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We study the competition between the Turing instability to steady patterns and the Hopf instability to oscillations
in diffusively coupled open reactors. Our approach is based on exact, analytical criteria for the occurrence of
these instabilities in arrays of coupled reactors. We consider a general two-variable kinetic model that represents
an activator-inhibitor scheme with a complexing agent or substrate for the activator. We apply our results
to the Lengyel-Epstein model of the chlorine dioxide-iodine-malonic acid reaction. Using symbolic
computation software, we derive exact conditions for the Turing and Hopf bifurcations in small, linear arrays
of coupled reactors with an inhomogeneous concentration profile of the substrate. Our main result is the
determination of the critical substrate concentration profile, above which the Turing instability occurs before
the Hopf instability. This provides the condition for stationary Turing patterns to be experimentally observable
in arrays of coupled reactors.

1. Introduction

A wide variety of phenomena in chemistry, biology, physics,
and other fields involve coupling between nonlinear, discrete
units. Living cells, for example, often interact with adjacent cells
by mass transfer via gap junctions. In specific applications, the
number of discrete units involved can be quite large. However,
insight into the dynamical behavior of coupled nonlinear
elements can be gained already from the study of small arrays,
consisting of as few as two units. The study of two coupled
continuous-flow stirred tank reactors (CSTRs) has a history of
more than twenty five years and has had considerable theoretical
and practical impact; see, for example, refs 1-20. In most
studies, the reactors are coupled via passive diffusion-like mass
transfer, though some have considered electrical coupling6,17,18

and flow rate coupling.10,13,15Most theoretical and experimental
investigations of coupled CSTRs have focused on coupled
chemical oscillators, and many different types of dynamical
behavior were observed. Only a few studies have considered
coupled steady state reactors.4,7,21-23

The first studies of coupled chemical cells were theoretical
investigations and focused on the diffusion-induced instability
to nonuniform steady states.24,25As Turing showed five decades
ago, diffusion can destabilize the homogeneous steady state and
generate stable, stationary concentration patterns in chemical
systems with appropriate nonlinear kinetics.26 Turing’s work
has given rise to an extensive literature on chemical pattern
formation in chemistry and biology; for reviews, see, for
instance, refs 27-29. Though chemical pattern formation is most
commonly studied in continuous reaction-diffusion systems,

instead of discrete systems of coupled reactors, Turing already
showed that the diffusion-induced instability, now called Turing
instability or Turing bifurcation, can also occur in two coupled
reactors. The earliest studies of the Turing instability in two
homogeneous reactors employed the Brusselator model for the
kinetics,24,25whereas recent studies have used the more realistic
Lengyel-Epstein model.30,31 The latter is a simplified two-
variable model32 for the chlorite-iodide-malonic acid (CIMA)
reaction and its variant, the chlorine dioxide-iodine-malonic
acid (CDIMA) reaction.33 These reactions have claimed a
prominent place in nonlinear chemical dynamics, since the first
conclusive experimental evidence of Turing patterns, in reac-
tion-diffusion systems, was obtained with the CIMA and
CDIMA reactions thirteen years ago; see, for example, refs 34-
37.

True Turing patterns can only occur in open systems, and
their experimental realization requires appropriate flow reactors.
Such reactors were developed fifteen years ago, and the
continuously fed unstirred reactor (CFUR),38,39 consisting of a
gel layer coupled to one or two CSTRs, has become the main
experimental tool. Further, a Turing instability can only occur
if the inhibitor species has a diffusion coefficient that is larger
than the activator species. For the CIMA and CDIMA reactions,
this necessary condition is achieved by introducing a complexing
agent or substrate, for example, starch or poly(vinyl alcohol),
for the activator species, iodide ion. The substrate is either
embedded in the gel of the CFUR in the case of starch or can
be used as the gel itself in the case of poly(vinyl alcohol) or
polyacrylamide. Consequently, the substrate-activator complex
is immobile, which leads to a significant reduction in the
effective diffusion coefficient of the activator species. The
CIMA and CDIMA reactions can oscillate in a CSTR, and an
analysis of their kinetics shows that the concentration of the
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substrate determines if in a CFUR the oscillatory instability or
the Turing instability occurs first, i.e., is the primary bifurcation,
as a control parameter is varied.32,40,41If the substrate concentra-
tion is higher than some critical value, the Turing instability is
the primary bifurcation, whereas at lower substrate concentra-
tions the oscillatory instability occurs first. This raises the
question of the effect of spatially nonuniform substrate con-
centrations on the formation of Turing patterns, because it is
experimentally very difficult to achieve a completely uniform
gel. The theory of Pearson and Bruno41 leads to the conclusion
that as long as the substrate concentration is everywhere higher
than the critical value, the Turing instability will occur first,
and Turing patterns are observable. However, this is only a
sufficient condition, not a necessary one. We expect that as long
as those regions with a substrate concentration below the critical
value are not too large in size, the Turing bifurcation should
still be the primary bifurcation.

