
Generalized Hybrid Orbital (GHO) Method for Combining Ab Initio Hartree -Fock Wave
Functions with Molecular Mechanics

Jingzhi Pu, Jiali Gao,* and Donald G. Truhlar*
Department of Chemistry and Supercomputer Institute, UniVersity of Minnesota, 207 Pleasant Street S.E.,
Minneapolis, Minnesota 55455-0431

ReceiVed: September 15, 2003; In Final Form: NoVember 17, 2003

The generalized hybrid orbital (GHO) method provides a way to combine quantum mechanical (QM) and
molecular mechanical (MM) calculations on a single molecular system or supramolecular assembly by providing
an electrostatically stable connection between the QM portion and the MM portion. The GHO method has
previously been developed for semiempirical molecular orbital calculations, on the basis of neglect of diatomic
differential overlap (GHO-NDDO); in the present work, it is extended to the ab initio Hartree-Fock (HF)
level (GHO-AIHF). First, the theoretical foundation for the GHO-AIHF extension is discussed, and four
different approaches are proposed to overcome the nonorthogonality between active molecular orbitals (MOs)
and auxiliary MOs. In the first scheme, the auxiliary hybrid basis functions are projected out of the active
QM basis. The second scheme neglects the diatomic differential overlap between the auxiliary basis and the
active QM basis. In the third scheme, hybrid orbitals are constructed from Lo¨wdin-type symmetric
orthogonalized atomic orbitals on the basis of global Lo¨wdin orthogonalization. The fourth procedure involves
local Löwdin orthogonalization. The procedures for implementing the four GHO-AIHF schemes are described,
and analytical gradient expressions are derived. The unparametrized GHO-AIHF method is tested for
hydrocarbons with various basis sets, in particular, the geometries and charges are compared with pure QM
calculations for ethane, ethyl radical, andn-octane, and the method is tested for the torsion potential around
the central bond inn-butane. Furthermore, a parametrization of the GHO-AIHF method for the MIDI! basis
is presented and tested for 16 molecules and ions with various functional groups near the QM/MM boundary.
The results show the robustness of the algorithm and illustrate the significant improvement made by introducing
several one-electron integral-scaling parameters. Finally, the energetic performance of the method is tested
by comparing the proton affinities for a set of small model compounds (alcohols, amines, thiols, and acids)
to results obtained from fully QM calculations. We conclude that the GHO-AIHF scheme provides a reasonable
fundamental solution to the problem of combining an ab initio quantum mechanical electronic structure
calculation with molecular mechanics.

I. Introduction

Modeling the energetics and dynamics of macromolecular
systems and large complexes presents a major challenge for
modern theoretical chemistry, because of the size and intricacy
of the systems. A powerful tool for meeting this challenge is
the combined use of quantum mechanics and molecular
mechanics (QM/MM).1-41 The motivation for this combined
approach is that processes involving bond breaking, bond
forming, and electronic excitation should be described by QM,
whereas much of the remainder of the molecule (or system)
may be adequately treated by classical force fields, i.e., MM.
Thus, combined QM/MM methods synthesize the computational
accuracy of QM with the computational efficiency of MM for
large systems. In the type of QM/MM synthesis considered here,
the system is partitioned into a small subsystem that is treated
by QM and a large subsystem that is treated by MM. A special
case is the treatment of solvation for which the boundary
between the QM and MM subsystems can be placed between
solute and solvent molecules that are not covalently bonded to
each other. When using QM and MM within a single molecule,

such as an organometallic complex or a macromolecule, the
boundary may pass through one or more covalent bonds. For
example, in enzymatic reactions, some protein residues (as well
as the substrate) participate in the chemical reactions, and,
therefore, they must be included in the QM region; thus, the
QM/MM boundary must pass through covalent bonds of the
protein. The treatment of the QM and MM boundary is far from
straightforward, which represents a major concern in the
accuracy of combined QM/MM methods. Several different
methods have been developed to truncate the QM electronic
wave function gracefully at the QM/MM boundary when it
passes through a bond. This paper describes new approaches
to this problem.

The most straightforward strategy to treat QM/MM bound-
aries is the so-called “link atom” approach, which uses a H atom
to cap the free valence of the QM fragment.2,3 Because of its
simplicity, the link atom approach has been widely used in all
types of QM/MM applications, both at the semiempirical and
ab initio levels. A drawback of the “link atom” method is that
it introduces additional degrees of freedom that are not present
in the original molecular system. This introduces complications
in the energy definition, the optimization of geometries, and
the polarization of the bond between the QM boundary atom
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and the link atom; these problems have been thoroughly
discussed,17,29,35,41and methods to circumvent the problem have
been proposed.29,42In a so-called “double link atom” approach,39

two link atoms are added at each QM/MM boundary to alleviate
electrostatic unbalance introduced by a single link atom, and
delocalized Gaussian functions are used to correct the strong
polarization near the QM/MM boundary region. Although the
question of correctly balancing the polarization at the QM/MM
boundary when one uses link atoms continues to be troublesome,
meaningful results can be obtained, especially when one
introduces refinements (for example, parametrized treatments
of the electrostatic potentials or point charges that are smeared
out near the boundary).17,29,35,42However, it is reasonable to
ask whether there is a more fundamental way to join the
quantum mechanical and classical mechanical regions without
introducing the extra degrees of degrees of freedom that are
associated with nonphysical atoms.

An example of a more fundamental approach that has been
developed to provide a quantum mechanical description of bonds
at the QM/MM boundaries is to use localized orbitals. The first
application of this approach was described by Rivail and co-
workers, using the local self-consistent field (LSCF) algo-
rithm.6-9,25 In the LSCF framework, the chemical bonds that
connect the QM and MM fragments are called frontier bonds,
and they are represented by a set of strictly localized bond
orbitals (SLBOs), which are determined by calculations for small
model compounds. The strictly localized character of these
orbitals helps to ensure that they are transferable from the model
system to the large molecule. The SLBOs are excluded from
the self-consistent field (SCF) optimization of the large mol-
ecule, to prevent their mixture with other QM basis functions.
The LSCF method was first developed for semiempirical
Hamiltonians, and it was then generalized to ab initio Hartree-
Fock (HF), post-HF, and density functional theory (DFT)
methods with analytical gradients.7,8 Recently, specific force-
field parameters have also been developed for the LSCF
method.9 Although the LSCF framework is theoretically more
robust than using link atoms, the unavoidable need for model
studies for each individual system is a drawback. To solve this
problem, Friesner and co-workers parametrized a library of
frozen densities for all side chains of amino acids.37 A detailed
quantitative test of the LSCF approach showed that, similar to
the link atom method, it can be satisfactory if used with special
care.29

The link-atom and LSCF methods continue to be used in
various forms. For example, Friesner and co-workers called their
LSCF library a “frozen orbital” approach,37 and Zhang et al.36

developed a “pseudo-bond” method, which is a link-atom
implementation, in which the link atom is a pseudo-halogen
atom whose lone-pair orbitals and electrons serve as an effective
core potential (ECP). The ECP parameters are adjusted to mimic
the properties of the original bond. Recently, Swart proposed a
version of the link atom approach called AddRemove.41

Another approach with some similarity to the LSCF method
is the generalized hybrid orbital (GHO) method.26 In this
approach, a set of four hybrid orbitals is assigned to each MM
atom at a QM/MM boundary; such atoms are called boundary
atoms and are denoted by the symbol B. One of the hybrid
orbitals, called the active orbital, is directed toward the QM
atom to which the B atom is bonded; this atom is denoted by
the symbol A. In the initial application, the boundary atom has
been chosen to be an sp3 C atom, although other atoms can
also be used. The hybridization scheme is completely determined
by the local geometry of four atoms (the B atom and the three

MM atoms to which it is bonded), and one hopes that this will
make the parametrization transferable so that one might not need
to perform calculations on new model systems each time the
GHO method is applied. Furthermore, the hybridization of these
orbitals varies dynamically during molecular dynamics simula-
tions, whereas, in the LSCF and the frozen orbital methods,
the localized orbitals are treated as independent of geometrical
variations. The active hybrid orbital is allowed to participate in
the SCF optimizations, and it mixes freely with other QM basis
functions. The other three hybrid orbitals, which are called
auxiliary orbitals, do not mix and are excluded from the SCF
procedure; however, they provide a quantum mechanical
representation of the charge distribution in the bonds of the
boundary atom to its MM neighbors, and this delocalized
representation is more robust than using point charges at the
boundary. In the semiempirical molecular orbital43 framework
for which the method was developed, these treatments neglect
diatomic differential overlap (NDDO).

The GHO boundary treatment has been used successfully in
recent enzyme dynamics studies that have been based on
combined QM/MM potential energy surfaces (PESs).27,44-47

These applications used semiempirical QM models,43 which
often have large errors in quantitative energy calculations; thus,
specific parametrizations48 are typically needed. To overcome
this limitation, the present article presents an extension of the
GHO formalism to the ab initio Hartree-Fock (AIHF) level.
In addition to being of interest in its own right, a formulation
based on AIHF is a first step toward developing methods for
hybrid DFT and for post-HF correlated methods based on a HF
reference.

The organization of the paper is as follows. The GHO-AIHF
algorithm is presented in Section II. Details of orthogonalization
procedures are described in Section III. For simplicity, the main
text is restricted to closed-shell singlets; the changes required
to treat open-shell systems are presented in an appendix. The
implementation of GHO-AIHF is discussed in Section IV.
Section V presents tests of the algorithm with no new
parameters. Section VI discusses further parametrization by
scaling integrals that involve orbitals at the QM/MM boundary.
Section VII contains concluding remarks.

II. Theory

The presentation of the GHO-AIHF method is organized as
follows. In Subsection IIA, a brief review of the principal
elements of the GHO method in given, and some useful terms
and notation used throughout the later discussions are defined.
In Subsection IIB, the major theoretical concerns are discussed,
and a general overlap constraint is formulated. In Section III,
we propose four different strategies for enforcing this constraint.

A. The Generalized Hybrid Orbital (GHO) Method with
Neglect of Overlap. Because the GHO algorithm has been
presented at the semiempirical level elsewhere,26 we provide
only a brief summary of the major elements relevant to the
further development in the present article. In this section, we
describe the case in which the QM system is approximated by
neglect of diatomic differential overlap43 (NDDO) and the QM/
MM partition of the molecular system is placed at ansp3 C
atom, which is called a GHO boundary atom B; in principle, B
can be any other type of atom or have other hybridizations,
although the present choice is sufficient for treating a large
number of systems, including most enzyme systems. The B atom
is both a QM and an MM atom in the GHO method, and the
QM atom bonded to the B atom is called the frontier atom A.
The three MM atoms directly bonded to the B atom are denoted
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by the symbols X, Y, and Z (see Figure 1). We define atoms
other than B in the QM subsystem as “fully QM atoms”, which
are denoted by the symbol Q, because they are fully treated by
quantum mechanics. Let the total number of basis functions on
fully QM atoms beN, and denote these byøu, whereu ) 1, 2,
..., N. For the GHO boundary atom B, a set of hybrid orbitals
{ηB, ηx, ηy, ηz} is constructed by hybridization of the atomics
andp valence basis functions on the B atom. The orbitalηB is
the active hybrid orbital. The other three hybrid orbitals are the
auxiliary orbitals, denoted byηb (whereb ) x, y, z). A basis
transformation matrixTb, which has been defined in detail
previously,26 relates these hybrid orbitals to the atomics andp
orbitals on the B atom:

As a result of the hybridization,{ηB,ηx,ηy,ηz} is an orthonormal
set:

The fully QM basis functions (øu) plus the active hybrid basis
function (ηB) form the (N + 1)-dimensional active basis space
for the SCF calculation; functions in this active space are
denoted byøa. The N + 1 occupied and virtual molecular
orbitals that result from diagonalization of the Fock matrix43 of
the SCF calculation are linear combinations of these active basis
functions:

whereøN+1 ) ηB. Each of the three auxiliary basis functions
forms an auxiliary MO by itself, which, for each geometry, is
to be frozen in the SCF procedure:

The frozen auxiliary MOs provide an effective charge distribu-
tion to mimic the fractional charges present in the three bonds
that are formed by the B atom and its MM neighbors{X, Y,
Z}. The occupationPbb

H assigned to each auxiliary orbital is
chosen to be 1- qB/3, whereqB is the MM partial charge of
the B atom, so that the MM partial charge on the B atom is
evenly distributed over three auxiliary orbitals. For example,

the CHARMM parametrization of the MM force field hasqB

) -0.27 for a methyl carbon andqB ) -0.18 for a methylene
carbon. Thus, the auxiliary orbital occupancy for these two key
cases is 1.09 and 1.06, respectively. (It should be emphasized
that all partial atomic charges on MM atoms, including the
boundary atoms, are retained without modification, and they
all interact with QM electrons and nuclei.) Many of the notations
defined in this paragraph will be used throughout the remainder
of the article; we summarize them in Table 1 for further
reference.

