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The mode-tracking principle (J. Chem. Phys.2003, 118, 1634) for the direct quantum chemical calculation
of preselected, characteristic molecular vibrations makes vibrational analyses of molecular wire junctions
feasible. Characteristic vibrational parameters of molecular bridges such as vibrational frequencies and force
constants can be of importance for subsequent treatments in physical model theories of electron transfer and
conductance. We investigate how efficient the mode-tracking protocol can be applied to determine such
vibrational parameters for a particular type of normal modes of dinuclear polyynediyl rhenium complexes.
The frequencies of vibrations of the carbon chain in complexes of the type [Re]-(C≡C)n-[Re] with [Re] )
(η5-C5Me5)Re(NO)(PPh3) have been studied as a function of the chain length 2n, leading to molecules with
up to 144 atoms, for which harmonic wavenumbers are determined. The harmonic approximation for the
potential-energy surface is compared to explicitly calculated electronic energy values along normal coordinates
in order to get an estimate for the role of anharmonicity effects. A possible vibration-induced rupture of
molecular bridges is discussed. Different bond-breaking positions for a rupture process in the carbon chain
of the rhenium complexes are investigated.

1. Introduction

Molecular bridges and wires currently represent a field of
high research activity because of their importance for a bottom-
up approach toward mesoscopic electrical devices.1-3 The
tremendous interest in such molecular electronic building
blocks,4-6 which might be of use for nanotechnology, also raises
new theoretical questions, apart from the experimental ones,
which are concerned with problems of synthesis and of tailored
physical properties. An intrinsic feature of molecular devices
is their mesoscopic length scale. Their range of spatial extension
requires different theoretical approaches for the different lengths
scales,7-9 which coverfirst-principleselectronic structure theory
as well as simplified molecular mechanical models for interact-
ing atoms or groups of atoms.

The theoretically appealing aspect in the study of mesoscopic
devices is that quantum and classical theories meet; Baer and
Neuhauser10 (see also their earlier work)11 proposed a quantum
theory for conductance through a molecule clamped between
macroscopic electrodes. Their theory is derived for clamped
nuclei but it can be extended to include also molecular
vibrations. For this extension, the relevant states of the nuclei
are needed, and it is the dedicated aim of this work to show
how vibrational states can be selectively calculated even for
extended systems. Neuhauser et al.12 studied vibrational coupling
and vibrational energy transfer in a one-dimensional lattice,
which can serve as a model for a protein or a one-dimensional
molecular wire, with three different approaches ranging from
first-principles quantum mechanics to classical simulations.
Their model Hamiltonian was of Toda form and incorporates a
Toda potential, which is similar to a Morse potential. In this
work, we also point out how such potentials may be efficiently
parametrized fromfirst-principles calculations by applying

algorithms that allow us to find particular modes of a molecular
wire. Once these modes are known, their force constants can
easily be used to fit different types of model potentials.

Troisi and Ratner16 used a model theory to describe the
electrical conductance through a molecular rectifier as a function
of the applied voltage. The characteristics of the current through
the molecule strongly depend on the tendency of the molecule
to change conformation upon an applied electrical field, which
is modeled in this theory by a parameter (see also ref 17 and
references therein forfirst-principles calculations on current-
induced conformational changes of molecular wires). A knowl-
edge of the normal coordinates involved in such a conforma-
tional change and the corresponding force constants can help
to determine parameters for the description of this process. In
a recent work18 by Troisi et al., a rate-constant expression for
charge transfer through vibrating bridges is derived, in which
the motions of the nuclei also enter. We emphasize that other-
than-wire nuclear degrees of freedom of the full system, in
particular those of the “electrodes” to which the molecule is
attached, are usually neither needed nor wanted; only their
electronic effect on the vibrational properties of the molecular
junction has to be considered. However, the explicit first-
principles calculation of the complete many-body nuclear wave
function, for which the potential from the electronic structure
of an extended composite system were needed, is time consum-
ing if not completely unfeasible. In such situations, a tailored
protocol for the calculation of only the important information
is needed. While we choose a particular molecular junction
described below for our study, we would like to emphasize that
the presented methodology is general and of relevance to similar
systems.

