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Harmonic Model Description of the Franck—Condon Density for a Betaine Dye Molecule
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Franck-Condon (FC) factors and the FC density associated with an electron transfer reaction are calculated
for a betaine molecule, pyridiniumd-phenoxide betaine (4-(1-pyridinio)phenolate) in itseKcited state. FC

factors and density functions for harmonic vibrational modes are computed first by modifying the three level-
fixed binary tree algorithm (Ruhoff, P. T.; Ratner, M. ft. J. Quant. Chem200Q 1, 383), a sum-over-

states method based on recursion relations. This modified method allows the calculation of FC factors for 60
vibrational modes and avoids memory problems due to the large number of modes. The effects on the FC
density of frequency shifts and mode mixing (Duschinky rotation) are included. For comparison, the more
efficient time-dependent alternative is also employed for the calculation of the FC density function for the
harmonic motion. In all cases, for a torsional motion which cannot be described by a harmonic potential, the
FC density function is computed through the time-dependent method. We show that the sum-over-states
method agrees well with the time-dependent method except for the high-frequency region. There the sum-
over-states method is inadequate even when greater tHarFC0factors are included. We find that both
frequency shifts and Duschinsky rotation increase the number of FC factors in the high-frequency region,
and as a result, they make the FC density function broader. It is shown that frequency shifts have the greater
effect. In the high-frequency region we do not observe the strong exponential decay of the FC density function
which characterizes the weak coupling limit (relatively small vibrational reorganization energy). We find
that the betaine dye falls into the strong coupling limit. The fitting of the FC density function with a simple
model which includes one classical degree of freedom and one high-frequency quantal degree of freedom
and the comparison of the fitting parameters with comparable exact values show that the simple model provides

reasonable physical values such as reorganization energies.

Introduction two PES’s, and frequency shifts occur because one PES is
. ) _distorted from the other. In addition, vibrational normal modes
Electron-transfer (ET) reactions play an important role in can change so that those in one electronic state are rotated or
many chemical and biological systems, and there have beenmixed in the normal-mode basis of the other electronic state.
many theoretical and experimental studies on ET reaction Thjs phenomenon, called a Duschinsky rotation or the Duschin-
rate is to neglect the dependence of the electronic coupling to simple products of one-dimensional FC overlap integrals, and,
matrix element on nuclear displacements (Condon approxima-as a result, the calculation of FC factors becomes more
tion).2 In that case, the ET reaction rate is factored into the purely complicated. Because of the significance of FC factors, many
electronic part and a purely nuclear part, the so-called Franck methods for computing the integrals along with the Duschinsky
Condon (FC) factors. Because of the importance of the FC rotation have been devisé@:® Sharp and Rosenstock have
factors to ET reaction rates, many theoretical studies have beenderived expressions based on a generating function method for
conducted to calculate the FC factors. Among several methOdSComputing the FC overlap integrd‘&Gruner and Brumer have
for the computation of FC factors, one direct approach is a sum- ysed a binary tree algorithm to develop an efficient technique
over-states method, which is normally based on recursion to calculate the vibrational overlap integrats.
relations® Alternative time-dependent methods have been  As mentioned above, the sum-over-states method is based
introduced by Hellef~® In this method, the FC factors are not  on recursion relationd,and efficient execution of recursion
calculated directly, but the FC envelop is the Fourier transform relations requires saving previous overlap integrals in computer
of the time-dependent OVEr'ap of two nuclear wave functions memory. However, those methods are Cha”enging to app|y
which are evolving on two different electronic potential energy directly to large molecules since too many FC overlap integrals
surfaces (PES). must be saved in memory. To address this overflow problem,
Sum-over-states methods must be used for the direct calcula-Ruhoff and Ratner proposed a three level-fixed binary tree
tion of FC factors, but there are some difficulties using that (TLFBT) algorithm?’ This algorithm, discussed below, is based
method for large molecules since the equilibrium geometries on the Gruner and Brumer’s binary tree algorithhbut instead
of two electronic PES are in general rather different. That is, of building one large binary tree, binary trees for each level are
one PES is displaced with respect to the other PES, andconstructed to reduce memory usage.
frequencies on one PES are shifted from those on the other. Among studied ET reactions is intramolecular ET, where the
Displacements occur from the difference between minima of ET occurs within a single molecule. A good example of
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be described by a harmonic PES due to the softness and
periodicity of that coordinate. In most treatment of a torsional
motion, a periodic potential energy function for the torsional
PES is sought, and the torsional motion is considered as a wave
packet evolving on the potential energy functférté We follow

this methodology here, and by doing so, we also study the effect
of the torsional motion on FC factors. By comparing FC density
functions obtained from the sum-over-states method and the
time-dependent method, we will examine the advantages of each
method over the other. In particular, we will investigate the
behavior of FC factors in the high-frequency region, where the
FC density function has contribution from a large number of
FC factors?”

In experiments on optical spectra in the condensed phase,
physical quantities such as reorganization energy can sometimes
be obtained by fitting the optical spectra with a simple médel.
One of the most popular models is due to Jorti§emhere
nuclear degrees of freedom are represented by one classical low-
frequency mode and one quantal high-frequency mode. By
fitting the FC density function with this model and by comparing
the parameters of the model to the exact results, we will
investigate how accurately the Jortner model provides access
to the physical quantities.

