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Chemical potential equilibration models have proven to be a promising approach for describing charge transfer
and polarization in the context of classical force fields. These have generally been justified in an ad hoc
manner and are known to behave incorrectly in certain cases, presenting a stumbling block to widespread
application. In this paper, we present a new wave function-based derivation of a CPE-like model, shedding
some light on the nature of the approximations that are made. The concept of a pairwise hardness arises
naturally from this derivation, leading us to suggest a model that employs a pairwise electronegativity. We
show that this leads to a CPE-like model that dissociates correctly for a diatomic and furthermore predicts
charges in agreement with ab initio methods for a simple diatomic.

Introduction

Since its formulation by Pauling,1 the concept of electrone-
gativity has formed one of the cornerstones of our qualitative
understanding of the chemical bond. There have been attempts
to extend the concept for both qualitative and quantitative
prediction and a detailed review is available.2 Certainly these
efforts have been influential, for example, the hard-soft acid-
base theory of Pearson.3,4 However, they have also uncovered
domains where the concept becomes unwieldy. Because elec-
tronegativity is essentially a classical thermodynamic concept
and the chemical bond is intrinsically quantum mechanical, this
may not be too surprising. Nevertheless, it is fruitful to ask
whether simple modifications may significantly extend the
domain of applicability.

The electronegativity equalization (EE) postulate of Sander-
son5 forms the basis for several methods to predict atomic partial
charges, known by various acronyms as EE or CPE (chemical
potential equalization) methods. Early attempts along these lines
generally aimed at only qualitative results. Furthermore, these
approaches were meant to be applied only at equilibrium
molecular configurations and were highly parametrized, requir-
ing assignment of atom types, e.g., sp2 vs sp3 carbon atoms.6,7

Relatively recently, a few workers have developed numerical
methods aimed at quantitative accuracy for molecules in
arbitrary geometries.8-12 The goal has been to incorporate
fluctuating atomic charges into empirical force fields, thus
accounting for polarizability and possibly also true charge
transfer. In practice, these methods are most trustworthy when
chemically motivated constraints are introduced and the bonding
topology does not change. The major problems with extending
this type of model to reactive problems are the well-known,
but rarely discussed in the literature, deficiencies of incorrect
dissociation and excess polarization.13,14In particular, application
of most of these models to a hetereonuclear diatomic in the gas

phase leads to finite, and often nonnegligible, charge transfer
at dissociation. In the present work, we explore the origin of
these problems with the ultimate goal of developing a model
that overcomes them while retaining the elegance and simplicity
of CPE methods. A number of fundamental investigations into
the electronic structure foundations for electronegativity have
been carried out within the context of density functional
theory.15-18 These are quite instructive, but we choose to begin
with a wave function picture. Specifically, we begin with a two-
state valence bond model and attempt to rigorously derive a
CPE method. It is important to note at the outset that because
CPE methods dissociate incorrectly, there will of necessity be
at least one step that is not physically justified. Nevertheless,
we may hope to gain some insight into the character of CPE
methods if there are few such steps. Furthermore, this approach
may provide some clues as to how the CPE methods can be
repaired.

The quest to derive a method of CPE character from first
principles leads us to an intermediate model that involves a
pairwise hardness. Although this model is ultimately unsatisfy-
ing, it does provide the insight needed to formulate a CPE-like
model, which is guaranteed to describe dissociation properly
for a hetereonuclear diatomic. The results obtained here suggest
that it may be fruitful to consider a hierarchy of many-body
electronegativities and hardnesses. Even before presenting the
results, we can anticipate what this might mean. The atomic
electronegativity is correctly interpreted as the propensity of
an atom to gain or lose electrons. But in a molecule, one must
also consider the proximity to another atom that can accept or
donate electrons. In classical thermodynamic terms, one would
say that two atoms at infinite separation represent two closed
systems and should not be treated as a single open system. At
the equilibrium bond length, one might expect them to be well-
described as a single open system, and indeed the successes of
the electronegativity concept support such a description. A
theory that can interpolate between these limits must be able to* Corresponding author. E-mail: tjm@spawn.scs.uiuc.edu.
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describe “partially open” systemssthis can come about naturally
through multibody character of electronegativities and/or hard-
nesses.

