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Franck-Condon (FC) factors and the FC density associated with an electron transfer reaction are calculated
for a betaine molecule, pyridinium-N-phenoxide betaine (4-(1-pyridinio)phenolate) in its S1 excited state. FC
factors and density functions for harmonic vibrational modes are computed first by modifying the three level-
fixed binary tree algorithm (Ruhoff, P. T.; Ratner, M. A.Int. J. Quant. Chem.2000, 1, 383), a sum-over-
states method based on recursion relations. This modified method allows the calculation of FC factors for 60
vibrational modes and avoids memory problems due to the large number of modes. The effects on the FC
density of frequency shifts and mode mixing (Duschinky rotation) are included. For comparison, the more
efficient time-dependent alternative is also employed for the calculation of the FC density function for the
harmonic motion. In all cases, for a torsional motion which cannot be described by a harmonic potential, the
FC density function is computed through the time-dependent method. We show that the sum-over-states
method agrees well with the time-dependent method except for the high-frequency region. There the sum-
over-states method is inadequate even when greater than 1014 FC factors are included. We find that both
frequency shifts and Duschinsky rotation increase the number of FC factors in the high-frequency region,
and as a result, they make the FC density function broader. It is shown that frequency shifts have the greater
effect. In the high-frequency region we do not observe the strong exponential decay of the FC density function
which characterizes the weak coupling limit (relatively small vibrational reorganization energy). We find
that the betaine dye falls into the strong coupling limit. The fitting of the FC density function with a simple
model which includes one classical degree of freedom and one high-frequency quantal degree of freedom
and the comparison of the fitting parameters with comparable exact values show that the simple model provides
reasonable physical values such as reorganization energies.

Introduction

Electron-transfer (ET) reactions play an important role in
many chemical and biological systems, and there have been
many theoretical and experimental studies on ET reaction
rates.1,2 A traditional and conventional approach to ET reaction
rate is to neglect the dependence of the electronic coupling
matrix element on nuclear displacements (Condon approxima-
tion).3 In that case, the ET reaction rate is factored into the purely
electronic part and a purely nuclear part, the so-called Franck-
Condon (FC) factors. Because of the importance of the FC
factors to ET reaction rates, many theoretical studies have been
conducted to calculate the FC factors. Among several methods
for the computation of FC factors, one direct approach is a sum-
over-states method, which is normally based on recursion
relations.4,5 Alternative time-dependent methods have been
introduced by Heller.6-8 In this method, the FC factors are not
calculated directly, but the FC envelop is the Fourier transform
of the time-dependent overlap of two nuclear wave functions
which are evolving on two different electronic potential energy
surfaces (PES).

Sum-over-states methods must be used for the direct calcula-
tion of FC factors, but there are some difficulties using that
method for large molecules since the equilibrium geometries
of two electronic PES are in general rather different. That is,
one PES is displaced with respect to the other PES, and
frequencies on one PES are shifted from those on the other.
Displacements occur from the difference between minima of

two PES’s, and frequency shifts occur because one PES is
distorted from the other. In addition, vibrational normal modes
can change so that those in one electronic state are rotated or
mixed in the normal-mode basis of the other electronic state.
This phenomenon, called a Duschinsky rotation or the Duschin-
sky effect,9 prevents FC overlap integrals from being reduced
to simple products of one-dimensional FC overlap integrals, and,
as a result, the calculation of FC factors becomes more
complicated. Because of the significance of FC factors, many
methods for computing the integrals along with the Duschinsky
rotation have been devised.10-18 Sharp and Rosenstock have
derived expressions based on a generating function method for
computing the FC overlap integrals.10 Gruner and Brumer have
used a binary tree algorithm to develop an efficient technique
to calculate the vibrational overlap integrals.11

As mentioned above, the sum-over-states method is based
on recursion relations,4 and efficient execution of recursion
relations requires saving previous overlap integrals in computer
memory. However, those methods are challenging to apply
directly to large molecules since too many FC overlap integrals
must be saved in memory. To address this overflow problem,
Ruhoff and Ratner proposed a three level-fixed binary tree
(TLFBT) algorithm.17 This algorithm, discussed below, is based
on the Gruner and Brumer’s binary tree algorithm,11 but instead
of building one large binary tree, binary trees for each level are
constructed to reduce memory usage.

Among studied ET reactions is intramolecular ET, where the
ET occurs within a single molecule. A good example of
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intramolecular ET reactions is that reaction occurring in the
excited S1 state of betaine dye molecules. Betaine dye molecules
have drawn much attention from both the experimental19-30 and
theoretical communities31-35 due to their distinct charge-transfer
absorption band that depends strongly on solvent polarity and
S1 relaxation via back ET reaction. By use of transient
absorption spectroscopy, Barbara and co-workers studied back
ET reaction occurring in the betaine-30 molecule.20-23 McHale
and co-workers have studied intramolecular vibrational and
solvent motions associated with charge-transfer excitation in
the betaine-30 molecule using resonance Raman spectroscopy.24-26

Werncke et al. investigated vibrational relaxation in the
electronic ground state after intramolecular back ET by pico-
second time-resolved anti-Stokes Raman spectroscopy.27-29

Among computational studies on that dye molecule, Mente and
Maroncelli carried out simulations of betaine-30 in various
solvents to study solvatochromism.32 Lobaugh and Rossky have
investigated the spectroscopy as well as the dynamics of the
first excited state of betaine-3033,34 using mixed quantum/
classical dynamics.36

