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The recently described Fourier transform Coulomb (FTC) algorithm for fast and accurate calculation of density
functional theory (DFT) energies (Bti-Molnar, L; Pulay, P.J. Chem. Phys2002 117, 7827) has been

parallelized. We present several calculations showing the speed and accuracy of our new parallel FTC energy

code, comparing its performance with our standard all-integral DFT code. Although it still contains significant
serial code, the parallel FTC algorithm is up to 6 times faster overall than our parallel all-integral algorithm,
and well over an order of magnitude faster for computation of the Coulomb terms, with essentially no loss
in accuracy. Proposed improvements should significantly increase these factors. The Coulomb energy in DFT
energy calculations can now be computetturatelyfor large molecules and/or basis sets faster than the
exchange-correlation energy.

Introduction the density in an auxiliary basis set (used, for example, in both
DGAUSS' and DEMON?), or direct numerical solution of the
Poisson equation (a method adopted at least partially in’ADF
and fully in DMOL!4). The two-electron integral approach is
especially useful for hybrid functionals, which retain a portion
of the exact HartreeFock exchange.

These alternative methods of evaluating the Coulomb poten-
tial are usually faster than computing analytically all the two-
electron integrals, but in many programs speed was achieved
at the expense of accuracy, and total energies computed with
ythese alternative approaches, even for small molecules, were
often significantly different from energies calculated using more
traditional quantum chemistry codes, with errors typically in
the mE, range. This degree of error approaches the predictive
accuracy of the method, and makes it difficult to compare
calculations using different programs. Numerical and other errors
in the energy naturally extend to gradients, and some of the
early DFT programs had difficulties reliably converging mo-
lecular geometries during a geometry optimization, especially
popularity for larger, floppy molecules. One of the aims b(_ahind the Fourier

) transform Coulomb (FTC) method was to achieve the speed of

| In theldr tlr?ltlal DFTf |mplementa;|r(])ntsh q(ljJantum. (;hetrr?'szﬁ these alternative approaches without the reduction in accuracy.
everaged the years of experience that had gone Into e MeN - 1o ossence of the FTC method is the evaluation of the

existing Hartree-Fock-based codes, producing programs that . : . . .
- . . Coulomb operator and its matrix elements in an intermediate
treated DFT essentially as a variant to standard self-consistent

- plane wave basis, retaining the traditional Gaussian basis sets.
Hartree-Fock theory. The exchange-correlation energy and the L . . .
- S . This approach has been pioneered by Parrinello and co-workers
corresponding contributions to the Fock matrix were calculated

numerically over atom-centered gritisimilarly to DFT codes under the acronym GAPW (Gaussian and augmented plane

developed by physicists, but the Coulomb term was evaluatedwave)’ initially for pseugl opotential methotisand subsequently
. - . . for all-electron calculation®¥ The FTC method shares the goals
as in Hartree-Fock theory, i.e., by calculating analytically all

: s and the basic idea behind the GAPW approach, but is quite
the necessary two-electron integrals. This is in marked contrast . . . ; .
to DFT codes developed in the physics community, in which a different technlcally, particularly !n the treatment Qf core orbltals.
variety of alternative methods were used, such as density P'a'?e wave basis gets are W'(.je'Y used in solld-.state physics,
fitting—also called “resolution of the identity” (RI-DFFjan especially for calculations on periodic systems, which have been

old favorite of DFT researchet8which involves expansion of their main applications. At first sight, they would appear to be
entirely unsuitable for molecular chemistry as they have a

