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The recently described Fourier transform Coulomb (FTC) algorithm for fast and accurate calculation of density
functional theory (DFT) energies (Fu¨sti-Molnar, L; Pulay, P.J. Chem. Phys. 2002, 117, 7827) has been
parallelized. We present several calculations showing the speed and accuracy of our new parallel FTC energy
code, comparing its performance with our standard all-integral DFT code. Although it still contains significant
serial code, the parallel FTC algorithm is up to 6 times faster overall than our parallel all-integral algorithm,
and well over an order of magnitude faster for computation of the Coulomb terms, with essentially no loss
in accuracy. Proposed improvements should significantly increase these factors. The Coulomb energy in DFT
energy calculations can now be computedaccuratelyfor large molecules and/or basis sets faster than the
exchange-correlation energy.

Introduction

Density functional theory is now well established as the
premier computational method in ab initio quantum chemistry.
Density functional theory (DFT) in its modern form derives from
the XR method of Slater and Johnson,1 and from the 1965 paper
by Kohn and Sham.2 Much of the progress since then, in both
methodology and the development of new functionals, has
originated in the physics community, and it was not until the
early 1990s that quantum chemists began to look seriously at
the method, a key paper at this time being the performance study
of a number of different density functionals by Johnson, Gill,
and Pople.3 DFT was subsequently taken up in earnest by the
quantum chemistry community, most notably by the Handy4

and Ahlrichs5 groups. The quantum chemists injected a degree
of rigor into the field that had for the most part been lacking,
and the introduction of DFT methods into well established ab
initio program packages (such as GAUSSIAN,6 CADPAC,7 and
TURBOMOLE8) brought DFT into the mainstream of compu-
tational chemistry, contributing significantly to its current
popularity.

In their initial DFT implementations quantum chemists
leveraged the years of experience that had gone into the then
existing Hartree-Fock-based codes, producing programs that
treated DFT essentially as a variant to standard self-consistent
Hartree-Fock theory. The exchange-correlation energy and the
corresponding contributions to the Fock matrix were calculated
numerically over atom-centered grids,9 similarly to DFT codes
developed by physicists, but the Coulomb term was evaluated
as in Hartree-Fock theory, i.e., by calculating analytically all
the necessary two-electron integrals. This is in marked contrast
to DFT codes developed in the physics community, in which a
variety of alternative methods were used, such as density
fittingsalso called “resolution of the identity” (RI-DFT)san
old favorite of DFT researchers,10 which involves expansion of

the density in an auxiliary basis set (used, for example, in both
DGAUSS11 and DEMON12), or direct numerical solution of the
Poisson equation (a method adopted at least partially in ADF13

and fully in DMOL14). The two-electron integral approach is
especially useful for hybrid functionals, which retain a portion
of the exact Hartree-Fock exchange.

These alternative methods of evaluating the Coulomb poten-
tial are usually faster than computing analytically all the two-
electron integrals, but in many programs speed was achieved
at the expense of accuracy, and total energies computed with
these alternative approaches, even for small molecules, were
often significantly different from energies calculated using more
traditional quantum chemistry codes, with errors typically in
the mEh range. This degree of error approaches the predictive
accuracy of the method, and makes it difficult to compare
calculations using different programs. Numerical and other errors
in the energy naturally extend to gradients, and some of the
early DFT programs had difficulties reliably converging mo-
lecular geometries during a geometry optimization, especially
for larger, floppy molecules. One of the aims behind the Fourier
transform Coulomb (FTC) method was to achieve the speed of
these alternative approaches without the reduction in accuracy.

The essence of the FTC method is the evaluation of the
Coulomb operator and its matrix elements in an intermediate
plane wave basis, retaining the traditional Gaussian basis sets.
This approach has been pioneered by Parrinello and co-workers
under the acronym GAPW (Gaussian and augmented plane
wave), initially for pseudopotential methods,15 and subsequently
for all-electron calculations.16 The FTC method shares the goals
and the basic idea behind the GAPW approach, but is quite
different technically, particularly in the treatment of core orbitals.

Plane wave basis sets are widely used in solid-state physics,
especially for calculations on periodic systems, which have been
their main applications. At first sight, they would appear to be
entirely unsuitable for molecular chemistry as they have a
number of obvious disadvantages: (1) they necessarily describe
an infinite periodic system, and the periodic “ghost” images
cause errors for molecules; (2) they lead to divergent expressions
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for charge distributions with net charge; (3) plane waves can
handle compact charge distributions, e.g., the region around the
nucleus, only at very high cost; (4) good-quality plane wave
basis sets are huge (our calculations typically use several million
plane waves); (5) the large dimensions can cause severe
problems with the determination of the eigenvalues and eigen-
vectors of the Fock matrix. However, they have one overwhelm-
ing advantage, namely, that calculation of the Coulomb integrals
is greatly simplified and can be achieved very rapidly. The
electron-electron Coulomb operator is diagonal in momentum
space, and quantities can be calculated very efficiently in the
appropriate (momentum or real space) representation, using fast
Fourier transformation to switch between the representations.

