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A conical intersection is a singular point in nuclear coordinate space. As a result of this singularity the
parameters used to search for energy-minimized conical intersections, energy gradients, energy difference
gradients, and coupling vectors vary irregularly along the search path. This irregular variation precludes the
efficient use of extrapolation procedures to speed convergence. This impediment may be overcome by the
use of extrapolatable functions, that is, functions that vary smoothly along the search path. From a topographical
perspective this approach amounts to walking along a path parallel to the ridge of conical intersections. In
this work an algorithm based on these functions is introduced and its performance discussed.

I. Introduction Neo" equations

In the past decade conical intersections of two states of the Kj(Q) -0 i=1 Nl (1a)
same symmetry have emerged as fundamental to the description ! T
of electronically nonadiabatic processes.Algorithms have A point of conical intersection satisfies
been developed, exploiting the power of analytic gradient
techniqued;® to locate these poins® Points of conical CY(Q) = AE,;(Q) =E(Q) —E(Q) =0 (1b)
intersection are not isolated but are_contir_luously ConneCtedtogether with the requirement
forming seams3? The seams ari"—2-dimensional subspaces
in the N"-dimensional space of internal nuclear coordinates. 2 I ~fh  CSF Inf
For general polyatomic moleculéé™ — 2 is a large number C(Q) =c(Q H™Q(Q) =0 (1c)
and it is desirable to determine sections of these seams for whichwhereHCSF is the electronic Hamiltonian in the configuration
the energy has been minimized. Although it is relatively state functio®® (i) basis and the' satisfy the configuration
straightforward to locate points of conical intersection, energy interaction problem
optimization is more costly to achieve. We attribute this
difficulty to the erratic behavior of the algorithmic parameters [HAQ) — IE,(Q)]c'(Q) =0 (2)
T B oy bemauee | e Finally. o expined i rfs 3 and 11, th - supersr

. S . “ indicates that ¥Q) is held fixed when coordinate derivatives
consequence of the singular character of_ the conical mtersectlon,are taken.
e e i i 225 The desired pain i 0 be the owestenergy o of
. ' ._conical intersection in the subspace defined in eq&.is an
of functions that are well-behaved along the search path. In this :
. - . extremum of the Lagrangiaia”,

work we report a simple, no-additional cost, algorithm based
on these functions and Hessian updatfrand show that it can 3 i
significantly improve convergence to an energy-minimized point gL @Q@)=0 for &=Q,4¢ )
of conical intersection. K

In section Il the basic search algorithm and the idea of whereLV is constructed from Bj) (described below) and the
extrapolatable functions is reviewed. In section Ill an algorithm constraints equations, eqs-1&c
based on these functions is described. The algorithm achieves
quasi-second-order convergence without the need to precompute 4 2 i i
the relevant Hessians in their entirety using divided difference LY(QA0) =P(Q) + Y 4C(Q) + » GK(Q)  (4)
techniques. This will make efficient convergence possible in = =
larger molecules. The performance of the algorithm is illustrated with the Lagrange multipliersi, &, and Q as independent
using numerical examples. Section IV summarizes and con-variables, eq 3, using eq 4, becomes
cludes.

Ncon

VLY(Q) = VP(Q) + 4,0™(Q) + 4,h"(Q) +

Il. Extrapolatable Functions and Conical Intersection: Neon

In this section an algorithm for locating energy-minimized Zéak“(Q) =0 (5a)
conical intersections is presented so that we may describe the 0=
incorporation of extrapolatable functions, functions that vary AEJ'(Q) =0 and CZ(Q) =0 (5b,c)
smoothly along a search path, into that algorithm.