T Part of the special issue “Fritz Schaefer Festschrift”. numb.er.Of ObV!OU§ disadvantages: (1) thgy r'le(‘:‘essarlllyy'descrlbe
* parallel Quantum Solutions. an infinite periodic system, and the penod_lc ghost images
8 University of Arkansas. cause errors for molecules; (2) they lead to divergent expressions
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Density functional theory is now well established as the
premier computational method in ab initio quantum chemistry.
Density functional theory (DFT) in its modern form derives from
the X, method of Slater and Johnséand from the 1965 paper
by Kohn and Sharm.Much of the progress since then, in both
methodology and the development of new functionals, has
originated in the physics community, and it was not until the
early 1990s that quantum chemists began to look seriously at
the method, a key paper at this time being the performance stud
of a number of different density functionals by Johnson, Gill,
and Pople. DFT was subsequently taken up in earnest by the
guantum chemistry community, most notably by the Handy
and Ahlrich$ groups. The quantum chemists injected a degree
of rigor into the field that had for the most part been lacking,
and the introduction of DFT methods into well established ab
initio program packages (such as GAUSSIARADPAC, and
TURBOMOLE®) brought DFT into the mainstream of compu-
tational chemistry, contributing significantly to its current
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for charge distributions with net charge; (3) plane waves can of the basis function, and also on the quality of the grid (i.e.,
handle compact charge distributions, e.g., the region around thethe number of plane waves in the expansion) but is around 2.5
nucleus, only at very high cost; (4) good-quality plane wave 3.0 a;~2. Partitioning the basis in this way results in the
basis sets are huge (our calculations typically use several million following classes of integrals that need to be evaluated (using
plane waves); (5) the large dimensions can cause severethe Mulliken notation):
problems with the determination of the eigenvalues and eigen-
vectors of the Fock matrix. However, they have one overwhelm- (1) (cdcc); (2) (cded); (3) (cdcd);
ing advantage, namely, that calculation of the Coulomb integrals (4) (cddd); (5) (cddd); (6) (dddd)
is greatly simplified and can be achieved very rapidly. The
electron-electron Coulomb operator is diagonal in momentum Compact basis functions cannot be properly expanded in plane
space, and quantities can be calculated very efficiently in the waves, so we treat the first four integral types using a variant
appropriate (momentum or real space) representation, using fasef our standard integral package, i.e., essentially in exactly the
Fourier transformation to switch between the representations.same way as in a “normal” SCF integral code. Integrals of type
In the past, the most prominent plane wave applications have® can be fully handled in plane wave space, as can those of
been CatParrinello molecular dynamics (CPMD) and solid- type 5 (because the high momentum components of the charge
state DFT, both with pseudopotentials and at a limited level of density, cd, do not interact with the diffuse charge density, dd).
accuracy. CPMD takes optimum advantage of plane waves.In theory, integrals of type 4 can also be taken over into plane
Pseudopotentials take care of the region around the atomicwaves, but we have not yet done this.
nuclei, and because high accuracy is not needed, the periodic The molecule is placed in a box sufficiently large to contain
images can be neglected. No diagonalization is required becaus@&ssentially all the electron density. For simplicity, the box can
the wavefunction is propagated, and calculation of the forces be considered as a cube of sidedut in the actual program it
is very fast. Solid-state DFT is also appropriate as space-filling i @ parallelepiped, adapted to the molecular dimensions. We
structures can use the plane wave basis efficiently and periodicintroduce a standard rectangular grid in our box, whose grid
images do not have to be eliminated. density,d—the number of plane waves in one Cartesian direction
How can plane waves be used efficiently in accurate, all- Per atorr_ﬂc unit—characterize_s the_ plane wave basis. The grid
electron molecular calculations? The essential idea is to startSPacing ish = d* and the grid points range fromL/2, —L/2
with a normal Gaussian-type basis set, expandéiencepart + h, toL/2 — hin each Cartesian direction. Thg efficiency
of the density in plane wavé&compute the Coulomb potential of Fourler_ transform and plane wave methods derives from the
in the plane wave basis, and then transform back to the original fast Fourier transform (FFT), which allows almost effortless
Gaussian basis when the Fock matrix elements are formed. TheSWitching between the momentum and coordinate representa-
core contributions have to be calculated separately, either by afions. For quantities which can be exactly represented by the
standard integral code or by some other method. Switching to Plane wave basis, the two descriptions are isomorfhic.
a Gaussian basis removes problems due to the enormous Evaluation of the Coulomb potential in plane waves is
dimension of the plane wave basis, as all matrices are extremely fast, SO we want as many basis functions as possible
represented in the modest Gaussian space, the dimension of® be partitioned into the plane_ wave part of oursp_ace._NormaIIy
which is at most a few thousand. Only one-dimensional mte_grals of types_5_ and _6 will dominate, especially in Ia_rger
quantities need to be stored and handled in the plane wave basis2@siS sets containing high angular momentum and diffuse
In previous work we have shown how to circumvaiitof the functions. )
disadvantages of plane waves; in particular we have developed Having partitioned the_baS|s set, the steps followed to compute
a simple technique whictxactlyeliminates the periodic ghost ~ the Coulomb Fock matrix elements during each SCF cycle are
images and removes the divergences present in charged®s follows.

systemg.18 (1) For integrals of types-14, determine the Fock matrix
elements in the traditional way, i.e., compute the integrals and
Overview of the FTC Method contract them with the appropriate density matrix elements. This

is currently done using a minor variant of our standard direct

Before discussing the parallel algorithm, we provide a brief SCF code. However, as discussed later, most contributions from
overview of the method, concentrating on the computational these integrals can be calculated very efficiently using a
steps involved. Full technical details will not be given, as most multipole approximation.
of these have been discussed in the original presentation of the (2) Compute the Coulomb contribution arising from the
method?® (dd|dd) integrals. This involves the following steps (order with