In the past, the most prominent plane wave applications have
been Car-Parrinello molecular dynamics (CPMD) and solid-
state DFT, both with pseudopotentials and at a limited level of
accuracy. CPMD takes optimum advantage of plane waves.
Pseudopotentials take care of the region around the atomic
nuclei, and because high accuracy is not needed, the periodic
images can be neglected. No diagonalization is required because
the wavefunction is propagated, and calculation of the forces
is very fast. Solid-state DFT is also appropriate as space-filling
structures can use the plane wave basis efficiently and periodic
images do not have to be eliminated.

How can plane waves be used efficiently in accurate, all-
electron molecular calculations? The essential idea is to start
with a normal Gaussian-type basis set, expand theValencepart
of the density in plane waves,16 compute the Coulomb potential
in the plane wave basis, and then transform back to the original
Gaussian basis when the Fock matrix elements are formed. The
core contributions have to be calculated separately, either by a
standard integral code or by some other method. Switching to
a Gaussian basis removes problems due to the enormous
dimension of the plane wave basis, as all matrices are
represented in the modest Gaussian space, the dimension of
which is at most a few thousand. Only one-dimensional
quantities need to be stored and handled in the plane wave basis.
In previous work we have shown how to circumventall of the
disadvantages of plane waves; in particular we have developed
a simple technique whichexactlyeliminates the periodic ghost
images and removes the divergences present in charged
systems.17,18

Overview of the FTC Method

Before discussing the parallel algorithm, we provide a brief
overview of the method, concentrating on the computational
steps involved. Full technical details will not be given, as most
of these have been discussed in the original presentation of the
method.19

As noted above, the basic idea is to expand as much of the
original basis set as possible in terms of plane waves, compute
the electronic density on a direct-space grid, transform to
momentum space to compute the Coulomb potential, transform
back to the real space grid, and determine the Fock matrix
elements (in the space of the original Gaussian basis set) by
numerical quadrature. In general the original basis cannot be
expandedfully in plane waves as basis functions with large
exponents (those representing the core region) cannot be
represented sufficiently accurately in a plane wave basis.

We first partition the original Gaussian basis set into two
classes depending on the exponent value; those with small
exponents (which we termdiffuse, d) and those with large
exponents (which we termcompact, c). The exponent cutoff
depends somewhat on the angular momentum (i.e., s, p, d, etc.)

of the basis function, and also on the quality of the grid (i.e.,
the number of plane waves in the expansion) but is around 2.5-
3.0 a0

-2. Partitioning the basis in this way results in the
following classes of integrals that need to be evaluated (using
the Mulliken notation):

Compact basis functions cannot be properly expanded in plane
waves, so we treat the first four integral types using a variant
of our standard integral package, i.e., essentially in exactly the
same way as in a “normal” SCF integral code. Integrals of type
6 can be fully handled in plane wave space, as can those of
type 5 (because the high momentum components of the charge
density, cd, do not interact with the diffuse charge density, dd).
In theory, integrals of type 4 can also be taken over into plane
waves, but we have not yet done this.

The molecule is placed in a box sufficiently large to contain
essentially all the electron density. For simplicity, the box can
be considered as a cube of sidesL, but in the actual program it
is a parallelepiped, adapted to the molecular dimensions. We
introduce a standard rectangular grid in our box, whose grid
density,dsthe number of plane waves in one Cartesian direction
per atomic unitscharacterizes the plane wave basis. The grid
spacing ish ) d-1, and the grid points range from-L/2, -L/2
+ h, ..., toL/2 - h in each Cartesian direction. The efficiency
of Fourier transform and plane wave methods derives from the
fast Fourier transform (FFT), which allows almost effortless
switching between the momentum and coordinate representa-
tions. For quantities which can be exactly represented by the
plane wave basis, the two descriptions are isomorphic.20

Evaluation of the Coulomb potential in plane waves is
extremely fast, so we want as many basis functions as possible
to be partitioned into the plane wave part of our space. Normally
integrals of types 5 and 6 will dominate, especially in larger
basis sets containing high angular momentum and diffuse
functions.

Having partitioned the basis set, the steps followed to compute
the Coulomb Fock matrix elements during each SCF cycle are
as follows.

(1) For integrals of types 1-4, determine the Fock matrix
elements in the traditional way, i.e., compute the integrals and
contract them with the appropriate density matrix elements. This
is currently done using a minor variant of our standard direct
SCF code. However, as discussed later, most contributions from
these integrals can be calculated very efficiently using a
multipole approximation.

(2) Compute the Coulomb contribution arising from the
(dd|dd) integrals. This involves the following steps (order with
respect to system size is shown in parentheses): (i) calculation
of the “diffuse” density on the real space grid,O(N), i.e., at
each grid point (r), F(r) ) ∑dRâgd

R(r) gd
â(r), d ) density matrix;

(ii) FFT to momentum space,O(N log N); (iii) calculation of
the potential in momentum space,O(N); (iv) reverse FFT back
to real space,O(N log N); (v) computation of Fock matrix
elements by numerical quadrature,O(N).