Theory

We begin with a quick review of CPE models, following the
development of the QEq method by Rappe and Goddard.8 The
charge dependence of the energy of an atom A is expressed in
a Taylor expansion as

As pointed out by Iczowski and Margrave,19 using a finite-
difference approximation for the derivatives yields

where IPA and EAA are the ionization potential and electron
affinity of atom A. Traditionally, øA

0 and ηA
0 are identified as

the electronegativity and hardness of the atom A, respectively,
and the relevant chemical potential,µA

0 , is trivially related to
the electronegativity, as shown. The energy of a collection of
atoms with prescribed partial charges is then expressed as

where Rij is the distance between atomsi and j, and Jij(Rij)
represents the distance dependence of the Coulomb attraction/
repulsion between the atoms that in its most naı¨ve form, ignoring
the finite extent of the relevant charge distributions, is

Improved approximations incorporating shielding effects are also
possible.8 Minimizing the energy of this expression with respect
to the partial chargesqi is exactly equivalent to Sanderson’s
electronegativity equalization.5

Two difficulties with the resulting expressions can be noted
for the case of an isolated atom. First, the QEq energy is a
continuous function of the atomic charge. As shown by Parr
and co-workers,20 a derivative discontinuity is physically
required at integer atomic charges for an isolated atom. This
renders the validity of the Taylor expansion highly doubtful.
Second, the energy of the atom should be a monotonically
nonincreasing function of the number of electrons. However,
this second point depends somewhat on exactly how the atomic
charge is defined and might be modified if the added electrons
were confined to some finite region around the atom.

We now attempt to derive the QEq model for an isolated
diatomic from a wave function approach. As we have noted
above, one should not expect this attempt to be completely
successfulsthe QEq model is demonstrably incorrect at infinite
separation. Nevertheless, the attempt is instructive and sheds
light on the underlying assumptions of CPE models. We begin
within a two-state orthogonal valence-bond framework for a
neutral diatomic molecule A-B, restricting our attention to two

Löwdin-orthogonalized21 active atomic orbitals,æA and æB,
constructed from nonorthogonal atomic orbitalsæA

AO andæB
AO,

located on atoms A and B as

whereS is the 2× 2 overlap matrix. In the case of an alkali
halide such as NaCl, the active orbitals would be the 3s and
3pz orbitals of Na and Cl. To simplify the derivation for the
moment, we assume the more electronegative of the two atoms
is B and that the valence bond configuration corresponding to
A-B+ can be ignored. The total electronic wave function is then
given as

where

and multiplication byR (â) spin functions is implied by the
lack of (presence of) an overbar. Within the framework of
Löwdin-orthogonalized orbitals, a natural definition of the partial
charge on atom A isqA ) cA+B-2 ) 1 - cA0B02. To make explicit
connections to CPE theories, it is convenient to parametrize the
wave function in terms of the partial charge rather than the
coefficients:

The Hamiltonian matrix in the space of the covalent and ionic
configurations is defined as

with matrix elements defined using the Lo¨wdin-orthogonalized
basis and standard electronic structure theory notation as

In this equation, we have introduced the operators

EA(qA) ) EA
0 + qA

∂EA

∂qA
+ 1

2
qA

2
∂

2EA

∂qA
2

+ ... (1.1)

∂EA

∂qA
≈ (IPA + EAA)

2
) øA

0 ) -µA
0

1
2

∂
2EA

∂qA
2
≈ (IPA - EAA)

2
) ηA

0 (1.2)

E(q1,q2,...qn) ) ∑
i

(Ei
0 + qiøi

0 + qi
2ηi

0) +
1

2
∑
i*j

qiqjJij(Rij)

(1.3)

Jij(Rij) ) 1
Rij

(1.4)

æA ) (S-1/2)AAæA
AO + (S-1/2)ABæB

AO (1.5)

ψVB ) cA0B0ψA0B0 + cA+B- ψA+B- (1.6)

ψA0B0 ) 1

x2
(|æAæj B〉 + |æj BæA〉)

ψA+B- ) |æBæj B〉 (1.7)

ψ((r;qA) ) x1 - qAψA0B0 ( xqAψA+B- (1.8)

(EA0B0 HA0B0/A+B-
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) (1.9)
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A +
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effZB
eff
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) EA
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0 + Fcov(R)
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A(R)