Both normal modes and vibrational frequencies are ingredi-
ents in the study of electron-transfer processes. To give two
further examples, we refer the reader to the calculation of
electron-transfer rates for which shifts of excited-state structures
along the normal modes or reorganization energies are use-
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ful.14,15 In many studies, the energy gradient of an excited or
charge-transfer state with respect to a ground-state normal
coordinate is applied in connection with the ground-state
vibrational frequency to determine system-specific parameters.13

In this work, we set out to apply the recently developed mode-
tracking technique.20 With this approach it is possible to reduce
the computational costs for a vibrational analyses to the cost of
a few electronic structure single-point calculations, i.e., energy
and gradient calculations. The calculation of the gradients is
usually much faster than the energy calculation. Models of
carbon nanotubes20 and the large gold cluster [(Ph3PAu)6C]2+ 21

were already successfully analyzed with this novel technique.
The mode-tracking approach yieldsexactnormal modes and
harmonic frequencies for preselected molecular vibrations. The
vibrational information accessible by mode-tracking calculations
can be used for modeling molecular wires, although this is not
explicated here since our focus is on a first analysis of the
feasibility of the mode-tracking technique for this purpose.

Since the experimental synthesis of molecular wires is still
hampered by a lack of synthetic protocols, which yield
reproducible nanoscale wires of well-defined electronic proper-
ties, we concentrate in this work on the well-defined systems
that were synthesized by Gladysz and co-workers in recent
years.22 These examples for molecular wires are stable conju-
gated hydrocarbons of the polyynediyl type (i.e., [-C≡C-]n

chains), which are capped by metal complex fragments and were
obtained by well-directed efficient chemical synthesis. These
Gladysz-type one-dimensional carbon-chain complexes offer the
possibility to conduct electrons through theirπ system.1 We
study the low-lying motions of the carbon chain in rhenium
complexes [Re]-(C≡C)n-[Re] with [Re]) (η5-C5Me5)Re(NO)-
(PPh3), which were synthesized in the Gladysz group recently;23

see section 3 for a description of the structures of these
complexes. These wavenumbers allow one to draw conclusions
on the flexibility of the carbon chain; it is known that the
curvature in the solid state for similar Pt compounds can be
very different for different chain lengths.24 By a comparison
with a simple polyyne chain as a model for the carbon chain in
these complexes, one can draw conclusions on the couplings
between motions within the chain and motions in the ligands
on the rhenium centers in the spirit of a systems theoretical
study),9,25which connects properties of analogous (sub)systems
in a rigorous manner. Such couplings for an “embedded system”
(the chain) in a full cluster can easily be recognized in the mode-
tracking approach by the character of the basis vectors that are
added in subspace iteration steps (see the following methodology
section 2 for details; results are discussed in section 4). In
particular, we will study in section 5 how the frequency of the
“basic” nodeless vibration of the chain changes as a function
of the length of the chain. This may then be used to find
simplified models for the estimation of these frequencies for
even longer wires. The importance of anharmonicity effects on
the tracked vibrations is investigated in section 6. Apart from
the vibrational motions of the molecular junction, we also
investigate the possibility of a vibrationally induced bridge
rupture in Gladysz-type complexes in section 7.

2. Quantum Chemical Methodology

The standard quantum chemical calculation of molecular
vibrations in the harmonic approximation26 gets computationally
more complicated the more atoms are involved. The reason for
this is not the diagonalization of the Hessian matrix, which yields
the normal modes, but the computationally very demanding
calculation of each of its entries. Since each element requires

the calculation of the second derivative of the electronic energy
with respect to coordinates of nuclei in the molecule, the
unfortunate scaling behavior of most electronic structure
methods (cf., e.g., the discussion in ref 27 but also the new
linear-scaling techniques28) for the calculation of the electronic
energy is the limiting factor for the vibrational analysis.

Our recently developed mode-tracking approach to molecular
vibrations20 circumvents the calculation of the full Hessian
matrixwithout introducing any approximation. This is achieved
by a combination of the calculation of the second derivatives
of the electronic energy (with respect to Cartesian nuclear
coordinates and to predefined distortions of these coordinates)
and the diagonalization in a subspace iteration method. Since
the second derivatives in this procedure are calculated semi-
numerically,29 the calculation of preselected, characteristic
vibrations is possible for any molecular size for which a structure
optimization is possible.