In the present study, the simplest betaine, pyridinium-N-
phenoxide betaine [4-(1-pyridinio)phenolate] is studied. As is
shown in Figure 1, the molecule consists of a linked pyridinium
ring and a phenoxide ring. The goal is to examine methods for
evaluating FC factors for a large molecule with the sum-over-
states method and to investigate the properties of FC density
functions obtained with different models. We will employ
harmonic PES’s, as has been used extensively for vibrational
or vibronic-spectrum calculations and ET reaction-rate calcula-
tions.37-39 We include a detailed consideration of frequency
shifts and Duschinsky rotation, which can play a role in
vibrational motions.10,40-43 This generality allows us to study
the importance of frequency shifts and Duschinsky rotation on
FC factors. In general, one expects that a torsional motion cannot

be described by a harmonic PES due to the softness and
periodicity of that coordinate. In most treatment of a torsional
motion, a periodic potential energy function for the torsional
PES is sought, and the torsional motion is considered as a wave
packet evolving on the potential energy function.44-46 We follow
this methodology here, and by doing so, we also study the effect
of the torsional motion on FC factors. By comparing FC density
functions obtained from the sum-over-states method and the
time-dependent method, we will examine the advantages of each
method over the other. In particular, we will investigate the
behavior of FC factors in the high-frequency region, where the
FC density function has contribution from a large number of
FC factors.47

In experiments on optical spectra in the condensed phase,
physical quantities such as reorganization energy can sometimes
be obtained by fitting the optical spectra with a simple model.22

One of the most popular models is due to Jortner,48 where
nuclear degrees of freedom are represented by one classical low-
frequency mode and one quantal high-frequency mode. By
fitting the FC density function with this model and by comparing
the parameters of the model to the exact results, we will
investigate how accurately the Jortner model provides access
to the physical quantities.

In this paper, we specifically consider the excited state as
the initial state and the corresponding emission spectrum. We
expect that the main conclusions regarding the usefulness of
alternative computational methods and the impact of variations
in the harmonic model on the spectra would be similar if the
ground-state absorption spectra were considered. This work is
organized as follows. In the next section, we discuss theoretical
methods for computing FC factors and FC density functions
for the harmonic and torsional motions. In section III, the
calculated results are shown and discussed. Concluding remarks
appear in the final section IV.

II. Theoretical Methods

We begin by considering the ground and the first excited state
of the simplest betaine molecule, in the gas phase. Considering
ultrafast time scales of intramolecular vibrational motions, we
make the reasonable and conventional assumption that the
relaxation into the equilibrium geometry in the first excited state
occurs rapidly after the electronic excitation.22 We will primarily
use a low-temperature limit for calculations, corresponding to
an initial state with the excited-state vibrations all in their ground
state.49,42 The model Hamiltonian of the system composed of
these two electronic states can be expressed in terms of mass-
weighted normal coordinatesQ ) {Q1, Q2, ...,Q3N-6} whereN
is the number of atoms in the molecule

where|g〉 denotes the electronic ground state and|e〉 the first
excited state.γ is an electronic coupling matrix element
(assumed constant), whileĤg andĤe are the nuclear Hamilto-
nians on electronic surfaces|g〉 and |e〉, respectively

HereT̂ andV̂ are the kinetic and the potential energy operators,
respectively.

Figure 1. Molecular geometry and atom labelings of pyridinium-N-
phenoxide betaine (4-(1-pyridinio)phenolate).

Ĥ ) |g〉Ĥg〈g|+ |e〉Ĥe〈e|+ γ†|e〉〈g|+ γ|g〉〈e| (1)

Ĥg ) T̂(Q4 g) + V̂g(Qg) (2a)

Ĥe ) T̂(Q4 e) + V̂e(Qe) (2b)
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The Golden Rule transition rate from the first excited state
to the ground state is expressed with FC factors as47

HereEe(g) is the total energy in the first excited (ground) state.
FC(e;g) is the FC weight or the squared FC overlap integral
for each final stateg and is defined as

whereI(e;g) is the FC overlap integral andøe(g)(Qe(g)) are nuclear
vibrational states in the first excited (ground) state. From the
practical point of view, FC density functions are more useful
than individual FC factors due to the resolution limit. Assuming
the lowest vibrational level initially in the first excited state,
the FC density functionsΣ(ω) can be expressed as47

where the sum is taken over the vibrational states in the
electronic ground state within some energy rangeδω, namely,
|ω - ωg| e δω/2. Herepωg represents the vibrational energy
difference of the ground and the first excited vibronic states.
For instance,pωg ) ∑jnj

gpωj
g - ∆G for the spin-boson model

(no frequency shifts or mode mixing), wherenj
g andωj

g are a
jth vibrational quantum number and ajth frequency in the
ground state, respectively, and∆G is the potential energy
minimum difference between two electronic states.

Up to this point, a general description for the FC density
function has been provided. We now invoke some reasonable
approximations for the calculation of that function. First, a
harmonic PES is utilized for the vibrational motions other than
the torsional motion. In many cases, a spin-boson model,50

which only considers displacements in harmonic potentials, is
sufficient to describe a system.51 In general, however, frequency
shifts and mixing of modes (Duschinsky rotation) must be taken
into account to precisely explain the change of the vibrational
normal modes accompanied by an electronic transition.42,43The
detailed procedure used to obtain frequency shifts and the
Duschinsky rotation matrix is described in detail elsewhere.51,52

For the highly anharmonic torsional motion, we use a method
that has been proposed by Seidner et al.44 and used popularly
by others.45,46 This method will be described in detail in the
second subsection.

We decompose the nuclear Hamiltonian in eq 1 as53

where Ĥhar means the Hamiltonian which describes all the
vibrational motions subject to the harmonic potential ap-
proximation andĤtor represents the Hamiltonian for the torsional
motion. Assuming that the torsional motion decouples from the
other modes, based on the time scale difference between slow
torsional motions and other motions, the FC density function
can be written as7

whereΣhar(ω) is the FC density function forĤhar and Σtor(ω)
that for Ĥtor. Detailed expressions forΣhar(ω) and Σtor(ω) as
well as Ĥhar and Ĥtor are provided next.