The effect of spatial inhomogeneities on chemical pattern
formation is an important open problem. Chemical or biological
systems are rarely completely uniform. Pattern formation in the
Drosophila egg, for example, occurs in the presence of
maternally imposed gradients of gene products.42 The experi-
mental studies of Turing patterns in the CIMA and CDIMA
reactions mentioned above all used CFURs, which unavoidably
exhibit gradients in the concentrations of the feed reactants.
Theoretical studies of spatially nonuniform reaction-diffusion
systems are rare, and little is known about the effects of
gradients on the formation of patterns. Except for spatial
variations in the diffusion coefficient,43,44 inhomogeneities in
parameters of the reaction-diffusion system typically lead to
nonuniform steady states. No general analytical tools exist for
the stability analysis of such states. Perturbation techniques can
be used for weak nonuniformities, as in refs 45-47. Lengyel
and co-workers48 used an approximation of the reaction-
diffusion equation to study the effect of the gradients in CFURs
on the position and the possible three-dimensional character of
the Turing structures. In general, numerical studies are required
to address the problem; see for example, refs 49-53. Voroney
and co-workers54 have carried out numerical simulations of the
Sel’kov model with a complexing reaction. They considered
the case where the immobile complexing species is confined to
disks or stripes. If the spatial scales of the inhomogeneities and
the reaction-diffusion system are comparable, interactions
between oscillatory behavior and Turing patterns generate
spatiotemporal dynamics not observed in a homogeneous
medium.

Although the analysis of inhomogeneous reaction-diffusion
systems presents serious challenges, the situation is considerably
more favorable for inhomogeneous arrays of diffusively coupled
reactors. These systems can be studied with the standard
methods of stability analysis and bifurcation theory for systems
of coupled ordinary differential equations. Using these tools,
we derive a general condition for the observability of Turing
patterns in inhomogeneous arrays of coupled reactors. We study
the effect of inhomogeneities in the substrate concentration for
linear arrays of two, three, and four reactors. The paper is
organized as follows. In section 2 we briefly review the
Lengyel-Epstein model for the CDIMA reaction in a well-
stirred reactor and in a reaction-diffusion setting. The general
condition for the Turing instability to be the primary bifurcation
in arrays of coupled reactors is formulated in section 3. We
apply our results to small, linear, inhomogeneous arrays of
coupled reactors with Lengyel-Epstein kinetics in section 4.
We discuss the implications of our results in section 5.

2. Lengyel-Epstein Model and Turing Bifurcation in a
Reaction-Diffusion System

The effect of the complexing agent on the activator species
can be taken into account in a simplified two-variable model
by “renormalizing” the time scale on which the free activator
concentration evolves.32,41For the CDIMA reaction in a CSTR,
the kinetic equations of the two-variable Lengyel-Epstein
model (LE model) are

Here u and V are the dimensionless concentrations of I- and
ClO2

-, respectively. The constanta is proportional to [CH2-
(COOH)2]/[ClO2] and the constantb to [I2]/[ClO2]. The
parameterσ depends on the concentration of the complexing
agent S according toσ ) 1 + K[S]0[I 2], where K is the
association constant of the substrate-activator complex. Ac-
ceptable experimental values lie in the range 1e σ < 1000.37

Note thatσ ) 1 corresponds to no complexing agent. The
CDIMA reaction in a CSTR, described by the LE model, has
only one steady state given by

This state undergoes a Hopf bifurcation to oscillatory behavior
at

For a > x125/3, the unique steady state of the CDIMA
reaction in a CSTR is stable forb > bH, and the reaction
oscillates forb < bH.