For all density functional theory (DFT) calculations, we used
the density-functional programs provided by the TURBOMOLE
5.4 suite.30 All results are obtained from Kohn-Sham-BP8631,32

calculations, in which we apply the resolution-of-the-identity
(RI) density-fitting technique.33,34 Ahlrichs’ SV(P) and TZVP
basis sets35,36were employed. For the rhenium atoms, we used
the Stuttgart effective core potentials.37

All structures were fully optimized with the corresponding
method and basis set. We performed vibrational analyses in a
harmonic force field by calculating the second derivatives of
the total electronic energy computed as numerical first deriva-
tives29 of analytic energy gradients obtained from TURBO-
MOLE. The BP86 functional was chosen because it is a reliable
functional for the calculation of vibrational frequencies if the
calculated harmonic frequencies shall be directly compared to
the experimental fundamental ones (i.e., without scaling of
frequencies).38,39

For the mode-tracking calculations, we used the AKIRA
program.20 The standard quantum chemical method for the
calculation of vibrational frequencies and normal modes is to
solve the eigenvalue equation

whereH(m) is the mass-weighted Hessian,λk is related to the
square of the vibrational frequency, and the normal modes are
given by the eigenvectorqk. In the mode-tracking approach,
we use a Davidson subspace iteration,40 which iteratively leads
to the eigenvectorqk. In iteration stepi we solve the approximate
eigenvalue problem

whereλ(i)
k is theith approximation to the eigenvalueλk and the

normal mode approximationq(i)
k is expressed as a sum over

basis vectorsbj (j ) 1,..., i)

The coefficientsCj,k in this series expansion represent the
overlap of the exact normal mode with the basis vectors (N is
the number of atoms)
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These coefficients are calculated “on-the-fly” (see ref 20 for
details on the algorithm) since the exact normal mode is only
known after convergence. Equation 4 yields the quantitative
basis for the systems theoretical analysis;9,25 the contribution
of the vibrational motion of a well-defined and small local
systemb1 to the vibrational motionqk of a larger complex, in
which the small system is embedded, is given byC1,k.

When the residuum vectorr (i)
k for a selected normal mode

is sufficiently small, the normal mode approximation is con-
verged to the exact eigenvectorqk. The exact wavenumber can
then be obtained from the corresponding eigenvalueλ(i)

k.
2.1. Setting up the Local Vibration. As can be seen from

eq 2, a guess for the vibrational normal mode is necessary in
the first iteration, whereqk

(1) ) b1. Several methods are possible
for the construction of normal mode guesses, e.g., results from
less expensive quantum chemical calculations or force field
models.20 However, semiempirical and empirical calculations
require parametrizations, which are not generally available for
transition-metal complexes such as those investigated here.

Therefore, we use a different approach here, which addition-
ally offers the possibility to quantify the couplings between an
assumed local vibration of a fragment of the complex and the
rest of the molecule. First, we partition the full compound in
the subsystem that shall be investigated and that which is
supposed to constitute the environment. The selected part is
usually small enough for a complete harmonic force-field
calculation using accurate density functional methods. After the
frequency analysis for this subsystem has been performed, one
can choose vibrations of interest by inspection of the set of
normal modes obtained. These are then employed as a first
approximationqk

(1) for the local vibrations of the subsystem
embedded in the full compound.

If the actual vibrations of the embedded subsystem are
coupled to the remaining parts of the system, the algorithm will
generate new approximations to the true normal mode according
to eq 3. The extent of the coupling can be assessed by the
magnitude of the coefficients given in eq 4. If the coefficient
for the first basis vectorC1,k for normal modek is large, then
the assumption of alocal guess vibration, i.e., one which is
essentially localized within the subsystem, is confirmed. Many
coefficients of considerable magnitude for a normal mode
indicate stronger couplings to the ligands and make the algorithm
increase its number of basis vectors step by step.

For the study of the molecular junction, we have chosen the
isolated carbon chain as the subsystem and used the mode-
tracking protocol to include couplings of this bridge with the
vibrations of the rhenium complex fragments through successive
iteration steps.

3. Rhenium Complexes with Molecular Bridges of
Different Length

We optimized the structures for all complexes of the type
[Re]-(C≡C)n-[Re] with [Re]) (η5-C5Me5)Re(NO)(PPh3) for
values ofn from 2 to 10, i.e., 4 to 20 carbon atoms in the chain.
We should stress that we have not replaced the Cp*) C5Me5

ligands by smaller Cp) C5H5 ligands. In case ofn ) 2, we
also optimized three different diastereomers, which are shown
as compounds1a, 1b, and1c in Figure 1. The most important
structural data are given in Table 1. It can be seen that the bond
distances for the threen ) 2 compounds are quite similar. The
largest differences are observed for the Re-Ccp distance (up to
0.5 pm). Also the Re-Re distance varies by as much as 0.6
pm, but this is negligible compared to the total distance of about
792 pm. The difference of the Re-Re distance of 792 pm

compared to the experimental value of 782.88 pm can easily
be explained by summing up the differences in the individual
bond lengths.

