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We study the competition between the Turing instability to steady patterns and the Hopf instability to oscillations
in diffusively coupled open reactors. Our approach is based on exact, analytical criteria for the occurrence of
these instabilities in arrays of coupled reactors. We consider a general two-variable kinetic model that represents
an activator-inhibitor scheme with a complexing agent or substrate for the activator. We apply our results
to the LengyetEpstein model of the chlorine dioxidéodine—malonic acid reaction. Using symbolic
computation software, we derive exact conditions for the Turing and Hopf bifurcations in small, linear arrays
of coupled reactors with an inhomogeneous concentration profile of the substrate. Our main result is the
determination of the critical substrate concentration profile, above which the Turing instability occurs before
the Hopf instability. This provides the condition for stationary Turing patterns to be experimentally observable
in arrays of coupled reactors.

1. Introduction instead of discrete systems of coupled reactors, Turing already
) i i . . . showed that the diffusion-induced instability, now called Turing
A wide variety of phenomena in chemistry, biology, physics, j,sability or Turing bifurcation, can also occur in two coupled
and other fields involve coupling between nonlinear, discrete \o40t0rs. The earliest studies of the Turing instability in two
units. Living cells, for example, often interact with adjacent cells homogeneous reactors employed the Brusselator model for the
by mass transfer via gap junctions. In specific applications, the i, etics2425\yhereas recent studies have used the more realistic
number of discrete units involved can be quite large. However, LengyelEpstein model®3! The latter is a simplified two-

insight into the dy_namical behavior of coupled nonlinear variable modé¥ for the chlorite-iodide—malonic acid (CIMA)
elements can be gained already from the study of small arrays, aaction and its variant, the chlorine dioxidiedine—malonic

conﬁlstmg Of]; as ft?W Zst twlz) unlt;s,. TthS_}_lglly ?]f twoh(_:otupledf acid (CDIMA) reaction®® These reactions have claimed a
con |ntlrj]oust;Novxi sf]rre an re(;;\(r:] orsh(d S.zj asbla t;]s orytp Prominent place in nonlinear chemical dynamics, since the first
more than twenty ive years and has had considerable theoreticat, , oy, sjye experimental evidence of Turing patterns, in reac-

and_practlcal impact; see, for ex_ample,_refs_ZD. _In most tion—diffusion systems, was obtained with the CIMA and
studies, the reactors are coupled via passive o!lffu5|on-llke MaSS~p VA reactions thirteen years ago: see, for example, refs 34
transfer, though some have considered electrical colpliig

and flow rate coupling?1315Most theoretical and experimental ' _ .

investigations of coupled CSTRs have focused on coupled ~TTUe Turing patterns can only occur in open systems, and
chemical oscillators, and many different types of dynamical their experimental realization requires appropriate flow reactors.

behavior were observed. Only a few studies have consideredSUch reactors were developed fifteen years ago, and the
coupled steady state reactéfe?t 23 continuously fed unstirred reactor (CFUR)} consisting of a

I gel layer coupled to one or two CSTRs, has become the main
experimental tool. Further, a Turing instability can only occur
if the inhibitor species has a diffusion coefficient that is larger

ago, diffusion can destabilize the homogeneous steady state anq::f"m the activator s dpe_:ue_s. For:_the (;:LMA ang CDIMA reactllon_s,
generate stable, stationary concentration patterns in chemicaff!S Nécessary condition is achieved by introducing a complexing

systems with appropriate nonlinear kine#€sTuring’s work agent or substrate, for example, starch or poly(vinyl alcohol),

has given rise to an extensive literature on chemical pattern for the act|yator species, iodide 1on. The substrate is either
formation in chemistry and biology; for reviews, see, for embedded in the gel of the CFUR in the case of starch or can

instance, refs 2729. Though chemical pattern formation is most P€ used as the gel itself in the case of poly(vinyl alcohol) or
commonly studied in continuous reactiediffusion systems,  Polyacrylamide. Consequently, the substratetivator complex
is immobile, which leads to a significant reduction in the