H(20) In this paper, we specifically consider the excited state as
the initial state and the corresponding emission spectrum. We
expect that the main conclusions regarding the usefulness of
alternative computational methods and the impact of variations
Figure 1. Molecular geometry and atom labelings of pyridinitia- in the harmonic modgl on the spectra wou!d be S|m|lgr if the.
phenoxide betaine (4-(1-pyridinio)phenolate). ground-state absorption spectra were considered. This work is
organized as follows. In the next section, we discuss theoretical
intramolecular ET reactions is that reaction occurring in the methods for computing FC factors and FC density functions
excited S state of betaine dye molecules. Betaine dye molecules for the harmonic and torsional motions. In section IlI, the
have drawn much attention from both the experimépitél and calculated results are shown and discussed. Concluding remarks
theoretical communitiés 35 due to their distinct charge-transfer ~ appear in the final section IV.
absorption band that depends strongly on solvent polarity and
S; relaxation via back ET reaction. By use of transient ||. Theoretical Methods
absorption spectroscopy, Barbara and co-workers studied back
ET reaction occurring in the betaine-30 moleci®fe?® McHale We begin by considering the ground and the first excited state
and co-workers have studied intramolecular vibrational and of the simplest betaine molecule, in the gas phase. Considering
solvent motions associated with charge-transfer excitation in ultrafast time scales of intramolecular vibrational motions, we
the betaine-30 molecule using resonance Raman spectr@écpy. make the reasonable and conventional assumption that the
Werncke et al. investigated vibrational relaxation in the relaxation into the equilibrium geometry in the first excited state
electronic ground state after intramolecular back ET by pico- occurs rapidly after the electronic excitati&\Ve will primarily
second time-resolved anti-Stokes Raman spectros€opy. use a low-temperature limit for calculations, corresponding to
Among computational studies on that dye molecule, Mente and an initial state with the excited-state vibrations all in their ground
Maroncelli carried out simulations of betaine-30 in various state?®#2The model Hamiltonian of the system composed of
solvents to study solvatochromisihlobaugh and Rossky have these two electronic states can be expressed in terms of mass-
investigated the spectroscopy as well as the dynamics of theweighted normal coordinat€d = {Q1, Q, ..., Qan—6} WhereN
first excited state of betaine-3%** using mixed quantum/ is the number of atoms in the molecule
classical dynamic®

In the present study, the simplest betaine, pyridinim- A= IgEH:Ig@|+ e [+ y'|ely|+ y|gTe 1)
phenoxide betaine [4-(1-pyridinio)phenolate] is studied. As is
shown in Figure 1, the molecule consists of a linked pyridinium
ring and a phenoxide ring. The goal is to examine methods for
evaluating FC factors for a large molecule with the sum-over-
states method and to investigate the properties of FC density
functions obtained with different models. We will employ
harmonic PES’s, as has been used extensively for vibrational

where|glidenotes the electronic ground state aeidthe first
excited state.y is an electronic coupling matrix element
(assumed constant), whilég andHe are the nuclear Hamilto-
nians on electronic surfacegland |e[] respectively

or vibronic-spectrum calculations and ET reaction-rate calcula- Hy = T(Qg) + Vg(Qg) (2a)
tions3773% We include a detailed consideration of frequency A N
shifts and Duschinsky rotation, which can play a role in He = T(Qo) + V(Qo) (2b)

vibrational motiong%4%-43 This generality allows us to study . .
the importance of frequency shifts and Duschinsky rotation on HereT andV are the kinetic and the potential energy operators,
FC factors. In general, one expects that a torsional motion cannotrespectively.



Franck-Condon Density for a Betaine Dye Molecule J. Phys. Chem. A, Vol. 108, No. 14, 2002609

The Golden Rule transition rate from the first excited state TABLE 1: Comparison between the Computational

to the ground state is expressed with FC factofé as Experimental Data for Low-Frequency, High-Frequency,
and Total Intramolecular Reorganization Energies for
ZJTVZ Simplest Betaine and Betaine-30
ket = z FC(e9)0(E. — Ey) 3) Jiowlcm? Anigl/cm™ Jralcm™t
h % this work AP 3057 19011 22068
. . . . this work B¢ 2130 3100 5230
HereEg(g) is the total energy in the first excited (ground) state. Barbard 1233 1276 3509
FC(e,g) is the FC weight or the squared FC overlap integral ~ Maroncellf 1100
for each final statey and is defined as Rossky 760
McHale" 33 87 120
A a2 — Ernsting 1940 1430 3370
FC(eg) = 1(60)° = 1ZQd Q)T @) :

a0nly this work is on the simplest betaine. All the other studies
wherel (e;g) is the FC overlap integral andg(Qe() are nuclear have been carried out on betaine-3@oth methods are using the spin-
vibrational states in the first excited (ground) state. From the 2&23{3) ?gﬂgtg?ng;aiIg{%%“?r;stﬁf \‘;;ﬁ?lt“;n?sez :Srg de'i‘f:‘*tﬁzorg;ho J
practllca! pomt of view, FC density functlons are more usgful mentioned as the straightforward method in téxthis calculation is
than |nd|V|du§1I F(? factors dug .t(.) thelresolutllon I|m|t.. ASSUMING  pased on Lee et al.’s methgtReference 22 Reference 329 Refer-
the lowest vibrational level initially in the first excited state, ence 331 Reference 34.Reference 30.
the FC density function¥(w) can be expressed“ds
A. Franck—Condon Density Function for Harmonic Mo-
1 tions with Frequency Shifts and Duschinsky Rotation
Hw)=-— Z 10,9)* Q) Matrix. We conqsider)B/l — 7 harmonic vibrationgl degrees of
ow ‘ , 9 :

g freedom, with the seventh degree of freedom excluded being
where the sum is taken over the vibrational states in the the torsional degree of freedom. We use mass-weighted normal
electronic ground state within some energy ratige namely, coordinates denoted &= {Qu, Q, ..., Qan-7}. The harmonic
lo — @9] < dw/2. Herehwt represents the vibrational energy huclear Hamiltonians in the two states differ by frequency shifts

difference of the ground and the first excited vibronic states. @hd Duschinsky rotation as well as the displacement of the

