NDDAO
approximation.

(8) Drop columns and rows corresponding to the auxiliary

orbitals to obtain the reduced Fock matrix for active orbitals
Fﬁﬂi

drop auxiliary _p
N+1

FRea
(9) Lowdin transform the Fock matrix from the hybrid basis
to the OH basis:

N+L (S\IH+1)_1/2FH+1(S\IH+1)_1/2

(10) Diagonalize the Fock matrix in the OH basis to obtain
a new set of active MOs by solving Roothaan’s equation in the
active space:
OH ~OH __ ~OH
Fr+iCnir = Cnra€
(11) Back Lawdin transform the MOs to the nonorthogonal
hybrid basis:

H _ /coH —12~0H
CN+l - (S\Hl) CNJril.

(12) Form the active density matrix in the hybrid bdg'(hl.
(13) Add the diagonal auxiliary densitiy, to the active
density matrix, i.e., form the total density matrix in the hybrid

basisP{. ,.
(14) Transform the density matrix back to the AO basis:

PAI;I?% = TPHMTJr

(15) Compute the total energy and test for convergence. If
not yet converged, go back to step (5).

The analytical gradient in the NDDAO approximation
involves extra terms for the neglected exchange energies:

(3E)NDDAO

aq
sp onB

E\ 13 N
[ 22raZr Y o @

where the first termdE/aq) represents the gradients computed
from eq 16, using derivative routines available for a Fock matrix
without NDDAO correction terms. The second correction term
involves derivatives of the two-electron integi®UAl|vo)/dq,
and the basis transformation matdX/aq.

C. Global Lowdin Orthogonalization (GLO) Method. The
Léwdin symmetric orthogonalization metH$d® can be used

J. Phys. Chem. A, Vol. 108, No. 4, 200839

to construct a full set of orthogonalized atomic orbitals
(OAOs)>*55which can be constructed from the AO basis for
all QM atoms (including the GHO boundary atom B) by the
following transformation:

XL
i X1
L .

AN AN

s |=T9s (48)
P P

P ?

p: i

where{s,pxpy.p4 denotes the AO basis on B, apg(u =1, 2,

..., N) are basis functions on fully QM atoms; the corresponding
OAO basis functions are labeled by superscript “L”, af®

is the Lavdin orthogonalization transformation matrix, which
is given by the relatiott->°

TLO = (A0, 12

where 2, is the overlap matrix for alN + 4 AO basis
functions. The OAOs form an orthonormal set, i.e.,

(49)

g = | (50)
One can show that the OAOs resemble the original AOs
maximally in the least-squares sef$&€® Specifically,
{s-.pL.py.p;} resemblegspxpypd on the boundary atom B.

If we construct the hybrid basis by a hybridization of
{s-.p.pps}, the orbitals of the resulting orthogonalized
hybrid (OH) basis also maximally resemble those obtained from

direct hybridization of the original AOs:

UL s

Mx i pL (51)
=T X

My a (e

& o

In this spirit, the OH basis retains the major chemical
characteristics of the original hybrid basis; however, the
functions of the OH basis are orthogonal to the remairihg
basis functionsgl'; (u=1, 2, ...,N), which are not hybridized:

$E4:|

Because the lwdin OAO basis contains “orthogonalization
tails" from other atom centeP$the hybrid basis defined by eq
51 also contains these tails. Although it might be argued that
the delocalized nature of the hybridwdin OAOs makes them
inappropriate for use in the GHO method, we have determined
that this does not present a problem. Strictly localized orbitals
were strongly favored in the LSCF and in the frozen-orbital
treatments, because, in that type of method, the localized orbitals
represent the frontier QM/MM bonding orbitals. The major
motivation of using a localized orbital in those methods is to
promote transferability of the bonding orbital. In the GHO
approach, the QM frontier bonding orbital is actually described
as a delocalized orbital, because the active hybrid basis function
1 Is allowed to mix with other active basis functions in forming
active MOs. Thus, localization of hybrid orbitals is not a
requirement for the GHO method, at least for the active hybrid

(52)
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orbital7s. Furthermore, in the AO basis, alandp orbitals on JWAC  A(TWORTT
the B atom have non-negligible overlaps with basis functions = =

from other QM atoms. The largest overlaps are between the q 9q T oH
basis on the B atom and its QM neighbor the A atom. The basis EWOHTT + TWOHE + TMT* (55)
functions on the B atom become delocalized to other centers in aq aq aq

the SCF step, regardless of whether we orthogonalize them to
the fully QM basis. Actually, Lavdin OAOs are more localized
than AOs in some aspects. For example, the nodal regions of
Léwdin OAOs around other centers effectively prevent electrons
from penetrating to the neighborhood of other at&ffs.For

where the basis transformation matfiixis defined according

eq 53; again, the last terms of eqs 54 and 55 have already been
collected in conventional HF gradient calculations. The deriva-
tives on the transformation matrik can be written as

these reasons, we think the inclusion of orthogonalization tails Lo

in the hybrid basis is physically justified. Our further investiga- T _ TL© 00 + a1 o 56
. : . . " 0 3Tb/a 0 T ( )
tions show that the orthogonalization can be localized to orbitals aq q aq b

on atoms close to the GHO boundary, because only those he derivati fth di » . ix h b
orbitals have significant overlaps with the auxiliary orbitals, and The erivatives of t e Lwdin trans ormation matrix have been
formulated in the development of a previous algorittfrand

the smaller overlaps with atoms far away can be neglected, as ) A i O 11/
in the NDDAO method. The local orthogonalization scheme is they are directly available in the form o¥(Sy7,)"*2q.
considered in Subsection IlID. In the remainder of this section, Utilizing this available result, one can obta#l'/oq, as
we present the algorithm using wdin orthogonalization over required for eq 56, by the following transformation, which is

the entire molecule. derived by combining eq 49 with the result in Appendix A:
The total transformation matriX that relates the AO basis O \t1f2
to the OH basis is aT° _ __(cAO —1/23(S€l+4) 0 \—112
= (S0 (S (57)
aq aq
T= TLO IN 0 53 . .
- oT, (53) As an alternative to the aforementioned procedure, one can

first hybridize AOs on the B atom to create a set of hybrid basis
The modified SCF procedure for the hybridwdin method functions; the orthogonalized hybrid (OH) basis then can be

then can be described as given below: created by Lavdin orthogonalization of the hybrid basis to the
(1) Guess the total density matrix in the AO baBQQ _ AOs on other QM atoms. However, it can be shown that the
(2) Form the total Fock matrix in the AO basﬁﬁo 4 hybridization and Lavdin orthogonalization operators commute
+4-

with each otheP® and we also performed numerical tests

showing that the total energy is invariant, with respect to the
order of hybridization and orthogonalization. Because this
variant is identical to the previous one, in terms of energy and
gradients, we do not include any detailed discussion of it.

D. Local Lowdin Orthogonalization (LLO) Method.
Finally, we consider a variation of the GHGAIHF method
using Lavdin OAOs. Instead of doing a wedin orthogonal-

. ization over the entire molecule, we restrict the orthogonalization
oH drop auxiliary _on . .
Froa—— Fya to orbitals near the GHO boundary. This scheme should be
particularly attractive, at least from a conceptual viewpoint, for

(5) Diagonalize the Fock matrix in thél(+ 1)-dimensional ~ alarge QM subsystem or for QM subsystems with two or more

OH basis to obtain a new set of active MOs by solving boundary atoms, because the effect of each boundary is entirely

(3) Transform the Fock matrix from the AO basis to the OH
basis:

OH _ —f-AO
Frra =T Fiygal

(4) Drop columns and rows corresponding to auxiliary orbitals
to obtain the reduced Fock matrix for active orbit&g:

Roothaan’s equation in the active space: localized to the region near that boundary. If one optimizes
integral scale factors or new MM parameters to correct
FolCcor = C e imbalances near the transition state empirically, those parameters

might be expected to be more transferable if one uses local
Léwdin orthogonalization.