- - effective diffusion coefficient of the activator species. The
*C d thor. E-mail: whorsth .edu. Fax: 214-768- ; . .
4089_0"e5p°n ing author. E-mail: whorsthe@smu.edu. Fax CIMA and CDIMA reactions can oscillate in a CSTR, and an
T E-mail: pmoore@smu.edu. analysis of their kinetics shows that the concentration of the

The first studies of coupled chemical cells were theoretica
investigations and focused on the diffusion-induced instability
to nonuniform steady staté$2>As Turing showed five decades
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substrate determines if in a CFUR the oscillatory instability or 2. Lengyel-Epstein Model and Turing Bifurcation in a
the Turing instability occurs first, i.e., is the primary bifurcation, Reaction—Diffusion System

as a control parameter is varigd'?4f the substrate concentra-
tion is higher than some critical value, the Turing instability is
the primary bifurcation, whereas at lower substrate concentra-
tions the oscillatory instability occurs first. This raises the
question of the effect of spatially nonuniform substrate con-
centrations on the formation of Turing patterns, because it is
experimentally very difficult to achieve a completely uniform

The effect of the complexing agent on the activator species
can be taken into account in a simplified two-variable model
by “renormalizing” the time scale on which the free activator
concentration evolve®:*1For the CDIMA reaction in a CSTR,
the kinetic equations of the two-variable Lengy&pstein
model (LE model) are

gel. The theory of Pearson and Brdhteads to the conclusion du uy

that as long as the substrate concentration is everywhere higher Ga =fuy)=a—-u- 41 + 2 1)
than the critical value, the Turing instability will occur first,

and Turing patterns are observable. However, this is only a dv uv

sufficient condition, not a necessary one. We expect that as long o~ 9uy) = b(u 1t uz) ()

as those regions with a substrate concentration below the critical
value are not too large in size, the Turing bifurcation should Hereu and v are the dimensionless concentrations ofahd
still be the primary bifurcation. ClO,™, respectively. The constaatis proportional to [CH-
The effect of spatial inhomogeneities on chemical pattern (COOH)]/[CIO;] and the constanty to [I5]/[CIO2]. The
formation is an important open problem. Chemical or biological parameteis depends on the concentration of the complexing
systems are rarely completely uniform. Pattern formation in the agent S according t@ = 1 + K[S]o[l2], where K is the
Drosophila egg, for example, occurs in the presence of association constant of the substradetivator complex. Ac-
maternally imposed gradients of gene proddétshe experi- ceptable experimental values lie in the rangs & < 1000%7
mental studies of Turing patterns in the CIMA and CDIMA Note thato = 1 corresponds to no complexing agent. The
reactions mentioned above all used CFURs, which unavoidably CDIMA reaction in a CSTR, described by the LE model, has
exhibit gradients in the concentrations of the feed reactants. only one steady state given by
Theoretical studies of spatially nonuniform reactiaiffusion )
systems are rare, and little is known about the effects of Uzé =1+ a 3)
gradients on the formation of patterns. Except for spatial 5 25
variations in the diffusion coefficierf*4 inhomogeneities in , ) , ) )
parameters of the reactiewliffusion system typically lead to This state undergoes a Hopf bifurcation to oscillatory behavior
nonuniform steady states. No general analytical tools exist for a
the stability analysis of such states. Perturbation techniques can
be used for weak nonuniformities, as in refs4&. Lengyel b, =
and co-worker® used an approximation of the reactien
diffusion equation to study the effect of the gradients in CFURs
on the position and the possible three-dimensional character of
the Turing structures. In general, numerical studies are required
to address the problem; see for example, refsZ® Voroney
and co-worker® have carried out numerical simulations of the di
Sel’kov model with a complexing reaction. They considered

3a® — 125
Sao )
For a > +/125/3, the unique steady state of the CDIMA
reaction in a CSTR is stable fdy > by, and the reaction
oscillates forb < by.