(3) Compute the Coulomb contribution arising from the
(cd|dd) integrals. This involves essentially the same steps as in
(2), above, except that the “mixed” densityF(r ) ) ∑dRâgc

R(r )
gd

â(r ) is constructed, where one of the indices (R) corresponds
to a compact Gaussian function. In practice several steps from
(2) and (3) are combined in the interest of program efficiency.

As indicated in (2), the scaling of the various steps is either
O(N) or O(N log N) for the Fourier transform steps. In practice,

(1) (cc|cc); (2) (cc|cd); (3) (cd|cd);
(4) (cc|dd); (5) (cd|dd); (6) (dd|dd)
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the FFT steps are very fast; we use the excellent FFTW package
of Frigo and Johnson.21 The rectangular nature of the grid allows
for very efficient screening and precomputation of many
quantities.

The exchange-correlation part of the calculation is currently
handled in the same way as in our integral-driven DFT code,
i.e., by numerical quadrature over spherical, atom-centered grids,
using techniques pioneered in this context by Becke.9 We have
already improved this part of the code (see, e.g., ref 22), but
we plan a further overhaul with a different quadrature allowing
us to use much of the grid already generated and in place for
the Coulomb term. We do not discuss the exchange-correlation
term in detail in this paper, our main focus being parallelization
of the code used to compute the Coulomb Fock matrix elements
via our new FTC method.

Parallelization

Our initial parallelization of the FTC code has been completed
using the parallel virtual machine (PVM) toolkit.23 Paralleliza-
tion can also be accomplished using the message-passing
interface (MPI), and indeed our standard parallel code has an
MPI version, although the PVM variant is somewhat more
convenient to use, particularly for explicitly correlated methods
such as second-order Møller-Plesset (MP2) theory. Below we
discuss our parallelization strategy for each stage of the FTC
method.

A. Traditional Electron Repulsion Integrals. Computation
of those integrals (classes 1-4, above) that are currently
evaluated classically is handled in a similar way as in our
existing, all-integral code. Each possible shellpair (initially in
blocks of 20-50, later individually to ensure good load balance)
is passed in a round-robin fashion to each slave, and all integrals
associated with that shell pair are computed, contracted with
the appropriate density matrix elements, and added directly to
a local copy of the Fock matrix. The parallel efficiency of this
part of the FTC code is very high.

B. Precomputation of Compact Basis Function Values
over the Real Space Grid.These values are precomputed and
written to disk. Each compact basis function has only a limited
spatial extent, and values are stored only over those grid points
which have a “nonzero” contribution. Parallelization is carried
out over compact shells, which are passed to each slave in a
round-robin fashion. Values are written to disk on the slave
that computed them. Parallel efficiency is very high, as only
the shell indices need to be communicated, and the amount of
disk storage required is typically less than 1 GB (in total, and
distributed over all nodes). Each slave knows which compact
shell indices are stored on its disk, so no additional communica-
tion is required during the SCF procedure once the basis function
values have been calculated and stored. The entire process has
recently been dramatically improved using a new “core-cut”
procedure.24

C. Calculation of the Diffuse Density on the Real Space
Grid. This is parallelized by selecting one grid dimension (X
in our case), passing the grid points along this axis to each slave
in a round-robin fashion, and computing the density over allY,
Z grid points. The computed densities are passed back and
accumulated on the master. As an example, for the yohimbine
molecule (C21H26N2O3) the box dimensions,L, are approxi-
mately 45 au; using our standard grid density of 3.75 points/
au, this results in 169 grid points in each direction, equivalent
to a total of 1693 ≈ 4.8 million plane waves. The 169 grid points
in theX direction are passed to each slave, either in small blocks

or one at a time, and the densities on allY, Z grid points (1692

) 28561 for eachX value) are calculated and passed back to
the master.

Despite the large number of plane waves (typically between
two and six million), the memory requirements for this step
are modest. The master requires storage for the complete grid
(16-48 MB), but the slaves only need storage for the number
of Y, Z grid points (times the number ofX values being
computed at the same time). The only real communication
between the nodes is during the transfer of the computed density;
consequently the parallel efficiency of this step is also high.

D. Calculation of the Diffuse Coulomb Potential by Fast
Fourier Transform. This step involves the FFT of the diffuse
density to momentum space, calculation of the Coulomb
potential in momentum space, and the FFT back to real space.
As previously discussed, we use the serial version of the FFTW
package of Frigo and Johnson21 essentially “as is”, and we have
made no attempt to parallelize this code at this time. Note that
this step also includes the code needed to eliminate the periodic
images,17 which involves a doubling of the box dimensions and
takes significantly more time than the FFT itself. The FFT step
is very fast, but itis serial in the current implementation, and
it contributes to the serial overhead of our parallel FTC code.
We plan to parallelize this step later.