A. Search Algorithm. Let Q denote theNi"t internal nuclear Ki(Q) =0 (5d)

coordinates. We seek a point of conical intersection of states |
and J in the subspace of nuclear coordinate space defined bywhere
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k'(Q) = VK'(Q) (6a)

h*(Q) = (@")(VH(Q)) (@) ~ ¢ (Q)(VH(Q)C(Q)'
(6b)

2g|J —h'" — ¥ (6¢)

the approximation in eq 6b improves as the seam is approached,

and for later use

287 =h" + h* (6d)
Here hV is approximately parallel to the derivative coupling
vector* and 2V is the gradient of the energy difference. These
vectors define the branchitfgor g—h'® space, the space in

which the conical topography is evidenced. The orthogonal
complement of the branching space is the seam space. Equatio

5a has the usual interpretatidrof a constrained equilibrium.
The “real force” VP, does not vanish but is instead balanced
by the “pseudoforces” due to the constraingg,2hV, andk'. It

is the Lagrange multipliers that prescribe the proper balance

between the real and pseudoforces.
The solution to eqgs 585d is obtained by iteratively solving
the system of NewtonRaphson equations

vvLY 2g” nY k|&Q A% (7a)
2g”__T 0 0 0| _|AE, (7b)
W'ooo o o], 0 (7¢)
k' 0 0 O0AS& K (7d)

until Q*V is found such that NRNg*V) = || VLY, AE;, 0, K||
~ 0.
B. Rotational Invariance and Its Consequenceskor any

point Q on the seam, the degenerate wave functions for states
| and J are defined only up to a rotation among themselves by

0. As a result® gV andhV are defined up to a rotation by)2
Theg" andhV for the rotated stateg© andh©), are related
to the original or nascerg”© = gY andh".© = hV by

g"@)_[cosD sinp |[g"

MLQ) —sin2) cos D |\pM
Note that in genera)|g?®@|| = [|g¥]| and |[W©] = ||h¥)|
becauseg? and hV are not normalized. The flexibility in the

®)
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step (i)

step (i+1)

Figure 1. Schematic representation of slowly varyig and hV,
denoted g and h, and an erratically varying gradi®®,or g”, denoted
by — for two points on the search path.

root singularity in the energy (see below). Thus #i¥Q)
Behave erratically along the path. However, because distinctly
differentg” andh" yield the sameg”, h¥ (it is not surprising
and it is shown by example in ref 1§V andh" are similar at
Q® and QU+ that is, they are slowly varying functions of the
search path.

C. Choice of P. In the past, because algorithms seek an
energy-minimized conical intersection, we have uBed E
(or Ey) in LM.19 However, as in the case gf, theseVEy behave
erratically when the search path is near the seam, again as a
consequence of the square root singularity in the energy. On
the other hand the trace of the energigs= (E, + Ej)/2 with
VET = &Y does not involve the square root singularity (it is
invariant under a unitary transformation of states | and J) and,
as was shown by example in ref 1, is an extrapolatable
function1! Note that althougt® = ET will not produce the same
search path aB = Ej, the end result will be the same because
on the seam of conical intersectionBf is an extremum so is
E,.

[ll. Locating Energy-Minimized Sections of a Conical
Intersection Seam

The material in the previous section, which was the subject
of ref 1, provides the foundation for developing improved
implementations of the NewterRaphson equations for locating
energy-minimized conical intersections. Note that all quantities
in eq 7 are exactly and efficiently evaluated using analytic
gradient techniqués with the exception of the teri@VLV. It

definition of these vectors has several consequences. The values the approximation of this term that is the central issue in this

of the Lagrange multipliers are not unique.dfin eq 8 is
increased byd° then4; (j = 1, 2) must then be modified to
preserve eq 5a.

More significant in the present context is the ability to choose
hY andg" orthogonal® In particular,g¥@ = g¥ andh®) =
h" will be orthogonal for

2hV.g?
(h*-h") — (g*-g?)

Theh" andg" obtained from eq 9 are unique up to transpositions
and sign changé%and all thehV(® andg“® associated with

a particular point of conical intersection yield the single
orthogonal paih” andg”. Thus to eaclQ*" there is associated

a unique paihM andg", a consequence of which is illustrated
in Figure 1.g" is shown at two pointsQ® and Q(*+1 on the
search path near but not on the seg¥(Q®) and gY(Q(*1D)
differ markedly becaus®® and Q(*1), whose separation is

tan 4

)

small, fall on opposite sides of the cone so that the gradients

work. In the past we have us&{Q) = E|(Q) and approximated
VVLM using divided differences oVL", which is evaluated
analytically. To avoid problems related to the erratic behavior
of quantites in eq 7a, the divided differences were constructed
at a “safe distance” from the conical intersection. The use of
divided differences oWVL" to evaluateVVL" becomes prob-
lematical as the number of internal coordinates grows. The
construction ofVV LV using data obtained at a safe distance
from the conical intersection can also be limiting. Here we
develop an approach using extrapolatable functions that avoids
these limitations.