The Lowdin orthogonalization (LLO) method is identical to
the global Lavdin orthogonalization (GLO) method in all
respects, except the definition ©°. In the LLO method, one
retains only overlap integrals that involve boundary atoms and
a subset of fully QM atoms. For example, in Section V, we
will consider including only overlap integrals that involve (LLO:
F) boundary atoms and frontier atoms, (LLO:FG) boundary

(9) Compute the total energy and test for SCF convergence. 5ioms, frontier atoms, and geminal atoms (i.e., A atoms and
If not yet converged, go back to step (2). other atoms bonded to A atoms), or (LLO:FGV) boundary

Finally, we formulate the analytical gradient for GH@IHF atoms, atoms bonded to, geminal to, and vicinal to boundary
using hybrid Lavdin OAOs; eq 16 is the starting point. Density  4ioms.

derivatives orPA%andWA®, similar to eqs 17 and 18, can be Although the local orthogonalization method is preferred,

(6) Form the active density matrix in OH active baB%;‘l.
(7) Add the diagonal auxiliary densiB, to the active density

matrix, i.e., form the total density matrix in the OH baBf}.,.
(8) Transform the density matrix to the AO basis:

Pﬁgzt = TP(NDEJT

obtained by because it makes the minimal changes in the quantum mechan-
o Oht on ical treatment in regions far from the boundary, one must be
9P _ (TP T pomyt TPOHE 4P careful to avoid conformations where the distant regions of a
aq aq aq aq aq chain of QM atoms bend back toward the boundary. Such

(54) problems do not occur for any of the test cases considered in
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TABLE 2: Optimized Geometries and Partial Charges for Ethane at the Pure HF Level with Conventional Basis Sets

Bond Distance (A) Angle (deg) Mulliken Charge “Wwdin Charge
basis G\_CB CA—CH CB—CH H_CA—CB CA—CB—H Ja Os Ja Os
STO-3G 1.538 1.086 1.086 110.7 110.7 —-0.17 -0.17 —0.08 —0.08
STO-4G 1.535 1.082 1.082 110.7 110.7 —0.18 -0.18 —-0.09 —0.09
3-21G 1.542 1.084 1.084 110.8 110.8 —0.60 —-0.60 —0.26 —0.26
6-31G 1.530 1.084 1.084 111.2 111.2 —0.45 —-0.45 —-0.31 —-0.31
6-31G(d) 1.527 1.086 1.086 111.2 111.2 —0.48 —-0.48 —-0.44 —-0.44
6-31G(d,p) 1.527 1.086 1.086 111.2 111.2 —-0.33 -0.33 -0.29 —-0.29
6-31+G(d) 1.528 1.086 1.086 111.2 111.2 —0.55 —-0.55 —0.58 —0.58
6-31+G(d,p) 1.527 1.086 1.086 111.2 111.2 —0.37 -0.37 —-0.43 —0.43
MIDI! 1.541 1.087 1.087 111.0 111.0 —0.55 —-0.55 -0.27 -0.27

a Symmetry is not imposed in these reference calculations. For comparison te-GH® results, we refer to the two carbons as the A and B
atoms, even though there is actually no GHO boundary atom in a pure QM calculation. Naggnthet gsn, = O in these calculations.

TABLE 3: Optimized Geometries and Partial Charges for Ethane at the Pure HF Level with Mixed Basis Setsand at the Pure
MM Level (Last Row)

Bond Distance (A) Angle (deg) Mulliken Charge “Wdin Charge
basis G—Cs Ca—Chx Ce—Ch H—Ca—Csg Ca—Cg—H Ja Os qAHgb Ja Js QAHgb
STO-3G 1.512 1.088 1.077 109.1 111.2 -0.02 —0.75 0.48 0.01 -0.40 0.13
STO-4G 1.509 1.084 1.078 109.0 1112 -0.04 —-0.75 0.48 0.00 -0.39 0.12
3-21G 1.534 1.085 1.075 109.6 110.4 -0.29 —0.85 0.58 —0.30 —0.26 —0.01
6-31G 1515 1.085 1.078 109.5 1115 -0.06 —0.88 0.61 —0.36 -0.23 —0.04
6-31G(d) 1511 1.085 1.078 109.5 111.5 -0.06 —0.88 0.61 —0.48 -0.20 -0.07
6-31G(d,p) 1.509 1.088 1.077 110.1 111.2 0.06 —0.91 0.64 —0.43 -0.17 —0.10
6-31+G(d) 1512 1.085 1.085 108.9 111.3 -0.20 -0.87 0.60 -—0.81 -0.11 —0.16
6-31+G(d,p) 1511 1.086 1.085 108.9 111.4 -0.03 —0.87 0.60 —0.66 -0.11 —0.16
MIDI! 1.531 1.088 1.074 109.1 1111 -0.12 —0.90 0.63 -0.31 —0.26 —0.01
MM ¢ 1.529 1.111 1.111 110.3 110.3 -0.27# —0.27 0.00' —0.27# -0.27# 0.00'

aThe basis on one methyl group is the STO-3Gv basis, and the basis on the other methyl group is indicated in column 1. We refer to the C atom
described by an STO-3Gv basis ag, @nd the C atom described by the larger basis asF0r the C atom described by STO-3Gv, we omit the
core electrons and decrease the nuclear charge by’ta, = —gan, ¢ All MM results in this paper are for the CHARMM force field of ref 61.
4 MM partial charges.

the present paper; however, they could occur in other applica- example, atomic chargég;.26.29.36.4¢onformational energies,

tions. In such cases, one should use the GLO method. diamides®® di-, tri-, and tetra-peptide®,2%:35 dipole mo-
ments3>39geometrie§P26a2%.36.3OMO and LUMO energie®
IV. Implementation potential energy curves for bond stretchf§g®° protein

simulations?6b44-48 proton affinities?6029.35,36,39.40 proton
transferéa7size effect$P torsion potential§226.29.353%iprational
frequencies?® hydrogen bonding energiésand zwitterion$P

In the present paper, we will consider atomic charges, dipeptides,
geometries, proton affinities, size effects, torsion potentials, and
zwitterions. However, to begin, we will concentrate on atomic

. 3 )
F'elld et ?I" 'NT" we renrw]ov(eséig)e bMM Jerms thatE;n_voIvIe charges and geometries, because we believe that these provide
exclusively QM atoms (the _boundary atom B is als0 e gt direct test of charge and interaction balance at the
considered as a QM atom for this purpose). Following this QM—MM interface

principle, the torsion terms to be removed are different from . . .
the QM/MM implementation in the previotglks CHARMM/ . In this sec_tlon, we will present QM/MM results_, for several
GAMESS interface. In that interface, a¥—QM—QM—X different _ba3|s sets in the fully QM region and_wnh th(_a STO-
terms were removed, regardless of whether the 1,4 centers aréJ’GV basis on the boundary atom. In this section, no integrals

