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The state-to-state rate of vibrational energy relaxation of the OH-stretch fundamental is investigated via
perturbative methods. The system is separated into an 11 degree of freedom methanol molecule and the
surrounding bath. Notably, the large amplitude torsional motion is considered a bath degree of freedom, and
the 11 small amplitude normal modes are expanded in a Fourier series of the torsional angle. The methanol-
bath coupling is computed through the use of a molecular dynamics simulation, and the results are computed
using Landau-Teller and time dependent perturbation theory. Results are compared to the ultrafast pump-
probe experiments of L. K. Iwaki and D. D. Dlott [J. Phys. Chem. A2000, 104, 9101].

I. Introduction

Vibrational energy relaxation (VER) in liquids is a central
component of reaction dynamics.1-3 The ability of molecules
to redistribute energy into internal degrees of freedom following
reactions or laser excitation is a key component in product
stabilization. Understanding this relaxation from a molecular
perspective will shed new light on the fluctuating forces a solute
molecule experiences in its liquid environment.

In the past few years, experiments have yielded a wealth of
information on VER.4 Studies have ranged from deuterated
water5-8 and the azide ion9 to watching energy flow spatially
along molecular backbones.10 The role of the density of states
and intramolecular couplings have been highlighted by examin-
ing VER trends for the iodomethane11 and haloform series12-16

as well as by comparing VER following fundamental and
overtone excitation.17 The influence of solvent-solute couplings
has been probed by varying solute polarity for iodomethanes17

and by varying solute concentrations of hydrogen bonding
species that span monomeric or small clusters in apolar
solvents18-22 all the way to neat hydrogen bonding liquids such
as methanol.23 Detailed comparisons of gas- and liquid-phase
VER24,25have underlined the sometimes important contribution
of intramolecular vibrational relaxation in the gas phase to VER
in liquids. While this is not a comprehensive list, it does indicate
the variety of problems being investigated.

On the theoretical side, VER has been studied using centroid
dynamics26,27 and instantaneous normal modes.28 The former
allows one to include quantum effects in the solvent-time
correlation functions, and the latter allows insights into solute-
solvent interactions. By far the most prevalent method, however,
for treating realistic systems has been Landau-Teller theory
(LT). This is due to its simplicity and success at explaining a
variety of VER phenomena in polyatomic molecules.2,29-34 In
this theory, which is based on linear response theory, population
is transferred between the quantum mechanical energy levels
of a solute molecule due to the time-dependent perturbations
between the solute and the classical solvent. The challenge in
applying this theory is that one needs accurate descriptions of
the intermolecular solute-solvent couplings and intramolecular

solute couplings. Given these couplings, one must then calculate
the vibrational energy levels of the solute and compute the many
solvent correlation functions. As the molecular systems of
interest increase in size and chemical complexity, these tasks
become increasingly challenging.

In this paper, we apply Landau-Teller theory to the study
of vibrational relaxation following excitation of the OH stretch
in neat methanol. There are several reasons for this choice. Neat
methanol and HOD in D2O share several features, and hence
we can expect to build on the results of previous research.31,34

Methanol and water both have broad OH stretch fundamental
bands due to hydrogen bonding. They also have OH bending
vibrations of approximately the same energy. The relaxation of
the OH stretch of HOD in D2O has been theoretically pre-
dicted31,34to proceed via excitation of the overtone of the bend,
a transition referred to as a∆V ) 3 process as the OH stretch
and overtone bend differ by three quanta of excitation. We can
anticipate that a similar pathway will apply for methanol.
Methanol, however, has a much higher density of states, with
the result that many states lie within the broad band feature of
the OH fundamental. Thus, MeOH relaxation might be more
similar to that found for CHCl3, where there is a flow of energy
to a nearly degenerate state that involves a∆V ) 4 process.33

One can anticipate that the situation is even more complicated
since the large solvent-induced energy level fluctuations will
lead to avoided crossings between the OH fundamental and
background states. Under these circumstances it is unclear
whether the average energy difference used in LT theory will
lead to accurate rates. For this reason we also solve the time-
dependent Schro¨dinger equation (TD) as an alternative approach
to calculating rates.

While water is the liquid of life, MeOH is often easier to
investigate because of the fewer number of hydrogen bonds per
molecule and the fact that the methyl group in MeOH allows it
to be dissolved in a wider variety of apolar solvents. This has
led to a variety of experimental studies. Dilute MeOH in CCl4

experiments35,36shows that VER is intimately related to hydro-
gen bond dynamics. Not only isν(OH) vibrational excitation
able to disrupt hydrogen bond networks, but also the relaxa-
tion time scale for monomeric MeOH is a factor of nine36 and
monomeric MeOD is a factor of two18 slower than that of the* Corresponding author. E-mail: sibert@chem.wisc.edu.
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neat liquid MeOH which appears to be about one picosecond.23

Even in the neat liquid, Iwaki and Dlott have shown that by
tuning the IR-pump laser they can excite subsets of molecules
with different environments as revealed by the remarkably
different VER associated with the IR-pump frequency.23

We find that the relaxation time constants are 2.7 and 3.1 ps
for LT and TD, respectively. Inclusion of a quantum correction
factor in the LT result reduces the lifetime to 1.6 ps. Despite
the similarity of results, there are notable differences at the level
of state-to-state relaxation dynamics. These differences are due
to the solvent-induced energy level fluctuations of the solute
molecule. Our results are slower than the experimentally
observed 0-1 ps time constant,23 but strongly interacting solutes
have consistently been slower in calculations.31,34We find that
relaxation of the OH fundamental occurs mainly through the
OH bend overtone; however, near degenerate combination states
contribute significantly to the relaxation with the result that all
modes are excited in the initial onset of relaxation as is found
experimentally.23 In the TD approach, laser excitation is included
to prepare the initial state so that one can avoid any approxima-
tions made with regard to initial state excitation. We are also
able to selectively excite subsets of states by tuning the
frequency of the excitation laser. We find an enhancement of
the bend population for the red-shifted laser excitation that is
consistent with that found experimentally.23

A shortcoming of the present work is that it will not correctly
treat vibrational relaxation that leads directly to breaking of the
hydrogen bond. This relaxation mechanism for the OH stretch
in HOD/D2O has been theoretically investigated using simple
models that treat the hydrogen bonding mode quantum me-
chanically.37 The results suggest2 that this mechanism may be
operative for HOD/D2O. Experimental results suggest that this
pathway for relaxation is not relevant for OH relaxation in neat
methanol.23

The paper is laid out as follows. We begin by providing
background material for the methanol system and describe the
methods that are used in this work. These methods include the
isolated molecule quantum calculation, the molecular dynamics
simulation, and outlines of the Landau-Teller theory and time-
dependent theory. Having presented the models we then present
and discuss the results.

II. Background

To understand energy flow in MeOH we begin with a review
of the nature of the vibrations themselves. The gas- and liquid-
phase vibrational frequencies of MeOH are compared in Table
1. The 11 small amplitude vibrations include 5 stretches, 4
bends, and 2 rocking modes. The symbolsν, δ, andF distinguish
these respective motions. Although the symmetry of the
vibrations is defined with respect toCs symmetry with ans or
a subscript, the numbering is not. The most noticeable change
between the gas- and liquid-phase is that theν(OH) shifts from
a sharp peak at 3686 cm-1 to a several hundred wavenumber
broad peak around 3400 cm-1, this being a typical signature of
hydrogen bonding.

Iwaki and Dlott investigated VER pathways23 and time scales
in neat MeOH via an IR pump/Raman probe experiment. The
experiment monitors population in all the molecular vibrations,
since they are all Raman active. The results in Figure 1 arise
from pumping theν(OH) with a mid-IR pulse and probing the
anti-Stokes Raman signal with a 532 nm laser. Both laser pulses
have a duration of approximately 0.8 ps. It should be noted
that it is nontrivial to obtain the relative populations from the
anti-stokes intensity; there is both overlap of the vibrational

transitions and simultaneous signal from overtones, combination
bands, and fundamentals, each of which has a different
frequency due to anharmonicities.