When the LE model is studied in the setting of a one-
mensional reactiondiffusion system,

the case where the immobile complexing species is confined to au(x,t) u

disks or stripes. If the spatial scales of the inhomogeneities and el ICH) s P (5)
the reaction-diffusion system are comparable, interactions 3

between oscillatory behavior and Turing patterns generate u(xY) 2

spatiotemporal dynamics not observed in a homogeneous —‘=g(uyy)+d—u (6)
medium. ot b

Although the analysis of inhomogeneous reactidiifusion whered is the ratio of diffusion coefficient®cjo,-/D)-, it is

systems presents serious challenges, the situation is considerablyound that the homogeneous steady state undergoes a Turing

morei favo?rt]) le for |nhto mogeneOL:Js arr?):jsf O(]; d'ﬁ.l:s'\iﬁly cciuplgzd ifurcation to a nonuniform steady state, lags decreased, at
reactors. These systems can be studied wi e standarqeee “tor instance, ref 37)

methods of stability analysis and bifurcation theory for systems
of coupled ordinary differential equations. Using these tools, d 2 ——

we derive a general condition for the observability of Turing by = 5(13"" — 4/10aV25+a + 125) ()
patterns in inhomogeneous arrays of coupled reactors. We study

the effect of inhomogeneities in the substrate concentration for The critical valuebr for a bifurcation to Turing patterns is
linear arrays of two, three, and four reactors. The paper is independent ofy, whereas the critical valua, for a bifurcation
organized as follows. In section 2 we briefly review the to homogeneous oscillations is inversely proportiona#.tdo
LengyelEpstein model for the CDIMA reaction in a well-  observe the formation of Turing patterns, one must ensure that
stirred reactor and in a reactienliffusion setting. The general  the Turing bifurcation occurs before the Hopf bifurcation. For
condition for the Turing instability to be the primary bifurcation @ given value o#, this can be achieved by using a sufficiently
in arrays of coupled reactors is formulated in section 3. We large concentration of complexing agent such that o(a),
apply our results to small, linear, inhomogeneous arrays of whereo’(a) is given bybr = by.

coupled reactors with LengyeEpstein kinetics in section 4. As is clear from the form of the reactiemiffusion system,

We discuss the implications of our results in section 5. steady states and stationary bifurcations are completely inde-
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pendent ofo. It is only time-dependent states, such as oscilla- for this to hold are the RouthHurwitz conditions, see, for

tions, and nonstationary bifurcations that are affected loy example, refs 5557,

the concentration of the complexing agent. Because stationary

states are independent of they are not affected by spatial c Gy - -

inhomogeneities in the substrate concentration. The theory of 1 ¢ ¢ -

Pearson and Bruribleads to the expected conclusion thét) 0 CCo - -

> o(a) everywhere is a sufficient condition for the homoge- A= 0 11 C . - - >0 k=1,2,...n (15)
neous steady state to undergo a Turing bifurcation before a Hopf L.

bifurcation. This raises the interesting question of what happens
if o(X) < of in some regions of the reactor. We expect that as
long as those regions are not too large in size or as long as ) N
lo(x) — &(a)| is sufficiently small in those regions, the Turing ~ t0gether with the condition
bifurcation should still occur first.

c,>0 (16)

00 - C

3. Inhomogeneous Linear Arrays of Coupled Reactors

Although the analytical study of the stability of reaction ~ (S€tc = 0in (15) fori > n.) A stationary bifurcation, which
diffusion systems with spatial nonuniformities is difficult, as COrresponds to a vanishing real eigenvalue, occurs if condition
mentioned in section 1, analytical criteria can be derived for (16) is violated, i.e.c, = 0. The CDIMA reaction in a CSTR
the observabi"ty of Turing patterns in inhomogeneous arrays cannot Undergo a Stationary bifurcation; see section 2. Therefore,
of coupled reactors, as we show in this section. Not only are spatially homogeneous perturbations cannot have a vanishing
arrays of coupled reactors interesting in their own right as real eigenvalue for an array of CDIMA reactions, and= 0
explained in the Introduction, but they can also be understood (with Ax > 0) is a necessary and sufficient condition for a Turing
as a more or less crude discretization of the reaetiiffusion instability to occur. Orlando’s formula implies tha,-; = 0
system (5) and (6). We consider a linear arraynofeactors (with ¢y > 0, Ay > 0, k=1, ..,n — 2) is a necessary and
containing all components of the CDIMA reaction, including sufficient condition for a conjugate pair of purely imaginary
the complexing agent, and linked by diffusive coupling via eigenvalue8®%8i.e., for a Hopf bifurcation.
semipermeable membranes. The reactors are identical with the  The Turing bifurcation and the Hopf bifurcation occur
exception of the complexing agent concentration. The mem- toqgether, if
branes are impermeable to the complexing agent, and individual
reactors may be loaded with different concentrations of substrate, c =0 and A
i.e., have different values @f. A linear array of such coupled
reactors is described by the following set of coupled ordinary
differential equations:

n-1-_ 0 (17)
which determines the critical profile; ((a). (BecauseA,—1 =
An-2Cn-1 — Mp-2p-1Ch, Where M;; is the minor of the i( j)
du, element of the Hurwitz determinant,.—;, condition (17) implies
It~ f(upo) + U, =1y (®) that A,> = 0 also, ifc,-1 #= 0, which is the generic case.)
Note that we have obtained a fully analytical criterion for the
v; critical substrate concentration profile. This has the great
ot g(uy,vy) + d(v, — vy) 9) advantage that we can determine the condition where the Turing
bifurcation ceases to be the primary bifurcation without having

u . to resort to a time-consuming numerical search of a large
Oigt = flu) tuytu,—2u  i=2,..m-1 parameter space.
(10) Evaluating the various quantities by hand is already a very
du. cumbersome task for two coupled reactors. We have therefore
—=gv)+dw,, + o, —20) i=2..m-1 used symbolic computation software, namely MATHEMATICA

dt (11) (Wolfram Research, Inc., Champaign, IL, 2002) and MAPLE

(Waterloo Maple Inc., Waterloo, Ontario, 2002), to obtain exact,
du,, analytical expressions for the coefficient®f the characteristic
Omgr f(Um o) + Uy — Uy, (12) polynomial (14) and the Hurwitz determinamg for arrays of
up to four coupled reactors.

m f— f—
Tt 9(Un o) + d(vm1 — V) (13) 4. Small Linear Arrays with Lengyel—Epstein Kinetics
The unique homogeneous steady state of the linear array of 4.1. Two Coupled ReactorsFor two coupled reactors, the
CDIMA reactions is given by@, zi) = (G, ) fori = 1, ...,m. Jacobian is given by
The stability of this state is determined by the eigenvalues
of ann x n Jacobian matrix Jy = 2m, which are the roots of _(Ry Dy
the nth order characteristic polynomial, detiwl) = 0 (I is J= D, R, (18)
the identity matrix):
"+ o™+ ™2+ o wt+c,=0 (14  Vhere
The homogeneous steady state is stable, if all raotf (14) R = ((All — Dloy Ao, ) and D = (1/Ui 0) (19)
have a negative real part. The necessary and sufficient conditions A Ay,—d ' 0 d
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Figure 1. Critical profile, o2 as a function ofo;, for two coupled
reactors with LengyetEpstein kinetics foa = 50.0 andd = 1.07.
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Already for two reactors, the expressions for the coefficients
¢; of the characteristic polynomial and the Hurwitz determinants
Ax in terms ofa, b, d, g1, ando, are very lengthy and will not
be given here. Solving, = 0, we find

_ 2d(a® — 175)

br 35a

(21)

and a Turing bifurcation exists i > ann = V175 =
13.228756. For a homogeneous array, iog.= o2 = o, the
Turing bifurcation occurs before the Hopf bifurcationaif>

05(a;2) (the argument after the semicolon denotes the number

of coupled reactors), where

7(3a° — 125)

o(a2)= (22)

In an inhomogeneous two-reactor array, the substrate con-
centration profile is necessarily asymmetric. Let reactor 1 be

the high-substrate reactar; > oZ(a;2), and let reactor 2 be
the low-substrate reactow, < o7(a;2). We varyos in reactor

1 and determine the critical concentrationo1,a,d) in reactor

2, as a function of1. Foroz > 02,{01,8,d) the Turing bifurcation
occurs first, whereas far, < 0, {01,a,d) the Hopf bifurcation

is the primary bifurcation. We obtain the critical concentration
in reactor 2, {01,a,d), by solving (17). We sdb = by, which
ensures that the first condition of (17) holds, and use MATH-
EMATICA to solve A3 = 0 in terms ofo,. The resulting
expression foroz . takes up about twelve lines. It is not
enlightening at all and will therefore not be displayed here. We
will instead illustrate the behavior by choosing specific values
for a andd and ploto, ¢ as a function ofr;. Following ref 37,

we use the experimental valde= 1.07 for the ratio of diffusion
coefficients in all calculations in this paper. (Below, we will
no longer explicitly denote the dependencedaf quantities
like o2 etc.) For the parameter we choose the valua =