Even for the largest compounds we find a significant
difference in the bond lengths for the C≡C and the C-C bonds,
i.e., bond length alternation occurs. The difference between the
longer and the shorter bond lengths decreases from 11.0 pm
for n ) 2 to 7.1 pm forn ) 10. This is in agreement with
previous studies on polyyne structures.23 Also the Re-Cchain

distance decreases monotonically from 204.2 to 199.4 pm when
going from the C4 to the C20 chain. The largest decrease is
observed from the C4 to the C6 compound (about 3.5 pm), while
the chain length decreases by only 2.1 pm from the C6 to the

Figure 1. Optimized structures of the diastereomers1a, 1b, and1c
for the compound [Re]-(C≡C)n-[Re] (shown here are the diastere-
omers forn ) 2).
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C20 chain. As further general trends, we observe that the Re-
NO distance becomes slightly larger with increasing chain
length, which is also the case for the Re-P bond length and
the distance to the carbon atoms in the pentamethyl-cyclopen-
tadienid ligand. The Re-Re distance increases by about 256.1-
256.9 pm when adding a C2 subunit. Only from then ) 2-3
compound is the enlargement much smaller (252.4 pm). The
estimated Re-Re distance in the Re-C20-Re complex in ref
23 is 28.7 Å, and we obtain a similar value of 28.4 Å. This
deviation may be due to slight differences in the individual
carbon-carbon and rhenium-carbon bond distances, since no
significant bending of the carbon chain is observed in our
calculation.

Several studies concerning the electronic structure of these
species have been performed over the last years. In ref 23, it is
concluded from experimental UV-vis spectra that the HOMO/
LUMO energy gap in these complexes is nonvanishing even if
the chain length is increased to infinite length. Extrapolation
leads to approximately 550 nm for the excitation energy for
the firstπ-π* excitation. This would also support the observa-
tion that there is a considerable bond length alternation for longer
carbon chains, while bond-length equalization is usually taken
as a hint for vanishing HOMO/LUMO gaps.43,44 Bond-length
equalization is observed in Hartree-Fock calculations on
oxidized systems such as butadiyne2+ or related [Re]-C4-
[Re]2+ complexes similar to the ones investigated here.45 The
corresponding HOMOs of the neutral systems were identified
to have considerable amplitudes on the metal centers, on the
nitrosyl groups, and also partial C4 π character, so that structural
differences between the neutral and the 2-fold cationic forms
for the Re-C4-Re model system are not restricted to the carbon
chain. In the above-mentioned work, it was also concluded from
NBO analyses that upon 2-fold oxidation 0.74 electrons are lost
from the C4 chain and 0.72 from the nitrosyl ligands. The
bonding situation in related [Ru]-C4-[Ru] complexes was
analyzed by extended Hu¨ckel and DFT calculations and
explained in terms of interactions of frontier molecular orbitals
(FMO) in ref 46. The bonding is ascribed to a strongσ-type
interaction between high-lying metallic FMOs and low-lying
orbitals of the C4 unit, which leads to an important electron
donation toward the metal center. Additionally, a weakerπ-type
back donation from occupied metallic FMOs to high-lying
acceptor C4 FMOs is recognized. Also for this molecule, it is
observed that the HOMO is delocalized over the Ru-C4-Ru
unit, so that electron loss upon oxidation is not purely metal
centered. A computational study of odd-numbered carbon chain
complexes, which are not investigated here, was conducted by
Jiao and Gladysz.47

4. Subsystem Methodology for the Molecular Junction

The Re complexes investigated here are too large to perform
systematic vibrational analyses for all compounds using suf-
ficiently large basis sets (up to 144 atoms, corresponding to
2072 contracted Cartesian or 1984 SCF basis functions using
the TZVP basis set). As initial guesses in the mode-tracking
calculations, we used the subsystem methodology described in
section 2.1. We carried out calculations for a polyyne chain of
the same length as in the full complex, saturated with hydrogen
atoms at the terminating carbon atoms. For these models of the
chain, we obtained the complete harmonic force field in a BP86/
RI/TZVP calculation with SNF.29 In the calculation of the
normal modes, we assigned an artificial mass of 614.16 amu to
the two hydrogen atoms. This is the mass of one of the [Re]
complex fragments. AKIRA then allows us to use the normal
modes for this subsystem as an initial guess for the motions of
the Re-C20-Re subunit in the full compound. An initial guess
for the Hessian of the full system, which enters the precondi-
tioner in the Davidson algorithm, is not obtained, and a unit
matrix is used instead.