The total energy is the sum of the QM energy, the MM
energy, and the QM/MM interaction energy:

whereEQM andEMM are the internal energies of the QM and
MM subsystems, respectively, with the MM terms that involve
only QM atoms (i.e., that involve only fully QM atoms and the
boundary atom) removed, andEQM/MM contains (i) the interac-
tion energy of delocalized electrons (including those in auxiliary
orbitals) with MM partial charges, (ii) the interaction energy of
QM nuclei with MM partial charges, and (iii) nonbonded van
der Waals interactions between QM and MM atoms. Because
the NDDO method includes only valence electrons, all QM
nuclear charges (including the nuclear charge on the B atom)
are reduced by the number of core electrons. It is useful to
rewrite eq 5 as

whereEorb is the electronic component of the sum ofEQM and
component (i) of EQM/MM and E QM,QM/MM

nuc is the sum of
components (ii) and (iii) ofEQM/MM and the nucleus repulsion
terms in theEQM term.

In the GHO formalism, there are two classes of MOs: active
(act) and auxiliary (aux). Consequently, we can write

These energy terms can be further expressed as

wherePij andHij are elements of the density matrixP and the

Figure 1. Schematic representation of the QM/MM partition in the
GHO method.
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TABLE 1: Notation

symbol description

B the GHO boundary atom
A the frontier atom, i.e., the QM atom to which the B atom

is directly bonded
Q fully QM atoms, including the A atom but not the B atom
X, Y, Z the three MM atoms to which the B atom is directly bonded
øu fully QM basis functions on Q; indexu ) 1-N
ηB active hybrid basis function on the B atom
ηb auxiliary hybrid basis on the B atom; the indexb ) 1-3

(or takes the valuesx, y, andz)
øa active basis functions (øu plusηB); indexa ) 1-(N + 1).

Note thatøN+1 ) ηB.
qB the MM partial charge on the B atom

Etot ) EQM + EMM + EQM/MM (5)

Etot ) Eorb + EMM + EQM,QM/MM
nuc (6)

Eorb ) Eact + Eaux (7)

Eact ) ∑
uV)1

N+1

PuV
H [(HuV

H + IuV
H ) +

1

2
∑
st)1

N+1

Pst
H(st||uV) +

∑
b)1

3

Pbb
H (bb||uV)] (8)

Eaux ) ∑
b)1

3

Pbb
H [(Hbb

H + Ibb
H ) +

1

2
∑
c)1

3

Pcc
H(cc||bb)] (9)

634 J. Phys. Chem. A, Vol. 108, No. 4, 2004 Pu et al.



conventional one-electron matrixH,42,43 which contains the
kinetic energy of electrons and the attraction from QM nuclei;
andI represents the energy due to interaction with MM partial
charges. The superscript “H” is added to indicate that these
quantities are evaluated in the hybrid (H) basis. The shorthand
notation of the two-electron integral is defined as

where

andτi denotes the spatial coordinates of electroni. The active
basis indices{u,V,s,t} all run from 1 toN + 1, and the auxiliary
basis indices{b,c} run from 1 to 3. The SCF procedure only
optimizesEactover the active basis space; the energyEaux, which
is due to auxiliary orbitals, is a fixed constant for a given
geometry, although its derivatives, with respect to nuclear
coordinates, are nonzero because of the transformation matrix
Tb. After further basis transformation, the total energy can be
conveniently evaluated in the atomic orbital (AO) basis as

B. Generalized Hybrid Orbitals for a Nonorthogonal
Basis.The formulation26 of the GHO method that we have just
reviewed was simplified in several ways by the approximations
made in the semiempirical NDDO Hamiltonians. An especially
critical issue is that, because all basis functions are assumed to
be orthogonal to each other in these methods, all auxiliary MOs
are automatically orthogonal to active MOs, even though they
are not eigenvectors of the Fock matrix. Moreover, the quantum
mechanical calculation is semiempirically parametrized in terms
of a small number of quantities such asâ, Uss, andUpp,43 and
many types of integrals are set equal to zero,42 so that only a
small set of integral types must be considered at the GHO
boundary.26 Finally, the density force term49,50 vanishes in the
GHO energy derivative expression (see below), because the
overlap matrix is unity under the NDDO approximation. For
ab initio HF theory, all the aforementioned simple features
become more complicated.

There are four main aspects that must be considered in the
treatment of the QM/MM boundary in the generalized hybrid
orbital method, to extend the method to ab initio molecular
orbital theory. First is the representation of the boundary atom.
Second is the generality with respect to using arbitrary basis
sets for the QM subsystem. Third is the question of whether
the hybrid orbitals must be explicitly orthogonalized to the
orbitals of the fully QM atoms. Finally, we must mitigate
systematic errors that may occur due to the boundary treatment
and learn if they can be removed by scaling electronic integrals
that involve the boundary orbitals.

In deciding which representation to use for the boundary
atom, we note that all combined QM/MM approaches contain
empirical parameters, because these calculations ultimately must
balance the treatment of a QM fragment and a highly param-
etrized MM component. Nevertheless, we want to gain the
advantages of parameter-free HF calculations in regions removed
from the boundary, and, thus, we want to retain flexibility in
basis set selection for the QM fragment in regions far from the
boundary. Because reasonably accurate ab initio HF calculations
usually require at least a polarized split valence basis set, but

polarization functions on the boundary atom would unnecessarily
complicate the treatment, we want to allow for different basis
sets on the boundary atom and the fully quantum atoms.
Regardless of whether the same basis set is used for the
boundary atom, there will be an imbalance between the QM
fragment and the boundary atom, which may ultimately need
be resolved by parametrizing certain electronic integrals.
Nevertheless, one criterion for judging whether the QM and
MM regions have been joined in a physically reasonable way
is that any reparametrization should yield good agreement with
full QM calculations. Because parameters are necessarily
involved anyway, it is reasonable to use a representation of the
boundary atom that is simple and straightforward to implement.
Following this line of reasoning, we decided to forego explicit
consideration of the 1s core electrons on B, and we have
assigned an STO-3G51 valence-only (STO-3Gv) minimal basis
set to the B atom. To balance the neglect of core electrons, the
nuclear charge of the boundary atom B, for carbon, is reduced
from 6 to 4. With this choice of basis functions on the B atom,
the formulation of the hybrid basis orbitals in the GHO-AIHF
method is greatly simplified. It should be emphasized that we
impose no restrictions on the basis functions for atoms in the
QM region. The basis imbalance between the fully QM atoms
and the boundary atom B may be compensated (if necessary)
by parametrizations of the integrals that involve orbitals on the
B atom, as we will discuss in Section VI.

The next major issue to be addressed in extending the GHO
method to the ab initio HF level is the treatment of orthogonality
constraints of MOs. This concern is present not only in the GHO
method but also in the LSCF-type methods. The ab initio HF
equations52 are derived from the variational principle for the
energy under MO orthonormality constraints:

whereC is a matrix whose columns are the MO coefficients
and the dagger symbol (†) denotes a transpose. The MOs that
satisfy orthonormality constraints and diagonalize the Lagrange
multiplier matrix are called canonical MOs. The canonical MOs
are unique, except for degeneracies and phase functions.52,53In
GHO calculations, only a subset of the MOs are canonical MOs.
The auxiliary orbitals in the GHO method are not orthogonal
to the active MOs because the auxiliary orbitals are not
eigenvectors of the Fock operator. To retain the orthogonality
constraint of eq 12 for active MOs and auxiliary orbitals, the
following conditions must be imposed, in addition to the SCF
procedure in the optimization of theN + 1 active MOs:

whereæa andæb represent active and auxiliary MOs, respec-
tively. Equation 13 can be formulated in terms of the mixed
atomic and hybrid basis orbitals:

Taking into consideration that the active hybrid basis function
ηB (øN+1) is constructed as being orthogonal to the other
auxiliary basis functions (see eq 2), the portion of eq 14 that
must be enforced separately is

In the present work, four different approaches for enforcing
eq 15 are proposed and tested: (i) basis set projection, (ii) the

(uV||λσ) ) (uV|λσ) - 1
2
(uλ|Vσ) (10a)

(uV|λσ) ) ∫∫dτ1dτ2u*(1)V(1)λ*(2)σ(2) (10b)

Etot )
1

2
∑

uV)1

N+4

PuV
AO(HuV

AO + FuV
AO) + EMM + EQM,QM/MM

nuc (11)

C†SC ) I (12)

(æa|æb) ) 0

(a ) 1, 2, ...,N + 1; b ) N + 2, N + 3, N + 4) (13)

〈øa|ηb〉 ) 0 (a ) 1, 2, ...,N + 1; b ) x, y, z) (14)

Sub ) 〈øu|ηb〉 ) 0 (u ) 1, 2, ...,N; b ) x, y, z) (15)
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neglect of diatomic differential auxiliary overlap, (iii) hybridiza-
tion based on global Lo¨wdin orthogonalized atomic orbitals,
and (iv) hybridization based on local Lo¨wdin orthogonalization
(LLO) near the boundary. The detailed orthogonalization
procedures will be discussed in Section III.