The results of Figure 1 are for IR-pump frequencies (top)
3250 and (bottom) 3400 cm-1, respectively. The OH relaxation
(not shown) occurs within one picosecond for both measure-
ments, this being near the temporal detection limit. There are
two key similarities between these two figures. First, all
vibrational modes exhibit excitation within 1 ps. This is in
contrast to excitation of theν(CH)’s at 2870 and particularly at
2970 cm-1.23 In those cases, there was no initial buildup of
population in the lower energyF(CH3) andν(CO) modes, and
most of the energy was deposited intoδ(OH). Second, theδ-
(OH) vibration has the largest relative population, while theν-
(CH)’s have the smallest relative population. The central

TABLE 1: Comparison of Theoretical and Experimental
Vibrational Energies (in cm-1) for Methanola

gas phase liquid phase

state motion harmonic 2nd expt.b 2nd adjusted expt.c

11 ν(OH) 3883.8 3686.3 3685.3 3585.4 3400.1 3400
21 νs(CH) 3014.1 2831.8 2838.6 2833.1 2833.8 2834
31 δs(CH) 1489.9 1453.0 1453.3 1468.4 1468.3 1466
41 δ(OH) 1367.9 1349.2 1320.6 1379.8 1381.7 1381
51 ν(CO) 1068.3 1036.0 1028.4 1052.9 1033.9 1034
61 νa(CH) 3100.6 2994.4 2997.6 3004.5 3004.5 2944
71 δa(CH) 1513.8 1476.6 1474.8 1487.1 1487.0 1541
81 Fa(CH3) 1114.5 1082.6 1073.2 1115.6 1115.9 1117
91 νa(CH) 3092.2 2958.6 2955.1 2975.5 2975.4

101 δa(CH) 1514.2 1474.7 1473.9 1486.6 1486.6
111 Fa(CH3) 1187.0 1160.9 1150.5 1172.5 1172.4

a Theoretical energies are calculated with second-order perturbation
theory.b From ref 61,ν1; ref 62, ν6, ν2, andν9; ref 63, ν7; ref 64, ν3

andν10; ref 65, ν4; refs 66 and 67,ν8, ν5, andν11. c From ref 23.

Figure 1. Population in the spectrally distinct normal modes as a
function of time following excitation of the OH fundamental. Results
are those of Iwaki and Dlott.23 (a) Corresponds to 3250 cm-1 excitation;
(b) corresponds to 3400 cm-1 excitation. See text for further details.
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difference between the two figures is thatδ(OH) is more readily
excited with the lower frequency pump laser.

The goal of this paper is to elucidate the above findings using
a combination of LT and TD theories. Our study focuses on
the initial stage of vibrational relaxation, as this is where the
perturbation theory treatments are amenable. Moreover, in the
early stage of transfer, vibrational energy transfer to other
molecules (VET) is an exceedingly small component of the
dynamics. Iwaki and Dlott examined this with the same pump/
probe setup, but this time using a solution of 75% MeOH and
25% CCl4 and monitoring three vibrational modes of CCl4.
Regardless of pump frequency or mode monitored, full CCl4

buildup happened within 20 ps with no initial burst of buildup
at time zero. This results suggests that the initial dynamics are
almost entirely intramolecular.23 This is consistent with the
theoretical model of Staib38 who examined near resonant transfer
of OH excitation among methanol molecules. The relaxation
rate out of the OH stretch was found to be significantly slower
than the observed rate. As the model contains only a single
degree of freedom per molecule, the OH stretch, Staib concluded
that the near resonant transfer to overtones and combination
bands must be decisive.

To introduce the ideas of VER out ofν(OH), and to show
which particular overtones and combination bands are likely to
be important we show Figure 2 in which vibrational energies
of liquid MeOH are plotted versus the change in vibrational
quantum number from theν(OH), at 3400 cm-1, to the other
vibrational eigenstates of the small amplitude motions between
1000 and 4000 cm-1.

In this window, the ∆V ) 2 processes correspond to
transitions to the other 10 fundamentals. If the intermolecular
couplings to these modes were the same, then one would expect
theν(CH)’s to be the most important states, since these modes
have the highest frequency. However, in a ball and spring picture
the ν(OH) and theν(CH)’s are indirectly coupled through the
ν(CO), and so one can anticipate small couplings.

Figure 2 shows that there are no near resonant states with
∆V ) 3. In fact the∆V ) 2 CH fundamentals are more nearly
resonant. There is a window almost 1000 cm-1 wide centered
around the excitation frequency of the OH stretch. Below 3400
cm-1, the transitions to the overtones and combinations of CH
and OH bends have the smallest energy mismatch. Of these
states, we anticipate that the overtone in the OH bend is likely
to be most important, based on the HOD results of Rey and
Hynes31 and Lawrence and Skinner.34 The states above 3400
cm-1 include combination bands with one quantum of CH
stretch and one quantum of a rocking mode or CO stretch.
Transitions to these states are unlikely, as they require the bath
to supply about 2kT of energy.

In contrast to∆V ) 3, there is no gap in the∆V ) 4 states
at energies near 3400. As one progresses up this stack of states,
one proceeds from states that have three quanta of excitation
in the CO stretch and rocking modes to states that have two
quanta of excitation in these modes and one quanta of excitation
in an OH or CH bend. At the higher energies there are states
with one quantum in either the CO stretch and rocking modes
and two quanta in the bending modes. Any transition between
these states only requires a small amount of energy transfer to
or from the low-frequency bath states, thus we anticipate that
these states may have an important role in the relaxation
pathway.

The experiment23 suggests that all of the above processes are
occurring to some extent, since all the modes light up at short
times. They also suggest that the∆V ) 2 is least likely. In the
following sections, we calculate the eigenstates, that correspond
to the eigenvalues shown in Figure 2, and then calculate the
rate of flow into these states by determining the time-dependent
solute/solvent coupling between them.

III. Landau -Teller and Time-Dependent Approaches

Landau-Teller theory is a perturbation theory based on linear
response.2,39 It allows one to use equilibrium dynamics to
describe a nonequilibrium system based on correlation functions
and their spectral Fourier transforms. To obtain the LT rate,
one computes the rate constant as the Fourier transform of the
interaction autocorrelation function at the frequency difference
of the states of interest, thus

where

Here Vmn ) 〈m|V|n〉 is the bath-dependent coupling obtained
by integrating the solute/bath coupling over the solute degrees
of freedom where|m〉 and |n〉 are the initial and final solute
eigenstates, respectively. The average energy difference between
these states isωmn, andQ(ωmn) is the quantum correction factor
(QCF) evaluated atωmn.

Implementation of the theory requires that we partition the
Hamiltonian into its various components, find the quantum
eigenstates|n〉 of the vibrational Hamiltonian, and carry out the
MD simulation for the bath.

A. Partitioning the Hamiltonian. As in previous vibrational
relaxation studies that have used Landau-Teller theory, the
system is comprised of a solute molecule interacting with a bath
of solvent molecules. As such, the Hamiltonian must be
expressed as a sum of three contributions

describing the solute MeOH vibrational Hamiltonian, the bath
Hamiltonian, and the interactions between them, respectively.
In this section we describe how we implement this division.
We will consider the kinetic and potential contributions in order.