HA0B0/A+B- ) 2

x2
[hAB + (ab|bb)] (1.10)
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with analogous definitions forĥB andV̂A. We introduce effective
atomic charges,ZA

eff, for notational convenience, but the devel-
opment would not be significantly altered if these were replaced
by more realistic nonlocal pseudopotentials.22,23 We have also
defined the auxiliary functions

The energy for a given chargeqA is the expectation value of
the Hamiltonian:

If the orbital phases are chosen to make the overlap integral
SAB positive, the off-diagonal Hamiltonian matrix element is
negative and the lower energy is obtained with the plus sign
for the last term. From here on, we assume that such a choice
of orbital phases has been made and we restrict our attention to
the approximate ground-state energyEVB+. The presence of the
square root in eq 1.13 will stymie any attempts to relate this
VB expression to CPE theories, and we therefore seek a
quadratic approximation. Physical considerations demand that
the approximation should vanish at the endpoints, and a suitable
choice (from three-point Lagrange interpolation) is therefore

Note that this is not a Taylor expansion aboutqA ) 0, and is
exact by construction atqA ) {0.0, 0.5, 1.0}. Using this
approximation, we find the final energy expression (valid only
for 0 e qA e 1) to be

A similar expression can be derived by considering the case
where the two configurations areψA0B0 andψA-B+, leading to
the energy expression (valid only for 0e qB e 1):

Using the overall charge neutrality,qB ) -qA, these two
expressions can be combined in piecewise fashion to describe
the domain -1 e qA e 1, giving rise to a continuous
approximation, but with a derivative discontinuity atqA ) 0
for all R. The theory as expressed in eqs 1.15 and 1.16 may be
termed charge-constrained quadratic two-state valence bond
(CC-QVB2) theory, whereas the analogous theory following
from eq 1.13 without Lagrange interpolation will be called
charge-constrained two-state valence bond (CC-VB2). In Figure
1, we display the form of the energy in CC-VB2 as a function
of both charge and intermolecular bond distance for Li2 and
LiH. In these model calculations, the effective charge on each
atom is taken to be 1; i.e., we do not use pseudopotentials.
Furthermore, the atomic basis set is composed of two s-type
Slater functions with exponents taken from Rappe and Goddard.8

The derivative discontinuity atqA ) 0 is readily apparent. This
discontinuity may be numerically troublesome but is a required
feature of a correct quantum mechanical model at the dissocia-
tion limit.20 In Figure 2, we compare the CC-QVB2 and CC-
VB2 models for Li2 and LiH at fixed bond distance. The
approximation inherent in the Lagrange interpolation does not
grossly affect the locations of the observed minima.

At this point, it is natural to take the minimum of the CC-
VB2 or CC-QVB2 energy expressions as the optimal charge
for a given geometry. This may be an absolute minimum; i.e.,
the derivative of the energy with respect to charge may be
discontinuous at the minimum. However, a more serious
problem is that there may be two distinct local minima, and
there is no obvious recipe for choosing between them in the
zero temperature limit of interest. When the two minima are
degenerate, as will always be the case for a homonuclear
diatomic like Li2, the correct solution is to average the optimal
charges. This results in no net charge transfer, consistent with
symmetry requirements. However, at this point it is not yet clear

Figure 1. Energy of charge-constrained minimal basis valence bond model for Li2 (left panel) and LiH (right panel) as a function of bond distance.
In both cases, a derivative discontinuity exists atq ) 0 for all internuclear separations. The Coulson charge is taken positive for Li+H- in the LiH
case. Notice the different energy scales for the two plots, and the zero of energy is chosen at the separated atoms limit.
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FB
A(R) - Fcov(R)] + 4(qA - qA
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EA0B0/A-B+
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how the solutions should be combined in the general case. To
clarify this, it is necessary to consider a more general wave
function that simultaneously includes all three valence bond
configurations under discussion:

We can define the atomic charges derived from this wave
function as

In Figure 3, we show contour plots of the resulting energy
expression for Li2 and LiH examples of Figure 2. Note that in
the full three-state model, each energy expression has a single
minimum and a single maximum, corresponding to the ground-
and excited-state solutions, respectively. The CC-VB2 model
energy expression corresponds to a restricted one-dimensional
path in the two-dimensional space shown by the gray dotted
lines. One can easily see from this figure that the sum of the
charges associated with the CC-VB2 minima will often be a
reasonable approximation to the atomic charges that would be
obtained from the three-state model. The presence of two

minima in the CC-VB2 and CC-QVB2 models is seen to be a
consequence of the particular reduction from two charge transfer
variables to a single atomic charge variable. If we instead reduce
the three-state model to a two-state model by taking the
restricted path given by the dashed line, the resulting energy
function would have a single minimum as desired. Furthermore,
as one can see from these examples, the minimum along this
path is qualitatively similar to the true minimum of the full three-
state model. It might be fruitful to develop a model based on
this predetermined path, but the resulting expressions are
cumbersome and are difficult to relate to electronegativity
concepts. We consider two alternative approaches in the
following, both of which ensure that there is one unique
minimum and therefore a unique atomic charge.

The simplest approach is one of mathematical convenience.
By performing a second Lagrange interpolation of the CC-QVB2
energy expression we can guarantee an energy expression with
a single minimum and no derivative discontinuity. Applying a
three-point Lagrange interpolation to the CC-QVB2 energy
expression using the three pointsqA ) {-1, 0, 1} leads to

where the charge-independent term has been removed for

Figure 2. Comparison of CC-VB2 (solid line) and CC-QVB2 (dashed line) models for Li2 (left panel) and LiH (right panel) at their equilibrium
bond distances of 2.67 and 1.60 Å, respectively. The values of the optimal charge for each branch are in reasonable agreement in both cases. The
Coulson charge is defined as in Figure 1.

Figure 3. Three-state minimal basis valence bond energy surface for Li2 (left panel) and LiH (right panel). The remaining coefficient in the wave
function, for the covalent configuration, is given by normalization. The regions where the normalization constraint cannot be satisfied with a real
coefficient for the covalent configuration are marked “forbidden.” Contours are equally spaced, with energies denoted in hartrees, and the zero of
energy is arbitrary. In each case, the equilibrium bond distance is used: 2.67 and 1.60 Å for Li2 and LiH, respectively. The gray dotted arrows
indicate the path corresponding to the energy for a given charge used in the CC-VB2 theory. Note that in both cases, there is one minimum and
one maximum that are the ground- and excited-state solutions, respectively. The minima are marked with X’s. The dashed line indicates an alternative
path discussed in the text.

ψ3-state) cA0B0ψA0B0 + cA-B+ ψA-B+ + cA+B- ψA+B- (1.17)

qA ) cA+B-
2 - cA-B+

2

qB ) cA-B+
2 - cA+B-

2 (1.18)

ELI-CC-QVB2(qA) ) (øA
0 - VAA

B - øB
0 + VBB

A )qA +

(ηA
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0 - JAB - KAB)qA
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simplicity because it has no effect on the predicted optimal
charge. This is probably one of the clearest routes from a wave
function picture to an electronegativity model. A few key points,
absent in the simplest derivations of CPE models, are that the
electronegativity is explicitly environment-dependent, the Cou-
lombic interaction is shielded, and an exchange integral appears.
It is worthwhile to investigate the origin and behavior of this
model in some detail. Figure 4 compares the CC-QVB2 and
LI-CC-QVB2 energies as a function of the atomic charge for
four limiting cases. The most favorable comparison is obtained
in the upper right panel, describing a homonuclear diatomic at
the dissociation limit. In this case, the minima of the CC-QVB2
and LI-CC-QVB2 models are identical, although the shapes of
the two energy functions are very different. The leftmost panels
compare the energy expressions for internuclear separations
close to the equilibrium bond distance. In these cases, the CC-
QVB2 model often exhibits two minima, whereas the LI-CC-
QVB2 model always has a single minimum by construction, as
discussed above. For the homonuclear diatomic, where the
correct location of the minimum can be deduced by symmetry,
the LI-CC-QVB2 model gives the correct solution. The problem,
in common with all CPE models, is made clear in the lower
right panel, where the LI-CC-QVB2 minimum is at nonzero
charge transfer for infinitely separated atoms. The conspicuous
absence of environment dependence to the electronegativity in
conventional CPE theories can be considered quite puzzling.
In Figure 5, we show the form of the environment-dependent
correction from eq 1.19 for the specific case of LiH. Although

the correction term for each atom is certainly large, it is the
difference of the atomic correction terms that enters in eq 1.19.
Because the corrections have the same asymptotic form for both

Figure 4. Behavior of the CC-QVB2 (solid) and LI-CC-QVB2 (dashed) energies as a function of charge for four different limiting cases; atoms
of equal or dissimilar electronegativty and bond distances near equilibrium or near dissociation. The minima for each of the two energy functions
are highlighted by arrows.