The analytical energy gradients in the GHO method are
evaluated as the sum of the conventional HF gradient49,50 and
a correction term that is due to the basis transformation:

whereWAOandSAO are the energy-weighted density matrix49

and overlap matrix, respectively, in the AO basis; andq denotes
only the nuclear coordinates of the boundary atom and its MM
neighbors X, Y, and Z. The expressions for energy-gradient
components for other atoms are unaffected by the GHO
procedure. Note that the∂WAO/∂q term comes from the GHO
basis transformation on the density forces, and it is not present
in the semiemprical GHO gradient formula, because, in semi-
empirical methods, the overlap matrix is assumed to be a unit
matrix. In ab initio calculations, the matrixesP andW are further
transformed until the differentiated function is a true variational
density:

whereT is the total basis transformation matrix from the hybrid
basis to the AO basis:

We do not need to evaluate the last terms (derivative of a
variational density) in eqs 17 and 18, because they have already
been included in the conventional HF gradient calculations.49,50

The gradients (∂T/∂q) of the basis transformation matrix was
derived elsewhere.26

To evaluate the GHO-AIHF gradient analytically, according
to eq 16, the energy-weighted density matrixWAO is required.
The energy-weighted density matrix elementWuV

AO can be
written as

where the sum includes the auxiliary MOs;cui andcVi are the
respective orbital coefficients for atomic basis functionsu and
V in molecular orbitali; andni

occ andεi denote the occupation
number and the orbital energy for molecular orbitali, respec-
tively. The orbital energies for theN + 1 active MOs can be
obtained in the customary way by solving Roothaan’s equation52

in the active space. The auxiliary orbital energies are not directly
available, because the auxiliary MOs are excluded from the
active SCF space. However, we evaluate the auxiliary orbital
energies explicitly as expectation values of the Fock operator,
which yields

In particular, we evaluate this expression using the hybrid basis,
in which only diagonal Fock elements survive:

The occupation numberni
occ for an auxiliary orbital is equal to

(1 - qB/3.0), as in Subsection IIA.

III. Orthogonalization Procedures

In this section, we present four different approaches for
enforcing the orthogonality constraints in eq 15. The first one
is to project the auxiliary basis out of the active basis and
develop the MOs by an expansion over the projected active
basis. The projection operation makes the active basis orthogonal
to the auxiliary basis, while retaining the strictly localized
character of the auxiliary orbitals. The second method involves
the NDDO approximation at the boundary. Specifically, we
directly neglect the diatomic differential overlaps between
auxiliary hybrid orbitals and basis functions on fully QM atoms;
this is called the neglect of diatomic differential auxiliary overlap
(NDDAO) approximation. For consistency, the corresponding
two-electron integrals that involve the two-center charge
distributions between auxiliary orbitals and active QM basis
functions also are neglected. In the third and fourth approaches,
the hybrid orbitals are developed by hybridization of Lo¨wdin54,55

symmetrically orthogonalized atomic orbitals (OAOs). This
hybridization scheme is justified by the fact that the symmetric
OAOs maximally resemble the original AOs in the least-squares
sense. The hybrid orbitals from OAOs consequently resemble
hybrid orbitals that are based on the original AOs. In the third
method, all basis functions are orthogonal to each other;
however, in the fourth method, orthogonalization is performed
only locally near each boundary.

A. Projected Basis Method. The essential step of this
approach is to construct a set of basis functions in the QM
region, orthogonal to the auxiliary orbitals, by the following
projection:

whereSub is the overlap integral betweenøu and ηb, and the
fully QM basis functions after the projection are denoted asø̃u.
The normalization factor is obtained based on the fact that the
hybrid basis functions are constructed to be orthonormal to each
other (eq 2). Instead of using eq 3, theN + 1 active MOs are
expanded over theN projected fully QM basis functions (ø̃u)
and one active hybrid basis function (ηB):

where ø̃N+1 ) øN+1 ) ηB. The auxiliary MOs are still the
auxiliary hybrid basis functions as expressed in eq 4. The
orthogonality between active MOs and auxiliary MOs is
satisfied, because of the orthogonality betweenø̃u andηb, similar
to eq 15:

∂Eorb

∂q
)

∂EHF

∂q
+ ∑

uV

N+4(∂PuV
AO

∂q
)FuV

AO - ∑
uV

N+4(∂WuV
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∂q
)SuV

AO (16)

∂PAO

∂q
)

∂(TPHT†)
∂q

) ∂T
∂q

PHT† + TPH∂T†

∂q
+ T

∂PH

∂q
T† (17)

∂WAO

∂q
)

∂(TWHT†)
∂q

) ∂T
∂q

WHT† + TWH∂T†

∂q
+ T

∂WH

∂q
T†

(18)

T ) (IN 0
0 Tb

) (19)

WuV
AO ) ∑

i)1

N+4

ni
occ

εicuicVi (20)

εi ) ∑
uV)1

N+4

cuicViFuV (i ) N + 2, N + 3, N + 4) (21)

εi ) Fbb
H (i ) N + 2, N + 3, N + 4; b ) x, y, z) (22)

|ø̃u〉 ) (1 - ∑
b)1

3

Sub
2 )-1/2(|øu〉 - ∑

b)1

3

|ηb〉〈ηb|øu〉)

(u ) 1, 2, ...,N; b ) x, y, z) (23)

æi ) ∑
u)1

N

c̃uiø̃u + cBiηB ) ∑
a)1

N+1

c̃aiø̃a (i ) 1, 2, ...,N + 1) (24)

S̃ub ) 〈ø̃u|ηb〉 ) 0 (u ) 1, 2, ...,N; b ) x, y, z) (25)
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Thus, the overall transformation from theN + 4 atomic orbitals
into the projected orthogonal hybrid atomic orbitals can be
expressed as follows:

whereø̃ is a column matrix of the projected orbitals andø is
the column matrix of the atomic orbitals. The transformation
matrix is given below:

whereTb is the 4× 4 hybridization transformation matrix and
M relates the hybrid (H) basis to the projected hybrid (PH) basis:

wherecu (u ) 1, 2, ...,N) in eq 28 is the normalization factor
for the projected basisø̃u:

Because the hybrid basis functions are not changed by the
projection operation, their transformation matrix is a unit
submatrix inM . The projection operation makes the active basis
orthogonal to the auxiliary basis but retains the strictly localized
character of the auxiliary orbitals.

The algorithm for the SCF procedure using the projected
hybrid basis function is given below:

(1) Form the projection matrixM according to eqs 28 and
29.

(2) Form the total transformation matrixT from the AO basis
to the PH basis using eq 27.

(3) Transform the overlap matrix to the PH basis:

(4) Drop columns and rows corresponding to the auxiliary
orbitals to obtain the reduced overlap matrix for the active
orbitalsSN+1

PH :

(5) Form the Lo¨wdin transformation matrix for the active
PH basis: (SN+1

PH )-1/2.
(6) Guess the total density matrix in the AO basis:PN+4

AO .
(7) Form the total Fock matrix in the AO basis:FN+4

AO .
(8) Transform the Fock matrix from the AO basis to the PH

basis:

(9) Drop columns and rows corresponding to auxiliary orbitals
to obtain the reduced Fock matrix for the active orbitalsFN+1

PH :

(10) Löwdin transform the Fock matrix from the PH basis to
the orthogonalized hybrid (OH) basis:

(11) Diagonalize the Fock matrix in the OH basis to obtain
a new set of active MOs by solving Roothaan’s equation in the
(N + 1)-dimensional active space:

(12) Back Löwdin transform the MOs to the PH basis:

(13) Form the active density matrix in the PH basis:PN+1
PH .

(14) Add the diagonal auxiliary densityPbb to the active
density matrix, i.e., form the total density matrix in the PH
basis: PN+4

PH .
(15) Transform the density matrix back to the AO basis:

(16) Compute the total energy and test for SCF convergence.
If not yet converged, go to step (7).

To derive the analytical gradient expression for the GHO-
AIHF method based on the projected basis, we start from eq
16, and derivatives onPAOandWAOare expressed as

where basis transformation matrixT is defined in eq 27. The
derivatives on the transformation matrixT can be written as

whereM is the projection transformation matrix defined by eqs
28 and 29. The derivatives of elements inM can be formulated
as

Recall thatSub is the overlap integral betweenøu andηb in the
hybrid basis; thus,
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The partial derivatives in the first and third terms only operate
on the lower right-hand element of the matrices.

B. NDDAO Approximation. If the MO expansion strictly
follow eqs 3 and 4, as we discussed in Section IIB, eq 15 is a
necessary and sufficient condition to ensure that the auxiliary
MOs are orthogonal to the active MOs. The simplest approach
is to follow semiempirical approximations, in which the orbital
orthogonality of eq 15 is ensured by neglecting the diatomic
differential overlap between the auxiliary orbitalsηb and basis
functionsøu on QM atoms. This is called the neglect of diatomic
differential auxiliary overlap (NDDAO) approximation. For
consistency, two-electron integrals that involve the differential
overlapøuηb also are neglected, because such a charge distribu-
tion vanishes under the NDDAO approximation:

whereX and Y denote any basis functions. To elucidate the
effects of the NDDAO approximation on the SCF procedure
and the GHO energy, we first write the Fock matrix in the hybrid
basis, without any approximation:

where the indices{u,V} for fully QM basis function run from
1 to N in eqs 37-39. Note that other off-diagonal terms of the
Fock matrix that involveηb (Fub

H , FBb
H , and Fbc

H ) are not
presented explicitly here, because they neither participate in the

SCF iteration (dropped as auxiliary entries) nor enter the energy
evaluation (weighted by zero densitiesPub

H ). Because there is
no øuηb differential overlap in eq 40, theFBB

H term remains
unchanged. According to eq 36, the exchange integrals (bu|bV)
in eq 37, (ub|Vb) and (ub|Bb) in eq 38, and (bu|bB) in eq 39
should be neglected, as a consequence of the NDDAO ap-
proximation. However, we do not neglect the (ub|Bb) and
(bu|bB) terms, because it is more complicated to code this
because of the occurrence of three hybrid orbitals. Therefore,
only eqs 37 and 38 are affected by the NDDAO approximation
as implemented here. The modified Fock matrix then can be
written as the sum of the original Fock matrix and a correction
term:

Although integrals (ub|Vb) in eqs 41 and 42 are expressed in
the hybrid basis, one can easily rewrite them in terms of the
readily available AO integrals:

Combining eqs 41-43, the modified Fock matrix, using the
NDDAO approximation, can be expressed as

With the NDDAO correction terms added in, the electron-
electron repulsion between electrons present in auxiliary orbitals
and the orbitals on fully QM atoms is increased, and exchange
between such orbitals is eliminated under the NDDAO assump-
tion. The modified electrostatic fields due to the NDDAO
approximation are consistently reflected in the modified Fock
matrix. Before finalizing the algorithm, we note that the one-
electron integrals that involveηb (Hub

H , HBb
H , andHbc

H ) are not
necessarily kept unchanged if one neglects theøuηb differential
overlap; however, no further modifications on them are needed
in GHO, because of the same reasons as those for theFub

H

terms.
Next, we present a practical procedure to perform a GHO-

AIHF calculation using the NDDAO approximation. We define
the total transformation matrixT between the AO basis and
the hybrid basis as

The SCF procedure for the NDDAO method is modified
correspondingly as follows:

(1) Transform the overlap matrix to the hybrid basis:
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(2) Drop columns and rows for auxiliary entries of overlap
matrix in the hybrid basis:

(3) Form the Lo¨wdin transformation matrix for the active
hybrid basis: (SN+1

H )-1/2.
(4) Guess the total density matrix in the AO basis:PN+4

AO .
(5) Form the total Fock matrix in the AO basis:FN+4

AO .
(6) Transform the Fock matrix in the AO basis to the hybrid

basis:

(7) Modify the total Fock matrix in the hybrid basis according
to eqs 44 and 45, to take into consideration the NDDAO
approximation.

(8) Drop columns and rows corresponding to the auxiliary
orbitals to obtain the reduced Fock matrix for active orbitals
FN+1

H :

(9) Löwdin transform the Fock matrix from the hybrid basis
to the OH basis:

(10) Diagonalize the Fock matrix in the OH basis to obtain
a new set of active MOs by solving Roothaan’s equation in the
active space:

(11) Back Löwdin transform the MOs to the nonorthogonal
hybrid basis:

(12) Form the active density matrix in the hybrid basisPN+1
H .