To express the kinetic contribution to the Hamiltonian in the
form of eq 3, we begin with a kinetic energy operator describing
N MeOH molecules

Figure 2. Schematic of vibrational energy levels organized by∆V,
the total difference in vibrational quanta between a given state and the
OH fundamental.

kmn
LT ) Q(ωmn)

Ĉ(ωmn)

p2
(1)

Ĉ(ω) ) ∫-∞

∞
dt e-iωt〈Vmn(t) Vmn(0)〉 (2)

H ) Hs + Hb + V (3)

T ) ∑
i)1

N

Ti
mol (4)
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Here Ti
mol is the kinetic energy contribution in Cartesian

coordinates for each molecule. These operators can be written
in the form

following relatively standard treatments in which the atomic
positions are reexpressed as functions of the normal, torsional,
rotational, and translational coordinates. With the exception of
certain Coriolis and centrifugal coupling terms, this separation
is exact. We further assume that intermolecular vibrational-
vibrational energy transfer is not important. With this ap-
proximation, we can choose to focus on thejth molecule by
neglecting the vibrational kinetic energy of the remainingN -
1 MeOH molecules by setting the vibrational kinetic energy
equal to zero.

To write the kinetic energy in the form of eq 5, we take as
our starting point the kinetic energy contribution to MeOH
rotation-vibration-torsion Hamiltonian.40-42 For theith mol-
ecule, it takes the form

Here angular momentum operatorsJ and π have a fourth
element, the momentum conjugate toτ. The i subscript is
omitted on the momentum terms to simplify notation. We
neglect both the Coriolis and centrifugal terms by settingJTµπ
) 0 andµ ) µe, respectively. With these approximations, eq 6
becomes

Here the first two contributions constituteTi
vib and are included

in Hs for i = j. While the latter two constituteTi
tor-rot + Ti

tr and
are included inHb. With this division, our solute Hamiltonian
contains the kinetic energy due to the small amplitude vibrations
of a single MeOH molecule, while the kinetic energy due to
the torsions, rotations, and translations of all the molecules are
included in the bath Hamiltonian.

In this separation, the torsional motion is included in the bath.
We expect that the motion of the torsion is more strongly
coupled to the surrounding molecules than it is to the vibrations
of the same molecule. Moreover, in LT theory the bath degrees
of freedom are treated classically, and since the torsion
frequency is low, a classical treatment is reasonable.

We have made two approximations in the derivation of the
kinetic energy. First, the vibrational kinetic energy of theN -
1 bath MeOH molecules is set to zero. This is equivalent to
ignoring intermolecular vibration-vibration transitions in the
early stage of the relaxation. Previous studies that have
compared rates with and without this approximation find that
it is generally valid.33,43 Moreover, as discussed above, Iwaki
and Dlott see no heating of the bath on the time scale of the
initial relaxation out of the OH stretch.23 The second reason
for making this approximation is computational. Since the bath
consists ofN molecules each with rotational, torsional, and
translational degrees of freedom, any one molecule serves
equally well as the solute molecule. As such, in an MD
simulation we can follow all molecules at the same time and
average rather than following a single trajectory for a long
time.

The second approximation is neglecting Coriolis coupling.
Lawrence and Skinner34 have shown that while Coriolis coupling

has essentially no effect on the initial rate, this is due to a
fortuitous cancellation of potential-Coriolis and Coriolis-
Coriolis coupling terms each of which contributes almost 30%
to the lifetime of the OH stretch in HOD relaxation. Since this
coupling scales with the components of the inverse moment of
inertia of the molecule roughly perpendicular to the HOD plane
in water or COH plane in MeOH,we have neglected the coupling
here.

To express the potential in a form analogous to that of eq 3,
i.e.,

we begin by writingU as a sum of two contributions

whereQ are the normal coordinates of thejth molecule, andτ
is the torsional variable. With the special role thatτ plays in
the molecular potential energy, we are explicitly noting it in
the form of the potential even though it will always be
considered a bath degree of freedom. As such, we could have
includedτ in the vectorb. For the present study,Uj

mol(Q,τ) is
chosen to be the gas-phase molecular MeOH potential. The
remaining termW includes all other interactions.

The vibration-torsion potential is expressed as

where the Fourier expansion coefficients are functions of the
normal coordinates. In contrast to the usual approach where the
normal coordinates are defined by diagonalizing theFG matrix
at each value of the torsional coordinate and where the
instantaneous equilibrium configuration is a function ofτ, we
diagonalize theFhG matrix whereFh is the torsionally averaged
force constant matrix defined with respect to an equilibrium
configuration that reflects the 3-fold symmetry of the molecule.
While this separation increases vibration-torsion coupling, it
has several advantages. In implementing LT theory, it is
necessary to calculate the forces along the normal modes. To
do so requires that one transforms from space-fixed forces to
body-fixed forces and finally to normal modes. This second
transformation is a function of the torsional coordinate, since
our displacement coordinates are defined with respect to a body-
fixed frame that depends on the torsional coordinate as well as
the three Euler angles. The torsional dependence of the second
transformation is relatively simple if we assume a torsionally
averaged force constant matrix. The advantage of using torsion-
ally averaged bond lengths and angles is that the rotation-
torsion motion included in the molecular dynamics simulation
is that of a rigid-twister where bond lengths and angles do not
have to be readjusted at each value of the torsional coordinate.

The gas-phase contribution to the potential is written as

where the subscripte denotes evaluation of the Fourier coef-
ficient at the equilibrium value of the normal coordinates.
Combining eqs 9 and 11, we can now writeU as a sum of
three contributions. They are

Ti
mol ) Ti

vib + Ti
rot-tor + Ti

tr (5)

Ti
mol ) 1

2
(JT - π)µ( J - π) + 1

2
PTP + Ti

tr (6)

Ti
mol ) 1

2
PTP + 1

2
πTµeπ + 1

2
JT µeJ + Ti

tr (7)

U ) Us + Ub + V (8)

U(x) ) Uj
mol(Q,τ) + W(b,Q,τ) (9)

Uj
mol(Q,τ) ) U0 + U3c cos(3τ) + U3s sin(3τ) (10)

Uj
mol(Q,τ) ) U0 + Ue

3c cos(3τ) +

[U3c - Ue
3c]cos(3τ)+ U3s sin(3τ), (11)

U′s ) U0
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With this partitioningU′s is the torsionally averaged isolated
molecule potential,Ub describes all potential interactions when
the molecules are constrained to their equilibrium configurations,
and the couplingV′ includes all remaining terms. The normal
mode functional dependence of the interaction termV′ is
obtained by expanding it in a Taylor series to second order.
With the above partitioning there is no constant term inV′.

This partitioning can be refined by averagingV′ of eq 12
over the bath coordinates to obtain〈V′〉. This term contains linear
and quadratic terms in the normal coordinates. Adding and
subtracting〈V′〉 from Us′ andV′, respectively, gives

thus giving us the partitioning of eq 8. Here the solute potential
includes the gas-phase potential plus additional terms due to
the average forces acting on the molecule in the liquid
environment.

B. Vibrational Calculation. The solution of the vibrational
Hamiltonian closely follows that used in a recent gas-phase study
of MeOH by Castillo and Sibert.44 In both studies, Van Vleck
perturbation theory is used to find a representation with reduced
coupling among the vibrational degrees of freedom. Although
the gas-phase study used curvilinear normal coordinates and
this study uses rectilinear normal coordinates defined with
respect to body-fixed frame that depends on the instantaneous
torsional coordinate, the implementation of Van Vleck perturba-
tion theory is essentially identical. The potential is the same to
the order at which the perturbation theory is carried out. Since
Van Vleck perturbation theory changes the vibrational repre-
sentation, it is necessary to transform accordingly the solute
contribution to the solute-solvent couplingV of eq 3. This
transformation is straightforward and follows the approach used
by Sibert and Rey.33

At each stage in Van Vleck perturbation theory, one has the
option of whether to transform away a specific coupling term.
Following Castillo and Sibert44 we base this decision by stating
that our final Hamiltonian is defined by two polyad quantum
numbers

wherenj is the vibrational quanta in modej defined in Table 1
and where

If a coupling term couples two states with either the same value
of N1 or N2, then that coupling isnot transformed away. The
constants inM are chosen so that our final Hamiltonian has
direct couplings to the important states in Figure 2 corresponding
to ∆V ) 2, 3, and 4. The form of the Hamiltonian used in the
gas-phase study44 is slightly different. There calculations were
carried out to fourth order, whereas here we obtain results at
second order. We use second order since less accuracy is needed
in the liquid-phase work. Although the Hamiltonian is not block-
diagonal, the representation is good enough that the eigenvalues

of the states relevant to relaxation out of the OH stretch can be
converged with a basis of just 364 functions.