For instanceha? = zjnjghwjg — AG for the spin-boson model equilibrium nuclear positions. The Hamiltonian is then given

(no frequency shifts or mode mixing), whem% and a)]—g are a y

jth vibrational quantum number andjth frequency in the ~har - oyhar ~ har har

Jground state, gespectively, amG is Jthe pc?tentia?/ energy H™ = g, (Qg)@ + el (Q)tel + " (|gmel +

minimum difference between two electronic states. lelgl) (8)
Up to this point, a general description for the FC density

function has been provided. We now invoke some reasonable

approximations for the calculation of that function. First, a . 1 .ns 1

harmonic PES is utilized for the vibrational motions other than Hgar(Qg) =5 Q;Qg + > Q;QgQg (9a)

the torsional motion. In many cases, a spin-boson mwdel,

which only considers displacements in harmonic potentials, is ~ har 1 1. 1

sufficient to describe a systethin general, however, frequency He™(Qo) =5 QeQe 5 QeL2:Qe (9b)

shifts and mixing of modes (Duschinsky rotation) must be taken

into account to precisely explain the change of the vibrational Here Q. and Qg are diagonalized frequency matrixes in each

whereyha is assumed to be real and static and

normal modes accompanied by an electronic transtfidfiThe state andAG is the potential energy minimum difference
detailed procedure used to obtain frequency shifts and thebetween the two electronic stat&3! is the transpose op.
Duschinsky rotation matrix is described in detail elsewiiépé. To evaluate a FC overlap integral 8F(e,g) = gar(Qe)|

For the highly anharmonic torsional motion, we use a method Xgar(Qg)D we should express the coordinates of the ground

that has been proposed by Seidner ef'and used popularly  tate as a function of the coordinates of the first excited state.
by others!546 This method will be described in detail in the  This can be accomplished by a linear combinaigh

second subsection.
We decompose the nuclear Hamiltonian in eq £ as Qy=DQ.+ AQ (10)

A= A"+ [ (6) whereD is the Duschinsky rotation matrix aniQ means a

N o . . mass-weighted displacement vector.

where H"@ means the Hamiltonian which describes all the As discussed elsewhere, alternative methods to oBtaind

vibrational motions subject to the harmonic potential ap- AQ are availablé52 In a method due to Lee et &k, the

proximation ancH™" represents the Hamiltonian for the torsional geometry optimization is only carried out for the initial

motion. Assuming that the torsional motion decouples from the gjecironic state and the geometry of the final electronic state is

other modes, based on the time scale difference between slowgtimated by projecting the force constant matrix (Hessian

torsional motions and other motions, the FC density function matrix) at the initial state optimized geometry. Reorganization

can be written ds energies obtained in this way compare favorably to those
reorganization energies inferred from experimental and com-

INw) = f_ww do'S"(w — ") = (') (7) putational data as show in Table 1. In Table 1, it should be

. noted that the values in the present work are obtained from the

where="a(w) is the FC density function foH"a" and S (w) simplest betaine and all the others come from the betaine-30.
that for H'°". Detailed expressions fa'¥(w) and °(w) as Betaine-30 includes five pendant phenyl rings on the structure

well asH"" and Htr are provided next. of Figure 1. In Table 1, method A corresponds to the
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straightforward method where geometry optimizations for each In addition,1"¥(0,0) in eq 13 is given as
electronic state are performed independently and method B is
Lee et al.’s method, just described. Both methods in this work 1"¥(0,0) = 2(3N*7)’2[det(JTJ + |)]*1’2
use the spin-boson model for the calculation of the reorganiza- - T T 1T
tion energy. Compared with experimental data, Lee et al.’s ex;{ SAA+D A JUJ+1) J'A| (16)
method (method B) provides a far closer value to the experi-
mental results than method A. The need for this less intuitive where0 = (0y, 0, ..., Q, ..., Gn-7).
approach results from relatively large displacements that are  Many conventional methods use the general recursion relation
observed in the present case for method A, possibly because oto calculate multidimensional FC overlap integrist® In our
the associated large torsional displacement between electroniczase, we derive a recursion relations from eq 11, which leads
states. Specifically, we find that the direct approach leads to to
seven modes between 600 and 1200 Ewhere the magnitude
of the calculated displacements obtained from the direct 3N-7
approach are greater than 1.0 and four modes with frequenued “(mn+1)=- Z Gy
greater than 3000 crd with calculated displacements greater =
than 0.5. These eleven modes contribute a reorganization energy 2 |12 3N-7 m
of 14 500 cmt in method A. do[——] 1"mn) + Z g ——1"(m — 1,n)

Following ref 51, here, we first optimize the excited state n + 1= n+1
and perform frequency analysis of that electronic state to obtain @av7)
the Qe and NN — 7) transformation matrix ", which
transforms mass-weighted Cartesian coordlnates into normalVheren = (M, nz, N3, ..., Nan-7) and L= 0y, Gz, ..., &, ...,
coordinates. Next we calculate the Hessian matrix and the massO3v-7)- Since we have assumed that the excited state vibrations
weighted force vector (gradient) of the ground state at the @€ in their ground state (namely, = 0), eq 17 is simplified
equilibrium position of the first excited state. The Duschinsky into
matrix D can then be evaluated fr(_)m the Hessian mat_rix of the aN—7 n o \u2
ground state in Cartesian coordinatesThe mass-weighted Ihar(oyn +1)=-— Z ij( ] ) Ihar(o,n _ 1j) .