As noted above, the basic idea is to expand as much of therespect to system size is shown in parentheses): (i) calculation
original basis set as possible in terms of plane waves, computeof the “diffuse” density on the real space gri@(N), i.e., at
the electronic density on a direct-space grid, transform to each grid pointr), p(r) = ¥ dasg.(r) g%(r), d = density matrix;
momentum space to compute the Coulomb potential, transform i) FFT to momentum spaceé)(N log N); (iii) calculation of
back to the real space grid, and determine the Fock matrix the potential in momentum spad®(N); (iv) reverse FFT back
elements (in the space of the original Gaussian basis set) byto real spaceO(N log N); (v) computation of Fock matrix
numerical quadrature. In general the original basis cannot beelements by numerical quadratu@(N).
expandedfully in plane waves as basis functions with large (3) Compute the Coulomb contribution arising from the
exponents (those representing the core region) cannot be(cd|dd) integrals. This involves essentially the same steps as in
represented sufficiently accurately in a plane wave basis. (2), above, except that the “mixed” densjifr) = Y dosg%(r)

We first partition the original Gaussian basis set into two g%(r) is constructed, where one of the indice§ ¢orresponds
classes depending on the exponent value; those with smallto a compact Gaussian function. In practice several steps from
exponents (which we termdiffuse d) and those with large  (2) and (3) are combined in the interest of program efficiency.
exponents (which we termmompact c). The exponent cutoff As indicated in (2), the scaling of the various steps is either
depends somewhat on the angular momentum (i.e., s, p, d, etc.O(N) or O(N log N) for the Fourier transform steps. In practice,
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the FFT steps are very fast; we use the excellent FFTW packageor one at a time, and the densities on\IZ grid points (169
of Frigo and Johnsoff. The rectangular nature of the grid allows = 28561 for eachX value) are calculated and passed back to
for very efficient screening and precomputation of many the master.

quantities. Despite the large number of plane waves (typically between
The exchange-correlation part of the calculation is currently two and six million), the memory requirements for this step
handled in the same way as in our integral-driven DFT code, are modest. The master requires storage for the complete grid
i.e., by numerical quadrature over spherical, atom-centered grids,(16—48 MB), but the slaves only need storage for the number
using techniques pioneered in this context by BetWée have of Y, Z grid points (times the number ok values being
already improved this part of the code (see, e.g., ref 22), but computed at the same time). The only real communication
we plan a further overhaul with a different quadrature allowing between the nodes is during the transfer of the computed density;
us to use much of the grid already generated and in place forconsequently the parallel efficiency of this step is also high.
the Coulomb term. We do not discuss the exchange-correlation 5 ~giculation of the Diffuse Coulomb Potential by Fast
term in detail in this paper, our main focus being parallelization g \rier Transform. This step involves the FFT of the diffuse
of the code used to compute the Coulomb Fock matrix elementsdensity to momentum space, calculation of the Coulomb

via our new FTC method. potential in momentum space, and the FFT back to real space.

As previously discussed, we use the serial version of the FFTW
Parallelization package of Frigo and Johngdessentially “as is”, and we have
made no attempt to parallelize this code at this time. Note that
) . ) . this step also includes the code needed to eliminate the periodic
using the parallel virtual machine (PVM) toolKit Paralleliza- imagest’ which involves a doubling of the box dimensions and

tion can also be ac_:compllshed using the message-passing s significantly more time than the FFT itself. The FFT step
interface (MPI), and indeed our standard parallel code has an. 2 - . .
is very fast, but itis serial in the current implementation, and

MPI version, although the PVM variant is somewhat more it contributes to the serial overhead of our parallel FTC code
convenient to use, particularly for explicitly correlated methods . . P :
We plan to parallelize this step later.

such as second-order MglePlesset (MP2) theory. Below we

discuss our parallelization strategy for each stage of the FTC _ E. Calculation of the Mixed Density on the Real Space
method. Grid and the Fock Matrix Contribution from the Compact

Functions. Parallelization of the mixed density calculation
cannot be accomplished in the same way as for the diffuse
density, because the compact orbitals cannot be handled in plane