A. Franck-Condon Density Function for Harmonic Mo-
tions with Frequency Shifts and Duschinsky Rotation
Matrix. We consider 3N - 7 harmonic vibrational degrees of
freedom, with the seventh degree of freedom excluded being
the torsional degree of freedom. We use mass-weighted normal
coordinates denoted asQ ) {Q1, Q2, ...,Q3N-7}. The harmonic
nuclear Hamiltonians in the two states differ by frequency shifts
and Duschinsky rotation as well as the displacement of the
equilibrium nuclear positions. The Hamiltonian is then given
by

whereγhar is assumed to be real and static and

HereΩe andΩg are diagonalized frequency matrixes in each
state and∆G is the potential energy minimum difference
between the two electronic states.QT is the transpose ofQ.

To evaluate a FC overlap integral ofIhar(e,g) ) 〈øe
har(Qe)|

øg
har(Qg)〉, we should express the coordinates of the ground

state as a function of the coordinates of the first excited state.
This can be accomplished by a linear combination9-51

whereD is the Duschinsky rotation matrix and∆Q means a
mass-weighted displacement vector.

As discussed elsewhere, alternative methods to obtainD and
∆Q are available.51,52 In a method due to Lee et al.,51 the
geometry optimization is only carried out for the initial
electronic state and the geometry of the final electronic state is
estimated by projecting the force constant matrix (Hessian
matrix) at the initial state optimized geometry. Reorganization
energies obtained in this way compare favorably to those
reorganization energies inferred from experimental and com-
putational data as show in Table 1. In Table 1, it should be
noted that the values in the present work are obtained from the
simplest betaine and all the others come from the betaine-30.
Betaine-30 includes five pendant phenyl rings on the structure
of Figure 1. In Table 1, method A corresponds to the

TABLE 1: Comparison between the Computational
Experimental Data for Low-Frequency, High-Frequency,
and Total Intramolecular Reorganization Energies for
Simplest Betaine and Betaine-30a

λlow/cm-1 λhigh/cm-1 λtot/cm-1

this work Ab,c 3057 19011 22068
this work Bb,d 2130 3100 5230
Barbarae 1233 1276 3509
Maroncellif 1100
Rosskyg 760
McHaleh 33 87 120
Ernstingi 1940 1430 3370

a Only this work is on the simplest betaine. All the other studies
have been carried out on betaine-30.b Both methods are using the spin-
boson model, and the ground-state frequencies are used.c The reorga-
nization energy calculation in this work A is based on the method
mentioned as the straightforward method in text.d This calculation is
based on Lee et al.’s method.e Reference 22.f Reference 32.g Refer-
ence 33.h Reference 34.i Reference 30.

Ĥhar ) |g〉Ĥg
har(Qg)〈g| + |e〉Ĥe

har(Qe)〈e| + γhar(|g〉〈e| +
|e〉〈g|) (8)

Ĥg
har(Qg) ) 1

2
Q4 g

TQ4 g + 1
2

Qg
TΩgQg (9a)

Ĥe
har(Qe) ) 1

2
Q4 e

TQ4 e + 1
2

Qe
TΩeQe (9b)

Qg ) DQe + ∆Q (10)

kET )
2πγ2

p
∑

g

FC(e;g)δ(Ee - Eg) (3)

FC(e;g) ) I(e;g)2 ) |〈øe(Qe)|øg(Qg)〉|2 (4)

Σ(ω) )
1

δω
∑

g

I(0;g)2 (5)

Ĥ ) Ĥhar + Ĥtor (6)

Σtot(ω) ) ∫-∞

∞
dω′Σhar(ω - ω′)Σtor(ω′) (7)
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straightforward method where geometry optimizations for each
electronic state are performed independently and method B is
Lee et al.’s method, just described. Both methods in this work
use the spin-boson model for the calculation of the reorganiza-
tion energy. Compared with experimental data, Lee et al.’s
method (method B) provides a far closer value to the experi-
mental results than method A. The need for this less intuitive
approach results from relatively large displacements that are
observed in the present case for method A, possibly because of
the associated large torsional displacement between electronic
states. Specifically, we find that the direct approach leads to
seven modes between 600 and 1200 cm-1 where the magnitude
of the calculated displacements obtained from the direct
approach are greater than 1.0 and four modes with frequencies
greater than 3000 cm-1 with calculated displacements greater
than 0.5. These eleven modes contribute a reorganization energy
of 14 500 cm-1 in method A.

Following ref 51, here, we first optimize the excited state
and perform frequency analysis of that electronic state to obtain
the Ωe and 3N(3N - 7) transformation matrixLe

mx, which
transforms mass-weighted Cartesian coordinates into normal
coordinates. Next we calculate the Hessian matrix and the mass-
weighted force vector (gradient) of the ground state at the
equilibrium position of the first excited state. The Duschinsky
matrix D can then be evaluated from the Hessian matrix of the
ground state in Cartesian coordinates.35 The mass-weighted
displacement vector∆Q can then be calculated.

Sharp and Rosenstock have derived a generating-function-
based expression for FC factors.10 Following their method, we
reach the equation

whereT andU are dummy variable vectors.10

The matrixes in eq 11 are given as

and vectors as

HereI is the identity matrix, andJ and a dimensionless vector
∆ are defined respectively as

where an element of the diagonal matrixΓg is given as

In addition,Ihar(0,0) in eq 13 is given as

where0 ) (01, 02, ..., 0k, ..., 03N-7).
Many conventional methods use the general recursion relation

to calculate multidimensional FC overlap integrals.10-15 In our
case, we derive a recursion relations from eq 11, which leads
to

wheren ) (n1, n2, n3, ..., n3N-7) and 1k ) (01, 02, ..., 1k, ...,
03N-7). Since we have assumed that the excited state vibrations
are in their ground state (namely,m ) 0), eq 17 is simplified
into

The straightforward recursion relation method requires large
amounts of memory, limiting their applications.11,17 To over-
come this problem, Ruhoff and Ratner17 proposed the TLFBT,
which is based on Gruner and Brumer’s binary tree algorithm.11

In Gruner and Brumer’s binary tree algorithm, one large binary
tree grows to save FC factors. However, the TLFBT method
divides the large binary tree into smaller binary trees. Each
binary tree is labeled by the level and stores only FC factors
belonging to the same level. Here, the levelL is defined as

wherenj is the quantum number of thejth normal mode. The
TLFBT method uses the fact that only the previous two levels
L - 1 andL - 2 are required to calculate a FC factor in the
level L. Therefore, the method stores FC factors pertaining to
just the previous two levels, greatly reducing the memory usage.
Although the TLFBT algorithm is used for our study, the
number of FC integrals to be computed is still large for 59
normal modes. To reduce the number of FC integrals, we modify
the TLFBT method and use symmetry groups for vibrational
normal modes next.