E. Calculation of the Mixed Density on the Real Space
Grid and the Fock Matrix Contribution from the Compact
Functions. Parallelization of the mixed density calculation
cannot be accomplished in the same way as for the diffuse
density, because the compact orbitals cannot be handled in plane
wave space (i.e., via the Fourier transform). Instead a full
“partial” mixed density is formed on each slave using the
precomputed core functions that are stored on that slave, and
the total mixed density is accumulated on the master using the
operationpVmfreduce. This requires each slave to hold a local
copy of the full grid containing its contribution to the density.
These grids are collected and summed on the master. At the
same time, each slave computes the direct contribution to the
Fock matrix from its own partial mixed density and the
precomputed compact basis functions. This requires the Cou-
lomb operator over the full grid which was obtained from the
diffuse density via the FFT in step D, above.

At the start of this step, the diffuse Coulomb operator over
the full grid is broadcast from the master to each slave, and at
the end the mixed density is accumulated on the master. This
stage is the most computationally demanding part of the current
FTC algorithm. Each slave requires storage for two full grids
(16-48 MB each), plus Fock and density matrixes, as well as
other work arrays, and there is considerable data transfer over
the nodes, both in the initial broadcast (which, unfortunately,
is not a true broadcast in the current version of PVM, and
therefore, the time taken increases linearly with the number of
slaves) and, especially, in the final accumulation of the mixed
density on the master. On the other hand, the data transfer is
only about the same as that required to accumulate a large Fock
matrix (say 2500 basis functions, 50 MB) from each slave to
the master, which has to be done in any case. Overall the parallel
efficiency of this step is only moderate; there is a speedup, but
it is likely to fall off quite rapidly with an increasing number
of slaves due to the relatively high communication overhead
compared to the rest of the FTC code. Possible improvements
in this part require the division of the compact basis functions
into sets localized in different regions of the molecule, and
assigning each slave one of these regions. In this case, the diffuse
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Coulomb operator and the mixed density are needed only over
a subset of the full grid.

F. Calculation of the Mixed Coulomb Potential by Fast
Fourier Transform. This is essentially a repeat of step D,
above, only using the mixed density computed on the slaves in
step E. As with step D it is not parallel and contributes to the
serial overhead.

G. Calculation of the Fock Matrix Contributions from
the Diffuse Functions.This is the last part of the parallel FTC
algorithm and involves calculating the contribution to the Fock
matrix from the diffuse functions by numerical quadrature. The
diffuse and mixed Coulomb potentials over the grid (derived
from the FFT of the diffuse and mixed densities, respectively)
are combined, and transmitted to the slaves. As in step C, this
is parallelized over theX direction grid points in a round robin,
with the potential over allY, Z grid points sent with eachX
point. Each slave sums up the relevant contributions into its
own local copy of the Fock matrix. The amount of data
transmitted between the nodes is essentially the same as in step
C, as are the memory requirements, and the parallel efficiency
should be the same as well.

At the end of all these steps, each slave’s local copy of the
Fock matrix is summed up on the master.

Results

We demonstrate the capabilities of our new parallel FTC code
on four molecules, aspirin (C9H8O4), yohimbine (C21H26N2O3),
paclitaxel (taxol) (C47H51NO14), and chlorophyll (C55H72N4O5-
Mg), and two basis sets, a valence triple-ú basis with a single
set of polarization functions for all non-hydrogen atoms (a
double set for hydrogen) denoted VTZP25 and a larger basis
derived from the Pople-type 6-311G(2df,2pd) basis by uncon-
tracting those primitive Gaussians which can be treated using
the FTC method.26 Henceforth, these will be designated basis
1 and basis 2, respectively. The modification of the Pople basis
set was made because our current code is not yet able to

calculate components of the same contraction with different
algorithms (i.e., FTC and traditional integrals). This is a purely
technical problem and will be addressed in future versions of
our code. Comparisons are made between the all-integral, fully
direct code in the current release of our PQS ab initio program27

and our new FTC code.

Tables 1-4 give a detailed breakdown of the elapsed time
spent in the various steps of the parallel FTC algorithm for
aspirin, yohimbine, paclitaxel, and chlorophyll, run on two and
four nodes, respectively, of one of our current systems (a QS8-
2400C, using 2.4 GHz Xeon processors and 2 GB of PC2100
ECC memory per node), together with comparisons with the
all-integral code. Note that timings for precomputing the
compact basis functions over the real space grid (step B, above)
are not given as this step is extremely fast. There are four main
points to focus on: (1) the ratio between the time to compute
the Coulomb term for the all-integral compared to the FTC code;
(2) the ratio between the total SCF time for the two codes; (3)
the relative accuracy of the FTC code; (4) the overall parallel
efficiency of the FTC code.