Horsthemke and Moore

[N T e e ]

o
20 40 60 80 100

Figure 2. Critical profile, o3¢ as a function ofo, for three coupled
reactors with LengyetEpstein kinetics for case 101 = 0, = 0; a=
50.0;d = 1.07.

matter how large the substrate concentratigiis in the other
reactor. In fact, fora = 50.0 the two coupled reactors will
undergo a transition to oscillations first asis decreased as
long aso, < 5.41038. Further, the arithmetic mean of the critical
profile, 6. = 01 + 02, {01,@), as well as the geometric medn,
= 4o,'0,{0,,@), are bigger than the critical value for a
homogeneous array:(a;2), which reinforces the conclusion
that the inhomogeneous array is more vulnerable to oscillatory
perturbations than to inhomogeneous, stationary perturbations.
4.2. Three Coupled ReactorsFor three coupled reactors,
the Jacobian is given by

R, Dy O

J=|D, R, D,
O D; R;

(23)

where

_ (A = 2)o; Ao (00
= Ay, A, — 2d and O= 00 (24)

For an array of three coupled reactors, the Turing condition
corresponds tas = 0, which yields

R

2
_d(e?—75)_

15a (25)

b,

and a Turing bifurcation exists & > amin = v75= 8.660254.
For a homogeneous array, i.63, = 0, = 03 = o, the Turing
bifurcation occurs before the Hopf bifurcationdf> o%(a;3),
where

3(3a? — 125)

o(a3) = d(@® — 75)

(26)

We will consider two types of inhomogeneous substrate profiles;
either an end reactor, e.g., reactor 3, or the middle reactor has
a different substrate concentration, i.e., )= 02 = 0 > 03

or (2) o1 = 03 = 0 > 0. We determine the critical substrate
profile, i.e.,03 {0,a) in case 1 and, (0,a) in case 2 by solving
(17) withn = 6 for 0 > 0%(a;3). As for two coupled reactors,

50.0; however, the behavior is qualitatively the same for other we setb = by, which ensures that the first condition of (17)

values. For these conditionby = 2.84314, and»%(50;2) =

holds, and use MATHEMATICA to solvAs in terms ofos or

10.3758. For a very large concentration of substrate in reactor o, respectively. For three or more coupled reactors, the solution

1, 01 — o, the Turing instability will occur first, ifo, >
02,d0,50) = 5.41038. Aso; decreasesy, ¢ increases mono-
tonely, as can be seen from Figure 1. &sapproaches?; =
10.3758, so does .

These results show that the Hopf bifurcation is more
destabilizing than the Turing bifurcation. If half of the system,
i.e., one reactor, contains no substrate= 1, then the Hopf
bifurcation is the primary bifurcation of the coupled array, no

of the second equation in (17) can no longer be found in closed,
analytical form;os ¢ or o2, respectively, is determined numeri-
cally. Note that this is the only numerical step in our approach.
Analytical expressions are obtained for all other quantities and
conditions. We choose again= 50.0 and findor = 3.45967
ando?(50;3) = 8.52683. The critical profiles for case 1 and 2
are shown in Figures 2 and 3, respectively. Agaiyo,a) and
02.{0,8) increase monotonely asdecreases.
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Figure 3. Critical profile, oz as a function ofs, for three coupled ~ Figure 5. Critical profile, o5 as a function ofo for four coupled
reactors with LengyetEpstein kinetics for case 25, = 03 =0, a = reactors with LengyetEpstein kinetics for case 2, = 0, = 04 = 0;
50.0;d = 1.07. a=50.0;d = 1.07.
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20 40 60 80 100 Figure 6. Critical profile, o, = 03 as a function ob, for four coupled
Figure 4. Plot of a* as a function ofo for three coupled reactors for  reactors with LengyetEpstein kinetics for case 45, = 04 = 0; a =
case 2d = 1.07. 50.0;d = 1.07.