When the LE model is studied in the setting of a one-
dimensional reaction-diffusion system,

whered is the ratio of diffusion coefficientsDClO2
-/DI-, it is

found that the homogeneous steady state undergoes a Turing
bifurcation to a nonuniform steady state, asb is decreased, at
(see, for instance, ref 37)

The critical valuebT for a bifurcation to Turing patterns is
independent ofσ, whereas the critical valuebH for a bifurcation
to homogeneous oscillations is inversely proportional toσ. To
observe the formation of Turing patterns, one must ensure that
the Turing bifurcation occurs before the Hopf bifurcation. For
a given value ofa, this can be achieved by using a sufficiently
large concentration of complexing agent such thatσ > σc

/(a),
whereσc

/(a) is given bybT ) bH.
As is clear from the form of the reaction-diffusion system,

steady states and stationary bifurcations are completely inde-

σdu
dt

) f(u,V) ) a - u - 4
uV

1 + u2
(1)

dV
dt

) g(u,V) ) b(u - uV
1 + u2) (2)

uj ) a
5

Vj ) 1 + a2

25
(3)

bH ) 3a2 - 125
5aσ

(4)

σ
∂u(x,t)

∂t
) f(u,V) + ∂

2u

∂x2
(5)

∂V(x,t)
∂t

) g(u,V) + d
∂

2V
∂x2

(6)

bT ) d
5a

(13a2 - 4x10ax25 + a2 + 125) (7)
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pendent ofσ. It is only time-dependent states, such as oscilla-
tions, and nonstationary bifurcations that are affected byσ or
the concentration of the complexing agent. Because stationary
states are independent ofσ, they are not affected by spatial
inhomogeneities in the substrate concentration. The theory of
Pearson and Bruno41 leads to the expected conclusion thatσ(x)
> σc

/(a) everywhere is a sufficient condition for the homoge-
neous steady state to undergo a Turing bifurcation before a Hopf
bifurcation. This raises the interesting question of what happens
if σ(x) < σc

/ in some regions of the reactor. We expect that as
long as those regions are not too large in size or as long as
|σ(x) - σc

/(a)| is sufficiently small in those regions, the Turing
bifurcation should still occur first.

3. Inhomogeneous Linear Arrays of Coupled Reactors

Although the analytical study of the stability of reaction-
diffusion systems with spatial nonuniformities is difficult, as
mentioned in section 1, analytical criteria can be derived for
the observability of Turing patterns in inhomogeneous arrays
of coupled reactors, as we show in this section. Not only are
arrays of coupled reactors interesting in their own right as
explained in the Introduction, but they can also be understood
as a more or less crude discretization of the reaction-diffusion
system (5) and (6). We consider a linear array ofm reactors
containing all components of the CDIMA reaction, including
the complexing agent, and linked by diffusive coupling via
semipermeable membranes. The reactors are identical with the
exception of the complexing agent concentration. The mem-
branes are impermeable to the complexing agent, and individual
reactors may be loaded with different concentrations of substrate,
i.e., have different values ofσ. A linear array of such coupled
reactors is described by the following set of coupled ordinary
differential equations:

The unique homogeneous steady state of the linear array of
CDIMA reactions is given by (uji, Vji) ) (uj, Vj) for i ) 1, ...,m.
The stability of this state is determined by the eigenvaluesω
of ann × n Jacobian matrix J,n ) 2m, which are the roots of
the nth order characteristic polynomial, det(J- ωI) ) 0 (I is
the identity matrix):

The homogeneous steady state is stable, if all rootsω of (14)
have a negative real part. The necessary and sufficient conditions

for this to hold are the Routh-Hurwitz conditions, see, for
example, refs 55-57,

together with the condition

(Setci ) 0 in (15) for i > n.) A stationary bifurcation, which
corresponds to a vanishing real eigenvalue, occurs if condition
(16) is violated, i.e.,cn ) 0. The CDIMA reaction in a CSTR
cannot undergo a stationary bifurcation; see section 2. Therefore,
spatially homogeneous perturbations cannot have a vanishing
real eigenvalue for an array of CDIMA reactions, andcn ) 0
(with ∆k > 0) is a necessary and sufficient condition for a Turing
instability to occur. Orlando’s formula implies that∆n-1 ) 0
(with cn > 0, ∆k > 0, k ) 1, ..., n - 2) is a necessary and
sufficient condition for a conjugate pair of purely imaginary
eigenvalues,56,58 i.e., for a Hopf bifurcation.

