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A simple toy model is analyzed within the framework of multichemical equilibrium to explain the spontaneous
formation of clusters of certain metal oxides (termed “polyoxometalates” in the literature) in acidified aqueous
solutions. Remarkably, thermodynamically stable clusters do not always correspond to magic numbers, i.e.,
local minima of the (bonding) free energy as a function of size. It is shown that cluster formation in metal
oxides closely resembles micelle formation in surfactant systems.

1. Introduction

Metal oxides are ubiquitous in nature and are widely used in
technology: they are important building blocks for catalysts
and for nanometer-sized particles.1 In particular, molybdenum,
tungsten, vanadium, and aluminum oxide spontaneously and
reversibly form clusters consisting of up to 36 monomers in
acidified aqueous solutions.2,3 Several species containing dif-
ferent numbers of metal-oxide monomers, with various degrees
of protonation, have been detected or proposed.4 In general,
increasing proton and monomer concentrations cause increasing
cluster sizes, but the sizes are different for each metal oxide.
Remarkably, tungsten and molybdenum oxide are chemically
almost identical but produce different cluster sizes.4 A typical
cluster is shown in Figure 1. It can be seen in this figure that a
cluster mainly consists of octahedrally shaped monomers that
are linked at their vertexes. These links are (reversible) chemical
bonds: the vertexes linked in the clusters share an oxygen atom.
Bonds form between two metal-oxide monomers when two
protons combine with an oxygen atom at a vertex to produce
water; see eq 1.

This paper is organized as follows. First, clustering of
monomers is analyzed thermodynamically, leading to an expres-
sion for the fraction of clusters of any sizeq. Subsequently,
within the framework of multichemical equilibrium, a simple
toy model is analyzed: instead of octahedrally shaped monomers
in space (see Figure 1), triangles in a plane are considered. It is
shown that the qualitative behavior of metal-oxide clusters as
seen in experiments is well described by this model. It is
therefore concluded that chemical bonding under the constraints
of geometry determines the thermodynamic stability of metal-
oxide clusters. The clusters can be regarded as multiple state
micelles and need not correspond to magic numbers, i.e., local
minima of the (bonding) free energy as a function of size.

2. Multichemical Equilibrium

Reversible clustering of a metal (M) oxide in the presence
of protons can be written as the multichemical equilibrium

where, for simplicity, species are assumed to be unprotonated.
Including protonated species is straightforward but will make

the analysis less transparent; it will not change the global
behavior of the system. Monomers MOx as well asq-mers
MqOxq-p/2 are usually charged, which has not been indicated in
the above equation. Thermodynamic equilibrium implies that
∑iνiµi ) 0, whereυi andµi are the stoichiometric coefficients
and the chemical potentials of the componenti, respectively.
For i ) H+, i ) 1 (monomers MOx), and i ) q (q-mers
MqOxq-p/2), the chemical potential is written as
µi ≈ µi

0 + kT ln ci. Here,µi
0 is the standard chemical potential

andci the concentration of componenti relative to the “standard
concentration”c0 ) 1 M (i.e., the concentration where the* Corresponding author. E-mail: w.k.kegel@chem.uu.nl.

pH+ + qMOx a MqOxq-p/2 + (p/2)H2O (1)

Figure 1. Typical metal-oxide polymer, in this case Mo36O108.4 The
cluster mainly consists of octahedrally shaped monomers in which the
metal is located in the center of the octahedra. The vertexes of the
octahedra are oxygen atoms or (valance) electron pairs. Bonds between
the monomers are localized at the vertexes of the metal-oxide
monomers: shared vertexes indicate bonds.
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chemical potentials have the valuesµi
0). This leads to

In this equation,cq is the concentration of species of sizeq: it
used upp protons upon formation out ofq monomers. These
species can be realized ingq ways wheregq is the degeneracy
of a speciesq; examples are shown later (Figure 2). The key
step in eq 2 is the factorization of the equilibrium constantKq

) exp((qµ1
0 - µq

0 + p(µH+
0 - (1/2)µH2O

0 ))/kT) ≈ κp
p
κq

q. This
factorization is useful, i.e.,κp andκq do not depend on cluster
size, if the bond free energy change is at least several times the
thermal energy,kT. In that case, the free energy change due to
bond formation dominates the total free energy change upon
forming a cluster. The cluster chemical potentials are written
as µq

0 ) qµ1,q
0 - (p/2)µO,q

0 , with µ1,q
0 and µO,q

0 the chemical
potentials of a monomer MOx inside aq-mer with composition
(MOx)q, and an oxygen atom inside such aq-mer, respectively.
This leads to