We look first at the parallel efficiency. As an example, we
take the timings for aspirin, basis 2 (our comments apply equally
well to all the other calculations). Comparing the reported
elapsed timings on two and four nodes, it is clear that the
classical integral step, computation of the diffuse density, and
the final Fock matrix construction are all very efficiently
parallelized. As expected, the mixed density/compact Fock step
does not parallelize well due to the high communication
overhead (however, the parallel performance of this step
improves as both the system and basis set size increases). As
already noted, the FFT steps are not parallel, and this contributes
significantly to the serial overhead. For aspirin, the effect is
marked (on four processors the FFT time is 1.4 min out of a
total FTC time of 5.8 min), butsas with the mixed density/
compact Fock stepsbecomes less with increasing system and/

TABLE 1: Timing Data for a Single-Point BLYP Energy for Aspirin (C 9H8O4)

elapsed time

job step basis 1 (306/233)a basis 2 (555/482)

number of processors 2 4 2 4

A. classical integrals 49 s 26 s 316 s 161 s
C. diffuse density 12 s 6 s 64 s 33 s
D. FFT 1 24 s 25 s 42 s 42 s
E. mixed density+ compact Fock 21 s 18 s 60 s 40 s
F. FFT 2 24 s 25 s 42 s 42 s
G. all diffuse Fock contributions 10 s 6 s 50 s 26 s

total FTC Coulomb 2.3 min 1.7 min 9.6 min 5.8 min

1-el integrals
miscellaneous 0.1 min 0.1 min 0.4 min 0.3 min
exchange correlation (DFT) 1.2 min 0.6 min 7.3 min 3.9 min

total SCF time (FTC) 3.6 min 2.4 min 17.3 min 10.0 min

Coulomb only (all-integral) 3.4 min 1.7 min 68.2 min 33.3 min
total SCF time (all-integral) 4.7 min 2.4 min 75.9 min 37.5 min

all-integral/FTC (total job) 1.3 1.0 4.4 3.8
all-integral/FTC (Coulomb only) 1.5 1.0 7.1 5.7

SCF energy (all-integral) -646.959156 -648.7196121
SCF energy (FTC) -646.959141 -648.7196124

total error 0.000015 0.0000003
error per atom 0.7µEh 0.014µEh

a Basis set description (xxx/yyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).
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or basis set size (e.g., for paclitaxel, basis 2, the FFT time is
just 4.7 min out of a total FTC time of 160.1 min on four
processors).

Overall, the parallel efficiency of our new FTC code is
reasonably satisfactory, especially for the small-scale parallelism
that is our primary focus (i.e., systems with 4-16 processors).
However, for good efficiency on larger numbers of processors
it is clear that the FFT steps need to be parallelized, and the

communication overhead in the calculation of the mixed
contributions needs to be reduced.

The relative performance of the FTC code compared to our
standard all-integral code can be seen by examining the all-
integral/FTC timing ratios reported in Tables 1-4. For the total
job time, on four processors, these range from 1.0 for aspirin,
basis 1 (i.e., the FTC algorithm is the same speed as the all-
integral code), to 6.0 (i.e., 6 times faster) for paclitaxel, basis

TABLE 2: Timing Data for a Single-Point BLYP Energy for Yohimbine (C 21H26N2O3)

elapsed time

job step basis 1 (702/546)a basis 2 (1275/1119)

number of processors 2 4 2 4

A. classical integrals 326 s 167 s 1973 s 1000 s
C. diffuse density 42 s 22 s 254 s 129 s
D. FFT 1 57 s 57 s 98 s 98 s
E. mixed density+ compact Fock 58 s 42 s 165 s 106 s
F. FFT 2 57 s 57 s 98 s 98 s
G. all diffuse Fock contributions 37 s 21 s 208 s 110 s

total FTC Coulomb 9.7 min 6.1 min 46.7 min 25.8 min

1-el integrals 0.2 min 0.2 min 0.4 min 0.4 min
miscellaneous 0.6 min 0.6 min 3.1 min 3.0 min
exchange correlation (DFT) 6.1 min 3.2 min 45.9 min 23.4 min

total SCF time (FTC) 16.6 min 10.1 min 96.1 min 52.6 min

Coulomb only (all-integral) 22.5 min 11.3 min 474 min 239 min
total SCF time (all-integral) 29.4 min 15.3 min 523 min 266 min

all-integral/FTC (total job) 1.8 1.5 5.4 5.1
all-integral/FTC (Coulomb only) 2.3 1.9 10.1 9.3

SCF energy (all-integral) -1148.494496 -1150.970847
SCF energy (FTC) -1148.494463 -1150.970849

total error 0.000033 0.000002
error per atom 0.6µEh <0.04µEh

a Basis set description (xxx/yyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).

TABLE 3: Timing Data for a Single-Point BVWN Energy for Paclitaxel (C 47H51NO14)

elapsed time

job step basis 1 (1575/1214)a basis 2 (2860/2499)

number of processors 2 4 2 4

A. classical integrals 2342 s 1189 s 16088 s 8159 s
C. diffuse density 146 s 75 s 898 s 454 s
D. FFT 1 100 s 103 s 138 s 141 s
E. mixed density+ compact Fock 166 s 107 s 570 s 307 s
F. FFT 2 100 s 102 s 137 s 140 s
G. all diffuse Fock contributions 139 s 78 s 742 s 394 s

total FTC Coulomb 50.0 min 27.7 min 310 min 160 min

1-el integrals 1.7 min 1.7 min 4.3 min 4.3 min
miscellaneous 6.8 min 6.8 min 30.1 min 31.5 min
exchange correlation (DFT) 28.7 min 14.7 min 211.6 min 108.5 min

total SCF time (FTC) 87.2 min 50.9 min 556 min 304 min

Coulomb only (all-integral) 163 min 80.8 min 3337 min 1675 min
total SCF time (all-integral) 200 min 104 min 3583 min 1819 min

all-integral/FTC (total job) 2.3 2.0 6.4 6.0
all-integral/FTC (Coulomb only) 3.3 2.9 10.8 10.5