The Turing bifurcation and the Hopf bifurcation occur
together, if

which determines the critical profileσi,c(a). (Because∆n-1 )
∆n-2cn-1 - Mn-2,n-1cn, whereMi,j is the minor of the (i, j)
element of the Hurwitz determinant∆n-1, condition (17) implies
that ∆n-2 ) 0 also, if cn-1 * 0, which is the generic case.)
Note that we have obtained a fully analytical criterion for the
critical substrate concentration profile. This has the great
advantage that we can determine the condition where the Turing
bifurcation ceases to be the primary bifurcation without having
to resort to a time-consuming numerical search of a large
parameter space.

Evaluating the various quantities by hand is already a very
cumbersome task for two coupled reactors. We have therefore
used symbolic computation software, namely MATHEMATICA
(Wolfram Research, Inc., Champaign, IL, 2002) and MAPLE
(Waterloo Maple Inc., Waterloo, Ontario, 2002), to obtain exact,
analytical expressions for the coefficientsci of the characteristic
polynomial (14) and the Hurwitz determinants∆k for arrays of
up to four coupled reactors.

4. Small Linear Arrays with Lengyel-Epstein Kinetics

4.1. Two Coupled Reactors.For two coupled reactors, the
Jacobian is given by

where

σ1

du1

dt
) f(u1,V1) + u2 - u1 (8)

dV1

dt
) g(u1,V1) + d(V2 - V1) (9)

σi

dui

dt
) f(ui,Vi) + ui+1 + ui-1 - 2ui i ) 2, ...,m - 1

(10)

dVi

dt
) g(ui,Vi) + d(Vi+1 + Vi-1 - 2Vi) i ) 2, ...,m - 1

(11)

σm

dum

dt
) f(um,Vm) + um-1 - um (12)

dVm

dt
) g(um,Vm) + d(Vm-1 - Vm) (13)

ωn + c1ω
n-1 + c2ω

n-2 + ... + cn-1ω + cn ) 0 (14)

∆k ) |c1 c3 ‚ ‚ ‚ ‚
1 c2 c4 ‚ ‚ ‚
0 c1 c3 ‚ ‚ ‚
0 1 c2 ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚ ‚
0 0 ‚ ‚ ‚ ck

| >0 k ) 1, 2, ...,n (15)

cn > 0 (16)

cn ) 0 and ∆n-1 ) 0 (17)

J ) (R1 D1

D2 R2
) (18)

Ri ) ((A11 - 1)/σi A12/σi

A21 A22 - d) and Di ) (1/σi 0
0 d) (19)
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Here

Already for two reactors, the expressions for the coefficients
ci of the characteristic polynomial and the Hurwitz determinants
∆k in terms ofa, b, d, σ1, andσ2 are very lengthy and will not
be given here. Solvingc4 ) 0, we find

and a Turing bifurcation exists ifa > amin ) x175 )
13.228756. For a homogeneous array, i.e.,σ1 ) σ2 ) σ, the
Turing bifurcation occurs before the Hopf bifurcation ifσ >
σc
/(a;2) (the argument after the semicolon denotes the number

of coupled reactors), where

In an inhomogeneous two-reactor array, the substrate con-
centration profile is necessarily asymmetric. Let reactor 1 be
the high-substrate reactor,σ1 > σc

/(a;2), and let reactor 2 be
the low-substrate reactor,σ2 < σc

/(a;2). We varyσ1 in reactor
1 and determine the critical concentrationσ2,c(σ1,a,d) in reactor
2, as a function ofσ1. Forσ2 > σ2,c(σ1,a,d) the Turing bifurcation
occurs first, whereas forσ2 < σ2,c(σ1,a,d) the Hopf bifurcation
is the primary bifurcation. We obtain the critical concentration
in reactor 2,σ2,c(σ1,a,d), by solving (17). We setb ) bT, which
ensures that the first condition of (17) holds, and use MATH-
EMATICA to solve ∆3 ) 0 in terms of σ2. The resulting
expression forσ2,c takes up about twelve lines. It is not
enlightening at all and will therefore not be displayed here. We
will instead illustrate the behavior by choosing specific values
for a andd and plotσ2,c as a function ofσ1. Following ref 37,
we use the experimental valued ) 1.07 for the ratio of diffusion
coefficients in all calculations in this paper. (Below, we will
no longer explicitly denote the dependence ond of quantities
like σ2,c, etc.) For the parametera we choose the valuea )
50.0; however, the behavior is qualitatively the same for other
values. For these conditions,bT ) 2.84314, andσc