To calculate the gas-phase and liquid-phase energies, the
potentialsU′s andUs of eq 13 are used, respectively, with the
exception that the gas-phase potential includes the second two
terms in eq 10 averaged over the gas-phase ground-state
torsional wave function.

C. MD Simulation. The classical dynamics were computed
using a MD simulation. The classical equations of motion are
propagated in time; if long enough trajectories are performed,
the appropriate phase space should be sampled. In the current
MD simulation, 108 MeOH molecules were placed in a
simulation box at 300 K and at the appropriate density of 0.79
g/cm. The bond lengths and angles were held fixed via the
SHAKE algorithm,45 while the torsional motion was allowed
to evolve in time according to a hindered 3-fold rotational
barrier. Ewald periodic conditions46 were used to compute the
electrostatic forces. The geometric parameters for the MeOH,
obtained from the equilibrium geometry of the torsionally
averagedFh matrix, are given in Table 2.

The intermolecular potential is comprised of a Lennard-Jones
and electrostatic point charges, which reasonably reproduce the
MeOH radial distribution functions. The potential is that of
Wang et al.47 and is in fairly close agreement with the AMBER
potential for MeOH.

The time step for propagation via the velocity Verlet
algorithm was 0.2 fs with terms in the interaction calculated
every 2 fs. After equilibration for 200 ps, a 200 ps production
run was performed. A subsequent reequilibration and production
run was performed to check the stability of the results. The
largest difference of a state-to-state rate calculated via Landau-
Teller theory between the first run and the average of the two
runs was 0.0053 ps-1 for state 52111. The first derivatives were
calculated analytically via a rotation from the lab-fixed simula-
tion frame to the molecular fixed frame. The second derivatives
were calculated via numerical differentiation of the first deriva-
tives. The numerical derivatives were found to be stable over a
relatively wide range of displacements.

Due to the finite time of the simulation run there are noise
issues that include minor fluctuations in the long-time tails of
the time correlation functions (TCF’s). To reduce this noise and
the associated noise in the Fourier Transform (FFT), we multiply
the TCF with a Gaussian to ensure that its tail smoothly
approaches zero at long times. Minor fluctuations still remain
in the FFT, so to extract a rate at a frequencyωmn we average
5 FFT points in a 5 cm-1 window around this frequency. One
additional manipulation of the data is performed for the
transitions that are larger than 1200 cm-1. With the interactions
calculated every 2 fs, the high frequency tail in the spectral
density behaves incorrectly past approximately 1500 cm-1. To
calculate rates at transition energies larger than this, the high-
frequency tail is fit to a single exponential between 1200 and
1500 cm-1. Since there is no fast vibrational motion in the MD
simulation, we expect the spectral density to approach zero
rapidly, and the exponential fit provides a good description of
the data over the frequency window mentioned.

D. Quantum Correction Factors.With the use of a quantum
time correlation function, detailed balance is satisfied. However,

Ub ) Ue
3c cos(3τ) + W(b,Q ) 0,τ)

V′ ) [U3c - Ue
3c]cos(3τ) + U3s sin(3τ) +

[W(b,Q,τ) - W(b,Q ) 0, τ)] (12)

Us ) U′s + 〈V′〉

V ) V′ - 〈V′〉 (13)

Ni ) ∑
j

Mijnj

M ) (6 6 3 2 2 6 3 2
6 6 3 3 3 6 3 2). (14)

TABLE 2: MeOH Structure Parameters in Å and Degrees

rOH 0.9557
rCO 1.4247
rCH 1.0950
∠COH 109.7
∠HCO 109.0
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with the use of a classical TCF, that is not the case and the
expectation that excitation is energetically unfavorable is not
upheld. Thus, various quantum correction factors (QCF’s) have
been utilized to bridge the gap between the quantum and
classical regimes. While several QCF’s have been shown to be
exact for certain model problems, in general there is no QCF
that works for all cases. We utilize the Harmonic/Schoenfeld
QCF

because it works well for multiphoton processes and has been
successfully used in previous work.48 While the effect of the
QCF can be rather dramatic for processes that involve large
changes in energy, with the number of states within a couple
hundred wavenumbers one might expect that if those states
dominate the relaxation pathway that the effect and choice of a
QCF might make little difference in the overall rate.

E. Time-Dependent Perturbation Theory.We follow the
approach of Sibert and Rey33 and solve the time-dependent
Schrödinger equationHs + V of eq 3. The bath contribution to
V is treated as a time-dependent contribution. This approach
does not allow for the classical bath to respond to changes in
the solute, and as such is more approximate than the mean field
approach used by Terashima et al.49 to describe population
relaxation of CN-1 in an aqueous solution. In both approaches,
one calculates single molecule population transfer between
various states and then ensemble averages many single molecule
results in order to compare to experiment or LT results.

An advantage of the TD approach is that it allows one to
include the solvent-induced frequency shifts. When the results
for chloroform were ensemble average, the average relaxation
for the CH stretch was found to be in close agreement with LT
theory.33 There, however, the solvent-induced frequency shifts
were relatively small. Here, this is not the case.

In its matrix form, the TD equation takes the form

Sibert and Rey33 assumed unit probability in the initially
prepared vibrational state. This approach cannot explain the
enhancement of the bend population upon red shift of the
excitation pulse. In general, if the energy fluctuations are slow
enough, this opens up the possibility of observing frequency-
dependent rates of VER.50 Lawrence and Skinner51 developed
a theory for frequency-dependent rates based on calculating rates
for specific sub-ensembles of molecules identified by an energy
mismatch. The frequency-dependent rates were calculated using
time-dependent methods assuming static values of this mis-
match.

We have not used that approach here as the effects of the
fluctuations can be expected to be more acute for MeOH than
they are for HOD. For the nearly degenerate∆V ) 4 states of
MeOH, the relative size of the fluctuations compared to the
average separation is much greater than that found in HOD.
For this reason, we include the frequency fluctuations dynami-
cally by including the diagonal contributions to eq 16 and by
incorporating an excitation laser pulse in the TD calculation.
The laser excitation is explicitly included by assuming that
population is initially in the ground state, the dipole moment
operator is linear inQ1 the normal coordinate of the OH stretch,
and the time dependence of the laser field is given by

wherec is the speed of light and the parametersto, T, Eo, and
ωL define the laser pulse.

IV. Results and Discussion

This section is subdivided as follows. We begin by presenting
the vibrational energies as calculated using the methods
described above. The vibrational energies are compared to
experiment. We then present state-to-state rates calculated via
LT theory and subsequently via TD theory. The TD results are
compared to the LT results, and the key differences are
highlighted. Finally, both LT and TD results are compared to
experiment.

A. Vibrational Energies. In Table 1, we list both the
harmonic and fundamental frequencies obtained from the
perturbative calculations. The resulting calculated gas-phase
energies qualitatively agree with experiment, although one
calculated energy differs by 30 cm-1. This agreement is
satisfactory considering that the gas-phase potential is ab initio
and is torsionally averaged assuming the torsion is in its ground
state.