QM atoms or MM atoms. This rule may be reasonable for QM/ are scaled and no MM terms are altered. Thus, there are no
MM calculations when a link atom is used, but it is not valid new parameters, and we can test the criterion proposed in

for a GHO treatment. Removing a—QM—QM—X torsion Section II, namely that the method_sh(_)uld give qualita_tive!y
terms with GHO seriously underestimates the internal rotation reasonable results W'thOUt parametrization. Before con3|der|_ng
barrier for the QM-QM bond if one of the central atoms is the these tests, we con5|_der resu!ts from pure QM calpulat|oqs with
frontier atom A and the other is the GHO boundary atom B. f‘?" basis sets and m_|xed basis sets. The QM basis sets |_nc|ude
For that case, the QM Hamiltonian in GHO provides only a Single< valence basis set (STO'3C6;4’ STO-4&xoubly spiit
partial description of the torsion barrier (mainly due to the valen_ce _ba3|s sets (3-21G, .6'3166)’ b‘?‘s's sets that include
presence of electrons in auxiliary hybrid orbitals), and the major Polarization functions and d|ffus§ é;mctlon_s [6-31G(d), 6-31G-
portion of the torsion is determined by the MM force field, (@:P), 6-31G(d), 6-3H-G(d,p)]”*** and finally the MIDI!

66 .
which should not be removed from the total energy. basis?® which was proposed to give accurate geometry and
partial charges at the HF level. The results obtained with these

basis sets, and with mixed basis sets where one methyl group

is treated by STO-3Gv, are given in Tables 2 and 3 for
In previous work, a wide variety of test data has been used comparison. (Table 3 also shows pure MM results.) Tables 2

for validation of combined QM/MM methods, including, for and 3 show not only geometrical parameters but also partial

We have implemented all four of the proposed GHRIHF
algorithms in the GAMESSPLUS packa@gf®® which works
with the CHARMM/GAMESS interfacé® The MM force field
is the CHARMM22 parametrizatiofi.For the MM term in the
energy expression, we follow the original QM/MM paper by

V. Tests of Unparametrized Method
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TABLE 4: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO—AIHF Level Using a Projected
QM Basis

Bond Distance (A) Angle (deg) Mulliken Charge “Wwdin Charge
basis G-Cs Ca—Cqy GCg—Cy H-Ci—Csg Ca—Cg—H Oa Os Oang® Ja Os OaHs”
STO-3G 1.542 1.091 1.118 110.0 119.6 0.02—-0.47 0.20 0.10 -0.45 0.18
STO-4G 1.533 1.088 1.119 110.0 119.6 0.00-0.47 0.20 0.08 —0.44 0.17
3-21G 1514 1.083 1.119 112.1 120.3 -0.10 -0.54 0.27 —-0.09 -0.30 0.03
6-31G 1.475 1.084 1121 112.8 120.9 0.20-0.61 0.34 —-0.13 -0.28 0.01
6-31G(d) 1.473 1.085 1121 113.2 121.0 0.15-0.62 035 -0.36 —-0.20 -—0.07
6-31G(d,p) 1.470 1.086 1.121 113.4 121.0 0.31-0.62 035 -0.23 -0.20 -—0.07
6-31+G(d) 1.477 1.083 1.121 111.9 121.1 0.15 —0.63 036 —-052 -0.17 -0.10
6-31+G(d,p) 1.475 1.085 1.121 112.0 121.1 0.32-0.63 036 —-0.38 -0.16 —0.11
MIDI! 1.497 1.086 1.119 112.2 120.7 0.05 —-0.61 0.34 -0.10 -0.30 0.03

& OsHs = —OaHa-

TABLE 5: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO—AIHF with the NDDAO
Approximation

Bond Distance (A) Angle (deg) Mulliken Charge “Wwdin Charge
basis G_CB CA_CH CB—CH H_CA—CB CA_CB—H Ja Os C]AHga Ja Os C]AH3a
STO-3G 1.288 1.086 1.134 112.0 111.2 -0.14 —-0.30 0.03 -—0.09 —0.28 0.01
STO-4G 1.277 1.082 1.135 112.0 111.1 —-0.16 —-0.29 0.02 -0.11 —-0.27 0.00
3-21G 1.312 1.077 1.134 110.7 108.3 —0.60 —0.19 —0.08 —0.53 0.01 -0.28
6-31G 1.310 1.073 1.134 109.2 108.4 —0.44 —0.18 —0.09 —0.63 0.06 —-0.33
6-31G(d) 1.258 1.077 1.135 109.2 108.7 —-049 —0.15 -0.12 —0.89 0.20 —0.47
6-31G(d,p) 1.252 1.076 1.136 109.4 108.9 -0.34 —-0.15 —-0.12 —-0.74 0.21 -—0.48
6-314+G(d) 1.263 1.074 1.136 107.3 109.1 —-053 -0.16 —0.11 —-1.04 -024 —0.51
6-31+G(d,p) 1.257 1.074 1.136 107.6 109.2 —-0.37 —0.16 -0.11 —0.89 0.25 -0.52
MIDI! 1.327 1.074 1.133 107.7 1084 —-053 —-0.19 —-0.08 —0.53 0.01 -—0.28
& 0sHs = —0aHa-
atomic charges obtained by Mullik€rpopulation analysis and We tested the unparametrized GH®IHF method for
Lowdin®4-68 population analysis, which are denoted MPA and ethane, n-butane, n-octane, ethanol, ethylamine, and ethyl
LPA, respectively. radical. First, we consider ethane. The QM/MM boundary is

First, we consider Table 2, which shows conventional full along the C-C bond in ethane. The GHO boundary C atom is
QM calculations with a range of basis sets. We see that labeled as g, and its QM neighbor C atom is labeled ag.C
geometries are relatively invariant to the basis set choice, butIncluding the QM methyl group andgCthere are five atoms
partial charges are dependent strongly on the basis set. Table 30 be treated quantum mechanically. An STO-3Gv basis is
then shows the effect of describing one methyl group with the always assigned to the boundary carbgp l@wever, basis sets
small STO-3Gv basis, while increasing the quality of the basis for fully QM atoms are not restricted, and we shall present
set on the other methyl group. Again, we see that geometriesresults for several basis sets. We investigate the GAIBIF
are relatively invariant to the lack of balance in the basis set, method with all four approaches to resolve the MO orthogonality
although using the mixed basis has a tendency to underestimateonstraint as described in Section Ill. The QM basis sets are
the C—C bond distances by0.2 A. Lowdin charges onthe C  the same as those used in Tables 2 and 3. To provide a
atom with the small basis are similar to\Wwdin charges when  comprehensive test of the methods, we consider geometries
the entire molecule is treated with the small basis set, whereas(obtained by optimization with analytic gradients), total energies
Lowdin charges on the C atom with the large basis set are (obtained from eq 11), and partial atomic charges. Partial atomic
similar to Lowdin charges when the entire molecule is treated charges on QM atoms are calculated by MPA and LPA.
with the large basis set, which is encouraging, given the The GHO-AIHF optimized geometry and atomic charges
previously validated relatively good performaft® of Léwdin obtained from population analysis with the projected basis, the
charges for balanced basis sets. Mulliken charges, in contrastNDDAO approximation, the global lvedin orthogonalization
are sometimes unstafieln the present examples, Mulliken (GLO) method, and the local wedin orthogonalization to
charges are uniformly more negative on the boundary atom thanfrontier orbitals (LLO:F) treatments are listed in Tables7
on the fully QM C atom. In contrast, edin charges are less  These tables show that reasonable geometries can be obtained
negative on the boundary atom when large basis sets are usedor all the QM basis sets studied by GH@IHF QM/MM
for the fully QM atoms. We note the neither Mulliken nor optimizations, even without any parametrization, although the
Léwdin partial charges are used in any way in the QM/MM trends are different than with the projection method. Because
calculations; they are considered here as one possible test ofuxiliary orbitals are not SCF-optimized in GHO, these sys-
whether the QM/MM boundary treatment has acceptably small tematic deviations can be considered to be a normal consequence
charge transfer across nonpolar bonds. The importance of Tableof using frozen orbitals. In comparison to the aforementioned
3 is that it can be considered an upper bound on the quality of two methods, the GLO method does not show a systematic error
the performance that can be expected from GHIHF. In in this critical bond distance across the QM/MM boundary.
other words, the most we should expect from unparametrized Table 6 is encouraging, in that thea€Cg bond distance
GHO—AIHF near the boundary (in ethane, all atoms are near predicted by the third approach varies from 1.43 A to 1.68 A,
the boundary) is the quality of the results in Table 3, although only slightly deviating from the pure HF/full basis result of
far from the boundary (in large molecules), one might hope for Table 2. Recall that the distinguishing feature of this method is
the quality of the results of Table 2. that orthogonality tails on all other QM atoms are explicitly
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TABLE 6: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO—AIHF, Based on Global Lowdin
Orthogonalization (GLO)?2