Our initial parallelization of the FTC code has been completed

A. Traditional Electron Repulsion Integrals. Computation
of those integrals (classes—4, above) that are currently
evaluated classically is handled in a similar way as in our - : -
existing, all-integral code. Each possible shplr (initially in wave space (.e., via the Fourier transform). Instead a full
blocks of 26-50, later individually to ensure good load balance) Partial” mixed density is formed on each slave using the
is passed in a round-robin fashion to each slave, and all integralsPrécomputed core functions that are stored on that slave, and
associated with that shell pair are computed, contracted with the total mixed density is accumulated on the master using the
the appropriate density matrix elements, and added directly to operationpymfreduce This requires each slave to hold a local

a local copy of the Fock matrix. The parallel efficiency of this COPY of the full grid containing its contribution to the density.
part of the FTC code is very high. These grids are collected and summed on the master. At the

same time, each slave computes the direct contribution to the

B. Precomputation of Compact Basis Function Values ! - ) . .
P b Fock matrix from its own partial mixed density and the

over the Real Space Grid.-These values are precomputed and . X . :
written to disk. Each compact basis function has only a limited Preécomputed compact basis functions. This requires the Cou-
spatial extent, and values are stored only over those grid points!®™MP operator over the full grid which was obtained from the
which have a “nonzero” contribution. Parallelization is carried diffuse density via the FFT in step D, above.
out over compact shells, which are passed to each slave in a At the start of this step, the diffuse Coulomb operator over
round-robin fashion. Values are written to disk on the slave the full grid is broadcast from the master to each slave, and at
that computed them. Parallel efficiency is very high, as only the end the mixed density is accumulated on the master. This
the shell indices need to be communicated, and the amount ofstage is the most computationally demanding part of the current
disk storage required is typically less than 1 GB (in total, and FTC algorithm. Each slave requires storage for two full grids
distributed over all nodes). Each slave knows which compact (16—48 MB each), plus Fock and density matrixes, as well as
shell indices are stored on its disk, so no additional communica- other work arrays, and there is considerable data transfer over
tion is required during the SCF procedure once the basis functionthe nodes, both in the initial broadcast (which, unfortunately,
values have been calculated and stored. The entire process hais not a true broadcast in the current version of PVM, and
recently been dramatically improved using a new “core-cut” therefore, the time taken increases linearly with the number of
procedure? slaves) and, especially, in the final accumulation of the mixed
C. Calculation of the Diffuse Density on the Real Space  density on the master. On the other hand, the data transfer is
Grid. This is parallelized by selecting one grid dimensioh ( only about the same as that required to accumulate a large Fock
in our case), passing the grid points along this axis to each slavematrix (say 2500 basis functions, 50 MB) from each slave to
in a round-robin fashion, and computing the density ove¥all  the master, which has to be done in any case. Overall the parallel
Z grid points. The computed densities are passed back andefficiency of this step is only moderate; there is a speedup, but
accumulated on the master. As an example, for the yohimbineit is likely to fall off quite rapidly with an increasing number
molecule (GijH26N203) the box dimensionsl., are approxi- of slaves due to the relatively high communication overhead
mately 45 au; using our standard grid density of 3.75 points/ compared to the rest of the FTC code. Possible improvements
au, this results in 169 grid points in each direction, equivalent in this part require the division of the compact basis functions
to a total of 169~ 4.8 million plane waves. The 169 grid points into sets localized in different regions of the molecule, and
in the X direction are passed to each slave, either in small blocks assigning each slave one of these regions. In this case, the diffuse
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TABLE 1: Timing Data for a Single-Point BLYP Energy for Aspirin (C gHgO4)

elapsed time

job step basis 1 (306/233) basis 2 (555/482)
number of processors 2 4 2 4
A. classical integrals 49 s 26 s 316 s 161 s
C. diffuse density 12 s 6 s 64 s 33 s
D.FFT1 24 s 25 s 42 s 42 s
E. mixed densityt compact Fock 21 s 18 s 60 s 40 s
F.FFT 2 24 s 25 s 42 s 42 s
G. all diffuse Fock contributions 10 s 6 s 50 s 26 s
total FTC Coulomb 2.3 min 1.7 min 9.6 min 5.8 min
1-el integrals
miscellaneous 0.1 min 0.1 min 0.4 min 0.3 min
exchange correlation (DFT) 1.2 min 0.6 min 7.3 min 3.9 min
total SCF time (FTC) 3.6 min 2.4 min 17.3 min 10.0 min
Coulomb only (all-integral) 3.4 min 1.7 min 68.2 min 33.3 min
total SCF time (all-integral) 4.7 min 2.4 min 75.9 min 37.5 min
all-integral/FTC (total job) 1.3 1.0 4.4 3.8
all-integral/FTC (Coulomb only) 15 1.0 7.1 5.7
SCF energy (all-integral) —646.959156 —648.7196121
SCF energy (FTC) —646.959141 —648.7196124
total error 0.000015 0.0000003
error per atom 0.74En 0.014uEx

2 Basis set descriptionxxxyyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).

Coulomb operator and the mixed density are needed only overcalculate components of the same contraction with different
a subset of the full grid. algorithms (i.e., FTC and traditional integrals). This is a purely