The liquid-phase results show greater disparities with experi-
ment, particularly for the OH bond where the hydrogen bonding
leads to a significant red shift in the liquid. Our solvent averaged
potentialUs of eq 13 predicts a shift of 101 cm-1 compared to
the actual shift of 238 cm-1. This is an indication that the
average solvent forces along the OH stretch coordinate in the
MD simulation are weaker than those of the true liquid.

To bring our results into better agreement with experiment,
we decreased the harmonic frequencies of theν(OH) andν-
(CO) modes by 173.5 and 20.0 cm-1, respectively. Theν(CO)
frequency was also adjusted because of its important contribu-
tion to the relaxation. The resulting energies are shown in Table
1. The agreement is now good with the exception of theδa-
(CH) fundamental, which is still about 50 cm-1 too low in
energy. As will be shown, this state is not as important a
vibration in the relaxation pathway, and hence it has not been
adjusted.

B. Landau-Teller Rates. Landau Teller rates depend on
the spectral density. In Figure 3, we present the spectral density
for the transition from theν(OH) to theδ(OH) overtone for
our methanol system and for the HOD/D2O system of Lawrence
and Skinner.34 There are features that are common in both
works. There is a low-frequency bump∼200 cm-1 which
roughly corresponds to a hydrogen bond stretch. Since MeOH
is heavier, this motion is lower in energy. There is a second
bump, which is not quite as noticeable for HOD on this scale,
around 600 cm-1 which corresponds to an OH librational
motion. For MeOH, the bump is slightly blue-shifted and also
corresponds to librational motion. This motion is more correctly
described has hydrogen-bond constrained libration about the CO

Q(ω) ) eâpω/4( âpω
1 - e-âpω)1/2

(15)

ipc3 ) [Hs + V]c (16)

E(t) ) Eo exp[-(t - to)
2/T2]cos(2πcωLt) (17)

Figure 3. Comparison ofĈ(ω)/p2 [cf. eq 2] for relaxation from the
OH fundamental to the OH bend overtone for HOD/D2O and methanol
as a function of energy separation. The former data is from Lawrence
and Skinner.34 The circles correspond to the separationsωmn used by
that study and in the current work.
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bond.52 One can see that for most of the frequency range, the
HOD rate is faster. There is a minor difference between the
methods used to calculate the two spectra, our spectrum was
calculated with the Fast Fourier Transform algorithm,53 while
the HOD spectrum was computed using the Wiener-Khintchine
theorem with Hanning window.53,54 The resulting HOD spec-
trum has slightly less noise than the MeOH spectrum.

We calculated transition rates out of theν(OH) eigenstate to
all eigenstates under 4000 cm-1. In Table 3, we report only
state-to-state rates that have time constantsτc’s less than 500
ps without a QCF. There are two obvious features of this table.
First, there is only one∆V ) 2 and six∆V ) 3 transitions; the
remaining are 19∆V ) 4 transitions. Second, the 4152 state,
which is nearly resonant in energy with theν(OH) at 3400 cm-1

has a rate 3 orders of magnitude faster than any other rate.
We have previously commented on the expected order of state

coupling to the various tiers in MeOH, so it is a little surprising
that the relaxation pathway is dominated by the∆V ) 4 tier,
not only in quantity but also in magnitude. In fact the only state
with both∆V < 4 andτc < 100 ps is the 42 state, this being the
dominant acceptor state in HOD/D2O.31,34 Within the ∆V ) 4
tier, there are many states that contribute to the OH decay. We
can rationalize some of the trends by recognizing that the 4152

state plays a special role. Relaxation to this state is orders of
magnitude faster than any other state due a combination of weak
coupling and its near degeneracy with the OH fundamental. This
degeneracy causes the OH fundamental to have some 4152 zero-
order character via state mixing. This mixing leads to the
secondary effect of stronger than expected coupling between

the OH fundamental and states with either 4151X1 or 4052X1,
whereX is any of the low-frequency modes.

The fast rate to the 4152 state is an artifact of using an average
energy difference between two states in calculating the LT rate.
In reality, there are large energy fluctuations as functions of
time. We shall see in the next subsection that the time-dependent
approach allows us to include these fluctuations in a natural
way, and that the fluctuations essentially unmix the states. As
such, we will not attempt to “patch up” LT theory by decoupling
the mixed states. Instead we simply report lifetimes with and
without inclusion of the 4152 state in the total transition rate.
The resulting time without this state is 2.72 ps, which is slower
than observed in the ID experiment, but not unreasonable
considering the many approximations that have been made along
the way.

In the final two columns of Table 3, we include the Harmonic/
Schoenfeld QCF. This quantum correction factor increases the
rate to states with energies below 3400 cm-1 and decreases the
rate to states with energies above 3400 cm-1. We see that with
the QCF theδ(OH) overtone rate increases by a factor of 4 to
become the dominate state in the relaxation manifold. This
assumes that we continue to neglect the 4152 state. The increase
for the 42 state contrasts to the corresponding overall rate
increase of a modest factor of 1.6. Evidently, the competing
flow of probability to nearly degenerate states with smaller
correction factors tempers the overall effect of the QCF.

C. Time-Dependent Rates.In this subsection, we compare
Landau-Teller and time-dependent results for the OH relax-
ation. Sibert and Rey33 carried out a similar comparison for CH
relaxation of chloroform and found that the ensemble averaged
time-dependent results were statistically equivalent to the LT
results. Lawrence and Skinner43 made similar comparisons for
the OH relaxation in HOD and also found little difference in
the OH relaxation rate, although differences were found for other
transitions with faster LT rates.

We are motivated to pursue a similar comparison here, since
Figure 2 suggests and Table 3 predicts that there are near
resonant states, i.e., states with small values ofωmn that
contribute to the relaxation. This separation, which is the average
separation, is comparable to the size of the instantaneous energy
level fluctuations

where ∆ωs is the contribution relative to the average. The
subscripts m and n are omitted, since it is clear to which states
we refer. The size of∆ωs changes significantly as the OH forms
and breaks hydrogen bonds. These fluctuations are not included
in LT theory.

These fluctuations are calculated via

Here m and n are the initial and final states, respectively, and
V is the solvent-bath coupling of eq 13.

We begin by considering a 3-state model that includes the
ground state, the 11 OH fundamental, and the 42 OH bend
overtone. Figure 4 shows that the time-dependent results are
about a factor of 2 faster than the corresponding LT results
without the quantum correction factor. There are several possible
reasons for this difference, one of them being the instantaneous
fluctuations of the energy levels. To verify that these fluctuations
lead to the faster rates, we recalculated the time-dependent rates,
reducing by a factor of 15 the magnitudes of those terms that

TABLE 3: Landau-Teller Results both with and without the
Quantum Correction Factor for States with Lifetimes τc’s
less than 500 ps (States are listed in order of decreasingωmn,
the energy difference (in cm-1) between the OH-stretch
fundamental at 3400 cm-1 and the state in question.)

no QCF with QCF

state ωmn rate/ps-1 τc/ps rate/ps-1 τc/ps

52 1347.8 0.0049 202.94 0.0622 16.09
4151 999.3 0.0077 130.52 0.0552 18.13
42 665.3 0.0336 29.78 0.1348 7.42
31101 456.6 0.0042 237.95 0.0113 88.21
31101 424.7 0.0046 217.34 0.0116 85.86
61 395.6 0.0039 253.75 0.0094 106.30
53 345.1 0.0093 106.96 0.0201 49.70
5281 249.5 0.0330 30.27 0.0581 17.21
52111 191.6 0.0447 22.40 0.0693 14.44
5182 153.6 0.0027 375.58 0.0038 263.45
83 56.8 0.0094 106.61 0.0107 93.26
51112 40.3 0.0036 279.08 0.0039 253.72
82111 -4.9 0.0023 434.80 0.0023 439.94
4152 -5.5 20.8014 0.05 20.5286 0.05
81112 -60.4 0.0021 465.47 0.0019 538.36
415181 -97.9 0.0498 20.06 0.0393 25.45
3152 -108.1 0.0288 34.68 0.0222 45.11
5271 -130.4 0.0150 66.74 0.0109 91.76
52101 -133.7 0.0197 50.64 0.0142 70.20
4151111 -165.2 0.0238 42.03 0.0158 63.10
4182 -191.6 0.0062 160.14 0.0039 257.11
4251 -339.0 0.0117 85.64 0.0049 202.42
3 4151 -454.2 0.0107 93.35 0.0033 302.40
2151 -475.7 0.0050 200.31 0.0015 689.00
4151101 -484.0 0.0056 176.99 0.0016 623.04
41571 -484.3 0.0034 291.47 0.0010 1026.92

listed 21.1473 0.05 21.1018 0.05
total 21.1691 0.05 21.1623 0.05
listed w/o 4152 0.3459 2.89 0.5732 1.74
total w/o 4152 0.3677 2.72 0.6337 1.58