/(50;2) )
10.3758. For a very large concentration of substrate in reactor
1, σ1 f ∞, the Turing instability will occur first, ifσ2 >
σ2,c(∞,50) ) 5.41038. Asσ1 decreases,σ2,c increases mono-
tonely, as can be seen from Figure 1. Asσ1 approachesσc

/ )
10.3758, so doesσ2,c.

These results show that the Hopf bifurcation is more
destabilizing than the Turing bifurcation. If half of the system,
i.e., one reactor, contains no substrate,σ2 ) 1, then the Hopf
bifurcation is the primary bifurcation of the coupled array, no

matter how large the substrate concentrationσ1 is in the other
reactor. In fact, fora ) 50.0 the two coupled reactors will
undergo a transition to oscillations first asb is decreased as
long asσ2 < 5.41038. Further, the arithmetic mean of the critical
profile, σjc ) σ1 + σ2,c(σ1,a), as well as the geometric mean,σ̂c

) xσ1‚σ2,c(σ1,a), are bigger than the critical value for a
homogeneous arrayσc

/(a;2), which reinforces the conclusion
that the inhomogeneous array is more vulnerable to oscillatory
perturbations than to inhomogeneous, stationary perturbations.

4.2. Three Coupled Reactors.For three coupled reactors,
the Jacobian is given by

where

For an array of three coupled reactors, the Turing condition
corresponds toc6 ) 0, which yields

and a Turing bifurcation exists ifa > amin ) x75 ) 8.660254.
For a homogeneous array, i.e.,σ1 ) σ2 ) σ3 ) σ, the Turing
bifurcation occurs before the Hopf bifurcation ifσ > σc

/(a;3),
where

We will consider two types of inhomogeneous substrate profiles;
either an end reactor, e.g., reactor 3, or the middle reactor has
a different substrate concentration, i.e., (1)σ1 ) σ2 ) σ > σ3

or (2) σ1 ) σ3 ) σ > σ2. We determine the critical substrate
profile, i.e.,σ3,c(σ,a) in case 1 andσ2,c(σ,a) in case 2 by solving
(17) with n ) 6 for σ > σc

/(a;3). As for two coupled reactors,
we setb ) bT, which ensures that the first condition of (17)
holds, and use MATHEMATICA to solve∆5 in terms ofσ3 or
σ2, respectively. For three or more coupled reactors, the solution
of the second equation in (17) can no longer be found in closed,
analytical form;σ3,c or σ2,c, respectively, is determined numeri-
cally. Note that this is the only numerical step in our approach.
Analytical expressions are obtained for all other quantities and
conditions. We choose againa ) 50.0 and findbT ) 3.45967
andσc

/(50;3) ) 8.52683. The critical profiles for case 1 and 2
are shown in Figures 2 and 3, respectively. Again,σ3,c(σ,a) and
σ2,c(σ,a) increase monotonely asσ decreases.

Figure 1. Critical profile, σ2,c as a function ofσ1, for two coupled
reactors with Lengyel-Epstein kinetics fora ) 50.0 andd ) 1.07.

Figure 2. Critical profile, σ3,c as a function ofσ, for three coupled
reactors with Lengyel-Epstein kinetics for case 1:σ1 ) σ2 ) σ; a )
50.0;d ) 1.07.