A. Incorporating Extrapolatable Functions. Our approxi-
mation for VVL" is based on the following analysis of eq 7.
Equations 7b and 7c are

AE;(Q) + ZQU(Q)'éQ =0

h"-6Q =0

(70)

(7c)

point in opposite directions. This is a consequence of the squareEquation 7bis just the first-order expansion of the energy
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difference using nondegenerate perturbation theory. It requires
0Q to move alongg”, the energy difference gradient, the tuning
coordinaté? to recover the degeneracy. A§ approaches the
seam, nondegenerate perturbation theory becomes untenable.
One manisfestation of this is a nonnegligible (first-order)
contribution to AE;; from hM-6Q. See below. Equation 7c
preventsdQ, when it is not parallel ta@", from picking up a
first-order contribution taAE;;.2* As a result of the inclusion of
both egs 7b and 7c the path generated by the iterative solution
to eq 7 first reaches a partially energy optimized region of the
seam (see section 11IB) and then ultimately achieves full energy
minimization.

We can exploit this observation as follows. For a papit
on the seam, that iAE,; = 0, but with eq 7a not satisfied, eqs hIJ,(Z).éQ — (—GU sin + hV cosZ)-éQ — [gIJ(ﬁIJ.éQ) +

7b and 7c become _
hY@g"-6Q))dl-0Q (12c)

13rAy.
9°(Q)-oQ —[0 (10a) as required. Note that because these vectors are not normalized
h%Q)-6Q/ \0

Figure 2. Schematic representation of quantities in eq 11, gith
denoted gh denoted hg"® denoted § andh”® denoted h

9”@ need not be, and in general is not, perpendiculdrt@).
In ref 1 it was shown numerically tha¥, h are well-behaved

which when multiplied by the matrix in eq 8 gives © -
along the search path. Thus the us@éfandh" transfers the
gIJ,(O)(Q).éQ 0 erratic behavior frong” andh" to 1. To use this result near
12.46) = (10b) the seam, the poin@Q should be rotated from its nascent,
h*9@Q)-0Q) |0 random, position nea®*" to a preassigned position in tige-h
which is a specific case of the general observationdamust plane in each iteration. This amounts to searching (or walking)

be perpendicular to the curregt-h plane. Whereas a specific  2/0ng a path parallel to the conical intersection seam, as
gV is required to satisfy eq 7laway from the seampn the suggested in the title of this work. To perform this rotation,
seam anyg?-®), h9.@) pair will suffice. This result can be used ~ explicitly second derivative information is required or the wave
to facilitate energy minimization, which is the provence of eq functions need be determined at the rotated point. These options

7a are costly. However, i§? andhV are introduced only after the
search produced a pointonthe seam, the rotation in coordinate
vV = [Vs”(Q) + llVg”(Q) + lzvh'J(Q) + space can be replaced by a rotation of the degenerate electronic

states-compare egs 8 and 12b and see ref 11. In this way, the
. rotation is actually avoided, because b&fhand theg—h plane
Z\CaVk (Q)-0Q (74) (eq 10b) are invariant to this rotation.

o= The preceding analysis demonstrates the promised result:

Equation 7a is the most challenging of the components of eq 7 Uﬁin%ET ritJhe_TJtharE. in the Lagrangian in eq 4, and replacing
to solve owing to the presense of the second derivative terms9" N by 8, h* onceAEy is sufficiently small, yield a conical

V&9, Vg, andvh¥, Although any approximation that ultimately intersection search algorithm that is expressed in terms of
yields VLM = 0 is satisfactory, the more accuratsiwL" is extrapolatable functions. In this work we illustrate the improved

approximated the more rapidly the iterative procedure will Performance thatis possible with this approach using a simple
converge. The erratic behavior g, h¥ (andh®, h' but NOT updating procedure to approximate the three second derivative

%) makesg ill-suited for extrapolation or divided difference ~ Matrices in eq 7a. ) )
computation. B. Numerical Implementation: The Updating Scheme.