∆ω ) ω+ ∆ωs (18)

∆ωs ) 〈m|V/hc|m〉 - 〈n|V/hc|n〉. (19)
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lead to the fluctuations, these being the diagonal coupling terms.
These rate results, also shown in Figure 4, are in excellent
agreement with LT theory. We conclude that the difference
between LT and TD rates is due to the energy fluctuations being
neglected in the former.

To quantify the importance of these fluctuations, we write
the time-dependent rate constant for the probability of going
from the OH stretch to the bend overtone as

where P(∆ωs) is the probability of an instantaneous energy
separationω + ∆ωs, andkTD(∆ωs) is the rate at that separation.
The procedure can be compared to an energy-weighted LT rate
also obtained using eq 20, but replacingkTD(∆ωs) with the
analogous LT ratekLT(∆ωs). The ratekTD(∆ωs) is obtained in
the TD calculation obtained by evaluating the appropriatec̆n of
eq 16 every 0.025 ps and binning the results as a function of
∆ωs. The analogous LT rate is obtained by replacingωmn with
∆ω in eq 1. These rates are plotted as points and a thick line,
respectively, in Figure 5. Also shown is the double humped
plot of P(∆ωs) versus∆ωs.

Strikingly, one finds that over most of the∆ωs range the LT
results and time-dependent results are in good agreement, albeit
with large uncertainties. This is seen most clearly in the inset
of the figure. Only for small separations (large negative∆ωs

values) are time-dependent rates substantially faster. The time-
dependent rate in the bin centered at∆ωs ) -380 cm-1 is 1.24
ps-1 compared to the LT rate of 0.12 ps-1. Although not shown
in the figure, the rate for the bins centered at-420 and-460

cm-1 are 2.67 and 3.47 ps-1, respectively. The LT rate for this
latter bin is only 0.29 ps-1.

The averaged LT result yields a lifetime of 31.8 ps; this is
essentially identical to the lifetime of 29.8 ps given in Table 3.
Therefore, the factor of 2 ratio between averaged TD and LT
rates is due to a few trajectories in the tail of the energy
separation distribution that is shown in Figure 5. In contrast to
the TD result, the weighted LT result does not include the
correlation between large negative values of∆ωs and large off-
diagonal forces that lead to population transfer. Moreover, even
though∆ω never reaches zero, a separation of∆ω ≈ 200 cm-1

is sufficiently small that we can conjecture that the accepting
bath mode involves a hydrogen bond motion and not the
torsional motion.

We now consider the results of a three-state model that
includes the ground state, the 11 state, and the 4152 state, this
latter state having the fastest LT rate in Table 3. Given thatω
) - 5.54, the fast rate is not surprising. From a time-dependent
perspective this near resonant state will undergo repeated
avoided crossings with the 11 state as∆ω fluctuates between
positive and negative values as a function of time. The results
of the TD calculation are given in Figure 6. The dashed line
results show rapid energy flow during the excitation pulse
followed by a slower increase. This initial rise is a consequence
of the 4152 eigenstate having some 11 zero-order character; the
rapid flow is due to direct coupling via the laser field with the
ground state. This flow would occur even in the limit that the
dynamic solvent couplingV is zero.

A more direct comparison to experiment would be to calculate
the probability of observing anti-Stokes transitions as a function
of time. If we make the assumption that the transition operators
are linear in the normal mode coordinates giving the∆V ) 1
normal mode selection rule, then the relevant quantity to
calculate theoretically is the probability of being in either the
zero-order 11 or 4152 state as a function of time. Energetics is
not an issue, since both these states have essentially the same
energy.

Figure 4. Relaxation results for the three-state time-dependent
calculation that includes the ground state, the 11 state, and the 42 state.
The time-dependent laser field, given by eq 17 hasto ) 0.25 ps,T )
0.05 ps, andωL ) 3400 cm-1. The temporal width corresponds to∆ω
) 360 cm-1. The near impulsive pulse, which is significantly narrower
(in time) than that used by Iwaki and Dlott, allows easier comparison
to LT results. The curve (- - -) is the rate of probability flow from the
OH fundamental to the COH overtone. The curve (...) is the rate of
probability flow between the same states but the diagonal couplings
have been reduced by a factor of 15. The points correspond to the
Landau-Teller lifetime result of 29.8 ps of Table 4.

TABLE 4: MD Results for the Average Force along
OH-Stretch Coordinate Normalized with Respect to the
Wang et al.47 Potential for Four Choices of Charges (in
electrons) (Dipole moments (in Debye) and anglesθ (in
degrees) between the dipole moment and the OH bond are
also listed.)

qO qH0 µ θ 〈F〉
-0.5 0.3 1.92 67.3 0.29
-0.6 0.4 2.14 55.9 1.00
-0.7 0.5 2.43 46.9 1.99
-0.8 0.6 2.76 39.9 3.61

kTD ) ∫-∞

∞
d∆ωs P(∆ωs) kTD(∆ωs) (20)

Figure 5. Rate kTD(∆ωs) is binned and plotted as points (o) as a
function of ∆ωs [ cf. eq 20] wherekTD(∆ωs) is rate (ps-1) of going
from the 11 OH stretch fundamental to the 42 bend overtone evaluated
at∆ωs. Here∆ω ) 665.3+ ∆ωs is the instantaneous energy difference
between these states. The error bars are(σ/xN whereN is the number
of data points per bin andσ is the standard deviation. The rate is
calculated as the time rate of change of probability of being in the 42

state as calculated using the three-state, time-dependent model discussed
in the text. The rate dramatically increases as the separation decreases.
Also shown are the Landau-Teller rate constantkLT(∆ωs) (thick line)
as a function of∆ωs and the frequency distributionP(∆ωs) (thin line)
plotted as a function of∆ωs (in cm-1). The latter curve, which is double
humped, was obtained using eq 19. The normalization is arbitrary.
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The present situation is one with substantial mixing between
the zero-order states, due to the near degeneracy. It is particulary
easy to calculate the probability of being in a zero-order state,
since this is an isolated resonance, and one can take linear
combinations of the two eigenstates in question to form
approximations to the zero-order states. Diagonalizing the full
molecular Hamiltonian to obtain the eigenstates ofHs of eq 3,
we find that the two eigenstates used in the above three-state
model have the following description

where |11〉o and |4152〉o are the basis states of the zero-order
contribution ofHs after applying Van Vleck perturbation theory.
(Note, these zero-order states look almost the same before and
after the application of Van Vleck perturbation theory, since
we are not removing any resonant interaction with the perturba-
tion theory.) We take linear combinations of the above two
eigenstates to obtain good descriptions of the zero-order states,
since 95% of the eigenfunctions are accounted for by these two
zero-order states. Having already carried out the TD calculation
in the eigenstate representation, we know theci(t) values
corresponding to the two eigenstates. We take the linear
combinations of these values (including the usual exp[iEjt/p]
factors, whereEj are the eigenvalues ofHs) to calculate the
probabilities of being in the decoupled states. Following this
approach, we obtain the dotted line result in Figure 6. Not
surprisingly, the zero-order OH stretch state is the bright state;
it is the state that is initially excited. The corresponding lifetime
for the zero-order OH stretch is 66 ps, which is in stark contrast
to the 0.05 ps LT result for the lifetime of the associated
eigenstates. Even with multiple avoided crossings, the|4152〉o

state only plays a minor role in the overall relaxation process.
Finally, we note that the transformation of representations has
essentially no effect on the rate of probability change between
states after the laser field has been shut off since the lines in
Figure 6 run parallel to each other after 0.5 ps.