=

1/2
Ihw

n

m,n — 1]-) —

Ny

displacement vectoAQ can then be calculated. Ny
Sharp and Rosenstock have derived a generating-function-

based expression for FC factdfs-ollowing their method, we d

reach the equation K

N

2 1/2
) 1"3(0,n) (18)
+1

00 00

2mon The straightforward recursion relation method requires large
ZO L (—)|har(m,”) = 1"(0,0) exp[~(TT AT + amounts of memory, limiting their applicatiofs!” To over-
=0 A= min! come this problem, Ruhoff and Ratképroposed the TLFBT,
2T'B) — (U'CU + 2U'G) + 2T'EU] (11) which is based on Gruner and Brumer’s binary tree algorithm.
In Gruner and Brumer’s binary tree algorithm, one large binary

whereT andU are dummy variable vectot8. tree grows to save FC factors. However, the TLFBT method
The matrixes in eq 11 are given as divides the large binary tree into smaller binary trees. Each
binary tree is labeled by the level and stores only FC factors
A=]|— 2J(JTJ + I)—lJT (12a) belonging to the same level. Here, the lekek defined as
3N-7
C=1-20"3+N"* (12b) L= Z n (19)
&
E=20"0+ 1) (12c)

wheren; is the quantum number of thjeéh normal mode. The
TLFBT method uses the fact that only the previous two levels
L — 1 andL — 2 are required to calculate a FC factor in the
level L. Therefore, the method stores FC factors pertaining to

and vectors as

B=[JQ@J+1) " —1]A (13a) just the previous two levels, greatly reducing the memory usage.
T T Although the TLFBT algorithm is used for our study, the
G=@JJ+1)JA (13b) number of FC integrals to be computed is still large for 59

. . . . _ . normal modes. To reduce the number of FC integrals, we modify
Herel is the identity matrix, and and a dimensionless vector  the TLFBT method and use symmetry groups for vibrational

A are defined respectively as normal modes next.
In general, totally symmetric low-frequency modes have large
J=rDrt (14a) displacements, and therefore high quantum numbers in the low-
g-"e . : .
frequency modes should be included in the calculation of the
A=TAQ (14b) FC factors. For totally symmetric high-frequency modes,
however, displacements are small and only a few terms in a
where an element of the diagonal matfixis given as progression are sufficient. Consider the lekdbinary tree. In
this binary tree, FC factors are computed upLtguanta of
o\ 12 each mode. Wheh is large, the computation of a FC factor
(T.). = (ﬁ) (15) for a high-frequency normal mode whose displacement is small
¢ h wastes time and memory. To address the problem, our modified
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method separates modes whose displacements are large fror
the other modes. First, FC factors for the large displacement
modes are calculated, and then the binary trees grow up from
each of the FC factors for the large displacement modes. For
example, suppose that among totally symmetric modes, we have
4 modes which have large displacements, and we should
consider quantum numbers upNg, N,, N3, andN4 quanta for

the 4 modes, respectively. Then, one first calculates FC factors,
the total number of which i8l; x N> x N3 x Na. Then, level

L is decided from the quantum numbers of only the remaining
modes, and binary trees grow up from each of the FC factors §
computed from the 4 modes. We can label each binary tree as 0
(,0,0,0,0),(,o0,0,0,1),..(,0,0,b0), (1, 0,0, 0, 0),
(1,0,0,0,1), ..., (1, 0,0, @), ..., Nz, N2, N3, N, L), where

the first four numbers in the parenthesis are quantum numbers
for the four large displacements modes, and the last number is
the level for the other modes. Since we consider the modes
whose displacements are large separately, we can keep the leve
L small.

In addition, we use vibrational symmetry groups of the
simplest betaine molecule. Vibrational normal modes in the first
excited state belong to 'Aand A' symmetries since the
symmetry of the optimized geometry in the first excited state
is Cs.3° Because of the symmetry, the Duschinsky matrix is block
diagonalized into two submatrixes. (See Figure 2.) Then, each
submatrix can be treated separately, and FC overlap integrals
are factored into a product, which is given as

1"30,n) = 1"¥(0,n™) x 1"*(0,n*") (20)

Heren”'is defined agi = (n, ...,ny ) andn®" = (ny", ...,
n,); Nar andN,- are the total number of modes pertaining to
symmetric groups Aand A’, respectively.