In general, totally symmetric low-frequency modes have large
displacements, and therefore high quantum numbers in the low-
frequency modes should be included in the calculation of the
FC factors. For totally symmetric high-frequency modes,
however, displacements are small and only a few terms in a
progression are sufficient. Consider the levelL binary tree. In
this binary tree, FC factors are computed up toL quanta of
each mode. WhenL is large, the computation of a FC factor
for a high-frequency normal mode whose displacement is small
wastes time and memory. To address the problem, our modified

∑
m)0

∞

∑
n)0

∞

TmUn (2m2n

m!n!)Ihar(m,n) ) Ihar(0,0) exp[-(TT AT +

2TTB) - (UTCU + 2UTG) + 2TTEU] (11)

A ) I - 2J(JTJ + I )-1JT (12a)

C ) I - 2(JTJ + I )-1 (12b)

E ) 2(JTJ + I )-1JT (12c)

B ) [J(JTJ + I )-1JT - I ]∆ (13a)

G ) (JTJ + I )-1JT∆ (13b)

J ) ΓgDΓe
-1 (14a)

∆ ) Γg∆Q (14b)

(Γg)jj ) (ωj
g

p )1/2

(15)

Ihar(0,0) ) 2(3N-7)/2[det(JTJ + I )]-1/2 ×
exp[- 1

2
∆T∆ + 1

2
∆TJ(JTJ + I )-1JT∆] (16)

Ihar(m,n + 1k) ) - ∑
j)1

3N-7

ckj ( nj

nk + 1)1/2

Ihar(m,n - 1j) -

dk ( 2

nk + 1)1/2

Ihar(m,n) + ∑
j)1

3N-7

ekj

mj

nk + 1
1/2Ihar(m - 1j,n)

(17)

Ihar(0,n + 1k) ) - ∑
j)1

3N-7

ckj ( nj

nk + 1)1/2

Ihar(0,n - 1j) -

dk( 2

nk + 1)1/2

Ihar(0,n) (18)

L ) ∑
j)1

3N-7

nj (19)
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method separates modes whose displacements are large from
the other modes. First, FC factors for the large displacement
modes are calculated, and then the binary trees grow up from
each of the FC factors for the large displacement modes. For
example, suppose that among totally symmetric modes, we have
4 modes which have large displacements, and we should
consider quantum numbers up toN1, N2, N3, andN4 quanta for
the 4 modes, respectively. Then, one first calculates FC factors,
the total number of which isN1 × N2 × N3 × N4. Then, level
L is decided from the quantum numbers of only the remaining
modes, and binary trees grow up from each of the FC factors
computed from the 4 modes. We can label each binary tree as
(0, 0, 0, 0, 0), (0, 0, 0, 0, 1), ..., (0, 0, 0, 0,L), (1, 0, 0, 0, 0),
(1, 0, 0, 0, 1), ..., (1, 0, 0, 0,L), ..., (N1, N2, N3, N4, L), where
the first four numbers in the parenthesis are quantum numbers
for the four large displacements modes, and the last number is
the level for the other modes. Since we consider the modes
whose displacements are large separately, we can keep the level
L small.

In addition, we use vibrational symmetry groups of the
simplest betaine molecule. Vibrational normal modes in the first
excited state belong to A′ and A′′ symmetries since the
symmetry of the optimized geometry in the first excited state
is Cs.35 Because of the symmetry, the Duschinsky matrix is block
diagonalized into two submatrixes. (See Figure 2.) Then, each
submatrix can be treated separately, and FC overlap integrals
are factored into a product, which is given as

HerenA′ is defined asnA′ ) (n1
A′, ...,nNA′

A′ ) andnA′′ ) (n1
A′′, ...,

nNA′′
A′′ ); NA′ andNA′′ are the total number of modes pertaining to

symmetric groups A′ and A′′, respectively.
Under the assumption that the excited-state vibrations are all

in their ground state, the FC density function is now given as47

where the sum is taken over the vibrational states in the
electronic ground state within a resolutionδω, i.e., |ω - ωg|
e δω/2 andωg is defined as

Here ∆ωge
zpe is the zero point energy difference between the

ground and the first excited state, that is,∆ωge
zpe ) ωg

zpe - ωe
zpe.

B. Franck-Condon Density Function Induced by Tor-
sional Motion. As mentioned above, the central inter-ring
torsional motion is well beyond a harmonic potential description,
and the method introduced in the previous section cannot be
applied to this torsional motion. The alternative time-dependent
method due to Heller et al.,6,7 yields the FC density function
via a Fourier transform of the time-dependent overlap between
two nuclear wave functions evolving on two different electronic
PES’s.