A11 ) ∂f
∂u|(uj,Vj)

A12 ) ∂f
∂V|(uj,Vj)

A21 ) ∂g
∂u|(uj,Vj)

A22 ) ∂g
∂V|(uj,Vj)

(20)

bT )
2d(a2 - 175)

35a
(21)

σc
/(a;2) )

7(3a2 - 125)

2d(a2 - 175)
(22)

J ) (R1 D1 O
D2 R̃2 D2

O D3 R3
) (23)

R̃i ) ((A11 - 2)/σi A12/σi

A21 A22 - 2d) and O ) (0 0
0 0) (24)

bT )
d(a2 - 75)

15a
< (25)

σc
/(a;3) )

3(3a2 - 125)

d(a2 - 75)
(26)
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The behavior of the critical substrate concentration is
qualitatively the same in both cases and qualitatively the same
as for two coupled reactors. The critical values of the substrate
concentration are lower for three coupled reactors than for two
coupled reactors. This can be easily understood as follows. For
three coupled reactors, Turing patterns are favored in two-thirds
of the array, because two reactors have a substrate concentration
aboveσc

/(50;3). For two coupled reactors, Turing patterns are
favored only in half the array, explaining the higher critical
value. Comparing the two cases for the three-reactor array, we
find that the critical substrate concentration is lower for case 2.
The Hopf bifurcation to oscillations occurs before the Turing
bifurcation more easily if the reactor with a low substrate
concentration is an end reactor instead of being a middle reactor.
Further, the Hopf bifurcation is the primary bifurcation of the
coupled array in both cases, if eitherσ3 ) 1 or σ2 ) 1,
respectively, no matter how large the substrate concentrationσ
is in the other two reactors. These results appear to confirm the
conclusion from the previous subsection that the Hopf bifurca-
tion is more destabilizing than the Turing bifurcation. However,
for a three-reactor array the situation is more complicated. As
a decreases, the critical profile retains the same qualitative form,
but it shifts to lower values. For case 1,σ3,c(σ,a) > 1 for a >
amin, and if σ3 ) 1, then the Hopf instability is the primary
bifurcation for all values ofa andσ. The same is not true for
case 2. Given a value ofσ1 ) σ3 ) σ, there exists ana* >
amin, such that fora < a* we find σ2,c(σ,a) < 1, which is
unacceptable, because experimentallyσ cannot be smaller than
one. The behavior ofa* as a function ofσ is shown in Fig. 4.
As σ increases,a* increases and approaches an asymptotic value
of 24.2072. For the largest experimentally acceptable value of
the substrate concentration,σ ) 1000, we finda*) 24.029.
For a > 24.2072, the Hopf bifurcation will occur before the
Turing bifurcation, if 1e σ2 < σ2,c(σ,a). For a < 24.2072 and
σ sufficiently large, the Turing bifurcation always occurs first,
even if the middle reactor contains no substrate. This clearly
illustrates that an inhomogeneous reactor array, where the reactor
with the low substrate concentration is in the middle, provides
more favorable conditions for observing Turing patterns than
an array where the reactor with the low substrate concentration
is located at the end.

4.3. Four Coupled Reactors.For four coupled reactors, the
Jacobian is given by

Two Turing bifurcations occur in a linear four-reactor array.
One Turing condition is

with a > amin ) x175 ) 13.228756, and the other is

with a > amin ) 7.60544. These two Turing bifurcations are
degenerate ataT0 ) 32.96566389, and fora * aT0, the difference
betweenbT1 andbT2 is small. Fora ) 50.0, the Turing instability
corresponding tobT1 occurs first,bT ) bT1 ) 2.84314, and
σc
/(50;4)) 10.3758. We have determined the critical substrate

concentration profile for four cases following the same proce-
dure as used for two and three coupled reactors: (1)σ1 ) σ2 )
σ3 ) σ > σ4; (2) σ1 ) σ2 ) σ4 ) σ > σ3; (3) σ1 ) σ2 ) σ >
σ3 ) σ4; (4) σ1 ) σ4 ) σ > σ2 ) σ3. The behavior of the
critical substrate concentration is again qualitatively the same
in all four cases and qualitatively the same as for two- and three-
reactor arrays. Therefore we show only the two cases most
favorable to Turing patterns, Figures 5 and 6, which as expected
are case 2 and case 4, where the low-substrate reactors are
located in the interior of the array.