SCF energy (all-integral) -2945.727664 -2952.295540
SCF energy (FTC) -2945.727429 -2952.295571

total error 0.000235 0.000031
error per atom 2µEh <0.3µEh

a Basis set description (xxx/yyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).
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2. For the Coulomb term alone, the speedup is well over an
order of magnitude for the larger systems. For smaller systems
with modest basis sets, there are no real advantages in using
the current FTC code, but as the system size and, especially,
the number of basis functions increase, the advantage of the
FTC method increases.

A further advantage of the FTC method is its excellent scaling
with increasing basis set size at constant system size, a property
not shared by many other fast DFT codes. For example, the
continuous fast multipole method developed by Gill and Head-
Gordon,28 and available in the recent releases of GAUSSIAN6

and Q-CHEM29 programs, is dominated for larger systems by
the calculation of the near-field integrals30 which have a steep
O(N4) scaling. The calculation of the Coulomb matrix elements
in the density fitting (DF or RI-DFT) method scales formally
only as O(N2), but the calculation of the fitting coefficients
involves a cubicO(N3) step. Methods based on the numerical
solution of the Poisson equation should scale in principle
quadratically. However, our own experience, as well that of
others,31 shows that it is difficult if not impossible to achieve
high accuracy with these methods. With the FTC code the
scaling is essentially quadratic, as can be seen from Table 1.
For example, for aspirin, increasing the number of basis
functions from 306 (basis 1) to 555 (basis 2) on two nodes
increases the Coulomb evaluation time by a factor of around 4
(less if we allow for the serial FFT overhead) with the FTC
code, but by over 20 with the all-integral code. (This latter factor
is even greater than expected from theO(N4) scaling, reflecting
the increased integral evaluation time due to the greater number
of high angular momentum basis functions in the larger basis.)
Essentially the same scaling is seen for the other three molecules
as well (Tables 2-4). If the time spent evaluating the remaining
classical integrals is removed, then the plane wave manipulations
in the FTC algorithm scale almost linearly with increasing basis
size.

Also shown in the tables are total SCF energies, the total
error in the FTC method (assuming that our standard all-integral

code is exact), and the error per atom. Total errors are on the
order of a few tens ofµEh, corresponding to well under 1µEh

per atom, in all cases except for paclitaxel, basis 1, where the
total error is 0.2 mEh with an error per atom of 2µEh. Perhaps
surprisingly, the errors are smaller with the larger basis set. The
main source of error is in selecting the cutoff for partitioning
the basis into diffuse and compact functions; the more functions
there are in the diffuse partition that have exponents close to
the cutoff, the greater the error. In basis 1, the oxygen atom
has a p-function with an exponent (2.28) which is close to the
default cutoff, and this shows the maximum error for paclitaxel,
which has the most oxygen atoms. The errors for all molecules,
and especially paclitaxel, can be further reducedsat the expense
of a slight increase in job timesby moving this function into
the compact set. Note that errors in the Coulomb term with the
FTC method for these systems are typically 1 or 2 orders of
magnitudelessthan the integration error in the DFT exchange-
correlation energy.

The favorable scaling properties of the FTC method, for both
increasing basis set size and increasing system size, are further
demonstrated in Tables 5 and 6, which present timings for a
series of BLYP calculations on various alanine chains, (ala-
nine)n. Table 5 presents single-point energies for (alanine)5 with
seven basis sets, ranging from 6-31++G (419 basis functions)
to 6-311++G(3df,3pd) (1500 basis functions). Table 6 presents
single-point energies with the 6-311++G** basis set for five
systems, from a single alanine (181 basis functions) through
(alanine)15 (2211 basis functions). The first series of calculations
shows the scaling with increasing basis set size at constant
system size, while the second shows the scaling with increasing
system size at constant basis set quality. All jobs were run on
eight processors of one of our QS8-2400C QuantumCube
systems, using 2.4 GHz PIV Xeon CPUs on dual-processor
motherboards, running both processors per node.