Under the assumption that the excited-state vibrations are all
in their ground state, the FC density function is now giveti as 0

Zhar(a)) — 6i Z Ihar wg)z (21)
w

where the sum is taken over the vibrational states in the
electronic ground state within a resolutiow, i.e., | — w9
< dwl2 andw? is defined as

Figure 2. Absolute values of Duschinsky matrixes’ elements. (a)
Normal modes in the ground {Sand the first excited state {Sare
9_ 9 pe _
ho® = Z n?hwi + hAW;e AG (22) arranged in terms of increasing order of frequencies. (b) Same as (a)
= except for being sorted by symmetry first and then by frequency within
06 - ) ) the same symmetry. In (b), the modes3r belong to symmetry ‘A
Here Awgg is the zero point energy difference between the and 38-60 to symmetry A.
ground and the first excited state, thatAsyge® = wg™ — wg™ o o o N
B. Franck—Condon Density Function Induced by Tor- The initial nuclear wave function is in the equilibrium position
sional Motion. As mentioned above, the central inter-ring of the first excited state, so that the harmonic potential can be
torsional motion is well beyond a harmonic potential description, used for the first excited-state PE&'(6) given as
and the method introduced in the previous section cannot be
applied to this torsional motion. The alternative time-dependent V() = 1 (Y60 — 6.9 (23)
method due to Heller et &7 yields the FC density function © 2 € 0
via a Fourier transform of the time-dependent overlap between

two nuclear wave functions evolving on two different electronic Whered is the torsional angle at the equilibrium configuration
PES's. of the first excited state. The explicit torsional PES for the

Following Heller's method;” first we explicitly calculate the grognd state is necessary. In general, the PES for the torsional
periodic torsional potential energy function for the torsional Motion is given &%
motion of the electronic ground state. The torsional dynamics 1
is then described as a wave packet evolving on the periodic V;or(g) = z V,(1 — cogn(d — 6,.9}) (24)
PES. The dynamics of that mode is obtained by solving directly 2 &
the time-dependent Schitimger equation (TDSE), as discussed
elsewhereg5.44.45.46 where6 9 is the torsional angle at the equilibrium configura-

3N-7
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tion of the ground state anis an integer. We obtain parameters TABLE 2: 60 Normal-Mode Frequencies (cnt?) and
for the ground-state torsional PES by fitting computed potential Displacements in the Ground and the First Excited State

energies as a function . mode g e AQ mode  wy e AQ
The FC density can be expressed as the Fourier transform of 1 695 281 —569 31 30929 30870 0.5
the overlap between the two nuclear wave functions evolving 2 282.6 2015 156 32 3076.7 3102.3 0.06
on the first excited and ground stéate 3 2944 280.0 021 33 3074.8 3102.8 0.00
4 512.1 387.5 —0.36 34 3104.3 3119.7-0.04

tor T tor tor 5 435.7 457.0 —0.75 35 3107.0 3121.4 0.06
2(w) = 2Re [ dtiW'(0)| W (O Cexplot)  (25) 6 5565 5383 019 36 31455 31284 0.02
7 616.0 594.8 0.06 37 3181.5 3158.7 0.06

where W¥'(t) and lPg’r(t) are nuclear wave functions on the 8 6837 6311 —0.39 38 271 624  0.00
. . . o 9 804.7 658.3 0.08 39 56.5 121.6 0.00
first excited and ground states, respectively, wHé‘ufﬁ(O) = 10 6994 6922 039 40 1540 1705  0.00

‘Pg”(O). The relation betweenin eq 25 anddw in eq 21 is 11  1000.7 720.8 —0.05 41  369.2 3520 0.00
12 7659 771.3 0.51 42 402.6 4255 0.00
27 13 936.3 953.1 0.28 43 410.0 434.9 0.00

ow = - (26) 14 9494 969.2 —0.54 44  466.1 5440  0.00

15 10473 9727 019 45 620.1 6353 0.00
16 1006.6 999.4 0.36 46 874.1 737.2 0.00

IIl. Results and Discussion 17 10186 10082 —1.01 47 6864 7451 0.00

Geometry optimization and frequency analysis are performed ig ii’gé-g ﬂg; 00 438 8?7’2%4 8573&07-9 0%-80
with the Gaussian 98 prograth. Configuration-interaction 50 12012 1206 0 50 10259 989.0 000

s_ingles (_CIS) with the 6-31G* b_asis set is used to optimi_ze the 57 12663 12520 -003 51 9666 10187  0.00
first excited state. The calculations of the Hessian matrix and 22 11721 12850 0.03 52 960.8 1020.8 0.00
the gradient of the ground state at the optimized geometry of 23  1327.2 1344.0 -059 53 1155.1 10314  0.00
the first excited state are carried out at the HarirEack level 24 14525 14272 0.03 54 11152 10817  0.00
with the same basis set. Frequencies in this paper are scaled 25 14362 1447.7-030 55 °01.7 12618  0.00

. T . 26 14776 14784 0.29 56 1480.6 1291.5 0.00
6
with the factor of 0.988 The geometry optimization of the first 27 15280 15358 006 57 13375 13700  0.00

excited state is performed without applying any symmetry at 28 1622.7 1620.2 0.02 58 1522.8 1522.7  0.00
first. As the torsional angle between the pyridinium ring and 29 1670.2 1666.6 —0.99 59 3094.6 3089.1  0.00
the phenoxide ring obtained in this case was found to be very 30 17483 17463 030 60 3179.7 31544  0.00

close to 90 and the symmetry very nearlys, we proceeded aCIS with 6-31G* is used to perform a geometry optimization for
by enforcingCs symmetry in the first excited state to simplify  the first excited state. The frequencies of the ground state are obtained
the following analysis. The torsional angle is thus fixed &90 at the optimized geometry of the first excited state by the diagonalizing
the electronic energy under symmetry was not significantly force constant matrix (Hessian matrix) of the ground state. Calculation
different from that without symmetry. for the force constant matrix is performed at the HartrBeck level
Figure 2 shows Duschinsky rotation matrixes ordered by with 6-31G*. Frequency scaling factor is 0.91, and displacements are

. . . . unitless. See texP.The first 37 normal modes belong to the totally
frequency (Figure 2a) and after the blocking by vibrational gymmetric groupA', and the other 23 to the nontotally symmetric

symmetry groups (Figure 2b). The first 37 normal modes belong group, A”. Note that only the normal modes belonging Ab have
to A, and the other 23 to ‘A yielding the block-diagonalized  nonzero displacements.