Following Heller’s method,6,7 first we explicitly calculate the
periodic torsional potential energy function for the torsional
motion of the electronic ground state. The torsional dynamics
is then described as a wave packet evolving on the periodic
PES. The dynamics of that mode is obtained by solving directly
the time-dependent Schro¨dinger equation (TDSE), as discussed
elsewhere.35,44,45,46

The initial nuclear wave function is in the equilibrium position
of the first excited state, so that the harmonic potential can be
used for the first excited-state PESVe

tor(θ) given as

whereθ0
e is the torsional angle at the equilibrium configuration

of the first excited state. The explicit torsional PES for the
ground state is necessary. In general, the PES for the torsional
motion is given as54

whereθ0
g is the torsional angle at the equilibrium configura-

Figure 2. Absolute values of Duschinsky matrixes’ elements. (a)
Normal modes in the ground (S0) and the first excited state (S1) are
arranged in terms of increasing order of frequencies. (b) Same as (a)
except for being sorted by symmetry first and then by frequency within
the same symmetry. In (b), the modes 1-37 belong to symmetry A′
and 38-60 to symmetry A′′.

Ve
tor(θ) ) 1

2
I
tor

(ωe
tor)2(θ - θ0

e)2 (23)

Vg
tor(θ) )

1

2
∑

n

Vn(1 - cos{n(θ - θ0
g)}) (24)

Ihar(0,n) ) Ihar(0,nA′) × Ihar(0,nA′′) (20)

Σhar(ω) )
1

δω
∑

k

Ihar(ωg)2 (21)

pωg ) ∑
j)1

3N-7

nj
gpωj

g + p∆wge
zpe- ∆G (22)
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tion of the ground state andn is an integer. We obtain parameters
for the ground-state torsional PES by fitting computed potential
energies as a function ofθ.

The FC density can be expressed as the Fourier transform of
the overlap between the two nuclear wave functions evolving
on the first excited and ground state6,7

where Ψe
tor(t) and Ψg

tor(t) are nuclear wave functions on the
first excited and ground states, respectively, whereΨe

tor(0) )
Ψg

tor(0). The relation betweenτ in eq 25 andδω in eq 21 is

III. Results and Discussion

Geometry optimization and frequency analysis are performed
with the Gaussian 98 program.55 Configuration-interaction
singles (CIS) with the 6-31G* basis set is used to optimize the
first excited state. The calculations of the Hessian matrix and
the gradient of the ground state at the optimized geometry of
the first excited state are carried out at the Hartree-Fock level
with the same basis set. Frequencies in this paper are scaled
with the factor of 0.91.56 The geometry optimization of the first
excited state is performed without applying any symmetry at
first. As the torsional angle between the pyridinium ring and
the phenoxide ring obtained in this case was found to be very
close to 90° and the symmetry very nearlyCs, we proceeded
by enforcingCs symmetry in the first excited state to simplify
the following analysis. The torsional angle is thus fixed at 90°;
the electronic energy under symmetry was not significantly
different from that without symmetry.

Figure 2 shows Duschinsky rotation matrixes ordered by
frequency (Figure 2a) and after the blocking by vibrational
symmetry groups (Figure 2b). The first 37 normal modes belong
to A′, and the other 23 to A′′, yielding the block-diagonalized
Duschinsky matrix in Figure 2b. Table 2 provides the frequen-
cies and displacements that pertain to A′ and A′′. Note that the
normal modes pertaining to A′′ symmetry group have zero
displacements. Before going further, it it worth commenting on
the relation between these results and experimental resonance
Raman observations.24-26 Because we consider a simpler related
dye, a quantitative comparison is not possible. Experiments on
betaine-30 in solvent showed that approximately 19 modes were
resonance Raman active, among which 7 modes have prominent
displacements (larger than 0.1).26 Our study shows 18 normal
modes whose displacements are relatively large (larger than 0.2).
Among them, 9 modes have significant displacements larger
than 0.5. On the basis of this observation, our study is in
qualitative agreement with the resonance Raman study. Another
point of contact between our computational study and the
resonance Raman experiments is about the relationship between
frequencies and displacements. Both show that displacements
in the low-frequency region are in general larger than in the
high-frequency region.

Figure 3 showsΣhar(ω) for harmonic motions with varying
resolution δω (see eq 5). Frequency shifts and Duschinsky
rotation are taken into account in the FC density spectra. Zero
frequency in the graph corresponds to the minimum energy
difference between the ground and first excited-state PES’s, i.e.,
zero corresponds to an adiabatic energy difference of∆G )
19 841 cm-1 (see eq 11). The total number of FC factors
computed is about 5.34× 1014, and the sum of FC factors is

0.9845. As quantum numbers increase or the level increases,
the number of FC factors to be computed increases rapidly. The
sharp increase makes it difficult to obtain all contributing FC
factors in the high-frequency region (or high quantum number),

Σtor(ω) ) 2Re∫0

T
dt〈Ψe

tor(t)|Ψg
tor(t)〉 exp(iωt) (25)

δω ) 2π
τ

(26)

TABLE 2: 60 Normal-Mode Frequencies (cm-1) and
Displacements in the Ground and the First Excited Statea,

mode ωg ωe ∆Q mode ωg ωe ∆Q

1 69.5 28.1 -5.69 31 3092.9 3087.0 0.05
2 282.6 201.5 1.56 32 3076.7 3102.3 0.06
3 294.4 280.0 0.21 33 3074.8 3102.8 0.00
4 512.1 387.5 -0.36 34 3104.3 3119.7-0.04
5 435.7 457.0 -0.75 35 3107.0 3121.4 0.06
6 556.5 538.3 0.19 36 3145.5 3128.4 0.02
7 616.0 594.8 0.06 37 3181.5 3158.7 0.06
8 683.7 631.1 -0.39 38 27.1 62.4 0.00
9 804.7 658.3 0.08 39 56.5 121.6 0.00