Figure 5. Environment-dependent corrections (black lines) to the
electronegativity for Li and H atoms in the LiH molecule as a function
of the Li-H separation distance. The gray line shows the difference
of the two correction terms (see text) emphasizing that the effect of
the corrections can be negligible even when the corrections themselves
are sizable. For comparison, the Mulliken electronegativities of Li and
H are 3.1 and 7.2 eV, respectively.2 The difference of these electrone-
gativities is shown as a dotted line.
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atoms, their difference vanishes at large separation. The cor-
rection takes on a magnitude similar to that of the electrone-
gativity difference (øLi - øH) only for very short internuclear
separations. Thus, one may speculate that the success of CPE
theories in view of their complete neglect of environment-
dependence to the electronegativity comes about in part because
of a natural cancellation of the correction terms. It is easily seen
that the long-range cancellation will be universal, although the
domain of internuclear separations where this correction is large
will of course be molecule-dependent.

Another way to proceed is to recognize that the two
“branches” of the energy expression represented by eqs 1.15
and 1.16 can be interpreted as separate expressions for the
energy in terms of charge transfer from A to B and B to A,
respectively. Analytic continuation of each branch gives two
expressions for the charge-transfer energy, each covering the
entire real line:

and

The CC-QVB2 model is trivially recovered if these branches
are combined as

whereΘ is the Heaviside step function and the restriction of
overall charge neutrality is indicated. The presence of the
Heaviside step function is not unexpected in view of previous
results obtained by analyzing the grand canonical Hartree-Fock
model24-26 in the context of CPE theories, which obtained
similar expressions involving Heaviside step functions in the
zero temperature limit.27

An alternative that is available after the continuation has been
performed is to view each of eqs 1.20 and 1.21 as equally valid
approximations over the entire domain. In this case, a given
charge on atom A can be realized either through electron transfer
or hole transfer. In the absence of any clear reason for preferring
one description over the other, the final energy expression can
be obtained through maximum entropy considerationssthe
energy of a given charge on atom A is obtained by averaging
the two branches corresponding to hole transfer from A to B or
electron transfer from B to A. We will call this the maximum-
entropy CC-QVB2 model or ME-CC-QVB2, and the resulting
energy expression is

where it is again to be understood that charge neutrality is used
to removeqB.

We now introduce approximations for the integrals that are
justified by appealing to semiempirical theories. We invoke the
Wolfsberg-Helmholtz approximation28 for the one-electron
integrals and the Mulliken-Ruedenberg29 approximation for
Coulomb and exchange integrals, i.e.

where the basis functions in the integrals on the left-hand side
are the Lo¨wdin-orthogonalized orbitals and the basis function
on the right-hand side are the atomic orbitals. The result is

The last expression can be rearranged for suggestive purposes
to

The first term in eq 1.26 is independent of the atomic charges
and therefore will have no effect on their optimal values
(determined by minimizing the energy). This term can therefore
be neglected. We define an environment-dependent electrone-
gativity, which is reminiscent of previous work30 that has taken
VAA

B as a first-order perturbation term by the approximate
Fukui functionfA ≈ æA

2

We also define a modified environment-dependent hardness,

Unlike the modified electronegativity, the modification to the
hardness does not come exclusively through the presence of
the other atom. Thus, it is interesting to ask how much different
the atomic part of the hardness [first three terms on the right-
hand side of eq 1.28] is from the usual hardness,ηA

0 . We
compare these values in Table 1, using an s-only Slater basis
set with exponents from Rappe and Goddard. Notice that both
hardnesses are always positive, as should be expected for a
physically reasonable model. Furthermore, the actual values are