In the following, we examine one example for a comparison
of a complete force-field calculation from BP86/RI/SV(P) with
a mode-tracking calculation using the same method and basis
set in order to assess the accuracy of the mode-tracking results.
The calculation is carried out for complex1c, i.e., for a carbon
chain with four carbon atoms. As a first test, we used six normal
modes obtained in the full force-field calculation as initial
guesses for the mode tracking. In all cases, we obtained
convergence within one iteration, as one would expect for
correct normal modes. The wavenumbers show slight differences
of up to 2.5 cm-1 in the case of low-frequency modes, while
the differences are less than 0.4 cm-1 for vibrations in the test
set with frequencies> 200 cm-1.

Additionally, we carried out mode-tracking calculations for
which we used the subsystem methodology described above.
The results for three low-lying vibrations of the carbon chain
are given in Table 2. The deviations between the mode-tracking
results and the SNF wavenumbers are about 7.8 cm-1 for ν̃1,
3.3 cm-1 for ν̃2, and 2.1 cm-1 for ν̃3. The rather high deviations

TABLE 1: Selected Bond Lengths and Re-Re Distances (Chain Length) of [Re]-(C≡C)n-[Re] Complexes

n Re-Cchain (C≡C)chain (C-C)chain Re-NO Re-P Re-Ccp Re-Re

2a 204.2 124.7 135.7 179.5 242.4 228.7-244.9 792.4
2a, exp 45 120.2(7) 138.9(5) 782.88(4)
2b 204.0 124.8 135.5 179.5 242.3 229.3-244.6 791.8
2c 204.0 124.8 135.5 179.6 242.2 229.2-244.6 791.8
3 201.5 124.8-125.5 133.8 179.7 242.4 230.4-245.0 1044.8
4 201.0 125.1-125.6 132.7-133.4 179.8 243.0 230.7-244.8 1300.9
5 200.6 125.2-125.7 132.3-133.1 179.9 243.3 230.9-244.7 1557.1
6 200.2 125.3-125.8 131.9-132.9 179.9 243.5 231.0-244.6 1813.5
7 200.0 125.4-125.8 131.7-132.8 179.9 243.9 231.3-244.5 2070.4
8 199.7 125.5-125.9 131.5-132.6 180.0 244.0 231.4-244.4 2326.7
9 199.5 125.5-125.9 131.3-132.6 180.0 244.2 231.5-244.4 2583.3
10 199.4 125.6-126.0 131.1-132.5 180.0 244.3 231.7-244.3 2839.8

All values are given in pm. Experimental values are only available for complex 2(a) [45].

TABLE 2: Vibrational Wavenumbers (BP86/RI/SV(P)) for
Selected Normal Modes of the Carbon Chain in Complex 1c
from Full Force-Field Calculations Using SNF (Left) and
Mode-Tracking Calculations Using AKIRA (Right) a

no. SNF AKIRA

1 117.3 125.1
2 267.7 263.4
3 293.5 291.4

a The subsystem methodology has been used to obtain initial guesses
for the vibrational wavenumbers. All frequencies are given in cm-1.
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for ν̃1 andν̃2 demonstrate that the threshold of 0.0005 for|rmax|,
which was applied here, should be further decreased in order
to improve on these results. It should be stressed that the
calculations are nontrivial because there are many eigenvalues
of the Hessian in the low-frequency range of the rhenium
complexes, which may lead to heavy mode-mixing and will thus
increase the number of subspace iterations. This is in particular
the case forν̃1, which contains large contributions of the other
ligands at the rhenium centers, so that many corrections to the
initial guess are necessary. Moreover, the relative numerical
errors become larger the smaller the vibrational frequencies are,
since the energy and gradient changes for a given numerical
step size become smaller. This can in principle be overcome
by optimizing the step size for a particular normal mode after
convergence with the well-chosen default step size has been
obtained.