Bond Distance (A) Angle (deg) Mulliken Charge “Wwdin Charge
basis G—Cs Ca—Cy Cg—Cy H-Ci—Cs Ca—Cs—H O Os Oana’ 0 Os Qans”
STO-3G 1.434 1.083 1.125 109.5 115.7 -0.04 —-0.41 0.14 0.03 —-0.39 0.12
STO-4G 1.426 1.079 1.125 109.4 1158 -0.06 —0.40 0.13 0.01 -0.38 0.11
3-21G 1.548 1.077 1.120 107.2 113.7 —0.37 —0.46 0.19 -0.28 —-0.24 —0.03
6-31G 1.521 1.077 1121 107.0 1140 -0.14 -0.52 025 -0.35 —-0.22 -0.05
6-31G(d) 1.643 1.078 1.117 107.6 111.3 -0.31 —0.43 0.16 —0.56 —0.16 —-0.11
6-31G(d,p) 1.668 1.080 1.116 107.1 111.2 -0.18 —-0.43 0.16 -041 -0.17 -0.10
6-31+G(d) 1.652 1.076 1.117 106.9 1108 —-0.33 —-0.45 0.18 -0.71 -0.13 -0.14
6-31+G(d,p) 1.678 1.077 1.116 106.5 110.7 —0.18 —0.45 0.18 —0.56 -0.14 —0.13
MIDI! 1.536 1.081 1121 107.9 114.0 -0.21 -0.52 025 -0.29 -0.23 -0.04

2 For this small molecule, the GLO method is identical to the LLO:FG methggh, = —Qan.-

TABLE 7: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO—AIHF, Using Local Lo'wdin
Orthogonalization to Frontier Orbitals (LLO:F) Only

Bond Distance (A) Angle (deg) Mulliken Charge “Wdin Charge
basis G—Cs Ca—Cq Cg—Cq H—Car—Cs Ca—Csg—H Ja Os qAH;.;e1 Ja Os qAHga
STO-3G 1.413 1.082 1.126 108.7 116.5 -0.02 —-0.42 0.15 0.03 -0.39 0.12
STO-4G 1.404 1.077 1.125 108.6 116.6 —0.04 —-0.41 0.14 0.01 -0.38 0.11
3-21G 1.485 1.071 1.123 109.2 1144 -0.28 —0.51 024 -0.26 —-0.23 -0.04
6-31G 1.388 1.036 1.128 110.1 112.5 0.17-0.67 040 -0.33 -0.19 -0.08
6-31G(d) 1.583 1.055 1.120 108.0 110.8 -0.15 —0.50 0.23 -057 -0.15 -0.12
6-31G(d,p) 1.581 1.056 1.120 108.0 110.8 -0.01 -0.50 023 -040 -0.15 -0.12
6-31+G(d) 1.593 1.066 1.119 108.9 1109 -0.24 -0.48 021 -0.70 -0.13 -0.14
6-31+G(d,p) 1.590 1.066 1.119 109.1 110.8 —-0.07 —-0.49 022 -054 -0.13 -0.14
MIDI! 1.734 0.860 1.163 60.0 89.4 254 —-1.29 1.02 0.27 -0.69 0.42

a P
OsHs = —0aHz-

included in the frozen auxiliary orbitals. The good performance  To test the ability of the GHOAIHF method to reproduce
of the third method probably comes from this more-realistic the shape of the potential energy surface as well as the
description of the auxiliary orbitals. Table 7 shows that, although equilibrium geometries, we also investigated the internal rotation
the LLO:F method gives qualitatively correct results (except around the C2C3 bond inn-butane. Figure 2 shows the energy
for the MIDI! basis), it is less satisfactory than the GLO method, profiles at various values of the dihedral angles for both QM/
in that the H-Cx bond distance is generally underestimated. In MM calculations for the GHS AIHF treatment of the boundary,
terms of the bond angles across the QM/MM boundary, the last for pure QM calculations and for pure MM calculations. In each
three methods show similar performance; there are deviationscase, these results are based on geometries obtained by
from the accurate results 0f-35°. These deviations most likely ~ constrained optimization with the €1C2—C3—C4 dihedral
are caused by basis imbalance near the QM/MM boundary, angle fixed at various values in the range 608C°. Note
because the effect is exacerbated when the QM basis is changethat, for the GHO-AIHF case, we put the GHO boundary at
from the STO-3G basis to a split valence basis. Another C3; therefore, the torsion potential involves comparable con-
consideration is that these angles are closely coupled to the bondributions from QM and MM; this choice of boundary atom
distance between and G. For example, a £-Cg bond that provides the most demanding possible test. The pure QM level
is too short will favor greater £S-Cg—H and H-Ca—Cg angles, produces a higher barrier than pure MM calculations. The most
because stronger electroalectron repulsions are experienced promising GHO-AIHF methods are those that usewin
by electron clouds that are present in-<€H and G—H bonds. OAOs; curves obtained from GLO and LLO:FG are both
Next, we comment on the atomic charges that are obtainedobserved between the QM and MM results for angles‘ef 0
from population analysis based on the GHO-type wave function. 80° and very close to the MM results for angles of80.8C°.
Although comparing charges from different population analysis The GHO-AIHF calculations using the projected basis signifi-
schemes is sometimes misleading, which may be a consequenceantly underestimate the torsion barrier, and when the NDDAO
of the fact that atomic charge is not a well-defined observable approximation is used, the torsion barrier height is over-
parameter in quantum mechanics, the population analyses inestimated. In principle, one could use different MM parameters
Table 3 show that population-analysis charges show significantat the boundary to compensate for any QM/MM imbalance; for
charge-transfer effects, as a result of basis set unbalance. A wellexample, one could use special dihedral MM parameters for
defined QM/MM boundary treatment should have little charge torsions that involve frontier and boundary atoms. That is
transfer between the two methyl groups in ethane when one ofbeyond the scope of the present article. Here, we just emphasize
the C atoms is the GHO boundary atom. Therefore, a possiblethat the internal rotation barrier is qualitatively correct, even
target in the parametrization process is to yield a net charge ofwithout new parameters, especially for the GLO and LLO:FG
zero for the purely QM methyl group, when one C atom is the methods.
boundary atom and the other is the frontier atom. As discussed To study the difference between the GLO and LLO:FG
in Section VI, other ways to test the charge balance across themethods further, we made a systematic comparison-tmwtane
boundary include (i) examination of the partial charges in in the fully extended conformation, where we treat the two
propane when the center C atom is a boundary atom and (ii) methyl groups as MM and (Ch as QM and test how many
examination of the optimized bond lengths and bond angles atoms must be included in eaclkiwdin orthogonalization. For
when charged groups are located near the boundary. clarity, we number the C atoms-B, and the H atoms that are
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Figure 2. Potential energy curve for the internal rotation around the-C2 bond inn-butane, using unparametrized GHBIHF/STO-3G, pure
QM (HF/STO-3G), and MM (CHARMMZ22). In all GHO calculations in this paper, we use the STO-3Gv basis set on the boundary atom, which,
in the present case, is C3; the C1C2 ethyl group is the fully QM subsystem.
TABLE 8: Various Localized Lo'wdin Orthogonalization (LLO) Schemes in GHO Treatment for n-Octane?
QM Atoms Included in Orthogonalization