(13) Add the diagonal auxiliary densityPbb to the active
density matrix, i.e., form the total density matrix in the hybrid
basisPN+4

H .
(14) Transform the density matrix back to the AO basis:

(15) Compute the total energy and test for convergence. If
not yet converged, go back to step (5).

The analytical gradient in the NDDAO approximation
involves extra terms for the neglected exchange energies:

where the first term (∂E/∂q) represents the gradients computed
from eq 16, using derivative routines available for a Fock matrix
without NDDAO correction terms. The second correction term
involves derivatives of the two-electron integral∂(uλ|Vσ)/∂q,
and the basis transformation matrix∂T/∂q.

C. Global Lo1wdin Orthogonalization (GLO) Method. The
Löwdin symmetric orthogonalization method54,55 can be used

to construct a full set of orthogonalized atomic orbitals
(OAOs),54,55 which can be constructed from the AO basis for
all QM atoms (including the GHO boundary atom B) by the
following transformation:

where{s,px,py,pz} denotes the AO basis on B, andøu (u ) 1, 2,
...,N) are basis functions on fully QM atoms; the corresponding
OAO basis functions are labeled by superscript “L”, andTLO

is the Löwdin orthogonalization transformation matrix, which
is given by the relation54,55

where SN+4
AO is the overlap matrix for allN + 4 AO basis

functions. The OAOs form an orthonormal set, i.e.,

One can show that the OAOs resemble the original AOs
maximally in the least-squares sense.54,55 Specifically,
{sL,px

L,py
L,pz

L} resembles{s,px,py,pz} on the boundary atom B.
If we construct the hybrid basis by a hybridization of
{sL,px

L,py
L,pz

L}, the orbitals of the resulting orthogonalized
hybrid (OH) basis also maximally resemble those obtained from
direct hybridization of the original AOs:

In this spirit, the OH basis retains the major chemical
characteristics of the original hybrid basis; however, the
functions of the OH basis are orthogonal to the remainingN
basis functionsøu

L (u ) 1, 2, ...,N), which are not hybridized:

Because the Lo¨wdin OAO basis contains “orthogonalization
tails" from other atom centers,56 the hybrid basis defined by eq
51 also contains these tails. Although it might be argued that
the delocalized nature of the hybrid Lo¨wdin OAOs makes them
inappropriate for use in the GHO method, we have determined
that this does not present a problem. Strictly localized orbitals
were strongly favored in the LSCF and in the frozen-orbital
treatments, because, in that type of method, the localized orbitals
represent the frontier QM/MM bonding orbitals. The major
motivation of using a localized orbital in those methods is to
promote transferability of the bonding orbital. In the GHO
approach, the QM frontier bonding orbital is actually described
as a delocalized orbital, because the active hybrid basis function
ηB is allowed to mix with other active basis functions in forming
active MOs. Thus, localization of hybrid orbitals is not a
requirement for the GHO method, at least for the active hybrid
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orbital ηB. Furthermore, in the AO basis, alls andp orbitals on
the B atom have non-negligible overlaps with basis functions
from other QM atoms. The largest overlaps are between the
basis on the B atom and its QM neighbor the A atom. The basis
functions on the B atom become delocalized to other centers in
the SCF step, regardless of whether we orthogonalize them to
the fully QM basis. Actually, Lo¨wdin OAOs are more localized
than AOs in some aspects. For example, the nodal regions of
Löwdin OAOs around other centers effectively prevent electrons
from penetrating to the neighborhood of other atoms.56,57 For
these reasons, we think the inclusion of orthogonalization tails
in the hybrid basis is physically justified. Our further investiga-
tions show that the orthogonalization can be localized to orbitals
on atoms close to the GHO boundary, because only those
orbitals have significant overlaps with the auxiliary orbitals, and
the smaller overlaps with atoms far away can be neglected, as
in the NDDAO method. The local orthogonalization scheme is
considered in Subsection IIID. In the remainder of this section,
we present the algorithm using Lo¨wdin orthogonalization over
the entire molecule.

The total transformation matrixT that relates the AO basis
to the OH basis is

The modified SCF procedure for the hybrid Lo¨wdin method
then can be described as given below:

(1) Guess the total density matrix in the AO basisPN+4
AO .

(2) Form the total Fock matrix in the AO basisFN+4
AO .

(3) Transform the Fock matrix from the AO basis to the OH
basis:

(4) Drop columns and rows corresponding to auxiliary orbitals
to obtain the reduced Fock matrix for active orbitalsFN+1

OH :

(5) Diagonalize the Fock matrix in the (N + 1)-dimensional
OH basis to obtain a new set of active MOs by solving
Roothaan’s equation in the active space:

(6) Form the active density matrix in OH active basisPN+1
OH .

(7) Add the diagonal auxiliary densityPbb to the active density
matrix, i.e., form the total density matrix in the OH basisPN+4

OH .
(8) Transform the density matrix to the AO basis:

(9) Compute the total energy and test for SCF convergence.
If not yet converged, go back to step (2).

Finally, we formulate the analytical gradient for GHO-AIHF
using hybrid Löwdin OAOs; eq 16 is the starting point. Density
derivatives onPAOandWAO, similar to eqs 17 and 18, can be
obtained by

where the basis transformation matrixT is defined according
eq 53; again, the last terms of eqs 54 and 55 have already been
collected in conventional HF gradient calculations. The deriva-
tives on the transformation matrixT can be written as

The derivatives of the Lo¨wdin transformation matrix have been
formulated in the development of a previous algorithm,58 and
they are directly available in the form of∂(SN+4

AO )+1/2/∂q.
Utilizing this available result, one can obtain∂TLO/∂q, as
required for eq 56, by the following transformation, which is
derived by combining eq 49 with the result in Appendix A:

As an alternative to the aforementioned procedure, one can
first hybridize AOs on the B atom to create a set of hybrid basis
functions; the orthogonalized hybrid (OH) basis then can be
created by Lo¨wdin orthogonalization of the hybrid basis to the
AOs on other QM atoms. However, it can be shown that the
hybridization and Lo¨wdin orthogonalization operators commute
with each other,56 and we also performed numerical tests
showing that the total energy is invariant, with respect to the
order of hybridization and orthogonalization. Because this
variant is identical to the previous one, in terms of energy and
gradients, we do not include any detailed discussion of it.

D. Local Lo1wdin Orthogonalization (LLO) Method.
Finally, we consider a variation of the GHO-AIHF method
using Löwdin OAOs. Instead of doing a Lo¨wdin orthogonal-
ization over the entire molecule, we restrict the orthogonalization
to orbitals near the GHO boundary. This scheme should be
particularly attractive, at least from a conceptual viewpoint, for
a large QM subsystem or for QM subsystems with two or more
boundary atoms, because the effect of each boundary is entirely
localized to the region near that boundary. If one optimizes
integral scale factors or new MM parameters to correct
imbalances near the transition state empirically, those parameters
might be expected to be more transferable if one uses local
Löwdin orthogonalization.

The Löwdin orthogonalization (LLO) method is identical to
the global Löwdin orthogonalization (GLO) method in all
respects, except the definition ofTLO. In the LLO method, one
retains only overlap integrals that involve boundary atoms and
a subset of fully QM atoms. For example, in Section V, we
will consider including only overlap integrals that involve (LLO:
F) boundary atoms and frontier atoms, (LLO:FG) boundary
atoms, frontier atoms, and geminal atoms (i.e., A atoms and
other atoms bonded to A atoms), or (LLO:FGV) boundary
atoms, atoms bonded to, geminal to, and vicinal to boundary
atoms.

Although the local orthogonalization method is preferred,
because it makes the minimal changes in the quantum mechan-
ical treatment in regions far from the boundary, one must be
careful to avoid conformations where the distant regions of a
chain of QM atoms bend back toward the boundary. Such
problems do not occur for any of the test cases considered in
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the present paper; however, they could occur in other applica-
tions. In such cases, one should use the GLO method.

IV. Implementation

We have implemented all four of the proposed GHO-AIHF
algorithms in the GAMESSPLUS package,59,60 which works
with the CHARMM/GAMESS interface.28 The MM force field
is the CHARMM22 parametrization.61 For the MM term in the
energy expression, we follow the original QM/MM paper by
Field et al.,3 i.e., we remove the MM terms that involve
exclusively QM atoms (the GHO boundary atom B is also
considered as a QM atom for this purpose). Following this
principle, the torsion terms to be removed are different from
the QM/MM implementation in the previous28 CHARMM/
GAMESS interface. In that interface, anyX-QM-QM-X
terms were removed, regardless of whether the 1,4 centers are
QM atoms or MM atoms. This rule may be reasonable for QM/
MM calculations when a link atom is used, but it is not valid
for a GHO treatment. Removing allX-QM-QM-X torsion
terms with GHO seriously underestimates the internal rotation
barrier for the QM-QM bond if one of the central atoms is the
frontier atom A and the other is the GHO boundary atom B.
For that case, the QM Hamiltonian in GHO provides only a
partial description of the torsion barrier (mainly due to the
presence of electrons in auxiliary hybrid orbitals), and the major
portion of the torsion is determined by the MM force field,
which should not be removed from the total energy.

V. Tests of Unparametrized Method

In previous work, a wide variety of test data has been used
for validation of combined QM/MM methods, including, for

example, atomic charges,6a,7,26,29,36,40conformational energies,35

diamides,36 di-, tri-, and tetra-peptides,6b,29,35 dipole mo-
ments,35,39geometries,6b,26a,29a,36,39HOMO and LUMO energies,6a

potential energy curves for bond stretching,36,39,40 protein
simulations,26b,44-48 proton affinities,26b,29,35,36,39,40proton
transfer,6a,7size effects,6b torsion potentials,6a,26,29,35,39vibrational
frequencies,35 hydrogen bonding energies,4 and zwitterions.6b

In the present paper, we will consider atomic charges, dipeptides,
geometries, proton affinities, size effects, torsion potentials, and
zwitterions. However, to begin, we will concentrate on atomic
charges and geometries, because we believe that these provide
the most direct test of charge and interaction balance at the
QM-MM interface.

In this section, we will present QM/MM results for several
different basis sets in the fully QM region and with the STO-
3Gv basis on the boundary atom. In this section, no integrals
are scaled and no MM terms are altered. Thus, there are no
new parameters, and we can test the criterion proposed in
Section II, namely that the method should give qualitatively
reasonable results without parametrization. Before considering
these tests, we consider results from pure QM calculations with
full basis sets and mixed basis sets. The QM basis sets include
single-ú valence basis set (STO-3G, STO-4G),51 doubly split
valence basis sets (3-21G, 6-31G),62-64 basis sets that include
polarization functions and diffuse functions [6-31G(d), 6-31G-
(d,p), 6-31+G(d), 6-31+G(d,p)],64,65 and finally the MIDI!
basis,66 which was proposed to give accurate geometry and
partial charges at the HF level. The results obtained with these
basis sets, and with mixed basis sets where one methyl group
is treated by STO-3Gv, are given in Tables 2 and 3 for
comparison. (Table 3 also shows pure MM results.) Tables 2
and 3 show not only geometrical parameters but also partial

TABLE 2: Optimized Geometries and Partial Charges for Ethane at the Pure HF Level with Conventional Basis Setsa

Bond Distance (Å) Angle (deg) Mulliken Charge Lo¨wdin Charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qA qB

STO-3G 1.538 1.086 1.086 110.7 110.7 -0.17 -0.17 -0.08 -0.08
STO-4G 1.535 1.082 1.082 110.7 110.7 -0.18 -0.18 -0.09 -0.09
3-21G 1.542 1.084 1.084 110.8 110.8 -0.60 -0.60 -0.26 -0.26
6-31G 1.530 1.084 1.084 111.2 111.2 -0.45 -0.45 -0.31 -0.31
6-31G(d) 1.527 1.086 1.086 111.2 111.2 -0.48 -0.48 -0.44 -0.44
6-31G(d,p) 1.527 1.086 1.086 111.2 111.2 -0.33 -0.33 -0.29 -0.29
6-31+G(d) 1.528 1.086 1.086 111.2 111.2 -0.55 -0.55 -0.58 -0.58
6-31+G(d,p) 1.527 1.086 1.086 111.2 111.2 -0.37 -0.37 -0.43 -0.43
MIDI! 1.541 1.087 1.087 111.0 111.0 -0.55 -0.55 -0.27 -0.27

a Symmetry is not imposed in these reference calculations. For comparison to GHO-AIHF results, we refer to the two carbons as the A and B
atoms, even though there is actually no GHO boundary atom in a pure QM calculation. Note thatqAH3 ) qBH3 ) 0 in these calculations.