When Q is close to a seam point, there is a unique ray Thﬁthree second derivativesWVL", VVET = vs", vg¥, and
(direction ) in the g—h plane for which the computed energy ~ vh" are approximated using a simple updating proceéiitéis

difference gradientY(AE;;)(Q)/2, and coupling vecton® are approach costs no more than approximatingL" by a unit
to a good approximatiog® and h®. This intuitive result matrix and hence is suitable wha#i" is not small. It will also

follows from the degenerate perturbation theory expression for SEVe 10 illustrate the potential power of the using an extrapo-

the energies in the vicinity of a conical intersection latable function approach. _ _
For a functiong(Q) = V®(Q), that is, forg the gradient of

E.(Q) = (Q)*" £ 1(87(Q*"):0Q)* + ("(Q*")-6Q)* @
(11) 9(Q+6Q) = g(Q) + Vg(Q)-6Q (13a)

whereE; = EyandE- = E;. Consequently (see Figure 2) for
A given byt

Ncon

so that

Ps0—qcosi  Floo—qsni  (2a 9QTOQ) Q) =00Q) =VVO(Q0Q=40Q (13b)

. ) o ) whereJC is the Hessian fo. Equation 13b permits informa-
the energy difference gradient @tis g°®, that is tion obtained from the gradients at successive iteratioaad
i + 1 below) to be incorporated int@?, as follows
V(AE,)(Q)2 = V(AE_,)(Q)/2 = ) P
cosZg” + sinZh” = g7'® (12b) FH5Q = (A + AT)OQ = 6g(Q)  (14a)

Further by constructiodQ is orthogonal tch?® so that



Location of Energy-Minimized Conical Intersections

ATC5Q = 69(Q) — A6Q = 6¢°(Q)
and
0Q'AT5Q = 6Q'6¢°(Q) (14b)
Therefore
I = (A7 + A) =7V + e0gPog”  (14c)
where

e= 1[6Q"6¢(Q)] (14d)

A detailed discussion of this approach can be found in ref 12.
In this work we will denote by M the update approach used

to approximatevVv LV, with M = | denoting no updating, that

is VVLY =1, and M= UabindicatingV s is updated at each

iteration andvg" and vVhV are updated and included WwLM

providedAE;; < a x 107, In this scheme#® = |. No attempt

was made to use conjugate gradient technitfussrmally in-

cluded in updating, as that would require repeated determination

of the electronic wave functions, the most time-consuming part
of a step in the iterative procedureabluses only information
normally computed at each step in the iterative procedure. It
therefore costs no more (per iteration) thare=M.

C. The 1,2A States of NHs. The utility of this approach
was assessed using the\1-21A conical intersections of Nk
These conical intersections, which are relevant to the recent
vibrationally mediated photodissociation in Crim’s laborat&ry,

have also been determined at the state-averaged multiconfigu-

rational self-consistent field levél?? In this work two wave
functions are used, a first-order configuration interaction (FOCI)
wave function [approximately 350 000 configuration state
functions (CSFs)] and a second-order configuration interaction
(SOCI) wave function [approximately 8 million CSFs] each
based on an 8 electre orbital active space using standard
cc-tzp bases with diffuse functions on nitrogen. All numerical
calculations were performed with a prerelease version of the
COLUMBUS’ suite of electronic structure codes.

Figure 3a report&;ia(M), Exa(M), and AEjta 224(M) and
Figure 3b reports NRN(M) along a search path with one R(NH)
constrained to 24 and the remaining coordinates optimized
using method M= | or Uab. Here the FOCI wave functions
were used. TheE;!a, () show that M= | quickly locates
points on the seam. However, the NRN(I) shows that the M
I method is too slowly convergent to be of practical value. From
E;1a(U00) it is seen that M= UOO recovers most of energy
lowering missed by M= |. Note that M= | reaches the seam
earlier in the iterative sequence thaaly)seeAE;a, 2ia. This
indicates that improvings” produces a better balance between

energy lowering and energy difference reduction. The sequence

of results for &, b) = (5, 5), (1, 5), and (5, 6) is particularly
encouraging. Eacha( b) = (5, 5), (1, 5), and (5, 6) deviates
from the (0O, 0) result at successive higher values of iteration
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Figure 3. Plot of (a)E (M), Ey(M), and AE;;(M) and (b) NRN(M) for
M =1, Uab. Here M= | implies VVL set to | and lab implies VVL
approximated bys", which in turn is approximated by updating, with
Vg¥ and Vh" included and updated provideXE; < a x 107",