F. Calculation of the Mixed Coulomb Potential by Fast technical problem and will be addressed in future versions of
Fourier Transform. This is essentially a repeat of step D, our code. Comparisons are made between the all-integral, fully
above, only using the mixed density computed on the slaves indirect code in the current release of our PQS ab initio progtam
step E. As with step D it is not parallel and contributes to the and our new FTC code.

serial overhead. _ o Tables 14 give a detailed breakdown of the elapsed time
G. Calculation of the Fock Matrix Contributions from spent in the various steps of the parallel FTC algorithm for

the D|ﬁuse Fupctlons.Thls is th_e last part of. the. parallel FTC aspirin, yohimbine, paclitaxel, and chlorophyl, run on two and

algorithm and involves calculating the contribution to the Fock four nodes, respectively, of one of our current systems (a QS8-

maitrix from thg diffuse functions by _numencal quadrature._The 2400C, using 2.4 GHz Xeon processors and 2 GB of PC2100
diffuse and mixed Coulomb potentials over the grid (derived . . .
ECC memory per node), together with comparisons with the

from the FFT of the diffuse and mixed densities, respectively) allintegral code. Note that timings for precomputing the

are combined, and transmitted to the slaves. As in step C, this t basis funcii th | idl (step B. ab

is parallelized over th& direction grid points in a round robin, compact basis functions over the real space gri (step B, a oye)

with the potential over ali, Z grid points sent with eacl are not given as this step is extremely fast. There are four main
i points to focus on: (1) the ratio between the time to compute

point. Each slave sums up the relevant contributions into its .
own local copy of the Fock matrix. The amount of data the Coulomb term for the all-integral compared to the FTC code;

transmitted between the nodes is essentially the same as in steé)z) the ratio between the total SCF time for the two codes; (3)

should be the same as well. efficiency of the FTC code.
At the end of all these steps, each slave’s local copy of the We look first at the parallel efficiency. As an example, we
Fock matrix is summed up on the master. take the timings for aspirin, basis 2 (our comments apply equally
well to all the other calculations). Comparing the reported
Results elapsed timings on two and four nodes, it is clear that the
We demonstrate the capabilities of our new parallel FTC code lassical integral step, computation of the diffuse density, and
on four molecules, aspirin g€lgO04), yohimbine (GiH2eN20s), the final Fock matrix construction are all very efficiently
paclitaxel (taxol) (G/Hs:NO14), and chlorophyll (GsH72N4Os- parallelized. As expected, the mixed density/compact Fock step

Mg), and two basis sets, a valence trigiéasis with a single ~ does not parallelize well due to the high communication
set of polarization functions for all non-hydrogen atoms (a overhead (however, the parallel performance of this step
double set for hydrogen) denoted VTZ2Rand a larger basis improves as both the system and basis set size increases). As
derived from the Pople-type 6-311G(2df,2pd) basis by uncon- already noted, the FFT steps are not parallel, and this contributes
tracting those primitive Gaussians which can be treated usingsignificantly to the serial overhead. For aspirin, the effect is
the FTC method® Henceforth, these will be designated basis marked (on four processors the FFT time is 1.4 min out of a
1 and basis 2, respectively. The modification of the Pople basistotal FTC time of 5.8 min), butas with the mixed density/

set was made because our current code is not yet able tocompact Fock stepbecomes less with increasing system and/
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TABLE 2: Timing Data for a Single-Point BLYP Energy for Yohimbine (C »;H26N203)

elapsed time

job step basis 1 (702/546) basis 2 (1275/1119)
number of processors 2 4 2 4
A. classical integrals 326 s 167 s 1973 s 1000 s
C. diffuse density 42 s 22 s 254 s 129 s
D.FFT1 57 s 57 s 98 s 98 s
E. mixed densityt+ compact Fock 58 s 42 s 165 s 106 s
F.FFT 2 57 s 57 s 98 s 98 s
G. all diffuse Fock contributions 37 s 21 s 208 s 110 s
total FTC Coulomb 9.7 min 6.1 min 46.7 min 25.8 min
1-el integrals 0.2 min 0.2 min 0.4 min 0.4 min
miscellaneous 0.6 min 0.6 min 3.1 min 3.0 min
exchange correlation (DFT) 6.1 min 3.2 min 45.9 min 23.4 min
total SCF time (FTC) 16.6 min 10.1 min 96.1 min 52.6 min
Coulomb only (all-integral) 22.5 min 11.3 min 474  min 239 min
total SCF time (all-integral) 29.4 min 15.3 min 523 min 266 min
all-integral/FTC (total job) 1.8 15 5.4 5.1
all-integral/FTC (Coulomb only) 2.3 1.9 10.1 9.3

SCF energy (all-integral) —1148.494496 —1150.970847
SCF energy (FTC) —1148.494463 —1150.970849
total error 0.000033 0.000002
error per atom 0.@En <0.04uEs