10 699.4 692.2 0.39 40 154.0 170.5 0.00
11 1000.7 720.8 -0.05 41 369.2 352.0 0.00
12 765.9 771.3 0.51 42 402.6 425.5 0.00
13 936.3 953.1 0.28 43 410.0 434.9 0.00
14 949.4 969.2 -0.54 44 466.1 544.0 0.00
15 1047.3 972.7 0.19 45 620.1 635.3 0.00
16 1006.6 999.4 0.36 46 874.1 737.2 0.00
17 1018.6 1008.2 -1.01 47 686.4 745.1 0.00
18 1061.5 1097 0 48 768.4 810.9 0.00
19 1145.5 1163 -0 49 838.9 876.7 0.00
20 1201.2 1206 0 50 1025.9 969.0 0.00
21 1266.3 1252.0 -0.03 51 966.6 1018.7 0.00
22 1172.1 1285.0 0.03 52 960.8 1020.8 0.00
23 1327.2 1344.0 -0.59 53 1155.1 1031.4 0.00
24 1452.5 1427.2 0.03 54 1115.2 1081.7 0.00
25 1436.2 1447.7 -0.30 55 901.7 1261.8 0.00
26 1477.6 1478.4 0.29 56 1480.6 1291.5 0.00
27 1528.0 1535.8 0.06 57 1337.5 1370.0 0.00
28 1622.7 1620.2 0.02 58 1522.8 1522.7 0.00
29 1670.2 1666.6 -0.99 59 3094.6 3089.1 0.00
30 1748.3 1746.3 0.30 60 3179.7 3154.4 0.00

a CIS with 6-31G* is used to perform a geometry optimization for
the first excited state. The frequencies of the ground state are obtained
at the optimized geometry of the first excited state by the diagonalizing
force constant matrix (Hessian matrix) of the ground state. Calculation
for the force constant matrix is performed at the Hartree-Fock level
with 6-31G*. Frequency scaling factor is 0.91, and displacements are
unitless. See text.b The first 37 normal modes belong to the totally
symmetric group,A′, and the other 23 to the nontotally symmetric
group, A′′. Note that only the normal modes belonging toA′ have
nonzero displacements.

Figure 3. FC densities for the harmonic motions with resolution of
300 and 50 cm-1. The inset shows the FC density with resolution of 1
cm-1. Both frequency shifts and Duschinsky rotation are included.
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and as a result, the total sum of FC factors is not exactly 1. As
δω becomes small, more fine structure appears in the FC density
function. It is interesting to note that, at higher resolution, we
can see irregular structure in the low-frequency region, reflecting
mode selectivity.47 Mode selectivity occurs since only a few
number of modes can contribute in the low-frequency region.
A distinct high-frequency tail is also observed to be discussed
later.

A FC density function for the harmonic motions can be also
obtained from the Fourier transform of nuclear overlap/phase
function (NOPF), i.e., with the time-dependent method outlined
above.6-8 The NOPF for the harmonic motionJhar(t) is obtained
analytically from the generating function method developed by
Kubo-Toyozawa.38 Then the FC density function can be
directly calculated as

whereJhar(t) is the NOPF for the harmonic motions.35 In Figure
4, we show semilogarithmic plots of FC density function from
the sum-over-states method and from the time-dependent method
for the harmonic motions. Both frequency shifts and Duschinsky
rotation are included in both cases, andδω is 300 cm-1.

δω of 300 cm-1 corresponds to aτ (see eq 26) of 111 fs.
For thisτ, |Jhar(t)| ≈ 9.8 × 10-7. This small value of|Jhar(t)|
implies that an accurate calculation of the FC density function
from the time-dependent method requires determination ofJ(t)
with high accuracy even in regimes of very small amplitude.
For higher resolution of|Jhar(t)| in the time-dependent method,
τ should be much larger, and because of the phase recurrence
mentioned in the previous study,35 the values of|Jhar(t)| in fact
increase again and numerical difficulty decreases. Then the time-
dependent method can provide an acceptable result even in high
resolution provided that the exact expression forJ(t) is
used.35,38,51 In the low-frequency region, the sum-over-states
method shows a little mode selectivity, but the time-dependent
method with low resolution does not. In the high-frequency
region, however, due to truncation in the calculation of FC
factors in the sum-over-states method, the result from the sum-
over-states method becomes inaccurate and we can see the

discrepancy between two methods. The sum-over-states method
is not restricted by resolution since one actually computes FC
factors, and we can control the resolution to whatever extent
we want. But that method becomes intractable for large
molecules of low symmetry and has difficulty in the calculation
of FC factors in the high-frequency region. On the other hand,
the time-dependent method is highly efficient in that the method
takes less time to compute the FC density function. In addition,
the time-dependent method can be readily used for the anhar-
monic PES.5 However, it cannot provide individual FC factors.
It also depends on the resolution and can suffer from the
numerical instability in higher resolution due to the small values
of |Jhar(t)| at increasing times. Thus the two approaches have
complementary strengths.

In Figure 5, we showΣhar(ω). Model I includes the effect of
Duschinsky rotation as well as frequency shifts and displace-
ments. While frequency shifts and displacements are considered
in model II, model III accounts solely for the effect of
displacements (spin-boson model). It is evident from Figure 5
that model II is somewhat different from model III, the
differences originating from frequency shifts in the model II.
A comparison between model I and model II shows that
Duschinsky rotation has a relatively minor effect. On the basis
of these observations, in our molecular system, frequency shifts
introduce larger deviations from the spin-boson model than the
Duschinsky rotation does.

It is evident that both frequency shifts and Duschinsky
rotation increase values of the FC density function in the high-
frequency region. One reason is that nontotally symmetric
modes, which have no displacements, can now affect the FC
density function through frequency shifts and Duschinsky
rotation.41,42 Sando et al.42 studied the effects of Duschinsky
rotation on an ET rate in a model system where two modes
without displacements are mixed among eight modes. They also
observed the increased contribution to the ET rate from the high-
frequency region, and attributed the increase to the participation
of the nontotally symmetric modes. We note that, as frequency
shifts and Duschinsky rotation are included, the number of FC
factors to be computed is increased; i.e., the total number of
FC factors goes from 8.86× 1010 in model III to 9.66× 1012

Figure 4. Semilogarithmic plot for the FC density functions comparing
between the sum-over-states method and the time-dependent method
for the harmonic motions. Both frequency shifts and Duschinsky
rotation are included, andδω ) 300 cm-1.