Note that the subscript q inµO,q
0 is to distinguish it from oxygen

in water; it does not imply that it depends onq. Thus, the
factorization of the equilibrium constant in eq 2 implies that
two thermodynamic forces drive the formation of equilibrium
clusters: (1)∆µq ) (µ1,q

0 - µ1
0)/kT being the reversible work of

squeezing togetherq monomers of composition MOx (in units
of kT per monomer); this contribution is expected to be larger
than zero and (2)∆µp ) ((1/2)µH2O

0 - µH+
0 - (1/2)µO,q

0 )/kT, the
free energy change per proton due to condensation with (p/2)
oxygen atoms from the cluster into water, thereby forming bonds
in the cluster. The latter contribution (again in units ofkT) is
expected to be negative and of the order 10 in magnitude, as

estimated from measured equilibrium constants reported in ref
4. This figure is comparable to the molecular free energy change
connected to micelle formation;5 it will be shown later that this
is not the only analogy with micelles. The concentrations of all
q-mers may be calculated by solving eq 2 forc1 using mass
conservation, i.e., the total concentration of MOx in the system
c ) ∑qqcq. This requires the numbersp andg for everyq. These
numbers may in principle be obtained by minimizing the free
energies of allq-mers withq ∈{2, 3, 4, ...}. Here, this procedure
is carried out using a toy model that reflects the global features
of polyoxometalates and related species.

3. Toy Model

The toy model, depicted in Figure 2, consists of triangles
that contain the metal (located, e.g., at their centers). The
vertexes are the oxygen atoms. Two vertexes may stick at the
expense of two protons, so that the value ofp is twice the
number of bonds in aq-mer. A third vertex might be added,
but will not stick. The stable configuration of triangles (i.e.,
the one that definesp, g) is the one that maximizes the number
of bonds under geometrical constraints. These constraints are
chosen to be (1) triangles may only be packed into a larger
triangle starting with a single one at the (virtual) top; (2) rows
should be filled up with triangles in order to proceed to the
next row. These constraints reflect the (a priori unknown)
constraints that nature imposes. In fact, many geometrical rules
will lead to qualitatively similar results as the ones to be
presented here, but the sizes of the stable clusters differ. Real
metal-oxide monomers have octahedral or tetrahedral shapes
and may even be hydrated, so that finding the rules that define
real clusters is entirely nontrivial. However, the analysis of the
toy model is straightforward. Figure 2 shows the situation up
to q ) 6. Any numberq where a row is completely filled with
triangles corresponds to a magic number,q*: for any q*, the
number of bonds (indicated as dots) per monomer is larger than
that of species (q* - 1). These magic numbers,q* ∈{3, 6, 10,
15, 21, 28, ...} have a single complexion (no degeneration) or
gq* ) 1. The numbergq increases with unity between two magic
numbers for everyq ) q* + 2n with n ∈ {1, 2, 3, ...} or
becomes 1 again if the nextq is a magic number. The number
of protons,p(q), consumed upon forming a cluster of sizeq, is
twice the number of bonds in a cluster. For the number of bonds

Figure 2. Toy model of polyoxometalates using packing rules as
defined in the text. Starting at the top left we haveq ) 2, 3, 4, 5, 6
with p ) 2, 6, 8, 10, 14 andgq ) 1, 1, 1, 2, 1. The lower row forq )
5 can be realized in two distinguishable ways with equal values ofp
as indicated in the Figure (i.e., the triangle in the lower middle row
may be shifted one position to the right without changing the number
of bonds), henceg5 ) 2.

cq ) KqgqcH+
p c1

q ≈ gq(κpcH+)p(κqc1)
q (2)

κq ) exp[(µ1
0 - µ1,q

0 )/kT] ) e-∆µq (3a)

κp ) exp[(µH+
0 + 1

2
µO,q

0 - 1
2
µH2O

0 )/kT] ) e-∆µp (3b)

Figure 3. Number of protons,p, required to form species of sizeq,
according to the rules depicted in Figure 2 and explained in the text.
Note thatp equals twice the number of bonds. The inset shows a
measure of the average bond energy density,-p/(q - 1); local minima
appear at the values ofq corresponding to the magic numbersq* ∈ {3,
6, 10, 15, ...}. Different geometrical rules or constraints give rise to
different bond number landscapes (not shown).
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we have (1/2)p(q ) 2) ) 1 and (1/2)p(q + 1) ) (1/2)p(q) + 1
if q + 1 ∉ q*, while (1/2)p(q + 1) ) (1/2)p(q) + 2 if q + 1 ∈

q*. These rules lead to the bumpy landscape as depicted in
Figure 3. Also shown in this figure is a measure of the “bond
energy density”-p/(q - 1). This quantity is plotted in (the
inset of) Figure 3; the minima clearly correspond to magic
numbers.