TABLE 3: Optimized Geometries and Partial Charges for Ethane at the Pure HF Level with Mixed Basis Setsa and at the Pure
MM Level (Last Row)

Bond Distance (Å) Angle (deg) Mulliken Charge Lo¨wdin Charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qAH3
b qA qB qAH3

b

STO-3G 1.512 1.088 1.077 109.1 111.2 -0.02 -0.75 0.48 0.01 -0.40 0.13
STO-4G 1.509 1.084 1.078 109.0 111.2 -0.04 -0.75 0.48 0.00 -0.39 0.12
3-21G 1.534 1.085 1.075 109.6 110.4 -0.29 -0.85 0.58 -0.30 -0.26 -0.01
6-31G 1.515 1.085 1.078 109.5 111.5 -0.06 -0.88 0.61 -0.36 -0.23 -0.04
6-31G(d) 1.511 1.085 1.078 109.5 111.5 -0.06 -0.88 0.61 -0.48 -0.20 -0.07
6-31G(d,p) 1.509 1.088 1.077 110.1 111.2 0.06 -0.91 0.64 -0.43 -0.17 -0.10
6-31+G(d) 1.512 1.085 1.085 108.9 111.3 -0.20 -0.87 0.60 -0.81 -0.11 -0.16
6-31+G(d,p) 1.511 1.086 1.085 108.9 111.4 -0.03 -0.87 0.60 -0.66 -0.11 -0.16
MIDI! 1.531 1.088 1.074 109.1 111.1 -0.12 -0.90 0.63 -0.31 -0.26 -0.01
MM c 1.529 1.111 1.111 110.3 110.3 -0.27d -0.27d 0.00d -0.27d -0.27d 0.00d

a The basis on one methyl group is the STO-3Gv basis, and the basis on the other methyl group is indicated in column 1. We refer to the C atom
described by an STO-3Gv basis as CB, and the C atom described by the larger basis as CA. For the C atom described by STO-3Gv, we omit the
core electrons and decrease the nuclear charge by two.b qBH3 ) -qAH3.

c All MM results in this paper are for the CHARMM force field of ref 61.
d MM partial charges.
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atomic charges obtained by Mulliken67 population analysis and
Löwdin54,68 population analysis, which are denoted MPA and
LPA, respectively.

First, we consider Table 2, which shows conventional full
QM calculations with a range of basis sets. We see that
geometries are relatively invariant to the basis set choice, but
partial charges are dependent strongly on the basis set. Table 3
then shows the effect of describing one methyl group with the
small STO-3Gv basis, while increasing the quality of the basis
set on the other methyl group. Again, we see that geometries
are relatively invariant to the lack of balance in the basis set,
although using the mixed basis has a tendency to underestimate
the C-C bond distances by∼0.2 Å. Löwdin charges on the C
atom with the small basis are similar to Lo¨wdin charges when
the entire molecule is treated with the small basis set, whereas
Löwdin charges on the C atom with the large basis set are
similar to Löwdin charges when the entire molecule is treated
with the large basis set, which is encouraging, given the
previously validated relatively good performance69,70of Löwdin
charges for balanced basis sets. Mulliken charges, in contrast,
are sometimes unstable.69 In the present examples, Mulliken
charges are uniformly more negative on the boundary atom than
on the fully QM C atom. In contrast, Lo¨wdin charges are less
negative on the boundary atom when large basis sets are used
for the fully QM atoms. We note the neither Mulliken nor
Löwdin partial charges are used in any way in the QM/MM
calculations; they are considered here as one possible test of
whether the QM/MM boundary treatment has acceptably small
charge transfer across nonpolar bonds. The importance of Table
3 is that it can be considered an upper bound on the quality of
the performance that can be expected from GHO-AIHF. In
other words, the most we should expect from unparametrized
GHO-AIHF near the boundary (in ethane, all atoms are near
the boundary) is the quality of the results in Table 3, although
far from the boundary (in large molecules), one might hope for
the quality of the results of Table 2.

We tested the unparametrized GHO-AIHF method for
ethane,n-butane, n-octane, ethanol, ethylamine, and ethyl
radical. First, we consider ethane. The QM/MM boundary is
along the C-C bond in ethane. The GHO boundary C atom is
labeled as CB; and its QM neighbor C atom is labeled as CA.
Including the QM methyl group and CB, there are five atoms
to be treated quantum mechanically. An STO-3Gv basis is
always assigned to the boundary carbon CB; however, basis sets
for fully QM atoms are not restricted, and we shall present
results for several basis sets. We investigate the GHO-AIHF
method with all four approaches to resolve the MO orthogonality
constraint as described in Section III. The QM basis sets are
the same as those used in Tables 2 and 3. To provide a
comprehensive test of the methods, we consider geometries
(obtained by optimization with analytic gradients), total energies
(obtained from eq 11), and partial atomic charges. Partial atomic
charges on QM atoms are calculated by MPA and LPA.

The GHO-AIHF optimized geometry and atomic charges
obtained from population analysis with the projected basis, the
NDDAO approximation, the global Lo¨wdin orthogonalization
(GLO) method, and the local Lo¨wdin orthogonalization to
frontier orbitals (LLO:F) treatments are listed in Tables 4-7.
These tables show that reasonable geometries can be obtained
for all the QM basis sets studied by GHO-AIHF QM/MM
optimizations, even without any parametrization, although the
trends are different than with the projection method. Because
auxiliary orbitals are not SCF-optimized in GHO, these sys-
tematic deviations can be considered to be a normal consequence
of using frozen orbitals. In comparison to the aforementioned
two methods, the GLO method does not show a systematic error
in this critical bond distance across the QM/MM boundary.
Table 6 is encouraging, in that the CA-CB bond distance
predicted by the third approach varies from 1.43 Å to 1.68 Å,
only slightly deviating from the pure HF/full basis result of
Table 2. Recall that the distinguishing feature of this method is
that orthogonality tails on all other QM atoms are explicitly

TABLE 4: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO-AIHF Level Using a Projected
QM Basis

Bond Distance (Å) Angle (deg) Mulliken Charge Lo¨wdin Charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qAH3
a qA qB qAH3

a

STO-3G 1.542 1.091 1.118 110.0 119.6 0.02-0.47 0.20 0.10 -0.45 0.18
STO-4G 1.533 1.088 1.119 110.0 119.6 0.00-0.47 0.20 0.08 -0.44 0.17
3-21G 1.514 1.083 1.119 112.1 120.3 -0.10 -0.54 0.27 -0.09 -0.30 0.03
6-31G 1.475 1.084 1.121 112.8 120.9 0.20 -0.61 0.34 -0.13 -0.28 0.01
6-31G(d) 1.473 1.085 1.121 113.2 121.0 0.15-0.62 0.35 -0.36 -0.20 -0.07
6-31G(d,p) 1.470 1.086 1.121 113.4 121.0 0.31-0.62 0.35 -0.23 -0.20 -0.07
6-31+G(d) 1.477 1.083 1.121 111.9 121.1 0.15 -0.63 0.36 -0.52 -0.17 -0.10
6-31+G(d,p) 1.475 1.085 1.121 112.0 121.1 0.32 -0.63 0.36 -0.38 -0.16 -0.11
MIDI! 1.497 1.086 1.119 112.2 120.7 0.05 -0.61 0.34 -0.10 -0.30 0.03

a qBH3 ) -qAH3.

TABLE 5: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO-AIHF with the NDDAO
Approximation

Bond Distance (Å) Angle (deg) Mulliken Charge Lo¨wdin Charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qAH3
a qA qB qAH3

a

STO-3G 1.288 1.086 1.134 112.0 111.2 -0.14 -0.30 0.03 -0.09 -0.28 0.01
STO-4G 1.277 1.082 1.135 112.0 111.1 -0.16 -0.29 0.02 -0.11 -0.27 0.00
3-21G 1.312 1.077 1.134 110.7 108.3 -0.60 -0.19 -0.08 -0.53 0.01 -0.28
6-31G 1.310 1.073 1.134 109.2 108.4 -0.44 -0.18 -0.09 -0.63 0.06 -0.33
6-31G(d) 1.258 1.077 1.135 109.2 108.7 -0.49 -0.15 -0.12 -0.89 0.20 -0.47
6-31G(d,p) 1.252 1.076 1.136 109.4 108.9 -0.34 -0.15 -0.12 -0.74 0.21 -0.48
6-31+G(d) 1.263 1.074 1.136 107.3 109.1 -0.53 -0.16 -0.11 -1.04 -0.24 -0.51
6-31+G(d,p) 1.257 1.074 1.136 107.6 109.2 -0.37 -0.16 -0.11 -0.89 0.25 -0.52
MIDI! 1.327 1.074 1.133 107.7 108.4 -0.53 -0.19 -0.08 -0.53 0.01 -0.28

a qBH3 ) -qAH3.
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included in the frozen auxiliary orbitals. The good performance
of the third method probably comes from this more-realistic
description of the auxiliary orbitals. Table 7 shows that, although
the LLO:F method gives qualitatively correct results (except
for the MIDI! basis), it is less satisfactory than the GLO method,
in that the H-CA bond distance is generally underestimated. In
terms of the bond angles across the QM/MM boundary, the last
three methods show similar performance; there are deviations
from the accurate results of 3°-5°. These deviations most likely
are caused by basis imbalance near the QM/MM boundary,
because the effect is exacerbated when the QM basis is changed
from the STO-3G basis to a split valence basis. Another
consideration is that these angles are closely coupled to the bond
distance between CA and CB. For example, a CA-CB bond that
is too short will favor greater CA-CB-H and H-CA-CB angles,
because stronger electron-electron repulsions are experienced
by electron clouds that are present in CA-H and CB-H bonds.

Next, we comment on the atomic charges that are obtained
from population analysis based on the GHO-type wave function.
Although comparing charges from different population analysis
schemes is sometimes misleading, which may be a consequence
of the fact that atomic charge is not a well-defined observable
parameter in quantum mechanics, the population analyses in
Table 3 show that population-analysis charges show significant
charge-transfer effects, as a result of basis set unbalance. A well-
defined QM/MM boundary treatment should have little charge
transfer between the two methyl groups in ethane when one of
the C atoms is the GHO boundary atom. Therefore, a possible
target in the parametrization process is to yield a net charge of
zero for the purely QM methyl group, when one C atom is the
boundary atom and the other is the frontier atom. As discussed
in Section VI, other ways to test the charge balance across the
boundary include (i) examination of the partial charges in
propane when the center C atom is a boundary atom and (ii)
examination of the optimized bond lengths and bond angles
when charged groups are located near the boundary.