4.3. Four Coupled ReactorsFor four coupled reactors, the
The behavior of the critical substrate concentration is Jacobian is given by

qualitatively the same in both cases and qualitatively the same
as for two coupled reactors. The critical values of the substrate R
concentration are lower for three coupled reactors than for two D
coupled reactors. This can be easily understood as follows. For O
three coupled reactors, Turing patterns are favored in two-thirds 0
of the array, because two reactors have a substrate concentration
aboveo’(50;3). For two coupled reactors, Turing patterns are Two Turing bifurcations occur in a linear four-reactor array.
favored only in half the array, explaining the higher critical One Turing condition is
value. Comparing the two cases for the three-reactor array, we
find that the critical substrate concentration is lower for case 2. L

: : =9 : bry = -(@” — 175) (28)
The Hopf bifurcation to oscillations occurs before the Turing 35
bifurcation more easily if the reactor with a low substrate
concentration is an end reactor instead of being a middle reactor.
Further, the Hopf bifurcation is the primary bifurcation of the d ) 5
coupled array in both cases, if eitheg = 1 or o, = 1, bT2=ﬁa(2a + 7v/2a% — 2350+ 1175/2)  (29)
respectively, no matter how large the substrate concentration
is in the other two reactors. These results appear to confirm theyith a > a,, = 7.60544. These two Turing bifurcations are
conclusion from the previous subsection that the Hopf bifurca- degenerate atro = 32.96566389, and fa= aro, the difference
tion is more destabilizing than the Turing bifurcation. However, petweerbr; andbr, is small. Fora = 50.0, the Turing instability
for a three-reactor array the situation is more complicated. As corresponding tdory occurs first,br = by = 2.84314, and
adecreases, the critical profile retains the same qualitative form, 0%(50;4)= 10.3758. We have determined the critical substrate
but it shifts to lower values. For caseds0,a) > 1 fora > concentration profile for four cases following the same proce-

amin, and if o3 = 1, then the Hopf instability is the primary  dure as used for two and three coupled reactorsu{H o, =
bifurcation for all values ofi ando. The same is not true for 5, =5 > g4, Q) o1 =0 =0s=0> 05 B)or =02 =0 >

(27)

with a > amin = V175 = 13.228756, and the other is

case 2. Given a value af; = o3 = o, there exists am* > 03 = 04, (4) 01 = 04 = 0 > 02 = 03. The behavior of the

amin, such that fora < a* we find o, {0,@) < 1, which is critical substrate concentration is again qualitatively the same
unacceptable, because experimentalgannot be smaller than  in all four cases and qualitatively the same as for two- and three-
one. The behavior cd* as a function ofo is shown in Fig. 4. reactor arrays. Therefore we show only the two cases most

As o increasesa* increases and approaches an asymptotic value favorable to Turing patterns, Figures 5 and 6, which as expected
of 24.2072. For the largest experimentally acceptable value of are case 2 and case 4, where the low-substrate reactors are
the substrate concentration,= 1000, we finda*= 24.029. located in the interior of the array.

Fora > 24.2072, the Hopf bifurcation will occur before the As for a linear array of three reactors, we find in case 2 that
Turing bifurcation, if 1< 02 < 02{0,a). Fora < 24.2072 and  for a small enough and large enough, the Turing bifurcation

o sufficiently large, the Turing bifurcation always occurs first, always occurs first, even if the reactor 3 contains no substrate.
even if the middle reactor contains no substrate. This clearly We define, as for three coupled reactors, the critical vatue
illustrates that an inhomogeneous reactor array, where the reactoby the condition thavs (o,a*) = 1. The behavior ob* as

with the low substrate concentration is in the middle, provides function of ¢ is shown in Figure 7. For < 17.7, two curves
more favorable conditions for observing Turing patterns than of Hopf bifurcation points approach each other, merge and
an array where the reactor with the low substrate concentrationvanish asa is decreased. This results in a jumpa®f. from a

is located at the end. value larger than 1 to a value smaller than 1, and the definition
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a’ embedded in the gel or is the gel itself. Arrays of coupled
reactors also avoid the gradients in the feed reactant concentra-

22 . X
tions that occur in CFURSs.
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