Duschinsky matrix in Figure 2b. Table 2 provides the frequen-

cies and displacements that pertain toaAd A’. Note that the

normal modes pertaining to "Asymmetry group have zero
displacements. Before going further, it it worth commenting on 2.0x10*
the relation between these results and experimental resonance
Raman observatior?4-26 Because we consider a simpler related

dye, a quantitative comparison is not possible. Experiments on
betaine-30 in solvent showed that approximately 19 modes were
resonance Raman active, among which 7 modes have prominent___
displacements (larger than 02)Our study shows 18 normal S
modes whose displacements are relatively large (larger than 0.2)& _ 1.0x10®
Among them, 9 modes have significant displacements larger
than 0.5. On the basis of this observation, our study is in
qualitative agreement with the resonance Raman study. Another

1.5x10*

; ) 5.0x10° |- -
point of contact between our computational study and the
resonance Raman experiments is about the relationship between
frequencies and displacements. Both show that displacements oo Lo . | \ |

in the low-frequency region are in general larger than in the
high-frequency region. 1

Figure 3 shows"a(w) for harmonic motions with varying o/cm
resolution dw (See eq 5) Frequency shifts and Duschlnsky Figure 3. FC densiti?s for the harmonic mOtiQnS Wlth reSOIL-]tion of
rotation are taken into account in the FC density spectra. Zero 3091""“0' 50 cr'. The inset shows the FC density with resolution of 1

. 2 cmL. Both frequency shifts and Duschinsky rotation are included.

frequency in the graph corresponds to the minimum energy
difference between the ground and first excited-state PES’s, i.e.,0.9845. As quantum numbers increase or the level increases,
zero corresponds to an adiabatic energy differencA®f= the number of FC factors to be computed increases rapidly. The
19841 cm?! (see eq 11). The total number of FC factors sharp increase makes it difficult to obtain all contributing FC
computed is about 5.34 104, and the sum of FC factors is  factors in the high-frequency region (or high quantum number),

0 2500 5000 7500 10000 12500 15000
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Eq. (21) poio L fye) —— model |
4 ¢
. 1.5x10% | .
—~
5 - - —
2 2
5 S
< 2
56 W 1.0x10* -
o 6 -
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5.0x10° - _
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8 ! 1 ! ! | ! | 0 2500 5000 7500 10000 12500 15000
-1
0 2500 5000 7500 11 0000 12500 15000 o/ cm
o/cm Figure 5. Comparison among several models &¥(w). Model |

Figure 4. Semilogarithmic plot for the FC density functions comparing  includes Duschinsky rotation and frequency shifts as well as displace-
between the sum-over-states method and the time-dependent methodnents. In model I, Duschinsky rotation is not c01nS|dered. Model Il
for the harmonic motions. Both frequency shifts and Duschinsky Only has the effect of displacementsy = 300 cnr™.

rotation are included, andw = 300 cnTl.
discrepancy between two methods. The sum-over-states method

and as a result, the total sum of FC factors is not exactly 1. AS js not restricted by resolution since one actually computes FC
0w becomes small, more fine structure appears in the FC densityfactors, and we can control the resolution to whatever extent
function. It is interesting to note that, at higher resolution, we \ye want. But that method becomes intractable for large
can see |rreg.ul.ar structure in thg Ipw-frequency region, reflecting olecules of low symmetry and has difficulty in the calculation
mode selectivity’” Mode selectivity occurs since only a few ¢ £ factors in the high-frequency region. On the other hand,
number of modes can contribute in the low-frequency region. {he time-dependent method is highly efficient in that the method
A distinct high-frequency tail is also observed to be discussed {5y e less time to compute the FC density function. In addition,
Iatirizc density f ion for the h . . be al the time-dependent method can be readily used for the anhar-

. ensity function for the harmonic motions can be also i ppg However, it cannot provide individual FC factors.
obtained from the Fourier transform of nuclear overlap/phase It also depends on the resolution and can suffer from the
funC“OTB(NOPF)' e, with the tlme-erengegrt m.ethod putllned numerical instability in higher resolution due to the small values
abovef? The NOPF for the harmomc'mono]“i () is obtained of |Jha(t)| at increasing times. Thus the two approaches have
analytically from the generating function method developed by complementary strengths

8 H : .

Kubo Toyozawa’ Then the FC density function can be In Figure 5, we shovE"(w). Model | includes the effect of

directly calculated as ) . : .
Duschinsky rotation as well as frequency shifts and displace-
ments. While frequency shifts and displacements are considered

har, — 0 har,

2 (w) 2Rej; dtI™ () expet) @7 in model II, model Il accounts solely for the effect of

. . . . displacements (spin-boson model). It is evident from Figure 5
whereJ'(t) is the NOPF for the harmonic motiofsin Figure tha? model I Espsomewhat diffe)rent from model Ill,gthe

4, we show semilogarithmic plots of FC dgnsny function from ifferences originating from frequency shifts in the model II.
the sum-over-states method and from the time-dependent metho -
comparison between model | and model Il shows that

for the harmonic motions. Both frequency shifts and Duschinsky Duschinsky rotation has a relatively minor effect. On the basis

rotation are included in both cases, ahd is 300 cnT™. . . .
of these observations, in our molecular system, frequency shifts