2 Basis set descriptionxxxyyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).

TABLE 3: Timing Data for a Single-Point BVWN Energy for Paclitaxel (C 47H5:NO14)

elapsed time

job step basis 1 (1575/12%4) basis 2 (2860/2499)
number of processors 2 4 2 4
A. classical integrals 2342 s 1189 s 16088 s 8159 s
C. diffuse density 146 s 75 s 898 s 454 s
D.FFT1 100 s 103 s 138 s 141 s
E. mixed densityt- compact Fock 166 s 107 s 570 s 307 s
F.FFT 2 100 s 102 s 137 s 140 s
G. all diffuse Fock contributions 139 s 78 s 742 s 394 s
total FTC Coulomb 50.0 min 27.7 min 310 min 160 min
1-el integrals 1.7 min 1.7 min 4.3 min 4.3 min
miscellaneous 6.8 min 6.8 min 30.1 min 31.5 min
exchange correlation (DFT) 28.7 min 14.7 min 211.6 min 108.5 min
total SCF time (FTC) 87.2 min 50.9 min 556 min 304 min
Coulomb only (all-integral) 163 min 80.8 min 3337 min 1675 min
total SCF time (all-integral) 200 min 104 min 3583 min 1819 min
all-integral/FTC (total job) 2.3 2.0 6.4 6.0
all-integral/FTC (Coulomb only) 3.3 2.9 10.8 10.5

SCF energy (all-integral)
SCF energy (FTC)

total error
error per atom

—2945.727664
—2945.727429

0.000235
2En

—2952.295540
—2952.295571

0.000031
<0.3uE,

2 Basis set descriptionxxxyyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).

or basis set size (e.g., for paclitaxel, basis 2, the FFT time is communication overhead in the calculation of the mixed
just 4.7 min out of a total FTC time of 160.1 min on four contributions needs to be reduced.

processors). The relative performance of the FTC code compared to our
Overall, the parallel efficiency of our new FTC code is standard all-integral code can be seen by examining the all-

reasonably satisfactory, especially for the small-scale parallelismintegral/FTC timing ratios reported in Tables4. For the total

that is our primary focus (i.e., systems with- 46 processors).  job time, on four processors, these range from 1.0 for aspirin,

However, for good efficiency on larger numbers of processors basis 1 (i.e., the FTC algorithm is the same speed as the all-

it is clear that the FFT steps need to be parallelized, and theintegral code), to 6.0 (i.e., 6 times faster) for paclitaxel, basis
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TABLE 4: Timing Data for a Single-Point OLYP Energy for Chlorophyll (C ssH72N4sOsMg)

elapsed time

job step basis 1 (1826/1429) basis 2 (3309/2912)
number of processors 2 4 2 4
A. classical integrals 2654 s 1373 s 13221 s 6753 s
C. diffuse density 193 s 102 s 966 s 487 s
D.FFT1 239 s 246 s 272 s 275 s
E. mixed densityt- compact Fock 204 s 154 s 461 s 279 s
F.FFT 2 240 s 245 s 266 s 268 s
G. all diffuse Fock contributions 177 s 102 s 821 s 445 s
total FTC Coulomb 62.0 min 37.2 min 267 min 142 min
1-el integrals 2.6 min 2.7 min 6.7 min 6.7 min
miscellaneous 10.9 min 11.3 min 60.8 min 61.7 min
exchange correlation (DFT) 36.5 min 20.1 min 186.5 min 97.6 min
total SCF time (FTC) 112 min 71.3 min 521 min 308 min
Coulomb only (all-integral) 186 min 90.5 min 3208 min 1593 min
total SCF time (all-integral) 236 min 121 min 3462 min 1759 min
all-integral/FTC (total job) 2.1 1.7 6.6 5.7
all-integral/FTC (Coulomb only) 3.0 2.4 12.0 11.2
SCF energy (all-integral) —2928.898581 —2934.349474
SCF energy (FTC) —2928.898554 —2934.349454
total error 0.000027 0.000020
error per atom <0.2uEn <0.15uEn

a Basis set descriptionxxxyyy): the first number refers to the total number of basis functions, the second to the number of diffuse functions (see
the text).