In Figure 7 a, we show the results of 7 different three-state
models. Each result was obtained using the ground state, the 11

state, and a nearby state whose identity is given in the key of
the figure. The states in the key are listed in order of decreasing
rates as one goes down the list. The TD (LT) lifetimes
corresponding to each of these states is 9.4 (30.3), 13.9 (29.8),
14.9 (20.1), 38.0 (160.1), 65.9 (0.05), 156 (616), and 425 (807)
ps, respectively. The differences between the LT and TD results
arise for reasons that are similar to those invoked above in the
discussion of flow of probability into the bend overtone Figure
4. The correlation plots for these states are similar to that of
Figure 5. The 4152 state is an exception. The reason for its
greatly reduced TD rate has been explained above.

In Figure 7b, we show results analogous to those of Figure
7a. The difference is that in the former calculation all states
with the exception of the ground state are coupled to each other
via the solvent interactions. The results are qualitatively similar.
The most notable exception is that the role of the 5281 state is
significantly reduced from that of the uncoupled model. In the
fully coupled model, we have taken the appropriate linear
combinations of the 11 state and the 4152 state as described above
in explaining Figure 6. The dynamical fluctuations lead to a
decoupling of these two zero-order states with the new result
that the 5281 now plays a less significant role. In the LT results
discussed above and the three-state TD model, the bright state
has some 4152 character. This component allows coupling of
the bright state to the 5281 state via∆V ) 2 transition.

Motivated by the experiment of Iwaki and Dlott,23 we have
repeated the nine-state calculation using laser pump frequencies
of 3250 cm-1 and 3400 cm-1. Here we use laser pulses that
have much narrower spectral widths than were used above. This
50 cm-1 width is comparable to the 35 cm-1 value of the
excitation pulse used in the experiment. Compared to the shorter

Figure 6. The relaxation results for the three-state time-dependent
calculation that includes the ground, the 11, and the 4152 eigenstates.
The Gaussian curve is the amplitude of the time-dependent laser
excitation pulse. The curve (- - -) is the rate of probability flow into
the 4152 state. Due to the near degeneracy with the OH fundamental
and the resulting state mixing, this state carries oscillator strength, and
hence rapid probability flow appears during the laser excitation. The
curve (...) results if we take the appropriate admixtures of the above
eigenstates to form states that closely resemble zero-order 11 and 4152

states. The observed lifetime of 66 ps is significantly slower than the
Landau-Teller lifetime of 0.05 ps given in Table 4. The laser pulse is
the same as in Figure 4.

|11〉 ) 0.93|11〉
o - 0.27|4152〉

o + ‚‚‚

|4152〉 ) 0.28|11〉
o + 0.93|4152〉

o + ‚‚‚ (21)

Figure 7. (a) The relaxation results for theuncoupled9 state time-
dependent calculation discussed in the text. The ordering in the figure
key corresponds to the order of the importance of the 7 accepting states,
the greatest flow occurring for the 5281 states. Plot (b) is the same as
plot (a) with the exception that the states are fully coupled. As discussed
in the text, the role of the 5281 is greatly diminished in the fully coupled
model. The laser pulse is the same as in Figure 4.
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temporal pulses, we are now able to probe molecules belonging
to different sub-ensembles characterized by absorption frequen-
cies. The results, shown in Figure 8, indicate that the lower-
frequency pump excitation increases dramatically the role of
the OH bending degree of freedom and to a lesser extent that
of the CH stretch. In fact, the bend appears to turn on with the
excitation pulse, suggesting that this state appears to have more
bright character when excited at the lower frequency. This
behavior has been observed experimentally by Iwaki and Dlott.23

Finally we note that the difference between Figure 7b and Figure
8a is more modest. This difference is due to the change in the
temporal width of the pulse maintainingωL ) 3400 cm-1 for
both.

D. Comparison of LT and TD Theories with Experiment.
To obtain the lifetime of the OH stretch using the TD method,
we have performed a TD calculation that includes the ground
state and all the eigenstates in the energy window between 2550
and 3626 cm-1, this range being sufficient to include all the
states that are predicted to be important by LT theory. We have
also deconvoluted the 11 and 4152 states as described in the
caption to Figure 6. We calculate a lifetime of 3.1 ps using the
ultrashort laser pulse of Figure 4. This lifetime compares well
to the LT results with and without the quantum correction factors
of 1.6 and 2.7 ps, respectively. Clearly there is a cancellation
of differences when summing the state-to-state rates. One might
have expected that the TD result would be faster, since the state-
by-state comparisons showed that the TD rates were faster.
These faster rates, however, are offset by the reduced TD rates
to states that have two quanta in the CO stretch. This effect is
clearly seen in the comparison of Figure 7, parts a and b.

When considering where the energy goes after the initial
excitation, some care must be taken when comparing with the
experiments. The experiments do not actually measure the
probability of being in a given eigenstate as a function of time.
The experimental results of Figure 1 show population in the
various modes as functions of time. To obtain these populations,
Iwaki and Dlott23 converted the anti-Stokes transients into
populations. Since there is spectral overlap of the transitions,
they had to deconvolute the overlapping transitions by assuming
Voigt line shapes for each of the individual transitions. Finally,
they convert intensities of the transients into populations being
sure to distinguish 2νjfνj from νjfground transitions.

On the theoretical side, we are at present limited to short
time dynamics, and hence cannot compare to the full time scale
of experimental results. The TD calculation does not adequately
treat relaxation processes where the solute molecule loses
vibrational quanta directly to the bath degrees of freedom. Large
quantum corrections factors are needed, and it is not clear how
to include these in the TD approach. One can look at the longer
time dynamics with the LT approach by constructing a full
master equation of rate constants between all the levels,43 but
given the high density of states this is beyond the scope of the
present paper. Here, we look only at the short time dynamics
where there is rapid redistribution of energy within the solute
so that solute energy is maintained relatively constant.

To compare our results with the short time dynamics of Iwaki
and Dlott23 we map the populations of our eigenstates used in
both the LT and TD calculation onto mode populations by
assuming the modes are unmixed and the identity of the mode
is determined by the leading coefficient in the basis set
expansion. We then follow the standard procedure14,23 of
assuming the overtones are observed via the 2νjfνj transitions
with twice the amplitude of theνjfgroundtransition; combina-
tion bandsνi + νj contribute to both theνifground and
νjfgroundtransitions. As such, our population is calculated as

where Pn is the time-dependent probability of being in an
eigenstate whose leading coefficient corresponds to the basis
staten ) {n1, n2,‚‚‚n11}. Since theF(CH3), νa(CH), andδa-
(CH) modes each includes two nearly degenerate vibrations and
their populations cannot be frequency resolved,23 we have
summed the contributions of each of these modes to obtain the
results of Figure 9.