In both Tables 5 and 6 the first row for a given basis set/
alanine chain gives timings for the standard all-integral code,
while the second row gives timings with the FTC code. In the

TABLE 4: Timing Data for a Single-Point OLYP Energy for Chlorophyll (C 55H72N4O5Mg)

elapsed time

job step basis 1 (1826/1429)a basis 2 (3309/2912)

number of processors 2 4 2 4

A. classical integrals 2654 s 1373 s 13221 s 6753 s
C. diffuse density 193 s 102 s 966 s 487 s
D. FFT 1 239 s 246 s 272 s 275 s
E. mixed density+ compact Fock 204 s 154 s 461 s 279 s
F. FFT 2 240 s 245 s 266 s 268 s
G. all diffuse Fock contributions 177 s 102 s 821 s 445 s

total FTC Coulomb 62.0 min 37.2 min 267 min 142 min

1-el integrals 2.6 min 2.7 min 6.7 min 6.7 min
miscellaneous 10.9 min 11.3 min 60.8 min 61.7 min
exchange correlation (DFT) 36.5 min 20.1 min 186.5 min 97.6 min

total SCF time (FTC) 112 min 71.3 min 521 min 308 min

Coulomb only (all-integral) 186 min 90.5 min 3208 min 1593 min
total SCF time (all-integral) 236 min 121 min 3462 min 1759 min

all-integral/FTC (total job) 2.1 1.7 6.6 5.7
all-integral/FTC (Coulomb only) 3.0 2.4 12.0 11.2

SCF energy (all-integral) -2928.898581 -2934.349474
SCF energy (FTC) -2928.898554 -2934.349454

total error 0.000027 0.000020
error per atom <0.2µEh <0.15µEh

a Basis set description (xxx/yyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).
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latter case, the timing under the “2-el” column refers to the
timing for step A, i.e., those integrals that are handled classically,
while the timing under the “FTC” column refers to all other
steps in the FTC code. The timing in the “total” column refers
to the total elapsed time for the complete SCF calculation.

Turning first to Table 5, we see that, for (alanine)5, for the
smallest basis set (6-31++G), the FTC code isslowerthan the
all-integral code, but for all other basis sets the FTC code is
faster, with the speedup increasing with increasing basis set size,
becoming over 5 times faster with the 6-311++G(2df,2pd)
basis. With the largest 6-311++G(3df,3pd) basis, the speedup
falls off to around 4.7; this is primarily due to paging as the
memory capacity of the system has been reached. If one
considers just the time to compute the Coulomb term (the sum
of the timings in the “2-el” and “FTC” columns), the speedup
is of course even greater. From the timings given in Table 5
the various steps scale with increasing basis set size according
to the following powers: DFT, 1.46; miscellaneous, 2.62;
classical integrals (all-electron), 3.16; classical integrals (FTC),
1.47. In the FTC calculation, the FTC part itself is almost
independent of basis set size. (There is a slight increase with
increasing basis size, but the scaling is clearly sublinear;
however, this is certainly influenced by the degree of parallelism
in the FTC code.) The overall scaling for the all-electron code
is 2.62, while the FTC code clearly shows linear scaling.

The situation is similar in Table 6. For small alanine chains
(one and two alanines) the FTC code is again slower than the
all-integral code, but by the time we reach five alanines (and
certainly before this) the FTC code is faster, with the speedup
increasing with increasing system size (over a factor of 3 for
(alanine)10 and almost a factor of 6 for (alanine)15, although
part of the latter speedup is due to the decrease in the number
of SCF cycles). The overall scaling is 3.2 for the all-electron
code, while the FTC code shows quadratic scaling. However,
the scaling of the plane wave part of the FTC code is itself
near-linear.

In considering the results shown in Tables 5 and 6, it should
be borne in mind that the basis set contains diffuse functions,
which in most other methods negatively influence scaling
properties because of their relatively large spatial extent.
Additionally, the timing comparison is unfavorable for the FTC
code, as the all-integral code has a greater parallel efficiency.
As already discussed, the FFT part of the plane wave code is
currently not parallel, and this is a significant overhead,
especially for smaller systems and basis sets. The nonparallel
overhead is the main reason the FTC scaling is sublinear in
Table 1. For a single alanine molecule (Table 6), the time taken
for the FTC step (under the “FTC” column) is dominated by
the FFT, which comprises 73% of the total; for (alanine)15 the
FFT time falls to 25% of the total, noticeably less (but still
significant).

Tables 5 and 6 also further demonstrate the accuracy of the
FTC method (if anything even more so in this regard than Tables
1-4). The difference between the computed all-integral and FTC
total energies is in theµEh or sub-µEh range. For example, for
(alanine)10 the difference is 3µEh, which is less than 0.03µEh

per atom.

Conclusions

Our previous serial FTC algorithm19 has been parallelized.
Despite the fact that the Fourier transform step is still serial in
the current parallel algorithm, the parallel efficiency in the plane
wave part is reasonably good, particularly for larger molecules
and basis sets, where the FFT step is relatively unimportant in
terms of the elapsed time. The parallel FTC code is up to 6
times faster than our standard all-integral code for computing
DFT energies, and well over an order of magnitude faster for
computing the Coulomb term. Unlike several other fast DFT
codes using alternative approaches, the speedup over the all-
integral code is achieved with essentiallyno loss in accuracy.
The scaling properties of the method are very favorable,