2. For the Coulomb term alone, the speedup is well over an code is exact), and the error per atom. Total errors are on the
order of magnitude for the larger systems. For smaller systemsorder of a few tens ofE;,, corresponding to well under dE;,
with modest basis sets, there are no real advantages in usinger atom, in all cases except for paclitaxel, basis 1, where the
the current FTC code, but as the system size and, especiallytotal error is 0.2 mgwith an error per atom of 2E;,. Perhaps
the number of basis functions increase, the advantage of thesurprisingly, the errors are smaller with the larger basis set. The
FTC method increases. main source of error is in selecting the cutoff for partitioning
A further advantage of the FTC method is its excellent scaling the basis into diffuse and compact functions; the more functions
with increasing basis set size at constant system size, a propertyhere are in the diffuse partition that have exponents close to
not shared by many other fast DFT codes. For example, thethe cutoff, the greater the error. In basis 1, the oxygen atom
continuous fast multipole method developed by Gill and Head- has a p-function with an exponent (2.28) which is close to the
Gordon?8 and available in the recent releases of GAUSSIAN  default cutoff, and this shows the maximum error for paclitaxel,
and Q-CHEMS?® programs, is dominated for larger systems by which has the most oxygen atoms. The errors for all molecules,
the calculation of the near-field integréflsvhich have a steep  and especially paclitaxel, can be further redueatithe expense
O(N* scaling. The calculation of the Coulomb matrix elements of a slight increase in job timeby moving this function into
in the density fitting (DF or RI-DFT) method scales formally the compact set. Note that errors in the Coulomb term with the
only as O(N?), but the calculation of the fitting coefficients FTC method for these systems are typically 1 or 2 orders of
involves a cubicO(N®) step. Methods based on the numerical magnituddessthan the integration error in the DFT exchange-
solution of the Poisson equation should scale in principle correlation energy.
quadratically. However, our own experience, as well that of  The favorable scaling properties of the FTC method, for both
others3! shows that it is difficult if not impossible to achieve increasing basis set size and increasing system size, are further
high accuracy with these methods. With the FTC code the demonstrated in Tables 5 and 6, which present timings for a
scaling is essentially quadratic, as can be seen from Table 1.series of BLYP calculations on various alanine chains, (ala-
For example, for aspirin, increasing the number of basis nine). Table 5 presents single-point energies for (alagingh
functions from 306 (basis 1) to 555 (basis 2) on two nodes seven basis sets, ranging from 643tG (419 basis functions)
increases the Coulomb evaluation time by a factor of around 4 to 6-31H-+G(3df,3pd) (1500 basis functions). Table 6 presents
(less if we allow for the serial FFT overhead) with the FTC single-point energies with the 6-3t#G** basis set for five
code, but by over 20 with the all-integral code. (This latter factor systems, from a single alanine (181 basis functions) through
is even greater than expected from @®@*) scaling, reflecting (alanine)s (2211 basis functions). The first series of calculations
the increased integral evaluation time due to the greater numbershows the scaling with increasing basis set size at constant
of high angular momentum basis functions in the larger basis.) system size, while the second shows the scaling with increasing
Essentially the same scaling is seen for the other three moleculesystem size at constant basis set quality. All jobs were run on
as well (Tables 24). If the time spent evaluating the remaining eight processors of one of our QS8-2400C QuantumCube
classical integrals is removed, then the plane wave manipulationssystems, using 2.4 GHz PIV Xeon CPUs on dual-processor
in the FTC algorithm scale almost linearly with increasing basis motherboards, running both processors per node.
size. In both Tables 5 and 6 the first row for a given basis set/
Also shown in the tables are total SCF energies, the total alanine chain gives timings for the standard all-integral code,
error in the FTC method (assuming that our standard all-integral while the second row gives timings with the FTC code. In the
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TABLE 5: Timings (min) for Single-Point BLYP Energies for (Alanine) s

basis nbf 2-el FTC DFT misc total E
6-31++G 419 11.4 6.8 0.2 18.4 —1312.2239303
5.6 14.7 6.8 0.2 27.3 —1312.2239301
6-31++G* 575 29.1 9.7 0.5 39.3 —1312.5948321
8.2 14.6 9.7 0.5 33.0 —1312.5948321
6-314++G** 656 37.0 115 0.6 49.1 —1312.6462435
9.2 15.1 115 0.6 36.4 —1312.6462437
6-31H-+G** 761 62.4 175 1.0 80.9 —1312.9701514
9.9 14.7 17.5 1.0 43.1 —1312.9701504
6-311++G(2d,2p) 972 150.3 26.9 1.7 178.9 —1313.0096019
18.3 17.4 26.7 1.5 63.9 —1313.0096014
6-311++G(2df,2pd) 1289 399.0 34.9 3.8 437.7 —1313.0477576
29.3 16.8 34.9 3.7 84.7 —1313.0477573
6-311++G(3df,3pd) 1500 869.2 62.8 5.4 937.4 —1313.0611576
105.6 255 63.3 55 199.9 —1313.0611569