4. Results and Discussion

Figure 4 shows the fraction of speciesq as a function of
proton concentration at a single value of∆µp ) -10 and
different values of∆µq. The same trends are observed upon
variation of the total monomer concentration,c, at constant
proton concentrations (not shown). These trends are the fol-
lowing: (1) only a relatively small number of species are
observed in significant concentrations; (2) the fractions of the
smallest species go through maxima; and (3) larger species are
observed upon increasing proton and total monomer concentra-
tions. These trends are in agreement with experimentally
observed behavior of polyoxometalates.2-4 This agreement
verifies the widely shared notion that both geometry and
chemical bonding play roles in the stability of the clusters.
However, not only magic numbers appear but also small but
significant fractions of species withq * q*, depending on the
proton concentration. Thus, in real systems, the full “bond
number landscape” (see Figure 3) should be taken into account;
it is not sufficient to look for magic numbers. It can also be
seen in Figure 4 that repulsive monomer interactions,∆µq > 0,
suppress the formation of small species, whereas decreasing∆µq

leads to a significant increase of small clusters. This increase
of small clusters upon decreasing∆µq may explain why in case
of molybdenum and tungsten oxide, only (unprotonated) species
with q g 6 have been observed while in case of aluminum oxide,
significant fractions of dimers (q ) 2) appear.2 It is quite feasible
that the relatively large hydration layer of aluminum oxide
causes a smaller or even negative value of∆µq, thereby
stabilizing small clusters. The present analysis also suggests that
the differences in cluster sizes between the chemically similar
tungsten and molybdenum oxide must be due to different
packing rules of the octahedrally shaped monomers. These
different rules may in turn be caused by a combination of subtle
effects, including again hydration.

It is worth noting that the above behavior resembles micelle
formation. The concentration of monomers at which the first
species of sizeq′ > 1 appear follows from eq 2 and is given by
c1
/ ≈ [gq′κq

q′(κpcH+)p]-1/(q′-1). This concentration reduces to the

Figure 4. Fraction of species of sizeq (indicated in the figure) as a
function of the proton concentration. These fractionsqcq/c were
calculated by numerically solving eq 2 using mass conservation and a
total concentration of monomersc ) 0.1 M and (see eq 3)∆µp )
-10, ∆µq ) 5 (Figure 4A),∆µq ) 0 (Figure 4B),∆µq ) -5 (Figure
4C). This polynomial inc1 converges for largeq; the concentration of
all species withq > 15 always is less than a few percent of the total
monomer concentration. In real systems, small protonated species appear
at high H+ concentrations; these species are not considered here.

Figure 5. Concentration of free monomers,c1, as a function of the
total monomer concentration,c, at several values of the proton
concentration indicated in the figure. Curves are plots of the function
c ) ∑qqcq using∆µp ) -20 and∆µq ) 5 in eqs 2 and 3. The crossovers
from c1 rising linearly withc to almost constant values indicate cluster
formation analogous to the formation of micelles in surfactant solutions.
The values of the critical cluster concentrations,c1

/ (see text) can be
checked by noting thatq′ ) 3 (as in Figure 4A).
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critical micelle concentration derived by Debye6 if κpcH+ ) gq′
)1. In the situation described here, the “critical cluster
concentration”,c1

/, sensitively depends on proton concentra-
tion. Figure 5 shows that, atc1

/, a crossover occurs fromc1

increasing linearly withc, to c1 being more or less constant;
this behavior is indeed fully comparable to micelle formation.
Note that for micelles, cluster distributions are centered around
q′ ≈ 50-80 5 depending on the type of surfactant(s) used.

Finally, a combination of geometry and multichemical
equilibrium has proved quite successful in explaining the
stability of virus capsids that consist of (many) coat protein
building blocks, see ref 7 and, more recently.8 Thus, it seems
that viruses, metal-oxide clusters, and surfactant micelles can
all be described by similar concepts. Indeed, under appropriate
conditions, intricate structures comparable to virus capsids form
in certain mixtures of metal oxides, see ref 9. Incorporating the
basic geometry of these systems into a model remains an
interesting challenge ahead.
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