Figures 9a and 9b show the TD and LT results, respectively.
The TD results correspond to the 3400 laser excitation of Figure
4; the LT results do not include the quantum correction factors.
These two approaches give relaxation times for the OH stretch
that are nearly identical. All modes are excited to some extent
in the first picosecond in both calculations. Theδ(OH), ν(CO),
and F(CH3) are the most active acceptor modes in both, and
the νs(CH) and νa(CH) are populated the least. A notable
difference is that the LT result has theν(CO) stretch being the
dominant acceptor mode, whereas the TD calculation has the
δ(OH) and F(CH3) as the dominant acceptor modes. This
difference can be understood in terms of the results of Figure
7 where one observes that the coupling of the states in (b) greatly
diminished the importance of the 4152 state from that given in
the uncoupled model results of (a). Other states with 4151X1 or
4052X1 will be similarly affected.

Figure 8. Results for the 9 state model as Figure 4b but with different
excitation pulse. Laser frequencies in (a) and (b) are centered atωL )
3400 and 3250 cm-1, respectively. The temporal width, given byT )
0.3 ps in eq 17, yields a spectral fwhm of 50 cm-1. The probability
flow into the OH bend overtone is significantly enhanced compared to
the other states upon this lowering of the excitation frequency.

populationj ) ∑
n

Pnnj (22)
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Figure 9c shows the LT result with the quantum correction.
These results are consistent with Table 4. The shorter lifetime
of 1.6 ps is mainly due to the faster rate of flow into theδ(OH)
overtone.

In comparing our results to those of Iwaki and Dlott, we find
that the relaxation rate ofν(OH) is at least a factor of two to
three slower. In terms of where the energy goes, there is
qualitative agreement. The lower-frequency modes are all more
active than theνs(CH) andνa(CH). The time-dependent results
and experiment show an enhancement upon decreasing the
frequency of the OH excitation pulse.

Our results are slower than the 0-1 ps observed experimen-
tally. While the experimental and theoretical difference between
the lifetime of the ν(CH) in CHCl333 is small, strongly
interacting hydrogen bonding systems (such as our work on
MeOH and previous HOD31,34 studies) underestimate the rate
of relaxation. One of the fundamental shortcomings of our
calculations is the form of the potential we used in the classical
MD simulations; it does not include polarization.

The importance of inductive effects has long been realized
for line shapes of far-infrared spectra55 and dielectric relax-
ation.56 The dipole moment of 1.7 D in the gas phase is
substantially lower that the average liquid-phase value of 2.49
D. Recent work in condensed phase ab-initio quantum dynamics
has shed new light on the electrostatics of hydrogen bonding

liquids. Handgraaf et al.57 and Pagliai et al.58 have performed
Car-Parrinello molecular dynamics on MeOH and fully deu-
terated MeOH, respectively. They calculate O-O radial distri-
bution functions that agree with experiment.59,60 They also
calculate average liquid dipole moment values of 2.54 D57 and
2.64 D58 which are in good agreement with experiment.
Moreover the distribution of dipole moments is found to span
1.7 to 3.5 D. This latter result clearly indicates that the
interaction of MeOH molecules is associated with dramatic
charge rearrangement which cannot be reproduced by a static
charge MD potential as has been utilized in this work and in
HOD.31,34

The Wang et al.47 intermolecular potential which we use has
charges of-0.6 and 0.4 e on the oxygen and hydroxyl hydrogen
sites, and this leads to a 2.14 D dipole moment per MeOH
molecule which is similar to the 2.18 D dipole of TIP4P water.
This dipole, however, is substantially less than the above-
mentioned experimental and ab-initio MD values. The smaller
value is the result of the MD potential parameters being fit in
order to correctly predict pair correlation functions and equations
of state. This value of the dipole moment leads to an O-O
radial distribution function that agrees with experiment.59,60

In a preliminary investigation of the effects of altering the
charges on MeOH, we performed several MD simulations with
different charges on the oxygen and hydroxyl hydrogen; some

Figure 9. Plots of population in each of the spectrally distinct normal modes as a function of time. (a) TD results for laser excitation of 3400 cm-1

and an ultrafast temporal pulse of≈0.1 ps, (b) LT results without the quantum correction, and (c) LT results with the quantum correction factor.
The ordering in the figure keys corresponds to the ordering of the population in the modes after 1.6 ps. The points in (a) are exponential decay with
a lifetime of 3.1 ps. This time is in close agreement with the 2.7 ps and 1.6 LT lifetimes with and without the quantum correction factor. The LT
populations are scaled to aid comparison to TD results.
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selected results are presented in Table 4. The final column in
Table 4 shows the normalized force along theν(OH) coordinate
with respect to the Wang et al.47 potential. While we have
obviously greatly simplified the situation by only changing the
hydroxyl atoms point charges, we can see that relatively modest
changes in the charges and dipole moments lead to fairly large
changes in the average force. As a means of comparison, the
average force due to the 6/4 charges leads to aν(OH) frequency
of 3585 cm-1, while the 7/5 charges, which lead to the correct
dipole, nearly double the average force alongν(OH). This choice
results in a frequency of 3483 cm-1 that is in much better
agreement with the 3400 cm-1 center frequency of the experi-
mentalν(OH) spectrum.

However, when we increase the charges (in units of electrons)
on the oxygen and hydroxyl hydrogen from-0.6 and 0.4 to
-0.7 and 0.5, respectively, and repeat the MD simulation, we
find, not surprisingly, that there are corresponding structural
changes. For example, the resulting O-O radial distribution
function has a much narrower first inner peak than the
corresponding experimental one. It is not clear to us that one
can use fixed charges and fit both the average dipole and the
O-O radial distribution function. Even though there are
substantial shortcomings with the potential used in the MD
simulation, the fact that we have qualitative agreement with all
experimental observations leads us to have faith in our models
even if we cannot reproduce quantitative results.

There is a clear need for the use of more sophisticated force
fields. Sibert and Rey33 included polarization affects with
flexible molecules in the relaxation of chloroform. There the
effects were found to be negligible. Future work will include
extending such polarization models to treat hydrogen bonding
in methanol.

V. Summary

The lifetime of the OH-stretch fundamental of liquid MeOH
has been calculated using Landau-Teller theory (LT) and the
time-dependent Schro¨dinger equation (TD). We find lifetimes
of 2.7 and 3.1 ps for LT and TD, respectively. Application of
the harmonic/Schofield quantum correction factor reduces the
LT result from 2.7 to 1.6 ps, which is in fairly close agreement
with the experimental result of 0-1 ps. Also in accord with
experiment, we observe that all vibrational modes are excited
in the initial intramolecular relaxation process and that the
relaxation is sensitive to the frequency of the initial excitation
pulse.

In contrast to the experiment, we determine directly state-
to-state relaxation rates. We find that∆V ) 2 processes, which
allow for energy transfer from the OH-stretch to other vibrational
fundamentals, do not contribute significantly to the relaxation
of the OH fundamental. A combination of low coupling strength
and/or large energy mismatches makes these pathways relatively
unimportant. The∆V ) 3 transitions are dominated by the OH
bend overtone; this state has also been calculated to be the
dominate energy-accepting state for HOD relaxation in D2O.31,34

However, unlike HOD, MeOH has∆V ) 4 transitions that are
nearly degenerate with the OH fundamental. The LT results
indicate that∆V ) 4 transitions dominate the relaxation without
application of the quantum correction factor, but that∆V ) 3
and∆V ) 4 transitions contribute equally to the total rate with
the quantum correction factor.

Although the LT and TD approaches lead to similar conclu-
sions, there are some practical advantages to each. The
advantage of using the LT approach is that the use of a quantum
correction factor is straightforward, even if the choice of the

quantum correction factor is not. There are two advantages to
the TD calculation: the ability to naturally treat the solvent-
induced energy fluctuations that can lead to avoided curve
crossings, and the ability to selectively probe subsets of the
molecules by including a pump laser in the calculation. Although
the LT and TD rates are similar, there are notable differences
in the state-to-state rates. We have discussed several instances
where the two methods give different results in order to highlight
the approximations of the methods.
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