Σhar(ω) ) 2Re∫0

∞
dtJhar(t) exp(iωt) (27)

Figure 5. Comparison among several models forΣhar(ω). Model I
includes Duschinsky rotation and frequency shifts as well as displace-
ments. In model II, Duschinsky rotation is not considered. Model III
only has the effect of displacements.δω ) 300 cm-1.
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in model II to 5.34× 1014 in model I. This increase also reflects
the participation of nontotally symmetric modes.

As mentioned previously, under the assumption of separable
torsion from the other motions, the total FC density can be
written as7

Figure 6 shows the total FC density function as well as the FC
density functions for the harmonic motions and for the torsional
motion. The effects of frequency shifts and Duschinsky rotation
are included. The calculation of the total FC density function
is based on both the sum-over-states method and the time-
dependent method. That is to say, the calculation of the FC
density function for the harmonic motions are performed using
eq 21 and the FC density for the torsional motion is computed
based on eq 25. The resolution is 300 cm-1. It is clear that the
role of the slow torsional motion is essentially to simply shift
the peak of the spectra into a higher position. This is because
the Σtor(ω) in Figure 6 is nearly a delta function, and when
Σtor(ω) ≈ δ(ω - ω0), Σtot(ω) in eq 28a becomesΣtot(ω) ≈
Σhar(ω - ω0).

One potentially interesting feature of the FC density function
is the behavior of the function in the high-frequency (or energy)
region.57,58 Englman and Jortner showed that an exponential
decay of the FC function can be expected from the spin-boson
model in the weak coupling limit, defined asλV e p〈ω〉.58 Here
the vibrational reorganization energyλV is given for harmonic
model as

and the mean vibrational frequency〈ω〉 is

In Figure 7, we present a semilogarithmic plot of the FC density
function to examine the high-frequency behavior in our system,
also for the spin-boson model (model III). For this purpose, we
use the Fourier transform of the NOPF to obtain the FC density
function accurately at very high frequency. We also use the
spin-boson model to obtain the reorganization easily. In Figure
7, we observe only a roughly exponential decay at very high
energy. According to Englman and Jortner’s work, to observe
a true exponential decay, the vibrational reorganization energy
should be equal to or less than the mean vibration frequency.
However, the vibrational reorganization energy of 4228 cm-1

in our system is much larger than the mean vibrational frequency
of 1233 cm-1. Because of the much larger reorganization energy
than the mean vibrational frequency, our system falls into the
strong coupling limit, where the vibrational reorganization
energy is larger than the mean vibrational frequency.

In experiments carried out at room, or high, temperature,
fitting functions are frequently used to obtain physical quantities
such as reorganization energy from experimental optical spectra.
One of the most popular fitting functions is based on the
Jortner’s expression.48 In that expression, the description of
many nuclear degrees of freedom is simplified to two repre-
sentative degrees of freedom. One is a low-frequency vibrational
mode describing classical motions, and the other is a high-
frequency vibrational mode representing quantum mechanical
vibrational motions. The resulting model FC density function
can be written as22,48

Here s is a Huang-Rhys factors ) ∆2/2 where ∆ is the
displacement for the high-frequency mode,λcl

har is a classical
reorganization energy, which comes from the low-frequency
mode, andωqm is a frequency for the high-frequency quantal
mode. The quantum mechanical reorganization energy is
determined with the relationλqm

har ) spωqm. Note that, in eq 31,
we consider only the FC density function for the harmonic
motions, not the total FC density function, for the following
reason. It is clear that the FC density function for the torsional

Figure 6. The total FC density,Σtot(ω), along withΣhar(ω) andΣtor(ω).
Both frequency shifts and Duschinsky rotation are included forΣhar(ω),
andδω ) 300 cm-1.

∑tot(ω) ) ∫-∞

∞
dω′∑har(ω - ω′)∑tor(ω′) (28a)

) ∫-∞

∞
dω′∑har(ω′)∑tor(ω - ω′) (28b)

λV ) ∑
j

3N-6 1

2
∆j

2pωj (29)

〈ω〉 )

∑
j

3N-6

ωj

3N - 6
(30)

Figure 7. Semilogarithmic plot for the FC density function for the
spin-boson model and exponential fit in the high-frequency region to
test exponential decay.δω ) 300 cm-1.

Σhar(ω) ∝ ∑
k)0

∞ sk

k
exp[-

(pω - (λcl
har - ∆G + kpωqm))2

4λcl
harkBT ] (31)

2614 J. Phys. Chem. A, Vol. 108, No. 14, 2004 Hwang and Rossky



motion in the room temperature is nearly Gaussian due to its
low frequency or slow motion (static modulation limit). Since
Σhar(ω) in eq 31 is a linear combination of the Gaussian functions
and the total FC density function is a convolution of the FC
density functions for the harmonic and the torsional motions
(see eq 28a), the total FC density function is exactly same as
eq 31 except for the replacement ofλcl

har by λcl
tot, whereλcl

tot )
λcl

har + λtor. Since we already know theλtor, it suffices to
consider solely the FC density function for the harmonic
motions. Barbara and co-workers20,22,23 used eq 31 to obtain
the spectroscopic parameters required to calculate back ET
reaction rates in a betaine-30 molecule. They fitted the static
absorption spectra of the betaine-30 in various solvents with
eq 31 and calculated back ET reaction rates with the parameters
obtained.