scheme near GHO boundary atom C1 near GHO boundary atom C8
LLO:F C2 C7
LLO:FG C2,H2,C3 C7,H7,C6
LLO:FGV C2,H2,C3,H3,C4 C7,H7,C6, H6, C5
GLO all atoms over the entire molecule all atoms over the entire molecule

aWe number the C atoms €1C8; the H atoms attached to C1 are labeled H1, those attached to C2 are labeled H2, etc. C1 and C8 are the GHO
boundary atoms.

attached to C1 would be H1, those attached to C2 would be mated. Including H2 into the orthogonalization slightly improves
H2, etc. We then compare four QM/MM treatments as described the bond distance at the QM/MM boundary (from 1.40 A to
in Table 8. The optimized geometries and charges for each 1.42 A); however, we do not show full results of this calculation
treatment are listed in Tables 9 and 10. The geometry can bein which only two of the three atoms geminal to B are included.
fully optimized when only the QM frontier atoms are included The C1-C2—-C3 angle is greatly improved when C3 is included
in the orthogonalization (whereas, in our experience, the in the orthogonalization in the LLO:FG method. In fact, the
geometry optimization often does not converge for methods that local orthogonalization is well-converged after the QM frontier
totally ignore the orthogonality concerns raised in Section 1IB); atoms and all its QM neighbors are included in the orthogo-
however, the bond angles that involve the boundary atom (C1), nalization, i.e., adding more atoms that are further from the
the frontier atom (C2), and its QM neighbors (H2, C3), boundary (such as the LLO:FGV method) does not change the
especially the C+C2—C3 angle, are quantitatively underesti- result significantly. Interestingly, the charges are not as sensitive
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TABLE 9: GHO —AIHF/STO-3G Optimized Geometry Using Various Local Lowdin Orthogonalization (LLO) Schemes for
n-Octane

H-C1 H-C1-C2 C1-C2 C-C2-C C1-C2-H C2-H C2-C3 C2-C3-H C3-H C-C3-C C3-C4 C-C4-C C3-C4-H C4—H
scheme  (A) (deg) (A (deg) (deg) A A (deg) (A  (deg) (A (deg) (deg) (A
LLO:F  1.125 1179 1408  103.1 108.9  1.084 1.531  107.9 1.089 1142 1543 1127 109.2  1.089
LLO:FG 1125  116.0  1.437 111.2 1082  1.085 1.540  108.9  1.088 1125 1.543 1124 109.3  1.088
LLO:FGV 1.125 1160  1.437  111.8 108.1  1.085 1540  109.2 1088 1123 1.544 1124 109.3  1.088
GLO 1125 1160 1437 1118 108.1  1.085 1.540  109.2  1.088 1123  1.544 1124 109.3  1.088
pure QM 1.086 1105 1541 1126 109.3  1.088 1.545  109.3  1.086 1123 1.545 1125 109.2  1.088

aSchemes according to Table'84F/STO-3G for the entire molecule.

TABLE 10: Charges for n-Octane at the GHO-AIHF/STO-3G Optimized Geometry Using Various Local Lowdin
Orthogonalization (LLO) Schemes

Mulliken Charge Lovdin Charge
scheme C1 C2 H2 C3 H3 C4 H4 C1 Cc2 H2 C3 H3 C4 H4
LLO:F —0.43 0.06 0.05 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
LLO:FG —0.42 0.04 005 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
LLO:FGV  —0.42 0.04 0.05 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
GLO —0.42 0.04 005 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02

pure QM —0.18 -009 005 -010 005 -0.10 005 -009 -003 002 -004 002 -004 0.02
aSchemes according to Table'814F/STO-3G for the entire molecule.

to the orthogonalization extent as the geometries, as indicated The GHO treatment deviates from a pure QM calculation
in Table 10. This test shows that it is crucial to conduct explicit primarily for the following reasons. First, only a portion of the
orthogonalization among orbitals near the boundary, becausesystem is represented by a quantum mechanical wave function.
the overlaps between these orbitals are non-negligible. TheSecond, instead of a full SCF optimization over all basis
orbitals on atoms far away from the boundary do not need to functions, active MOs in the GHO method are only expanded
be included in the orthogonalization. We can either explicitly over a reduced space, and auxiliary MOs are kept frozen. Third,
exclude them by localizing the orthogonalization, or we can do the basis set balance across the boundary is sacrificed to
the orthogonalization over the entire molecule. These two maintain the simplicity of the algorithm. Finally, the screening
options should give similar results, because the tails on centerseffect of 1s core electrons on the GHO boundary atom is only
far away from the boundary in the hybrid orbitals will be very crudely mimicked by a reduction of its nuclear charge by 2.
small. All three of these aspects can be related to an inaccurate
VI. Eurther Parametrization description of the interaction across the boundary. Two of the

Although the methods presented in the previous section give most stra_lghtforward ways to remedy_ these shoricomings are
i) to adjust the molecular mechanical parameters of the

reasonable results even without any parametrization, one cal ( " . .
yp nboundary atom and (ii) to scale the integrals that involve the

obtain even better results if some parameters related to the bital the bound : The f ds t
boundary atom are added or readjusted. The objectives of thePrbitais on the boundary atom. The former corresponds to an
MM fix, whereas the latter can be considered as a QM fix. In

parametrization are to improve the electronegativity balance and . .
bonding properties across the—8 interface. One way to the_fo(l}llowmg, we present a parametrization for the MID.”
monitor the electronegativity balance is to calculate the Mulliken bas!sﬁ3 In which we c_omblne both strategies. 'I_'he MID”. basis
or Lowdin charge on the quantal methyl group in propane when (Wh'c_h is also sometimes called Ml.DIX) IS an ideal _ch0|ce for
the middle C atom is treated as a GHO boundary. This should app'Y'“g the GHG-AIHF _method, n that it is designed to

be close to zero, although it does not need to be exactly zero,ProVide accurate geometries and partial charges at the Hi*%evel
because propane has a nonzero dipole moment and the A atonqnd it also yields rgasonable HF.relqtlve ener@&urthermore,