To test the ability of the GHO-AIHF method to reproduce
the shape of the potential energy surface as well as the
equilibrium geometries, we also investigated the internal rotation
around the C2-C3 bond inn-butane. Figure 2 shows the energy
profiles at various values of the dihedral angles for both QM/
MM calculations for the GHO-AIHF treatment of the boundary,
for pure QM calculations and for pure MM calculations. In each
case, these results are based on geometries obtained by
constrained optimization with the C1-C2-C3-C4 dihedral
angle fixed at various values in the range of 0°-180°. Note
that, for the GHO-AIHF case, we put the GHO boundary at
C3; therefore, the torsion potential involves comparable con-
tributions from QM and MM; this choice of boundary atom
provides the most demanding possible test. The pure QM level
produces a higher barrier than pure MM calculations. The most
promising GHO-AIHF methods are those that use Lo¨wdin
OAOs; curves obtained from GLO and LLO:FG are both
observed between the QM and MM results for angles of 0°-
80° and very close to the MM results for angles of 80°-180°.
The GHO-AIHF calculations using the projected basis signifi-
cantly underestimate the torsion barrier, and when the NDDAO
approximation is used, the torsion barrier height is over-
estimated. In principle, one could use different MM parameters
at the boundary to compensate for any QM/MM imbalance; for
example, one could use special dihedral MM parameters for
torsions that involve frontier and boundary atoms. That is
beyond the scope of the present article. Here, we just emphasize
that the internal rotation barrier is qualitatively correct, even
without new parameters, especially for the GLO and LLO:FG
methods.

To study the difference between the GLO and LLO:FG
methods further, we made a systematic comparison forn-octane
in the fully extended conformation, where we treat the two
methyl groups as MM and (CH2)6 as QM and test how many
atoms must be included in each Lo¨wdin orthogonalization. For
clarity, we number the C atoms 1-8, and the H atoms that are

TABLE 6: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO-AIHF, Based on Global Lo1wdin
Orthogonalization (GLO)a

Bond Distance (Å) Angle (deg) Mulliken Charge Lo¨wdin Charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qAH3
b qA qB qAH3

b

STO-3G 1.434 1.083 1.125 109.5 115.7 -0.04 -0.41 0.14 0.03 -0.39 0.12
STO-4G 1.426 1.079 1.125 109.4 115.8 -0.06 -0.40 0.13 0.01 -0.38 0.11
3-21G 1.548 1.077 1.120 107.2 113.7 -0.37 -0.46 0.19 -0.28 -0.24 -0.03
6-31G 1.521 1.077 1.121 107.0 114.0 -0.14 -0.52 0.25 -0.35 -0.22 -0.05
6-31G(d) 1.643 1.078 1.117 107.6 111.3 -0.31 -0.43 0.16 -0.56 -0.16 -0.11
6-31G(d,p) 1.668 1.080 1.116 107.1 111.2 -0.18 -0.43 0.16 -0.41 -0.17 -0.10
6-31+G(d) 1.652 1.076 1.117 106.9 110.8 -0.33 -0.45 0.18 -0.71 -0.13 -0.14
6-31+G(d,p) 1.678 1.077 1.116 106.5 110.7 -0.18 -0.45 0.18 -0.56 -0.14 -0.13
MIDI! 1.536 1.081 1.121 107.9 114.0 -0.21 -0.52 0.25 -0.29 -0.23 -0.04

a For this small molecule, the GLO method is identical to the LLO:FG method.b qBH3 ) -qAH3.

TABLE 7: QM/MM Optimized Geometries and Charges for Ethane by Unparametrized GHO-AIHF, Using Local Lo1wdin
Orthogonalization to Frontier Orbitals (LLO:F) Only

Bond Distance (Å) Angle (deg) Mulliken Charge Lo¨wdin Charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qAH3
a qA qB qAH3

a

STO-3G 1.413 1.082 1.126 108.7 116.5 -0.02 -0.42 0.15 0.03 -0.39 0.12
STO-4G 1.404 1.077 1.125 108.6 116.6 -0.04 -0.41 0.14 0.01 -0.38 0.11
3-21G 1.485 1.071 1.123 109.2 114.4 -0.28 -0.51 0.24 -0.26 -0.23 -0.04
6-31G 1.388 1.036 1.128 110.1 112.5 0.17 -0.67 0.40 -0.33 -0.19 -0.08
6-31G(d) 1.583 1.055 1.120 108.0 110.8 -0.15 -0.50 0.23 -0.57 -0.15 -0.12
6-31G(d,p) 1.581 1.056 1.120 108.0 110.8 -0.01 -0.50 0.23 -0.40 -0.15 -0.12
6-31+G(d) 1.593 1.066 1.119 108.9 110.9 -0.24 -0.48 0.21 -0.70 -0.13 -0.14
6-31+G(d,p) 1.590 1.066 1.119 109.1 110.8 -0.07 -0.49 0.22 -0.54 -0.13 -0.14
MIDI! 1.734 0.860 1.163 60.0 89.4 2.54 -1.29 1.02 0.27 -0.69 0.42

a qBH3 ) -qAH3.
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attached to C1 would be H1, those attached to C2 would be
H2, etc. We then compare four QM/MM treatments as described
in Table 8. The optimized geometries and charges for each
treatment are listed in Tables 9 and 10. The geometry can be
fully optimized when only the QM frontier atoms are included
in the orthogonalization (whereas, in our experience, the
geometry optimization often does not converge for methods that
totally ignore the orthogonality concerns raised in Section IIB);
however, the bond angles that involve the boundary atom (C1),
the frontier atom (C2), and its QM neighbors (H2, C3),
especially the C1-C2-C3 angle, are quantitatively underesti-

mated. Including H2 into the orthogonalization slightly improves
the bond distance at the QM/MM boundary (from 1.40 Å to
1.42 Å); however, we do not show full results of this calculation
in which only two of the three atoms geminal to B are included.
The C1-C2-C3 angle is greatly improved when C3 is included
in the orthogonalization in the LLO:FG method. In fact, the
local orthogonalization is well-converged after the QM frontier
atoms and all its QM neighbors are included in the orthogo-
nalization, i.e., adding more atoms that are further from the
boundary (such as the LLO:FGV method) does not change the
result significantly. Interestingly, the charges are not as sensitive

Figure 2. Potential energy curve for the internal rotation around the C2-C3 bond inn-butane, using unparametrized GHO-AIHF/STO-3G, pure
QM (HF/STO-3G), and MM (CHARMM22). In all GHO calculations in this paper, we use the STO-3Gv basis set on the boundary atom, which,
in the present case, is C3; the C1C2 ethyl group is the fully QM subsystem.

TABLE 8: Various Localized Lo1wdin Orthogonalization (LLO) Schemes in GHO Treatment for n-Octanea

QM Atoms Included in Orthogonalization

scheme near GHO boundary atom C1 near GHO boundary atom C8

LLO:F C2 C7
LLO:FG C2, H2, C3 C7, H7, C6
LLO:FGV C2, H2, C3, H3, C4 C7, H7, C6, H6, C5
GLO all atoms over the entire molecule all atoms over the entire molecule

a We number the C atoms C1-C8; the H atoms attached to C1 are labeled H1, those attached to C2 are labeled H2, etc. C1 and C8 are the GHO
boundary atoms.
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to the orthogonalization extent as the geometries, as indicated
in Table 10. This test shows that it is crucial to conduct explicit
orthogonalization among orbitals near the boundary, because
the overlaps between these orbitals are non-negligible. The
orbitals on atoms far away from the boundary do not need to
be included in the orthogonalization. We can either explicitly
exclude them by localizing the orthogonalization, or we can do
the orthogonalization over the entire molecule. These two
options should give similar results, because the tails on centers
far away from the boundary in the hybrid orbitals will be very
small.

VI. Further Parametrization
Although the methods presented in the previous section give

reasonable results even without any parametrization, one can
obtain even better results if some parameters related to the
boundary atom are added or readjusted. The objectives of the
parametrization are to improve the electronegativity balance and
bonding properties across the A-B interface. One way to
monitor the electronegativity balance is to calculate the Mulliken
or Löwdin charge on the quantal methyl group in propane when
the middle C atom is treated as a GHO boundary. This should
be close to zero, although it does not need to be exactly zero,
because propane has a nonzero dipole moment and the A atom
has a larger basis set than that of the B atom. The MM methyl
group is neutral; therefore, the QM methyl group should also
be neutral (by symmetry), in which case the partial charge on
the B atom would be exclusively contributed from the extra
charge densities in its auxiliary orbitals, i.e., matching the point
charge of the B atom in MM. Therefore, one of the goals of
our parametrization is that the auxiliary electrons should
introduce minimal artificial polarizations of the A-B bond in
propane. In propane, as well as in other molecules, the bonding
properties at the QM-MM interface can also be monitored by
calculating the bond distances, bond angles, and torsion
potentials that involve QM atoms near the boundary. (Another
possible choice of the electronegativity optimization target
would have been ethane, which was used for the parameteriza-
tion of the semiempirical GHO method.26 In this case, the charge
on the quantal methyl group is exactly zero. One reason for
selecting propane for the present work is that, in the ethane test
case, the B atom is a methyl carbon, but in propane it is a
methylene carbon, which is more typical of real applications.)

The GHO treatment deviates from a pure QM calculation
primarily for the following reasons. First, only a portion of the
system is represented by a quantum mechanical wave function.
Second, instead of a full SCF optimization over all basis
functions, active MOs in the GHO method are only expanded
over a reduced space, and auxiliary MOs are kept frozen. Third,
the basis set balance across the boundary is sacrificed to
maintain the simplicity of the algorithm. Finally, the screening
effect of 1s core electrons on the GHO boundary atom is only
crudely mimicked by a reduction of its nuclear charge by 2.
All three of these aspects can be related to an inaccurate
description of the interaction across the boundary. Two of the
most straightforward ways to remedy these shortcomings are
(i) to adjust the molecular mechanical parameters of the
boundary atom and (ii) to scale the integrals that involve the
orbitals on the boundary atom. The former corresponds to an
MM fix, whereas the latter can be considered as a QM fix. In
the following, we present a parametrization for the MIDI!
basis,66 in which we combine both strategies. The MIDI! basis
(which is also sometimes called MIDIX) is an ideal choice for
applying the GHO-AIHF method, in that it is designed to
provide accurate geometries and partial charges at the HF level66

and it also yields reasonable HF relative energies.71 Furthermore,
MIDI! does not include polarization functions on carbon;
therefore, for large organic and biological systems (such as
enzymatic systems), it is very efficient, in terms of computa-
tional cost. The LLO:FG version of the GHO-AIHF will be
used as a starting point for adding parameters, because it gives
the best geometries for MIDI! among the four orthogonalization
schemes; at the same time, the orthogonalization is strictly
localized at the boundary region that only involves orbitals on
boundary, frontier, and geminal atoms.