EAfB(qAfB) ) [EA
0 + EB

0 + Fcov(R)] +

qAfB[IPA - EAB + FB
A(R) - Fcov(R)] +

4(qAfB - qAfB
2)HA0B0/A+B- (1.20)

EBfA(qBfA) ) [EA
0 + EB

0 + Fcov(R)] +

qBfA[IPB - EAA + FA
B(R) - Fcov(R)] +

4(qBfA - qBfA
2)HA0B0/A-B+ (1.21)

ECC-QVB2(qA;qB ) -qA) ) Θ(qA)EAfB(qA) +

(1 - Θ(qA))EBfA(qB) (1.22)

EME-CC-QVB2(qA,R) ) EA
(0) + EB

(0) +

Fcov(R) + 1
2
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2VBB
A - 2VAA

B ) - 2qA
2(HA0B0/A-B+ + HA0B0/A+B-) -

2qA(HA0B0/A-B+ - HA0B0/A+B-) (1.23)

hAB ) 1
2
SAB(hAA

A + hBB
B + VBB
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2
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1
2
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B + VBB
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quite similar, with the largest difference occurring for the
hydrogen atom.

With the foregoing approximations and simplifications, we
may rewrite eq 1.26 as

This equation is in the form expected from CPE-like theories,
provided the last term in parentheses is unity. This occurs when
the overlap matrix element isx2/4, which is a reasonable
average value for an equilibrium A-B bond distance. For
comparison, the values of the corresponding matrix elements
in H2, LiF, and NaCl at their equilibrium geometries are 0.7,
0.09, and 0.19. It is completely consistent with the approxima-
tion that the overlap matrix element is a constant to also neglect
the environment dependence of the electronegativity and hard-
ness (or to absorb these in an averaged way) such that the
superscripts on these terms in eq 1.29 may be dropped. Again,
we inquire as to the behavior of this new model in various limits,
analogously to Figure 4. The results are shown in Figure 6. At
finite internuclear separation, the model correctly predicts no
charge transfer for a homonuclear diatomic. For hetereonuclear
diatomics, finite charge transfer is predicted in general, and this
will usually be somewhat less than the prediction of CPE
theories. However, the model fails in the limit of infinite
internuclear separation for both homonuclear and hetereonuclear
diatomics, because the energy function becomes linear in the
limit of infinite internuclear separation, whereas the correct result
is piecewise linear.

However, we notice a new feature of the ME-CC-QVB2
energy expression that is the effective pairwise nature of the
hardness. This is suggestive of an alternative model where the
electronegativity becomes a pairwise quantity (as opposed to a
strictly atomic property). Thus, transferring the pairwise nature
of the hardness to the electronegativity, we write

and we christen this the pairwise-electronegativity charge-
constrained quadratic valence bond model (PE-CC-QVB2). The
constantk is analogous to the factor of 4/x2 appearing in eq
1.29. One should recognize that the precise value of this factor
is somewhat ambiguous even in eq 1.29 because it arises from
the scale factors used in the integral approximations that other
workers have sometimes modified semiempirically in an attempt
to improve the quality of such approximations. It is important
to note that we do not claim to have derived eq 1.30sit is only
suggested in analogy to eq 1.29. For this reason, we have
dropped the superscripts and tilde denoting the modified
environment-dependent electronegativity and hardness in eq
1.30. We also suggest that one should takek to be the inverse
of the overlap matrix elementSAB at or near the equilibrium
separation. In this way, the model reduces exactly to a CPE
model at equilibrium separations and all the parameters devel-
oped for such methods can be carried over directly. A rigorous
derivation with well-defined approximations may be possible
but is not assured. We continue to pursue this but for now
content ourselves to explore the ramifications of the model.

Analogously to Figures 4 and 6, we show in Figure 7 the
behavior of the PE-CC-QVB2 energy expression in various

Figure 6. As in Figure 4, but comparing the behavior of the CC-QVB2 (solid) and ME-CC-QVB2 (dashed) energies as a function of charge.