has a larger basis set than that of the B atom. The MM methyl MIDI' does not include polarization functions on carbon;
group is neutral; therefore, the QM methy! group should also therefore_, for large organic and _bl_ologl_cal systems (such as
be neutral (by symmetry), in which case the partial charge on enzymatic systems),.lt is very efficient, in terms of computa-
the B atom would be exclusively contributed from the extra tional cost. The LLO:FG version of the GHEAIHF will be
charge densities in its auxiliary orbitals, i.e., matching the point USed as a starting point for adding parameters, because it gives
charge of the B atom in MM. Therefore, one of the goals of the best geometries for MIDI! among the four orthogonalization
our parametrization is that the auxiliary electrons should Schemes; at the same time, the orthogonalization is strictly

introduce minimal artificial polarizations of the-B bond in localized at the boundary region that only involves orbitals on
propane. In propane, as well as in other molecules, the bondingPoundary, frontier, and geminal atoms.
properties at the QMMM interface can also be monitored by First, we note that the AB—M angles are always over-

calculating the bond distances, bond angles, and torsionestimated by~5° in the unparametrized GHOAIHF geom-
potentials that involve QM atoms near the boundary. (Another etries, where M represents an MM atom bonded to the GHO
possible choice of the electronegativity optimization target boundary atom B. This systematic error may come from several
would have been ethane, which was used for the parameterizasources. For example, if the charge densities in the auxiliary
tion of the semiempirical GHO methd8lIn this case, the charge  orbitals are too small, the repulsions between auxiliary orbitals
on the quantal methyl group is exactly zero. One reason for will be relatively weak, compared to the repulsion among the
selecting propane for the present work is that, in the ethane testA—B bonding orbital and the auxiliary orbital, resulting in
case, the B atom is a methyl carbon, but in propane it is a A—B—M angles that are too large. However, in combined QM/
methylene carbon, which is more typical of real applications.) MM calculations, A~-B—M angles are described both by QM



646 J. Phys. Chem. A, Vol. 108, No. 4, 2004

TABLE 11: Optimized Scaling Factors for Integrals
Involving Boundary Orbitals for GHO —AIHF/MIDI!
Calculations with the LLO:FG Method @

parameter integral type optimized value
C1 (salTIss) 0.9078
C2 (salTlpe) 1.0257
Cs (PalTlss) 1.0806
Ca (PalTIps) 1.0283
Cs (selTIss) 0.9733
Cs (PelTlps) 0.9858
cr (sslTlps) 0.9665

aMM equilibrium angles for A~-B—M bends are decreased b§. 8

and MM; therefore, the predicted large bond angles could be a
result of a poor balance between the QM and MM. Regardless
of the precise source of error, we found that we can remove
most of the systematic error by simply decreasing the equilib-
rium angles of all A~-B—M molecular mechanics bending terms
by 8. (For example, when A and B asp® C atoms and M is
a H atom, we decrease the MM bond angle parameter from
110 to 102.)

Next, accepting this change in the-8—M bending poten-

tial, we determined a set of parameters for scaling integrals thatonly once)

involve the boundary orbitals. Because the integral scaling is
used only to correct small inaccuracies, we prefer to make the

Pu et al.

Ethyl benzene Histidine

Alanine dipeptide

Figure 3. QM/MM partitions in ethyl benzene, histidine zwitterion,
and alanine dipeptide. The GHO boundary atom is labeled as B, and
the frontier QM atom is labeled as A.

05" is the Lawdin charge on the GHO boundary
atom B in propane, andy" is the MM point charge for B
(equal t0—0.18 in CHARMM); ro (0.02 A), 6, (2°), andqo

scaling scheme as simple as possible. To avoid the complexity(atomic charge of 0.05) are scale units for distance, angle, and

that is introduced by multicenter two-electron integrals, we chose

charge, respectively. We take the reference geometry (denoted

to scale one-electron integrals only. For the same reason, everHF in eq 58) to be the geometry optimized at the pure QM

one-electron potential energy integrals are not considered,

level with the full basis set, i.e., HF/MIDI!. Note that the C

because they can involve up to three centers. It seems thatatom in a CH group is chosen as the GHO boundary atom B,
scaling two-center one-electron potential energy integrals is lessand the C atom attached to a functional group is the frontier

stable than scaling the kinetic energy integrals. Furthermore, if
the scaling is localized to the AB pair, the scaling factors are
expected to be more transferable from one system to another
Therefore, we restrict scaling to a subset of the one-electron
kinetic energy integrals related the boundary: in particular, the
scaling is restricted to integrals of the forma(V|vg) and
(ve|T|ve), where y denotes a valence orbital on the boundary
atom B, and x denotes a valence orbital on the frontier atom
A. To take account of the different behavioroéndp orbitals,

we also treat them separately, to add more flexibility. As a result
of these considerations, we decided to scale théT(vs) and
(ve|TIve) (v =s, p; V' = s, p) types of one-electron integrals in
our parametrization; the corresponding scaling factors are
denoted byc;— c7 as indicated in the first two columns of Table

atom A, i.e., the QM/MM patrtitions are GBH,AH3, CH3BH-
AH>0H, CHBH,AOOH, CHBH,AH=CH,, and CHBH,AH -

CHs. The goal of the optimization is to find a set of scaling

factors such that GHOAIHF gives geometries that are in good
agreement with those from pure QM calculations, whereas the
charge transfer across QM/MM boundary is minimized. The
last term in eq 58 accomplishes this minimization of the charge
transfer, because one obtains a neutral quantal methyl group
wheng;®"° matchesgy” in propane. The purpose of includ-
ing various functional groups near the boundary is to make the
parameters more robust, especially when electronegative atoms
(O) and unsaturated C atoms are close to the boundary.

The fitness functiorF was maximized, with respect to the
scaling factors,, and the optimized scaling factors are tabulated

11. (The integrals are scaled in the nonorthogonal nonhybridizedin Table 11. We then tested the parametrized method against a

atomic basis before the transformations to orthogonal, hybrid,
and molecular orbitals.)

The optimal values of these scaling factors were determined
using a microgenetic algorithfito maximize a fitness function
F over a training set of molecules, in which the geometry fithess
and the charge fitness are equally weighted:

1 [GHO _  HF\2 GHO _ gHF|2
F=—{= — ]+ Z +
K% Z( o 0
g CHO — g2 12
(58)
qO m=

In eq 58, the training set for geometries contains five molecules
(m=1,2,...,5): propane, 1-propanol, propanoic acid, 1-butene,
andn-butaneK is the number of unique bond distancesgnd
angles @) in the training set molecules (note that if two bond

wide variety of molecules that were not present in the
parametrization training set. The test set contains systems with
various functional groups{SH, —NHz, —CONH,, —C¢Hs) near

the boundary, as well as molecules with ionic charges near the
boundary. We also include histidine zwitterion and alanine
dipeptide as two realistic cases to test the reliability of applying
the GHO-AIHF method to amino acids and proteins. (Figure
3 shows depictions of ethyl benzene, histidine, and alanine
dipeptide molecules.)