First, we note that the A-B-M angles are always over-
estimated by∼5° in the unparametrized GHO-AIHF geom-
etries, where M represents an MM atom bonded to the GHO
boundary atom B. This systematic error may come from several
sources. For example, if the charge densities in the auxiliary
orbitals are too small, the repulsions between auxiliary orbitals
will be relatively weak, compared to the repulsion among the
A-B bonding orbital and the auxiliary orbital, resulting in
A-B-M angles that are too large. However, in combined QM/
MM calculations, A-B-M angles are described both by QM

TABLE 9: GHO -AIHF/STO-3G Optimized Geometry Using Various Local Lo1wdin Orthogonalization (LLO) Schemes for
n-Octane

schemea
H-C1

(Å)
H-C1-C2

(deg)
C1-C2

(Å)
C-C2-C

(deg)
C1-C2-H

(deg)
C2-H

(Å)
C2-C3

(Å)
C2-C3-H

(deg)
C3-H

(Å)
C-C3-C

(deg)
C3-C4

(Å)
C-C4-C

(deg)
C3-C4-H

(deg)
C4-H

(Å)

LLO:F 1.125 117.9 1.408 103.1 108.9 1.084 1.531 107.9 1.089 114.2 1.543 112.7 109.2 1.089
LLO:FG 1.125 116.0 1.437 111.2 108.2 1.085 1.540 108.9 1.088 112.5 1.543 112.4 109.3 1.088
LLO:FGV 1.125 116.0 1.437 111.8 108.1 1.085 1.540 109.2 1.088 112.3 1.544 112.4 109.3 1.088
GLO 1.125 116.0 1.437 111.8 108.1 1.085 1.540 109.2 1.088 112.3 1.544 112.4 109.3 1.088
pure QMb 1.086 110.5 1.541 112.6 109.3 1.088 1.545 109.3 1.086 112.3 1.545 112.5 109.2 1.088

a Schemes according to Table 8.b HF/STO-3G for the entire molecule.

TABLE 10: Charges for n-Octane at the GHO-AIHF/STO-3G Optimized Geometry Using Various Local Lo1wdin
Orthogonalization (LLO) Schemes

Mulliken Charge Lo¨wdin Charge

schemea C1 C2 H2 C3 H3 C4 H4 C1 C2 H2 C3 H3 C4 H4

LLO:F -0.43 0.06 0.05 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
LLO:FG -0.42 0.04 0.05 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
LLO:FGV -0.42 0.04 0.05 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
GLO -0.42 0.04 0.05 -0.10 0.05 -0.10 0.05 -0.40 0.08 0.02 -0.04 0.02 -0.04 0.02
pure QMb -0.18 -0.09 0.05 -0.10 0.05 -0.10 0.05 -0.09 -0.03 0.02 -0.04 0.02 -0.04 0.02

a Schemes according to Table 8.b HF/STO-3G for the entire molecule.
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and MM; therefore, the predicted large bond angles could be a
result of a poor balance between the QM and MM. Regardless
of the precise source of error, we found that we can remove
most of the systematic error by simply decreasing the equilib-
rium angles of all A-B-M molecular mechanics bending terms
by 8°. (For example, when A and B aresp3 C atoms and M is
a H atom, we decrease the MM bond angle parameter from
110° to 102°.)

Next, accepting this change in the A-B-M bending poten-
tial, we determined a set of parameters for scaling integrals that
involve the boundary orbitals. Because the integral scaling is
used only to correct small inaccuracies, we prefer to make the
scaling scheme as simple as possible. To avoid the complexity
that is introduced by multicenter two-electron integrals, we chose
to scale one-electron integrals only. For the same reason, even
one-electron potential energy integrals are not considered,
because they can involve up to three centers. It seems that
scaling two-center one-electron potential energy integrals is less
stable than scaling the kinetic energy integrals. Furthermore, if
the scaling is localized to the AB pair, the scaling factors are
expected to be more transferable from one system to another.
Therefore, we restrict scaling to a subset of the one-electron
kinetic energy integrals related the boundary: in particular, the
scaling is restricted to integrals of the form (vA|T|vB) and
(vB|T|vB), where vB denotes a valence orbital on the boundary
atom B, and vA denotes a valence orbital on the frontier atom
A. To take account of the different behavior ofsandp orbitals,
we also treat them separately, to add more flexibility. As a result
of these considerations, we decided to scale the (vA|T|v′B) and
(vB|T|v′B) (v ) s, p; v′ ) s, p) types of one-electron integrals in
our parametrization; the corresponding scaling factors are
denoted byc1- c7 as indicated in the first two columns of Table
11. (The integrals are scaled in the nonorthogonal nonhybridized
atomic basis before the transformations to orthogonal, hybrid,
and molecular orbitals.)

The optimal values of these scaling factors were determined
using a microgenetic algorithm,72 to maximize a fitness function
F over a training set of molecules, in which the geometry fitness
and the charge fitness are equally weighted:

In eq 58, the training set for geometries contains five molecules
(m) 1, 2, ..., 5): propane, 1-propanol, propanoic acid, 1-butene,
andn-butane.K is the number of unique bond distances (r) and
angles (θ) in the training set molecules (note that if two bond
distances or angles are equal by symmetry, we include them

only once),qB
L,GHO is the Löwdin charge on the GHO boundary

atom B in propane, andqB
MM is the MM point charge for B

(equal to-0.18 in CHARMM); r0 (0.02 Å), θ0 (2°), and q0

(atomic charge of 0.05) are scale units for distance, angle, and
charge, respectively. We take the reference geometry (denoted
HF in eq 58) to be the geometry optimized at the pure QM
level with the full basis set, i.e., HF/MIDI!. Note that the C
atom in a CH2 group is chosen as the GHO boundary atom B,
and the C atom attached to a functional group is the frontier
atom A, i.e., the QM/MM partitions are CH3BH2AH3, CH3BH2-
AH2OH, CH3BH2AOOH, CH3BH2AHdCH2, and CH3BH2AH2-
CH3. The goal of the optimization is to find a set of scaling
factors such that GHO-AIHF gives geometries that are in good
agreement with those from pure QM calculations, whereas the
charge transfer across QM/MM boundary is minimized. The
last term in eq 58 accomplishes this minimization of the charge
transfer, because one obtains a neutral quantal methyl group
whenqB

L,GHO matchesqB
MM in propane. The purpose of includ-

ing various functional groups near the boundary is to make the
parameters more robust, especially when electronegative atoms
(O) and unsaturated C atoms are close to the boundary.

The fitness functionF was maximized, with respect to the
scaling factorscn, and the optimized scaling factors are tabulated
in Table 11. We then tested the parametrized method against a
wide variety of molecules that were not present in the
parametrization training set. The test set contains systems with
various functional groups (-SH,-NH2, -CONH2, -C6H5) near
the boundary, as well as molecules with ionic charges near the
boundary. We also include histidine zwitterion and alanine
dipeptide as two realistic cases to test the reliability of applying
the GHO-AIHF method to amino acids and proteins. (Figure
3 shows depictions of ethyl benzene, histidine, and alanine
dipeptide molecules.)

First, we note that the parametrized model yieldsqB
L,GHO )

-0.16 in propane, which matches the desired value better than
the unparametrized model (the unparametrized model gives
qB

L,GHO ) -0.15). Furthermore, inn-butane, with C2 as the
boundary atom and C3 as the frontier atom, for the parametrized
model, qB

L,GHO ) -0.17, which is encouraging, because the
charges inn-butane were not represented in the training set. As
a result, for propane andn-butane, in the parametrized model,
all methylene and methyl groups are neutral to within a partial
charge of 0.02.

TABLE 11: Optimized Scaling Factors for Integrals
Involving Boundary Orbitals for GHO -AIHF/MIDI!
Calculations with the LLO:FG Method a

parameter integral type optimized value

c1 (sA|T|sB) 0.9078
c2 (sA|T|pB) 1.0257
c3 (pA|T|sB) 1.0806
c4 (pA|T|pB) 1.0283
c5 (sB|T|sB) 0.9733
c6 (pB|T|pB) 0.9858
c7 (sB|T|pB) 0.9665

a MM equilibrium angles for A-B-M bends are decreased by 8°.

F ) -{1

K
∑
m [∑r

(rGHO - rHF

r0
)2

+ ∑
θ

(θGHO - θHF

θ0
)2] +

(qB
L,GHO - qB

MM

q0
)

m)1

2 }1/2

(58)

Figure 3. QM/MM partitions in ethyl benzene, histidine zwitterion,
and alanine dipeptide. The GHO boundary atom is labeled as B, and
the frontier QM atom is labeled as A.
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To further illustrate how the results can be improved by
parametrization, we consider the key A-B bond distance. The
values obtained for this bond distance for all molecules in the
parametrization set and the test set are listed in Table 12 for
both unparametrized and parametrized GHO-AIHF/MIDI!, and
the mean unsigned errors (MUEs) are given in Table 13.

As shown in Tables 12 and 13, the parametrized version of
GHO-AIHF significantly reduces the average errors in the

A-B bond distances and A-B-M angles, although it is
important to note that there are some troublesome cases. For
example, when a carbonyl group is chosen as the frontier atom,
the A-B bond has a tendency to be overestimated. Thus, if
possible, one should avoid using a carbonyl C atom as the
frontier atom. Nevertheless, the robustness of the algorithm and
the scaling factors is impressive, considering the variety of the
test cases. In particular, even including the difficult and
troublesome cases, the MUE in all bonds that involve A or B
is <0.02 Å, and the MUE in all bond angles that involve the
A-B bond is only∼2°. Furthermore, the average errors are
only slightly larger for the entire test set than for the training
set. The choice of molecules in Tables 12 and 13 does not mean
that we recommend putting charged or highly functionalized
groups close to the boundary, if there are other, more-suitable
locations for a boundary; rather, these tables are designed to
provide very difficult tests to validate the method.

Appendix B presents the extension of the present method to
unrestricted Hartree-Fock73 (UHF) for the QM/MM treatment
(GHO-AIUHF) of open-shell systems. Table 14 shows the
optimized geometries and charges obtained at GHO-AIUHF/
MIDI! level for the ethyl radical, compared to pure QM
calculations. The results show that, although the integral scaling
factors are parametrized for closed-shell systems, they work
equally well for open-shell system. Furthermore, as for closed-
shell systems, the method is already qualitatively reasonable,
even without parametrization.

Clearly, we could obtain better balance across the boundary
by adding more parameters; however, this is not our goal in
this paper. We prefer to emphasize that the results are
qualitatively correct, even without any scaling, and that they
can easily be improved by a very small amount of scaling.

TABLE 12: A -B Bond Distance for the Unparametrized
and the Parametrizeda GHO-AIHF(LLO:FG)/MIDI!
Results, Compared to All-Electron ab Initio QM Results

Bond Distance (Å)

system unparametrized parametrized HF/MIDI!b

CH3BH2-AH3 1.530 1.514 1.540
CH3BH2-AH2CH3 1.549 1.529 1.539
CH3BH2-AH2C(O)OH 1.546 1.518 1.539
CH3BH2-AH2NH2 1.568 1.548 1.545
CH3BH2-AH2NH3

+ 1.554 1.536 1.533
CH3BH2-AH2OH 1.556 1.535 1.528
CH3BH2-AH2O- 1.609 1.579 1.594
CH3BH2-AH2SH 1.554 1.531 1.541
CH3BH2-AHdCH2 1.554 1.515 1.506
CH3BH2-A(O)NH2 1.628 1.569 1.523
CH3BH2-A(O)OH 1.622 1.563 1.508
CH3BH2-A(O)O- 1.663 1.611 1.592
CH3BH2-A(O)OCH3 1.609 1.547 1.509
ethyl benzenec 1.576 1.518 1.513
histidinec,d 1.578 1.488 1.500
alanine dipeptidec 1.622 1.555 1.555

a Seven scaling factors and one change in the MM parameters are
listed in Table 11. Training set is indicated in boldface type.b Con-
ventional quantum mechanics.c See Figure 3.dZwitterion.