5. Mode Tracking for Modes of the Carbon Chain
Attached to the Rhenium Metal Fragments

Since every iteration step introduces numerical errors, it
appears advantageous to perform the subspace iteration process
in two steps. First, an optimization with a larger threshold
(0.0005 for |rmax|) is applied, in which several initial guess
vectors of low quality are used as basis vectors. After
convergence of this calculation, one can select those approximate
eigenvectors that are desired in the calculation and start a second
mode-tracking calculation with a tighter residuum threshold
(0.000 25 turned out to be sufficient). This protocol leads to
high-quality results for the vibrational wavenumbers and is
therefore applied for all calculations in this section. In the first
iteration, we optimized at least three low-frequency modes
obtained in the subsystem calculation. The lowest frequency of
the set of eigenvalues obtained in this calculation was further
refined in the second part of the iteration process. The results
are given in Table 3 and Figure 2. We also show the vibrational
frequencies obtained in the subsystem calculation with SNF
(with fictitious masses of 614.16 amu for the hydrogen atoms).
The two curves in Figure 2 for the frequencies as a function of
the number of carbon atoms in the chain are almost parallel.
An exception is the rather small wavenumber obtained for the
n ) 8 compound. But considering the numerical error for these
modes of very low frequency, we note that the wavenumbers

for the three longest carbon chains of about 30 cm-1 are almost
equal in the mode-tracking calculation. This is also the case
for the subsystem model compound, for which we obtain 6 cm-1

for n ) 8, 9, and 10.
In case of the [Re]-C20-[Re] complex, we optimized several

vibrations of the carbon chain. Three of the vibrations are
depicted in Figure 3, which resemble the vibrations of a rope
with fixed ends. All vibrations turned out to show nodes at the
end of the chain, i.e., at the Re atoms. The first vibration at 32
cm-1 has no further nodes and corresponds, thus, to the basic
nodeless vibration of a rope, while the second (39 cm-1) and
third (56 cm-1) vibrations show one and two additional nodes,
respectively, which correspond to the first and second “over-
tones” of a rope.

6. Anharmonicity Effects

The motions of the carbon chain investigated in this work
are rather “floppy” vibrations with small force constants. For
such vibrations, it is important to estimate the effect of
anharmonicity of the potential energy surface. Unfortunately,
the pure diagonal contribution, i.e., the contribution arising from
the third and fourth derivative of the electronic energy with
respect to the same normal coordinate to the anharmonic
wavenumber correction within vibrational perturbation theory
is not well suited to quantify the anharmonicity for that vibration
(see, e.g., ref 39). Nonetheless, by studying the potential-energy
curve along a normal coordinate, we may get an idea of how
important anharmonicity actually is for a given vibration. This
knowledge can be useful if model potentials for the correspond-
ing normal mode are employed in subsequent modeling to go
beyond that of a pure harmonic oscillator.

We therefore calculated the electronic energy (BP86/RI/
TZVP) along the lowest-frequency normal coordinate modes
of the carbon chain of the [Re]-C4-[Re] complex1a and of
the corresponding model system H-C4-H, which are depicted
in Figure 4. The corresponding harmonic approximations to the
potential-energy curves according to the harmonic force con-
stants and the zero-point kinetic energy levels are also shown.
In the case of the model system H-C4-H, for which again the
mass of 614.16 amu was used for the hydrogen atoms, we

TABLE 3: Wavenumbers of the Lowest-Frequency
Vibrations of Isolated Carbon Chain Modes of
[Re]-(C≡C)n-[Re] Complexes (ν̃) and the Corresponding
Models H-Cx-H (ν̃sub) with an Artificial Mass of the
Hydrogen Atoms of 614.16 amua

n ν̃sub ν̃
no. iterations

i + j

2a 82 120 6+ 5
3 42 77 4+ 3
4 25 53 3+ 8
5 16 45 5+ 4
6 13 44 4+ 5
7 9 40 2+ 7
8 6 29 5+ 7
9 6 32 6+ 2
10 6 32 14+ 3

a All values are given in cm-1. We also give the number of iterations
as i + j, where i is the number of initial iterations. From the set of
modes produced in these initial iterations, the lowest-frequency mode
was chosen and further optimized in a second subspace iteration, which
requiredj iteration steps. Note that in case ofn ) 10 the initial number
of iterations is quite large because additional modes (not presented here)
have been optimized simultaneously.