1
Foérci)hic:rg?%;(g g%r'éeipirgff El?h; (ssriZIIe\(jalzf e) 8:1 Jﬁé)rs' introduce larger deviations from the spin-boson model than the
! . j Duschinsky rotation does.

implies that an accurate calculation of the FC density function . ) ) )
It is evident that both frequency shifts and Duschinsky

from the time-dependent method requires determinatialftpf IS5 € ! av -
with h|gh accuracy even in regimes of very small amp"tude_ rotation increase values of the FC denSIIy function in the hlgh-

For higher resolution of"®(t)| in the time-dependent method, frequency region. One reason is that nontotally symmetric
7 should be much larger, and because of the phase recurrencénodes, which have no displacements, can now affect the FC
mentioned in the previous studythe values ofJha(t)| in fact density function through frequency shifts and Duschinsky
increase again and numerical difficulty decreases. Then the time-rotation?1:42 Sando et at? studied the effects of Duschinsky
dependent method can provide an acceptable result even in higtiotation on an ET rate in a model system where two modes
resolution provided that the exact expression fift) is without displacements are mixed among eight modes. They also
used3s3851|n the low-frequency region, the sum-over-states observed the increased contribution to the ET rate from the high-
method shows a little mode selectivity, but the time-dependent frequency region, and attributed the increase to the participation
method with low resolution does not. In the high-frequency of the nontotally symmetric modes. We note that, as frequency
region, however, due to truncation in the calculation of FC shifts and Duschinsky rotation are included, the number of FC
factors in the sum-over-states method, the result from the sum-factors to be computed is increased; i.e., the total number of
over-states method becomes inaccurate and we can see theC factors goes from 8.8& 10 in model Ill to 9.66x 102
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Figure 6. The total FC densityz°(w), along with="2(w) and="*"(w).
Both frequency shifts and Duschinsky rotation are include&fétw),
anddw = 300 cntl,

w/cm’

Figure 7. Semilogarithmic plot for the FC density function for the
spin-boson model and exponential fit in the high-frequency region to
test exponential decayw = 300 cnT?.
in model Il to 5.34x 10" in model I. This increase also reflects
the participation of nontotally symmetric modes.

As mentioned previously, under the assumption of separable
torsion from the other motions, the total FC density can be
written ag

In Figure 7, we present a semilogarithmic plot of the FC density
function to examine the high-frequency behavior in our system,
also for the spin-boson model (model Il1). For this purpose, we
use the Fourier transform of the NOPF to obtain the FC density
function accurately at very high frequency. We also use the
ot [ . har N—tor, spin-boson model to obtain the reorganization easily. In Figure
z (@) = ffoo doo 2 C )Z (@) (28a) 7, we observe only a roughly exponential decay at very high
w0 =har o =1lor . energy. According to Englman and Jortner’s work, to observe
= [7 do z (w )z (w — @) (28b) a true exponential decay, the vibrational reorganization energy
should be equal to or less than the mean vibration frequency.
Figure 6 shows the total FC density function as well as the FC However, the vibrational reorganization energy of 4228 tm
density functions for the harmonic motions and for the torsional in our system is much larger than the mean vibrational frequency
motion. The effects of frequency shifts and Duschinsky rotation of 1233 cntl. Because of the much larger reorganization energy
are included. The calculation of the total FC density function than the mean vibrational frequency, our system falls into the
is based on both the sum-over-states method and the time-strong coupling limit, where the vibrational reorganization
dependent method. That is to say, the calculation of the FC energy is larger than the mean vibrational frequency.
density function for the harmonic motions are performed using  In experiments carried out at room, or high, temperature,
eq 21 and the FC density for the torsional motion is computed fitting functions are frequently used to obtain physical quantities
based on eq 25. The resolution is 300 ¢€nit is clear that the  such as reorganization energy from experimental optical spectra.
role of the slow torsional motion is essentially to simply shift One of the most popular fitting functions is based on the
the peak of the spectra into a higher position. This is becauseJortner's expressioff. In that expression, the description of
the =°(w) in Figure 6 is nearly a delta function, and when many nuclear degrees of freedom is simplified to two repre-
Zw) ~ O(w — wo), Zw) in eq 28a becomeE"(w) ~ sentative degrees of freedom. One is a low-frequency vibrational
e — o). mode describing classical motions, and the other is a high-
One potentially interesting feature of the FC density function frequency vibrational mode representing quantum mechanical
is the behavior of the function in the high-frequency (or energy) vibrational motions. The resulting model FC density function
region>”58 Englman and Jortner showed that an exponential can be written 2248
decay of the FC function can be expected from the spin-boson
model in the weak coupling limit, defined as < hld (P8 Here

o (ho — AF" = AG + Khog,)
the vibrational reorganization energy is given for harmonic zha’(w) O 20_ exp — (31)
model as S AT
3N-6
— } % Here s is a Huang-Rhys factors = A2 where A is the
A,= z Aho, (29) , . ar - .
- 2 displacement for the high-frequency mod.é, is a classical
reorganization energy, which comes from the low-frequency
and the mean vibrational frequen@yUis mode, andwqn is a frequency for the high-frequency quantal
N6 mode. The quantum mechanical reorganization energy is
determined with the relatioiugfnr= Shwgm. Note that, in eq 31,
Z @j we consider only the FC density function for the harmonic
: (30) motions, not the total FC density function, for the following

3N—6 reason. It is clear that the FC density function for the torsional
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T T T T T T T thermal energy at 298 K is 207 crh The mean low freqeuncy