First, we note that the parametrized model yietf§"° =
—0.16 in propane, which matches the desired value better than
the unparametrized model (the unparametrized model gives

LCHO = —0.15). Furthermore, im-butane, with C2 as the
boundary atom and C3 as the frontier atom, for the parametrized
model, g;®"° = —0.17, which is encouraging, because the
charges im-butane were not represented in the training set. As
a result, for propane angtbutane, in the parametrized model,
all methylene and methyl groups are neutral to within a partial

distances or angles are equal by symmetry, we include themcharge of 0.02.
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TABLE 12: A —B Bond Distance for the Unparametrized A—B bond distances and AB—M angles, although it is
and the Parametrized® GHO —AIHF(LLO:FG)/MIDI! important to note that there are some troublesome cases. For
Results, Compared to All-Electron ab Initio QM Results example, when a carbonyl group is chosen as the frontier atom,
Bond Distance (A) the A—B bond has a tendency to be overestimated. Thus, if
system unparametrized parametrized HF/MWDI!  Possible, one should avoid using a carbonyl C atom as the
CHBH,—AH: 1530 1514 1540 frontier atom. Neve_rtheless, the robustnesg of the alg_orlthm and
CHBH,—AH,CHs 1549 1529 1539 the scaling factors is impressive, qon5|d§r|ng the variety of the
CHyBH,—AH,C(O)OH 1.546 1.518 1.539 test cases. In particular, even including the difficult and
CH3BH,—AH,NH, 1.568 1.548 1.545 troublesome cases, the MUE in all bonds that involve A or B
CH3BH,—AHNH3* 1.554 1.536 1.533 is <0.02 A, and the MUE in all bond angles that involve the
CH3BH,—AH0H 1.556 1.535 1.528 A—B bond is only~2°. Furthermore, the average errors are
CHsBH,~AHO" 1.609 1.579 1.504 only slightly larger for the entire test set than for the training
CH3BH2_AH2§H 1.554 1531 1541 set. The choice of molecules in Tables 12 and 13 does not mean
CH3BH>—AH=CH> 1.554 1.515 1.506 . . - .
CHsBHo—A(O)NH, 1628 1569 1523 that we recommend putting charged or highly functlonal]zed
CH3BH,—A(O)OH 1.622 1.563 1.508 groups close to the boundary, if there are other, more-suitable
CHgBH,—A(0)O~ 1.663 1.611 1.592 locations for a boundary; rather, these tables are designed to
CH3;BH,—A(O)OCH; 1.609 1.547 1.509 provide very difficult tests to validate the method.
ethyl benzerfe 1.576 1518 1.513 Appendix B presents the extension of the present method to
histidine< 1.578 1.488 1.500 unrestricted HartreeFock’® (UHF) for the QM/MM treatment
alanine dipeptide 1.622 1.555 1.555 (GHO—AIUHF) of open-shell systems. Table 14 shows the
a Seven scaling factors and one change in the MM parameters areOPtimized geometries and charges obtained at GA@HF/
listed in Table 11. Training set is indicated in boldface typ&on- MIDI! level for the ethyl radical, compared to pure QM
ventional quantum mechanicsSee Figure 39Zwitterion. calculations. The results show that, although the integral scaling

factors are parametrized for closed-shell systems, they work
To further illustrate how the results can be improved by equally well for open-shell system. Furthermore, as for closed-
parametrization, we consider the key-B bond distance. The  shell systems, the method is already qualitatively reasonable,
values obtained for this bond distance for all molecules in the even without parametrization.
parametrization set and the test set are listed in Table 12 for Clearly, we could obtain better balance across the boundary
both unparametrized and parametrized GHOHF/MIDI!, and by adding more parameters; however, this is not our goal in
the mean unsigned errors (MUES) are given in Table 13. this paper. We prefer to emphasize that the results are
As shown in Tables 12 and 13, the parametrized version of qualitatively correct, even without any scaling, and that they
GHO—AIHF significantly reduces the average errors in the can easily be improved by a very small amount of scaling.

TABLE 13: Mean Unsigned Errors in Bond Lengths and Bond Angles with GHO—AIHF (LLO:FG)/MIDI! 2

Unparametrized Parametrized
Bond Distance (A) Angle (deg) Bond Distance (A) Angle (deg)
system AB QA B-M Q-A-B A-B-M A-B Q-A B-M Q-A-B A-B-M
CH3BH2AH 3 0.010 0.006 0.019 3.2 3.9 0.026 0.004 0.020 2.6 1.6
CH3BH,AHCH3; 0.010 0.010 0.018 1.8 4.2 0.019 0.010 0.019 1.2 2.1
CHs;BHAH,C(O)OH 0.007 0.010 0.021 1.4 4.3 0.028 0.010 0.022 1.4 2.1
CH3BH,AH,;NH; 0.023 0.009 0.017 2.5 4.7 0.003 0.008 0.017 2.0 2.8
CH3;BHAHNH3* 0.021 0.007 0.024 2.7 3.5 0.004 0.007 0.025 2.1 3.5
CH3BH,AH,OH 0.028 0.005 0.018 1.7 4.8 0.007 0.005 0.018 1.6 2.8
CH3;BHAH,O~ 0.011 0.002 0.016 2.5 7.0 0.014 0.004 0.016 2.6 54
CH3;BH,AH,SH 0.013 0.008 0.019 1.9 4.1 0.009 0.006 0.020 1.4 2.8
CH3BH,AH=CH> 0.047 0.004 0.023 2.1 4.1 0.009 0.003 0.024 0.7 1.6
CH3;BHA(O)NH; 0.105 0.008 0.022 2.4 3.4 0.046 0.009 0.024 2.1 3.7
CH3BH,A(O)OH 0.114 0.008 0.021 1.4 2.5 0.055 0.008 0.023 1.6 2.9
CH3BH,A(O)O~ 0.072 0.003 0.017 0.7 4.9 0.019 0.002 0.017 0.3 35
CH3;BHA(O)OCHs 0.096 0.012 0.026 2.0 4.8 0.038 0.012 0.027 1.0 3.4
ethyl benzene 0.064 0.001 0.027 1.1 1.6 0.005 0.002 0.028 0.4 1.4
histidine© 0.078 0.004 0.034 1.7 4.8 0.013 0.005 0.031 4.2 3.8
alanine dipeptide 0.093 0.010 0.019 2.2 4.4 0.025 0.011 0.020 0.9 2.3
training set 0.042 0.006 0.021 2.0 3.9 0.021 0.006 0.021 1.5 2.2
entire set 0.048 0.007 0.020 2.0 4.1 0.019 0.007 0.021 1.5 2.8

aSeven scaling factors and one change in the MM parameters are listed in Table 11. Training set isPiGdm®IBigure 3¢ Zwitterion.

TABLE 14: Optimized Geometries and Partial Charges for Ethyl by GHO—AIUHF Based on Local Lowdin Orthogonalization
(LLO), Compared to a Pure HF Calculation at the Same QM Levet

Bond Distance (A) Angle (deg) Mulliken charge “Wwdin charge

basis G—Cs Ca—Cq Cg—Cq H—Car—Cg Ca—Cg—H Ja Os Ja Os
GHO—AIUHF/MIDI! b 1.529 1.075 1.121 114.3 113.9 —0.07 —0.50 —-0.21 —0.23
GHO—AIUHF/MIDI! © 1.509 1.076 1.123 116.1 111.6 —0.03 —0.54 —0.19 —0.25
HF/MIDI! 1.503 1.076 1.088 120.7 1114 —0.33 —0.60 —0.20 —0.28

aThe boundary carbon @ is the C atom in the methyl group, and the frontier C atom) (€ the radical center. We use the LLO:FG method
in this table.” Unparametrized versio.Parametrized version (same parameters as used for Table311
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TABLE 15: Proton Affinities Calculated by Parametrized? kcal/mol on protonation energies for similar systems with two

GHO—AIHF/MIDI!, Based on Local Ld"wdin of their link-atom model$5 As another example, the pseudo-