Figure 2. Wavenumbers of the lowest-frequency vibrations of the
carbon chain in the compounds of type [Re]-Cx-[Re] as a function
of the chain lengthx (full compound) and of the corresponding models
H-Cx-H with an artificial mass of the hydrogen atoms of 614.16 amu.
All values are given in units of cm-1.
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observe a remarkably good agreement in the vicinity of the
equilibrium structure, while the harmonic approximation is
getting slightly worse for larger displacements. For the [Re]-
C4-[Re] complex there are only tiny deviations from the
harmonic approximation even near the equilibrium (for∆Q
between 0.5 and 1.0 bohr (amu)1/2), but the relative deviations
are smaller for larger displacements along this coordinate, which
indicates that the harmonic approximation is better fulfilled for
this system. A quadratic fit to the calculated potential-energy
curve results in an excellent agreement between the calculated
data points and a harmonic potential which corresponds to a
wavenumber of 123 cm-1. This is in good agreement with the
wavenumber of 120 cm-1 calculated with the mode-tracking
method. We note that this small deviation stems from the
numerical differentiation, which can be improved easily in
AKIRA by, e.g., increasing the number of grid points for the
discretized derivatives, which also occurs in standard numerical
frequency calculations.

From the calculations reported in this section, we conclude
that anharmonicity effects play a minor role in molecular
junctions, which are symmetrically attached to two heavy

anchors, even if the vibration is a low-frequency bending motion
of the whole bridge.

7. Rupture of the Molecular Bridge

The results from the frequency analyses exhibit many low-
frequency vibrations of the carbon chain, which are already
excited at room temperature, particularly in the case of the longer
chains. To study the possibility of rupture processes of the
molecular bridge in these complexes, we calculated BP86/RI/
TZVP energies for the breaking of the chain [Re]-C20-[Re]
into two fragments. Decompositions into fragments ([Re], C20-
[Re]), ([Re]-C2, C18-[Re]), and ([Re]-C10, C10-[Re]) were
taken into account, where we considered neutral as well as
charged fragments. The reaction energies in Table 4 show that
none of the breaking processes is energetically favorable. The
products are in all cases less stable than the reactant. (There is
no need for a counterpoise correction of the data because of
the magnitude of the energy values). Even structural relaxation
of the fragments, for which we give the energetics in the lower
half of Table 4, does not lead to a substantial lowering of the
reaction energies. Two conclusions can be drawn from the

Figure 3. Normal modes and corresponding wavenumbers of the carbon chain in [Re]-(C≡C)10-[Re] found via a mode-tracking calculation with
AKIRA. The program JMOL [52] was used for the visualization of the normal modes.
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results. First, the breaking into two neutral fragments is for all
rupture positions more favorable than a decomposition into
charged fragments, which might change if solvent effects are
considered. Second, among these decomposition processes, the
bond breaking at one of the two metal centers is energetically
preferred compared to bond breakings within the carbon chain.
Our results are in line with the experimental facts23 that these
metal-capped, wirelike polyynediyl chains are remarkably stable
in the solid state and thermally decompose only at temperatures
above 150°C, which is ascribed to chain-chain cross linking.
A possible reason for the lability of [Re]-C20-[Re] in solution
are similar impurity-catalyzed cross-linking mechanisms.

On a mesoscopic length scale, forces other than those induced
by collisions in chemical reactions can become important, for
which the energetical analysis presented in this section will be
valuable. Theoretical investigations into mechanically induced
processes have been conducted by Marx and collaborators48 for
organic molecules attached to gold clusters and by Frank et
al.49-51 The latter authors also derived a simple model with
system-specific and thermodynamic parameters (bond type,
pulling rate, temperature) in order to predict the bond-breaking

Figure 4. Potential energy curves along the lowest-frequency vibrational normal coordinate for a motion of the carbon chain of the [Re]-C4-[Re]
complex1a (bottom) and the corresponding model system H-C4-H (top) with artificial masses of 614.16 amu for the hydrogen atoms, calculated
using BP86/RI/TZVP. Also shown are the harmonic approximations for the potential energy along these normal coordinates and the zero-point
kinetic energy levels as well as the wavenumbers in cm-1 from a quadratic fit to the data points.