TABLE 6: Timings (min) for Single-Point BLYP/6-311++G** Energies for (Alanine),

system nbf 2-el FTC DFT misc total E
alanine 181 0.60 0.37 0.02 0.99 —323.7469289
0.21 6.58 0.35 0.02 7.16 —323.7469290
(alanine) 326 3.51 1.24 0.10 4.85 —571.0526737
0.78 8.18 1.23 0.09 10.28 —571.0526738
(alanine} 761 62.4 175 1.0 80.9 —1312.9701514
9.9 14.7 17.5 1.0 43.1 —1312.9701504
(alanine)o 1486 537.8 88.3 6.4 632.5 —2549.4617713
73.6 32.6 89.1 6.4 201.7 —2549.4617682
(alanine)s® 2211 2696.9 312.2 26.9 3036.0 —3785.9364673
224.4 78.4 204.1 24.6 531.5 —3785.9364604

aThe all-electron calculation (first row) took more SCF cycles to converge than the FTC calculation for (aéafongll other systems the
number of SCF cycles was the same in each case.

latter case, the timing under the “2-el” column refers to the  In considering the results shown in Tables 5 and 6, it should
timing for step A, i.e., those integrals that are handled classically, be borne in mind that the basis set contains diffuse functions,
while the timing under the “FTC” column refers to all other which in most other methods negatively influence scaling
steps in the FTC code. The timing in the “total” column refers properties because of their relatively large spatial extent.
to the total elapsed time for the complete SCF calculation.  Additionally, the timing comparison is unfavorable for the FTC
Turning first to Table 5, we see that, for (alanigepr the code, as the all-integral code has a greater parallel efficiency.
smallest basis set (6-31G), the FTC code islowerthan the As already discussed, the FFT part of the plane wave code is
all-integral code, but for all other basis sets the FTC code is currently not parallel, and this is a significant overhead,
faster, with the speedup increasing with increasing basis set sizegspecially for smaller systems and basis sets. The nonparallel
becoming over 5 times faster with the 6-31:1G(2df,2pd) overhead is the main reason the FTC scaling is sublinear in
basis. With the largest 6-311G(3df,3pd) basis, the speedup Table 1. For a single alanine molecule (Table 6), the time taken
falls off to around 4.7; this is primarily due to paging as the for the FTC step (under the “FTC” column) is dominated by
memory capacity of the system has been reached. If onethe FFT, which comprises 73% of the total; for (alanigehe
considers just the time to compute the Coulomb term (the sum FFT time falls to 25% of the total, noticeably less (but still
of the timings in the “2-el” and “FTC” columns), the speedup significant).
is of course even greater. From the timings given in Table 5  Tables 5 and 6 also further demonstrate the accuracy of the
the various steps scale with increasing basis set size according=TC method (if anything even more so in this regard than Tables
to the following powers: DFT, 1.46; miscellaneous, 2.62; 1-4). The difference between the computed all-integral and FTC
classical integrals (all-electron), 3.16; classical integrals (FTC), total energies is in theeE, or subuE, range. For example, for
1.47. In the FTC calculation, the FTC part itself is almost (alanine)o the difference is 3:Ey, which is less than 0.08E;,
independent of basis set size. (There is a slight increase withper atom.
increasing basis size, but the scaling is clearly sublinear;
however, this is certainly influenced by the degree of parallelism ~gnclusions
in the FTC code.) The overall scaling for the all-electron code
is 2.62, while the FTC code clearly shows linear scaling. Our previous serial FTC algoritfthhas been parallelized.
The situation is similar in Table 6. For small alanine chains Despite the fact that the Fourier transform step is still serial in
(one and two alanines) the FTC code is again slower than thethe current parallel algorithm, the parallel efficiency in the plane
all-integral code, but by the time we reach five alanines (and wave part is reasonably good, particularly for larger molecules
certainly before this) the FTC code is faster, with the speedup and basis sets, where the FFT step is relatively unimportant in
increasing with increasing system size (over a factor of 3 for terms of the elapsed time. The parallel FTC code is up to 6
(alanine)o and almost a factor of 6 for (alaning) although times faster than our standard all-integral code for computing
part of the latter speedup is due to the decrease in the numbeDFT energies, and well over an order of magnitude faster for
of SCF cycles). The overall scaling is 3.2 for the all-electron computing the Coulomb term. Unlike several other fast DFT
code, while the FTC code shows quadratic scaling. However, codes using alternative approaches, the speedup over the all-
the scaling of the plane wave part of the FTC code is itself integral code is achieved with essentiatly loss in accuracy
near-linear. The scaling properties of the method are very favorable,
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especially for increasing basis set size at constant system sizepreoptimized with less expensive pure DFT methods, switching

where it is genuinely near-linear; furthermore, gains can be to the hybrid functional only in the last few cycles.

realized even for small molecules (e.g., aspirin, as shown in
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