10 F - [whby = 147 cn! and Whigh = 1354 cml. The latter is
—Eq.(27) qualitatively similar to the fitting parameter, = 1483 cn?,
"""" Fit with Eg. (31) and to the single-mode model parameter of 1554~%tm

_ determined in ref 22. The exact low-frequency and the high-
frequency reorganization energies from the spin-boson model
can be calculated from Table 2, and the values are 1476 and

or 0.6 - 2752 cn1?, respectively. Since the selection of the separation
% frequency is somewhat arbitrary, the separation of the 60 normal
o modes into two groups is subtle. Nevertheless, we can see the
N 04 - qualitative agreement between the exact values and the fitting
parameters for the reorganization energies.
0.2 IV. Concluding Remarks

In this study, FC factors and FC density functions for the 60
vibrational modes of the simplest betaine molecule have been
0.0 I L I L i L calculated by combination of the sum-over-states method and

0 2000 4000 6000 8000 10000 12000 14000 16000 the time-dependent method. In the sum-over-states method for

o/cm’ the 59 harmonic motions, we were able to address the memory
Figure 8. Comparison between the normalizZBt#(w) from the spin- overflow problem by modifying the TLFBT algorithm and using
boson model and fitting with Jortner's mod@kq 31. The temperature  the vibrational symmetry groups. The sum-over-states method
is held at 298 K. and\G is set to zero. agrees well with the time-dependent method except for the very

o . . . high frequency region. Here, the rapid increase of the number
motion in the room temperature is nearly Gaussian due 10 its of FC factors to be computed prevents a reasonable computation
'Or:"’ frequency or slow motion (static modulation limit). Since ¢ 5| the FC factors required. In the low-frequency region, the
2"(w) in eq 31 is a linear combination of the Gaussian functions g, m_gver-states method reveals a fine structure reflecting some
and the total FC density function is a convolution of the FC ,54e selectivity. Compared with experimental data from the
density functions for the harmonic and the torsional motions yesonance Raman experiments, displacement calculations in our
(see eq 28a), the total FC density function is exactly same asgy,dy are in qualitative agreement with the experimental results.

eq 31 except for the replacement " by A, whereAd' = Both our study and the resonance Raman study show that low-
Ao + AP Since we already know th@"', it suffices to  frequency modes have larger displacements than high-frequency
consider solely the FC density function for the harmonic modes.

motions. Barbara and co-worké?3#?3used eq 31 to obtain The inclusion of frequency shifts and Duschinsky rotation

the spectroscopic parameters required to calculate back ETyastly increases the number of FC factors to be computed in
reaction rates in a betaine-30 molecule. They fitted the static the high-frequency region. As a result, the FC density function
absorption spectra of the betaine-30 in various solvents with hecomes broader compared with the simple spin-boson model.
eq 31 and calculated back ET reaction rates with the parametersy/e also observed that frequency shifts have more influence on
obtained. the FC density function than Duschinky rotation. The FC density
We test the Jortner’'s model by fitting our exact FC density function for the torsional motion has nearly a delta-function-
function with eq 38. Figure 8 shows"¥(w) and the fit. The |ike shape, and so its role is to shift the position of the FC density

temperature is fixed at 298 K since most experiments on betainefunction to a higher frequency. This is associated with the slow
molecules are carried out at this temperature. For the calculationdynamics of torsion.

of a thermally averageB"®(w), the time-dependent method of In the high-frequency region, we did not observe clear

eq 27 and KubeToyozawa formalism for the thermally  exponential decay. For the simplest betaine molecule, the
averaged NOPE are used. In the calculation a"¥{w) and relatively large structural change between the ground and the
the fitting function,AG is set to zero. The fitting function in  first excited state leads to large displacements and the resulting
Figure 8 corresponds to the parameﬂ{l{’éz 2004 cml, s= large reorganization energy. As a result, the molecule falls into

1.50,wqm = 1483 cn1?, and therefordga’z 2225 cnt. Then the strong coupling limit, and an exponential decay energy gap
the total reorganization energy for the harmonic motion from law does not pertain.

the fitting function is 4229 cm'. By comparison of this When the low-frequency region of FC density function for a
reorganization energy to the reorganization energy of 4228 cm large molecule is investigated, we find that the sum-over-states
for the harmonic motions from the spin-boson model, we find method readily provides fine structures. Because of the rapid
that the Jortner’s expression correctly represents the reorganizaincrease in the number of contributing FC factors in the high-
tion energy. The frequency for the quantal maelg, = 1483 frequency region and the resulting difficulty of computation,
cm~1is comparable to the high frequency of 1554800 cnt? however, the sum-over-states method does not provide accurate
obtained from the absorption spectra of a betaine-30 in variousvalues. In this case, the time-dependent method is an excellent
solvents with the same fitting function by Barbara and co- alternative.

workers?2 To compare the classical and quantum mechanical The FC density function for the harmonic motions in the spin-
reorganization energies from the Jortner's expression to theboson model is well fitted by the Jortner expressibiihe total
reorganization energies from the spin-boson model, we shouldreorganization energy obtained from the fit is in excellent
divide 60 vibrational normal modes into two groups, low- agreement with the reorganization energy in the spin-boson
frequency modes and high-frequency modes. We choose as anodel. From this fit, we can also see that the physical
separation frequency 300 ciby which we can separate low-  parameters, such as low- and high-frequency components of
frequency modes from high-frequency moéigé/e believe that the reorganization energy, and the characteristic frequencies are
300 cnt! as a separation frequency is reasonable since thein qualitative agreement only, as might be expected.
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