TABLE 13: Mean Unsigned Errors in Bond Lengths and Bond Angles with GHO-AIHF (LLO:FG)/MIDI! a

Unparametrized Parametrized

Bond Distance (Å) Angle (deg) Bond Distance (Å) Angle (deg)

system A-B Q-A B-M Q-A-B A-B-M A-B Q-A B-M Q-A-B A-B-M

CH3BH2AH3 0.010 0.006 0.019 3.2 3.9 0.026 0.004 0.020 2.6 1.6
CH3BH2AH2CH3 0.010 0.010 0.018 1.8 4.2 0.019 0.010 0.019 1.2 2.1
CH3BH2AH2C(O)OH 0.007 0.010 0.021 1.4 4.3 0.028 0.010 0.022 1.4 2.1
CH3BH2AH2NH2 0.023 0.009 0.017 2.5 4.7 0.003 0.008 0.017 2.0 2.8
CH3BH2AH2NH3

+ 0.021 0.007 0.024 2.7 3.5 0.004 0.007 0.025 2.1 3.5
CH3BH2AH2OH 0.028 0.005 0.018 1.7 4.8 0.007 0.005 0.018 1.6 2.8
CH3BH2AH2O- 0.011 0.002 0.016 2.5 7.0 0.014 0.004 0.016 2.6 5.4
CH3BH2AH2SH 0.013 0.008 0.019 1.9 4.1 0.009 0.006 0.020 1.4 2.8
CH3BH2AHdCH2 0.047 0.004 0.023 2.1 4.1 0.009 0.003 0.024 0.7 1.6
CH3BH2A(O)NH2 0.105 0.008 0.022 2.4 3.4 0.046 0.009 0.024 2.1 3.7
CH3BH2A(O)OH 0.114 0.008 0.021 1.4 2.5 0.055 0.008 0.023 1.6 2.9
CH3BH2A(O)O- 0.072 0.003 0.017 0.7 4.9 0.019 0.002 0.017 0.3 3.5
CH3BH2A(O)OCH3 0.096 0.012 0.026 2.0 4.8 0.038 0.012 0.027 1.0 3.4
ethyl benzeneb 0.064 0.001 0.027 1.1 1.6 0.005 0.002 0.028 0.4 1.4
histidineb,c 0.078 0.004 0.034 1.7 4.8 0.013 0.005 0.031 4.2 3.8
alanine dipeptideb 0.093 0.010 0.019 2.2 4.4 0.025 0.011 0.020 0.9 2.3
training set 0.042 0.006 0.021 2.0 3.9 0.021 0.006 0.021 1.5 2.2
entire set 0.048 0.007 0.020 2.0 4.1 0.019 0.007 0.021 1.5 2.8

a Seven scaling factors and one change in the MM parameters are listed in Table 11. Training set is in bold.b See Figure 3.c Zwitterion.

TABLE 14: Optimized Geometries and Partial Charges for Ethyl by GHO-AIUHF Based on Local Lo1wdin Orthogonalization
(LLO), Compared to a Pure HF Calculation at the Same QM Levela

Bond Distance (Å) Angle (deg) Mulliken charge Lo¨wdin charge

basis CA-CB CA-CH CB-CH H-CA-CB CA-CB-H qA qB qA qB

GHO-AIUHF/MIDI! b 1.529 1.075 1.121 114.3 113.9 -0.07 -0.50 -0.21 -0.23
GHO-AIUHF/MIDI! c 1.509 1.076 1.123 116.1 111.6 -0.03 -0.54 -0.19 -0.25
HF/MIDI! 1.503 1.076 1.088 120.7 111.4 -0.33 -0.60 -0.20 -0.28

a The boundary carbon (CB) is the C atom in the methyl group, and the frontier C atom (CA) is the radical center. We use the LLO:FG method
in this table.b Unparametrized version.c Parametrized version (same parameters as used for Tables 11-13).
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Finally, we present the results of using the parametrized
GHO-AIHF method for proton affinities, which, because the
charge state changes, present very stringent tests of the effect
of the QM/MM boundary treatment on calculated energies. In
the present article, we define the proton affinity as the zero-
point-exclusive energy difference between a chemical species
(denoted X or X-) and its protonated form (denoted XH+ or
XH). Table 15 gives the proton affinities calculated using
GHO-AIHF/MIDI! (LLO:FG, with scaled integrals) compared
with fully QM (HF/MIDI!) results, where a set of compounds
that consists of alcohols, amines, thiols, and acids is investigated.
The QM/MM division of each system is specified in the first
column of Table 15, where A denotes the QM frontier atom
and B denotes the GHO boundary atom, as usual. The average
absolute errors of the proton affinities for 30 cases in Table 15
are 2.6 kcal/mol. The most significant deviations from fully QM
results were observed when the GHO boundary is only one bond
away from the X-H bond that is being dissociated, where the
MUE for 15 such cases is 3.5 kcal/mol. One would not
recommend putting the boundary this close to a reaction center,
especially for a reaction that involves a change in charge state,
if any other choice is possible; rather, these tests are included
to show what happens if one pushes the method to its limits.
The MUE is reduced to 2.2 kcal/mol if one places the GHO
boundary atom two bonds away from the protonated/depronated
center. The results are comparable to the typical errors on proton
affinities in QM/MM calculations by various other boundary
treatments. For example, Amara et al. obtained an error of∼3

kcal/mol on protonation energies for similar systems with two
of their link-atom models.35 As another example, the pseudo-
bond approach, using various basis sets, yields mean absolute
deviations in protonation energies of 2.9-7.7 kcal/mol.36 On
the basis of these comparisons, as well as what one can
reasonably expect at the HF level, we conclude that the
performance of the GHO-AIHF method for the energetics is
satisfactory. We especially note that no proton affinities were
used at any stage of the parametrization. If one were especially
interested in proton affinities, one could probably reduce the
errors by further parametrization; however, our goal was to
present a more general parametrization that was based on
geometries and charge balance as indicators of the charge
polarization at the boundary.

VII. Concluding Remarks

Although great progress has been made in combining
quantum mechanical electronic structure methods with classical
molecular mechanics in a single algorithm, some of the
fundamental problems of nonorthogonality between the explicit
orbitals of the quantum mechanical subsystem and the implicit
wave function of the classical mechanical subsystem are avoided
by treatments that use artificial link atoms or consistently neglect
all differential overlap (and compensate for this by the param-
eters of semiempirical molecular orbital theory). In the present
study, a theoretical framework has been established that provides
a more fundamental solution to this problem. We accomplish
this by extending the generalized hybrid orbital (GHO) method
to the ab initio Hartree-Fock (HF) level, in combination with
quantum mechanical and molecular mechanical (QM/MM)
calculations. Three important issues are investigated for this
extension: (a) the orthogonality constraint that involves auxiliary
orbitals, (b) the adequacy of a small basis set on the GHO
boundary atom, and (c) the formulation of analytical gradients.
In our treatment, a minimum valence basis set is used on the
boundary atom to maintain the simplicity of the original
hybridization scheme. Four methods are proposed to remove
the nonorthogonality between active MOs and auxiliary MOs
in GHO. To compute the GHO gradient analytically, the
derivatives of the density and energy-weighted density matrices
that are due to basis transformations must be included. With
the aforementioned three questions answered satisfactorily, the
GHO method can be applied at the ab initio HF level with a
solid theoretical foundation. This provides a fundamental
solution to the problem of orthogonality at a quantum mechan-
ical-classical mechanical boundary.

Tests of the resulting algorithm showed that reasonable
geometries and charges can be obtained even without any
parametrization. Finally, we show that scaling some of the
integrals that involve basis functions at the GHO boundary can
improve the results, and this provides a simple way to
parametrize the generalized hybrid orbital ab initio Hartree-
Fock (GHO-AIHF) method for applications to practical
problems. The scaled method is tested extensively for 30 proton
affinities of neutral and negatively charged species; the average
value of the 30 proton affinities is 369 kcal/mol, and the mean
unsigned error of the GHO results from the fully QM results is
only 2.6 kcal/mol.
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TABLE 15: Proton Affinities Calculated by Parametrizeda

GHO-AIHF/MIDI!, Based on Local Lo1wdin
Orthogonalization (LLO:FG), Compared to Pure HF
Calculations at the Same QM Level

Proton Affinity (kcal/mol)

species GHO-AIHF/MIDI! HF/MIDI!
QM/MM
vs QM

BH3-AH2O- 421.3 416.3 4.5
CH3BH-AH2O- 422.1 415.1 7.1
BH3-AH2CH2O- 417.7 415.1 2.7
CH3CH2BH2-AH2O- 421.6 414.8 6.8
CH3BH2-AH2CH2O- 418.1 414.8 3.3
BH3-AH2CH2CH2O- 416.2 414.8 1.4

BH3-AH2NH2 229.2 232.6 -3.4
CH3BH2-AH2NH2 229.5 233.9 -4.4
BH3-AH2CH2NH2 232.4 233.9 -1.5
CH3CH2BH2-AH2NH2 229.3 234.7 -5.4
CH3BH2-AH2CH2NH2 232.7 234.7 -2.0
BH3-AH2CH2CH2NH2 234.1 234.7 -0.6

BH3-AH2NH- 443.0 439.9 3.2
CH3BH2-AH2NH- 443.6 438.7 4.9
BH3-AH2CH2NH- 440.4 438.7 1.7
CH3CH2BH2-AH2NH- 443.2 438.3 4.9
CH3BH2-AH2CH2NH- 440.7 438.3 2.4
BH3-AH2CH2CH2NH- 439.3 438.3 1.0

BH3-AH2S- 383.1 381.5 1.6
CH3BH2-AH2S- 383.4 380.6 2.8
BH3-AH2CH2S- 382.1 380.6 1.5
CH3CH2BH2-AH2S- 383.2 380.5 2.7
CH3BH2-AH2CH2S- 382.5 380.5 2.0
BH3-AH2CH2CH2S- 381.2 380.5 0.7

BH3-A(O)O- 377.1 377.3 -0.2
CH3BH2-A(O)O- 375.9 375.3 0.6
BH3-AH2C(O)O- 377.3 375.3 1.9
CH3CH2BH2-A(O)O- 375.0 374.7 0.2
CH3BH2AH2C(O)O- 377.6 374.7 2.8
BH3-AH2CH2C(O)O- 376.1 374.7 1.3

a Seven scaling factors and one change in the MM parameters are
listed in Table 11.
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Appendix A

Here, we derive the expression for obtaining∂S-1/2/∂q from
∂S+1/2/∂q. We begin with

Therefore,

and right multiplying byS-1/2 on both sides yields

Appendix B

This appendix presents the changes required to treat an open-
shell system by unrestricted Hartree-Fock73 (UHF) theory. The
resulting formalism for ab initio UHF may be called GHO-
AIUHF. We present the unrestricted GHO theory, using the
hybrid Löwdin OAO method as an example. One can follow
the procedures described in Section IIIC, except that two Fock
matrices (one forR-spin electrons and one forâ-spin electrons)
are formed separately. Correspondingly, two sets of SCF
equations are solved in the basis space ofN + 1 dimensions to
obtain active molecular orbitals (MOs). After the activeR and
â density matrices are constructed, one must append 0.5Pbb

H as
the charge density inR andâ auxiliary MOs, respectively. For
the gradient calculation, eq 16 is changed to

where the middle terms are evaluated forR- andâ-spin electrons
separately.
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