TABLE 5: Timings (min) for Single-Point BLYP Energies for (Alanine) 5

basis nbf 2-el FTC DFT misc total E

6-31++G 419 11.4 6.8 0.2 18.4 -1312.2239303
5.6 14.7 6.8 0.2 27.3 -1312.2239301

6-31++G* 575 29.1 9.7 0.5 39.3 -1312.5948321
8.2 14.6 9.7 0.5 33.0 -1312.5948321

6-31++G** 656 37.0 11.5 0.6 49.1 -1312.6462435
9.2 15.1 11.5 0.6 36.4 -1312.6462437

6-311++G** 761 62.4 17.5 1.0 80.9 -1312.9701514
9.9 14.7 17.5 1.0 43.1 -1312.9701504

6-311++G(2d,2p) 972 150.3 26.9 1.7 178.9 -1313.0096019
18.3 17.4 26.7 1.5 63.9 -1313.0096014

6-311++G(2df,2pd) 1289 399.0 34.9 3.8 437.7 -1313.0477576
29.3 16.8 34.9 3.7 84.7 -1313.0477573

6-311++G(3df,3pd) 1500 869.2 62.8 5.4 937.4 -1313.0611576
105.6 25.5 63.3 5.5 199.9 -1313.0611569

TABLE 6: Timings (min) for Single-Point BLYP/6-311++G** Energies for (Alanine)n

system nbf 2-el FTC DFT misc total E

alanine 181 0.60 0.37 0.02 0.99 -323.7469289
0.21 6.58 0.35 0.02 7.16 -323.7469290

(alanine)2 326 3.51 1.24 0.10 4.85 -571.0526737
0.78 8.18 1.23 0.09 10.28 -571.0526738

(alanine)5 761 62.4 17.5 1.0 80.9 -1312.9701514
9.9 14.7 17.5 1.0 43.1 -1312.9701504

(alanine)10 1486 537.8 88.3 6.4 632.5 -2549.4617713
73.6 32.6 89.1 6.4 201.7 -2549.4617682

(alanine)15
a 2211 2696.9 312.2 26.9 3036.0 -3785.9364673

224.4 78.4 204.1 24.6 531.5 -3785.9364604

a The all-electron calculation (first row) took more SCF cycles to converge than the FTC calculation for (alanine)15; for all other systems the
number of SCF cycles was the same in each case.
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especially for increasing basis set size at constant system size,
where it is genuinely near-linear; furthermore, gains can be
realized even for small molecules (e.g., aspirin, as shown in
this work).

The FTC method shows great promise. Extension to gradients
is straightforward (and is currently under way24), and further
extensions to analytical second derivatives (and hence vibra-
tional frequencies) and NMR chemical shifts are planned. The
efficiency of the method, relative to the traditional all-integral
programs, should be even higher for these derivative techniques,
as they implicitly extend the basis set, and can profit from the
advantageous scaling of FTC with increasing basis set size. As
noted, the current FTC code is many times faster than the
corresponding all-integral code, and there are several obvious
improvements that can be made, such as parallelizing the FFT
steps and handling the (cc|dd) integrals in plane wave space.

The most important potential improvement concerns those
integrals that are evaluated classically in the current FTC
algorithm. Although they comprise only a few percent of the
total, they typically take more time than all remaining FTC steps
combined. Omitting the (cc|dd) integrals discussed above, these
integrals are of the form (ca|c′a′), where a and a′ denote any
basis function. In other words, these integrals involve a compact
function for each electron. Such charge distributions are
compact, even if a or a′ is diffuse. Consequently, most of the
remaining classical integrals are highly amenable to evaluation
via a multipole expansion, and we estimate that implementing
this could reduce the current classical integral evaluation time
by an order of magnitude or more for most systems. Work is
currently in progress on a multipole-based integral evaluation
algorithm.

The above-mentioned improvements will further increase the
performance of the FTC code relative to our all-integral SCF
code, making it the method of choice for all but the smallest of
systems. Once all these changes are in place, the time required
to compute the Coulomb energy should be noticeably less than
that required to evaluate the exchange-correlation energy.
Additionally, we are already seeing that for larger systems (such
as chlorophyll, Table 4) miscellaneous serial overhead during
the SCF procedure (principally diagonalization of the Fock
matrix) is significantly impacting the overall job time. For
further reductions in elapsed parallel job times for DFT energy
calculations on large systems, these non-Coulomb issues clearly
need to be addressed.

One further point that should be noted is that the FTC method
as outlined in this papersas with all other fast-DFT methodss
achieves its speedup over traditional all-integral code by
dramatically reducing the time needed to evaluate the Coulomb
term. The standard Hartree-Fock exchange term, which is a
component in all of the so-called hybrid DFT functionals (e.g.,
B3LYP) is unaffected. Consequently the method as currently
formulated cannot be used to great advantage with hybrid
functionals, only with “pure” density functionals which contain
no “exact” exchange. The HF exchange term is much more
“local” than the Coulomb term (it has been shown to scale
linearly with system size in insulators32), so the FTC method
should be substantially less expensive than current all-integral
techniques even with hybrid functionals for very large systems,
provided code currently used to evaluate the HF exchange term
is suitably modified (e.g., using appropriate cutoffs after removal
of the Coulomb contribution). It could also reduce the compu-
tational cost in other ways; for example, geometries can be

preoptimized with less expensive pure DFT methods, switching
to the hybrid functional only in the last few cycles.
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