8;23?{3%?}'?2&'?26(%;%5%Mcfgg?red to Pure HF bond approach, using various basis sets, yields mean absolute
deviations in protonation energies of 2.8.7 kcal/mol?® On

Proton Affinity (kcal/mol) the basis of these comparisons, as well as what one can
QM/MM reasonably expect at the HF level, we conclude that the
species GHOAIHF/MIDI! HF/MIDI! ~ vs QM performance of the GHOAIHF method for the energetics is
BHz;—AH,0~ 421.3 416.3 45 satisfactory. We especially note that no proton affinities were
CHBH—AH,0~ 4221 415.1 7.1 used at any stage of the parametrization. If one were especially
BHs—AH.CHO™ alr.7 4151 2.7 interested in proton affinities, one could probably reduce the
g:iggfi’ﬂz’éﬂzg, ﬁé:i’ ﬁj:g g:g errors by further parametrization; hovv_ever, our goal was to
BHs—AH,CH,CH,0~ 416.2 414.8 14 present a more general parametrization that was based on
BHa—AH,NH, 299.2 232.6 _34 georr.letrlles and charge balance as indicators of the charge
CHaBH,—AH,NH, 2295 233.9 —a4 polarization at the boundary.
BH3;—AH>CH:NH, 2324 233.9 -1.5
CH3CH,BH,—AH NH, 229.3 234.7 —5.4 _
CHsBH,—AH,CH,NH, 232.7 2347  —2.0 VII. Concluding Remarks
BH3—AH,CH,CH,NH, 234.1 234.7 —-0.6
BH3—AHNH- 443.0 439.9 3.2 Although great progress has been made in combining
CH3BHz—AHNH"™ 443.6 438.7 4.9 guantum mechanical electronic structure methods with classical
EH%Q?SFEEHNH* ﬁg'g igg; i-; molecular mechanics in a single algorithm, some of the
CHzBHi_AEZCHzNH, 4407 4383 o4 fundamental problems of nonorthogonality between the explicit
BHa—AH ,CH,CHNH- 439.3 438.3 1.0 orbitals of the quantum mechanical subsystem and the implicit
BHs—AH,S 3831 3815 16 wave function of the clas:;lggl mgchanlcal subsys’gem are avoided
CHsBH,—AH,S" 383.4 380.6 28 by treatments that use artificial link atoms or consistently neglect
BH3—AH,CH,S™ 382.1 380.6 1.5 all differential overlap (and compensate for this by the param-
CH3CHBH,—AH,S~ 383.2 380.5 2.7 eters of semiempirical molecular orbital theory). In the present
CH3BH,—AH,CH,S 382.5 380.5 2.0 study, a theoretical framework has been established that provides
BH3=AHCH,CH,S™ 8812 3805 0.7 a more fundamental solution to this problem. We accomplish
BH;—A(0)O” 377.1 3773 0.2 this by extending the generalized hybrid orbital (GHO) method
CHyBH,—A(0)O™ 375.9 375.3 0.6 to the ab initio Hartree Fock (HF) level, in combination with
BH3;—AH,C(0)O 377.3 375.3 1.9 . ’ .
CH:CH:BH,—A(0)O- 375.0 3747 0.2 quantum mechanlca_tl and mo_IecuIar mephanlc_al (QM/MM)_
CH3BH,AH,C(0)O 377.6 374.7 28 calculations. Three important issues are investigated for this
BH3—AH,CH,C(0)O~ 376.1 374.7 1.3 extension: (a) the orthogonality constraint that involves auxiliary
aSeven scaling factors and one change in the MM parameters areorb'tals' (b) the adequacy of a smgll basis SeF on the_GHO
listed in Table 11. boundary atom, and (c) the formulation of analytical gradients.

In our treatment, a minimum valence basis set is used on the

Finally, we present the results of using the parametrized boundary atom to maintain the simplicity of the original
GHO—AIHF method for proton affinities, which, because the hybridization scheme. Four methods are proposed to remove
charge state changes, present very stringent tests of the effecthe nonorthogonality between active MOs and auxiliary MOs
of the QM/MM boundary treatment on calculated energies. In in GHO. To compute the GHO gradient analytically, the
the present article, we define the proton affinity as the zero- derivatives of the density and energy-weighted density matrices
point-exclusive energy difference between a chemical speciesthat are due to basis transformations must be included. With
(denoted X or X) and its protonated form (denoted Xhbr the aforementioned three questions answered satisfactorily, the
XH). Table 15 gives the proton affinities calculated using GHO method can be applied at the ab initio HF level with a
GHO—AIHF/MIDI! (LLO:FG, with scaled integrals) compared  solid theoretical foundation. This provides a fundamental
with fully QM (HF/MIDI!) results, where a set of compounds  solution to the problem of orthogonality at a quantum mechan-
that consists of alcohols, amines, thiols, and acids is investigated.ical—classical mechanical boundary.
The QM/MM division of each system is specified in the first  Tests of the resulting algorithm showed that reasonable
column of Table 15, where A denotes the QM frontier atom geometries and charges can be obtained even without any
and B denotes the GHO boundary atom, as usual. The averaggarametrization. Finally, we show that scaling some of the
absolute errors of the proton affinities for 30 cases in Table 15 jytegrals that involve basis functions at the GHO boundary can
are 2.6 kcal/mol. The most significant deviations from fully QM improve the results, and this provides a simple way to
results were observed when the GHO boundary is only one bondparametrize the generalized hybrid orbital ab initio Hartree
away from the X-H bond thgt is being dissociated, where the Eqock (GHO-AIHF) method for applications to practical
MUE for 15 such cases is 3.5 kcal/mol. One would not proplems. The scaled method is tested extensively for 30 proton
recommend putting the boundary this close to a reaction center,affinities of neutral and negatively charged species; the average
especially for a reaction that involves a change in charge state,yajye of the 30 proton affinities is 369 kcal/mol, and the mean

if any other choice is possible; rather, these tests are includedunsigned error of the GHO results from the fully QM results is
to show what happens if one pushes the method to its limits. ony 2.6 keal/mol.

The MUE is reduced to 2.2 kcal/mol if one places the GHO

boundary atom two bonds away from the protonated/depronated

center. The results are comparable to the typical errors on proton Acknowledgment. This work has been supported in part
affinities in QM/MM calculations by various other boundary by the National Science Foundation (Grant No. CHE00-92019)
treatments. For example, Amara et al. obtained an errer®f  and by National Institutes of Health (Grant No. GM46736).



Combining HF Wave Functions and Molecular Mechanics

Appendix A

Here, we derive the expression for obtainid®y/%/aq from
9S™2/3g. We begin with

S*l/ZS+l/2 — I (Al)
Therefore,
88_1/2 P —1/288+1/2
oq S™°=-S 20 (A2)
and right multiplying byS=12 on both sides yields
9512 _ _571/23S+l/2871/2 (A3)

aq dq
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hybrid Lowdin OAO method as an example. One can follow

the procedures described in Section IlIC, except that two Fock A

matrices (one foa-spin electrons and one frspin electrons)

are formed separately. Correspondingly, two sets of SCF

equations are solved in the basis spachl &f 1 dimensions to
obtain active molecular orbitals (MOs). After the activeand
p density matrices are constructed, one must apperR{',;)eS
the charge density in andj auxiliary MOs, respectively. For
the gradient calculation, eq 16 is changed to

orb HF  N+4 O, O,
B _9ET 0Py . iy
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where the middle terms are evaluateddeiandf-spin electrons
separately.
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