As for a linear array of three reactors, we find in case 2 that
for a small enough andσ large enough, the Turing bifurcation
always occurs first, even if the reactor 3 contains no substrate.
We define, as for three coupled reactors, the critical valuea*
by the condition thatσ3,c(σ,a*) ) 1. The behavior ofa* as
function of σ is shown in Figure 7. Forσ < 17.7, two curves
of Hopf bifurcation points approach each other, merge and
vanish asa is decreased. This results in a jump ofσ3,c from a
value larger than 1 to a value smaller than 1, and the definition

Figure 3. Critical profile, σ2,c as a function ofσ, for three coupled
reactors with Lengyel-Epstein kinetics for case 2:σ1 ) σ3 ) σ; a )
50.0;d ) 1.07.

Figure 4. Plot of a* as a function ofσ for three coupled reactors for
case 2;d ) 1.07.

Figure 5. Critical profile, σ3,c as a function ofσ for four coupled
reactors with Lengyel-Epstein kinetics for case 2:σ1 ) σ2 ) σ4 ) σ;
a ) 50.0;d ) 1.07.

Figure 6. Critical profile,σ2,c ) σ3,c as a function ofσ, for four coupled
reactors with Lengyel-Epstein kinetics for case 4:σ1 ) σ4 ) σ; a )
50.0;d ) 1.07.

J ) (R1 D1 O O
D2 R̃2 D2 O
O D3 R̃3 D3

O O D4 R4
) (27)

bT1 ) 2d
35a

(a2 - 175) (28)

bT2 ) d
235a

(2a2 + 7x2a2 - 2350+ 1175x2) (29)
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of a* is no longer applicable. This region in parameter space
exhibits rich dynamics, which will be reported elsewhere.59

5. Discussion

Using methods of stability analysis and bifurcation theory
for coupled ordinary differential equations, we have shown that
it is possible to derive exact, analytical conditions for the Turing
instability and the Hopf instability in arrays of coupled reactors.
This approach has allowed us to assess the effect of spatial
inhomogeneities in the substrate concentration on the observ-
ability of Turing patterns in diffusively coupled reactors. We
found that the Turing bifurcation in the CDIMA reaction is
moderately robust to spatial nonuniformities. The concentration
of the activator complexing agent can drop to about half of the
homogeneous critical value in half of the array, and the Turing
bifurcation will still occur before the Hopf bifurcation, if the
substrate concentration is moderately large (σ ≈ 100) in the
other half of the array. We also find that inhomogeneous arrays
are less vulnerable to oscillatory perturbations, if the low-
substrate reactors are in the middle of the array. In fact, for
three or four coupled reactors, the Turing instability will occur
first, even if a reactor in the middle of the array has no substrate
at all, if a is low enough andσ is high enough. These results
show that, as conjectured in sections 1 and 2, the Pearson and
Bruno result, σ(x) > σc

/(a) everywhere, is indeed only a
sufficient condition for the Turing bifurcation to occur first; it
is not a necessary condition.

The main advantage of our approach is that it avoids time-
consuming numerical searches of a large parameter space to
find the critical concentration profile. Instead, it relies on
symbolic computation software to obtain exact, analytical
expressions for the coefficients of the characteristic polynomial,
the Hurwitz determinants, the Turing condition, and the Hopf
condition. Though in principle any number of coupled reactors
can be studied, in practice, the number is limited by the
performance of the computational software and hardware. Arrays
of up to four reactors can easily be studied on a regular desktop
computerspart of the calculations were carried out with
MATHEMATICA on a Macintosh 867 MHz PowerPC G4 with
512 MB RAM, and we have obtained reliable results in a
reasonable amount of time for up to six reactors using MAPLE
on a Compaq ES 40 with 32GB RAM.

Our theoretical analyses show that arrays of coupled reactors
can provide a very useful experimental tool to study the
formation of spatial chemical patterns. They represent an
attractive alternative to CFURs, which so far have been the only
type of reactor employed in the study of Turing patterns. Arrays
of coupled reactors are particularly well suited to investigate
the effect of spatial inhomogeneities on Turing instabilities. It
is easy to change the substrate concentration in individual
CSTRs and to generate specific inhomogeneous substrate
concentration profiles in arrays of coupled reactors. The same
task is more difficult in a CFUR; there the substrate is either

embedded in the gel or is the gel itself. Arrays of coupled
reactors also avoid the gradients in the feed reactant concentra-
tions that occur in CFURs.
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