TABLE 4: Reaction Energies ∆Erupt in kJ/mol for the
Rupture of the Carbon Bridge in [Re]-C20-[Re] into
Neutral, Anionic, and Cationic Fragments [Re]-Cn and
Cm-[Re], Obtained from BP86/RI/TZVP Calculations

n m ∆Erupt

Unrelaxed
0 (anion) 20 (cation) 958
0 (cation) 20 (anion) 595
0 (neutral) 20 (neutral) 435
10 (anion) 10 (cation) 876
10 (cation) 10 (anion) 876
10 (neutral) 10 (neutral) 542
2 (anion) 18 (cation) 1008
2 (cation) 18 (anion) 836
2 (neutral) 18 (neutral) 563

Relaxed
0 (anion) 20 (cation) 858
0 (cation) 20 (anion) 567
0 (neutral) 20 (neutral) 408
10 (anion) 10 (cation) 844
10 (cation) 10 (anion) 844
10 (neutral) 10 (neutral) 533
2 (anion) 18 (cation) 953
2 (cation) 18 (anion) 790
2 (neutral) 18 (neutral) 546
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probability. The model involves simple springs for each bond.
The results obtained in this work would allow one to use a more
elaborate spring model for the collective motions of the ropelike
wire in such approaches. It is noteworthy that Ro¨hrig and
Frank49 also find in theirfirst-principles molecular dynamics
calculations a polymer breaking at its attachment positions on
a surface.

8. Conclusion

The mode-tracking calculations show that the “out-of-line”
vibrations of the carbon chain in Gladysz-type rhenium com-
plexes are of very low frequency. The wavenumber for the
lowest-frequency vibration, which corresponds to the basic
nodeless vibration of a rope as a model for the carbon chain,
steadily decreases with increasing chain length, until a saturation
is reached for about 16 carbon atoms in the chain. This suggests
that bending of the carbon chain and deformations might easily
be possible and also explains the curvatures of analogous
compounds found in the solid state by X-ray analysis,24 where
packing effects can become important. The vibrational frequen-
cies obtained here can further be used to develop a model for
the vibrational frequencies of molecular wires as a function of
the chain length. This would permit us to give estimates of the
vibrational frequencies for even longer one-dimensional wires.

The sample complexes studied in this work demonstrate how
the mode-tracking algorithm can be efficiently applied for the
calculation of nonlocal vibrations, which couple motions of all
atoms of the subsystem (without using an appropriate initial
guess for the preconditioner). The computational effort was
largely reduced. The calculation for [Re]-C18-[Re], for
instance, required eight iterations in total, in which 10 basis
vectors were employed. Three basis vectors were converged
according to the less tight convergence criterion in the first part
of the subspace iteration, one of which was further refined in
the second part. This means that three vibrational frequencies
are obtained from 20 single-point calculations (energy plus
gradient). By contrast, the complete Hessian is of dimension
426 × 426 and would require 852 single-point calculations.

The convergence behavior was slightly worse in case of the
shortest carbon chains, in particular for then ) 2 compound.
This is, however, no drawback of the algorithm but a conse-
quence of the stronger couplings with the metal complex
fragments. The stronger the couplings, the more additional basis
vectors are necessary to take motions of the other ligands at
the rhenium atoms into account. In case of longer carbon chains,
however, these couplings are less important, and additional basis
vectors are necessary to improve the description of the motions
within the chain.

It should be emphasized that it is easy to use mode tracking
also for other types of vibrations. During the first iteration steps,
for example, we also obtained estimates for various carbon-
carbon stretching vibrations in the chain, which we did, however,
not choose for refinement in subsequent calculations. Further-
more, it is straightforward to calculate certain properties with
respect to these normal modes, once they are known from a
mode-tracking calculation. Examples are forces in excited states
along these modes, which can be obtained by two calculations
of excitation energies for structures displaced along the normal
coordinate. Therefore, this approach should provide the means
to efficiently calculate the data necessary for the parametrization
of certain model theories related to electron transfer and
molecular conductance.

The general result in this work for molecular devices and
especially for molecular wires is the demonstration of feasibility

and reliability offirst-principlesquantum chemical methods to
provide system-specific information useful for more approximate
models. Consequently, tailored quantum chemical protocols such
as the mode-tracking approach close the gap between explicit
and accurate quantum chemical methods and model theories
based on quantum mechanics or molecular mechanics.
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Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A.J. Am. Chem. Soc.
1997, 119, 775-788.

(46) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J.-F.; Best, S. P.; Heath,
G. A. J. Am. Chem. Soc.2000, 122, 1949-1962.

(47) Jiao, H.; Gladysz, J. A.New J. Chem.2001, 551-562.
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