We test the Jortner’s model by fitting our exact FC density
function with eq 38. Figure 8 showsΣhar(ω) and the fit. The
temperature is fixed at 298 K since most experiments on betaine
molecules are carried out at this temperature. For the calculation
of a thermally averagedΣhar(ω), the time-dependent method of
eq 27 and Kubo-Toyozawa formalism for the thermally
averaged NOPF38 are used. In the calculation ofΣhar(ω) and
the fitting function,∆G is set to zero. The fitting function in
Figure 8 corresponds to the parametersλcl

har ) 2004 cm-1, s )
1.50,ωqm ) 1483 cm-1, and thereforeλqm

har ) 2225 cm-1. Then
the total reorganization energy for the harmonic motion from
the fitting function is 4229 cm-1. By comparison of this
reorganization energy to the reorganization energy of 4228 cm-1

for the harmonic motions from the spin-boson model, we find
that the Jortner’s expression correctly represents the reorganiza-
tion energy. The frequency for the quantal modeωqm ) 1483
cm-1 is comparable to the high frequency of 1554-1800 cm-1

obtained from the absorption spectra of a betaine-30 in various
solvents with the same fitting function by Barbara and co-
workers.22 To compare the classical and quantum mechanical
reorganization energies from the Jortner’s expression to the
reorganization energies from the spin-boson model, we should
divide 60 vibrational normal modes into two groups, low-
frequency modes and high-frequency modes. We choose as a
separation frequency 300 cm-1 by which we can separate low-
frequency modes from high-frequency modes.59 We believe that
300 cm-1 as a separation frequency is reasonable since the

thermal energy at 298 K is 207 cm-1. The mean low freqeuncy
〈ω〉low ) 147 cm-1 and 〈ω〉high ) 1354 cm-1. The latter is
qualitatively similar to the fitting parameterωqm ) 1483 cm-1,
and to the single-mode model parameter of 1554 cm-1

determined in ref 22. The exact low-frequency and the high-
frequency reorganization energies from the spin-boson model
can be calculated from Table 2, and the values are 1476 and
2752 cm-1, respectively. Since the selection of the separation
frequency is somewhat arbitrary, the separation of the 60 normal
modes into two groups is subtle. Nevertheless, we can see the
qualitative agreement between the exact values and the fitting
parameters for the reorganization energies.

IV. Concluding Remarks

In this study, FC factors and FC density functions for the 60
vibrational modes of the simplest betaine molecule have been
calculated by combination of the sum-over-states method and
the time-dependent method. In the sum-over-states method for
the 59 harmonic motions, we were able to address the memory
overflow problem by modifying the TLFBT algorithm and using
the vibrational symmetry groups. The sum-over-states method
agrees well with the time-dependent method except for the very
high frequency region. Here, the rapid increase of the number
of FC factors to be computed prevents a reasonable computation
of all the FC factors required. In the low-frequency region, the
sum-over-states method reveals a fine structure reflecting some
mode selectivity. Compared with experimental data from the
resonance Raman experiments, displacement calculations in our
study are in qualitative agreement with the experimental results.
Both our study and the resonance Raman study show that low-
frequency modes have larger displacements than high-frequency
modes.

The inclusion of frequency shifts and Duschinsky rotation
vastly increases the number of FC factors to be computed in
the high-frequency region. As a result, the FC density function
becomes broader compared with the simple spin-boson model.
We also observed that frequency shifts have more influence on
the FC density function than Duschinky rotation. The FC density
function for the torsional motion has nearly a delta-function-
like shape, and so its role is to shift the position of the FC density
function to a higher frequency. This is associated with the slow
dynamics of torsion.

In the high-frequency region, we did not observe clear
exponential decay. For the simplest betaine molecule, the
relatively large structural change between the ground and the
first excited state leads to large displacements and the resulting
large reorganization energy. As a result, the molecule falls into
the strong coupling limit, and an exponential decay energy gap
law does not pertain.

When the low-frequency region of FC density function for a
large molecule is investigated, we find that the sum-over-states
method readily provides fine structures. Because of the rapid
increase in the number of contributing FC factors in the high-
frequency region and the resulting difficulty of computation,
however, the sum-over-states method does not provide accurate
values. In this case, the time-dependent method is an excellent
alternative.

The FC density function for the harmonic motions in the spin-
boson model is well fitted by the Jortner expression.48 The total
reorganization energy obtained from the fit is in excellent
agreement with the reorganization energy in the spin-boson
model. From this fit, we can also see that the physical
parameters, such as low- and high-frequency components of
the reorganization energy, and the characteristic frequencies are
in qualitative agreement only, as might be expected.

Figure 8. Comparison between the normalizedΣhar(ω) from the spin-
boson model and fitting with Jortner’s model,48 eq 31. The temperature
is held at 298 K. and∆G is set to zero.

Franck-Condon Density for a Betaine Dye Molecule J. Phys. Chem. A, Vol. 108, No. 14, 20042615



Acknowledgment. The support of this research by a grant
from the National Science Foundation (CHE-0134775) and the
R. A. Welch Foundation is gratefully acknowledged.

References and Notes

(1) Bolton, J. R.; Mataga, N.; MeLendon, G. InElectron Transfer in
Inorganic, Organic, and Biological Systems; Bolton, J. R., Mataga, N.,
MeLendon, G., Eds.; American Chemical Society: Washington, DC, 1991.

(2) Bixon, M.; Jortner, J. InElectron Transfer-From Isolated Molecules
to Biomolecules; Jortner, J., Bixon, M., Eds.; John Wiley & Sons: New
York, 1999.

(3) Condon, E. U.Phys. ReV. 1928, 32, 858.
(4) Manneback, C.Physica1951, 17, 1001.
(5) Myers, A. B. InBiological Application of Raman Spectroscopy;

Spiro, T. G., Ed.; Wiley: New York, 1987; Vol. 2.
(6) Heller, E. J.J. Chem. Phys.1978, 68, 2066.
(7) Heller, E. J.J. Chem. Phys.1978, 68, 3891.
(8) Lee, S.-Y.; Heller, E. J.J. Chem. Phys.1979, 71, 4777.
(9) Duschinsky, F.Acta Physicochim.1937, 7, 551.

(10) Sharp, T. E.; Rosenstock, H. M.J. Chem. Phys.1964, 41, 3453.
(11) Gruner, D.; Brumer, P.Chem. Phys. Lett.1987, 138, 310.
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