EME-CC-QVB2 ) qAø̃A
B + qBø̃B

A +

(η̃A
BqA

2 + η̃B
AqB

2 + qAqBJAB)( 4

x2
SAB) (1.29) EPE-CC-QVB2 ) qAøA

0kSAB + qBøB
0kSBA +

ηA
0qA

2 + ηB
0qB

2 + qAqBJAB (1.30)
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limits. In all cases, a single minimum is obtained, and one should
especially note the fact that the optimal charge transfer is zero
at infinite separation for both the homonuclear and hetereo-
nuclear diatomics, as it should be. As an illustrative example,
we apply this model to LiH. The overlap matrix elementSLiH,
electronegativity, hardness and Coulomb interaction JLiH are all
evaluated using the Slater orbital basis proposed by Rappe and
Goddard for their QEq model. In Figure 8, we compare the
resulting charge for the Li atom from the PE-CC-QVB2 model

with that obtained from a GVB(1/2),31 also known as two-
configuration self-consistent field32 (TCSCF), calculation using
Mulliken analysis and the 6-31G basis set. The value fork is
0.33, corresponding to the inverse ofSLiH at the equilibrium
bond length of 1.6 Å. Considering that we have not fit any
parameters for this test, the agreement is quite good.

Conclusions

We have presented a new derivation of a CPE-like theory
(LI-CC-QVB2) for describing charge distributions in molecules.
This method differs from conventional methods in the inclusion
of explicitly environment-dependent terms. However, we note
that these corrections are likely to often cancel and, indeed,
rigorously cancel at large separation. Furthermore, the LI-CC-
QVB2 theory does not repair the fundamental deficiency of the
CPE model, namely finite charge transfer at infinite separation.
This led us to an alternative maximum entropy-inspired model

Figure 7. As in Figures 4 and 6, but comparing the CC-QVB2 (solid) and PE-CC-QVB2 (dashed) energies as a function of charge.

Figure 8. Comparison of charge for Li as a function of bond distance
in LiH. The solid black line corresponds to Mulliken charges computed
using a GVB(1/2) wave function in a 6-31G basis set, and the gray
line is obtained from the parwise electronegativity model described in
the text.

TABLE 1: Numerical Comparison of Standard Atomic
Hardness and Modified Atomic Hardness Implied by Eq
1.28a

ηA
0 ≡ (1/2)JAA -(1/2)JAA - hAA

H 9.09 4.31
Li 2.06 2.89
Na 1.53 1.91
F 4.55 4.37
Cl 3.22 2.83

a The s-type Slater basis sets of Rappe and Goddard8 have been used,
and the values are given in electronvolts.
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(ME-CC-QVB2) that introduced a pairwise hardness. Although
this model also fails in the limit of large separations, it does
provide some justification for further explorations of the concept
of multibody character in the basic parameters of a CPE theory.
The most intriguing result of this paper is the subsequent
assertion of a pairwise character to electronegativity.

Although we can provide no rigorous derivation of the core
equation for this PE-CC-QVB2 model, we think that it captures
the correct chemistry of the molecular charge distribution while
retaining the elegance and simplicity of the electronegativity
concept. The PE-CC-QVB2 model was tested on a simple case
of a dissociating diatomic (LiH) and shown to give good
agreement with ab initio derived charges without adjusting any
of the parameters from the QEq CPE method. As one can see
from Figure 8, the charge transfer is correctly predicted to vanish
at inifinite separation in the PE-CC-QVB2 model. This happens
because the electronegativities of the constituent atoms vanish
at inifinite separation. In this respect, the current model
interpolates between conventional CPE theories and a CPE-
like theory proposed by Berkowitz,30 which considered only
the hardness and neglected electronegativity. However, Berkow-
itz’ theory was introduced for the specific case of understanding
hard-soft acid-base relationships where the electronegativity
difference of the reactants is negligible and it was not proposed
as a general scheme for computing charge distributions.

One point that should be clear from our work in this paper
and its predecessor27 is that it is unlikely that any quadratic
model can escape all difficulties. In the present case, the
remaining difficulty is the absence of a derivative discontinuity
in the energy at integer charges, i.e., the violation of Janak’s
theorem.33 On one hand, this is a blessing numerically. However,
it implies that the bond between two atoms has finite polariz-
ability even when the atoms are infinitely separated. This could
be inconsequential as long as the polarizability is small.
Numerical tests will be required to assess whether it is a problem
in practice. Indeed, what needs to be done next is to extend the
PE-CC-QVB2 model to arbitrary polyatomics and test its
behavior. This work is currently in progress.
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