The affect of this change is seen in Figure 4b, which reports
gV, Y, (the second component of the indicated vectors, which
is representative), the associated Lagrange multiphgrd,,

and for comparison,'s. Here and below = 11A, J = 2'A,
Prior to iteration 7, ,, hY, show considerable variation,
reflecting, at least for the iterations withE;jia 214 small, the
erratic behavior ofj? andhV. This behavior abruptly changes
at iteration 7, wheregy? — g andh"” — h" and so become
slowly varying functions of the iteration index. Note thsttis
slowly varying throughout. These results support the viability

index and each produces more converged results, that is, smaIIePf the proposed numerical approach.

values of NRN(M) and oAE;1a,214(M) [for (1, 5) and (5, 6)].
In particular NRN(UOO)> NRM(U55) > NRM(U15) ~ NRM-
(U56) and althougihE;1a 214 (U00) is slightly less tharhE;1a »1a-
(U55), AEllAyzlA(UOO) > AEllA'zlA(Uls) ~ AEllszlA(U56).

The second example, which uses the SOCI treatment and M
= U16, focuses on the switch to the orthogonal representation
whenAE,; is small. Figure 4a reportSE;1a 21 and NRN. This

Though far from a conclusive demonstration of the efficacy
of this approach, the results are quite encouraging. Performance
can be expected to improve even further when more sophisti-
cated extrapolation techniques are used.

IV. Summary and Conclusions

The search path to an energy-minimized point of conical

figure evinces the good convergence obtained in the previousintersection involves quantities that behave erratically as the
example with NRN< 2 x 1075 after 13 iterations. The vertical ~ conical intersection is approached. This erratic behavior, which
double headed arrow indicates that at iteratiod\E;ip 214 < is a consequence of the proximity to the conical intersection,

1076, at which time use of the orthogonal representation begins. precludes the routine use of extrapolation techniques that can



3204 J. Phys. Chem. A, Vol. 108, No. 15, 2004 Yarkony

(a) —© -AE — e NRN
0.01000 |-
0.1
0.001000 |
— - 0.01
S 0.0001000
g z
> Y
e =
[}
c 10°
L — 0.001
108
— 0.0001
107
108 10
0 2 4 6 8 10 12 14
0.1
(b)
2 L
- 0.05
1 -
[72]
.
Q
<!
= w
=] ©
= o 10 =
oy o
c c
© 'v
} -1
o
®©
-
-1 [ -
- -0.05
.2 [ -
-0.1
0 2 4 6 8 10 12 14

Iteration

Figure 4. Plot of (a) AE;;(M) and NRN(M) and (b) %, g2, hY, with superscript suppresség, andi, for M = U16.
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greatly reduce the time to solution of the iterative procedure. (5) Lischka, H.; Dallos, M.; Szalay, P.; Yarkony, D. R.; Shepard, R.
Because the erratic behavior is associated with the conical?- Chem- Phys2004 = _

intersection itself, this behavior might appear to be intrinsic to 19926)2228223%§rk' M. J.; Robb, M. A; Schiegel, H. Bhem. Phys. Lett.
this type of search. However, this is not the case. Here we have  (7) Manaa, M. R.; Yarkony, D. Rl. Am. Chem. S02994 116, 11444.
used extrapolatable functiofsto reformulate our two-state (8) Lischka, H.; Dallos, M.; Sheppard, R.; Scazlay, P.; Yarkony, D.
energy-minimized conical intersection search procedure to R. W;rkL?n EFKOQFSSS-Sh 4 R Shavit L Pitzer. R Dallos. M-
employ functions that are smoothly varying along the search . I(:’.)G.Iggal :};; érowﬁ?alrr_ B Alhﬁ\(/:ll?é, 'h_;'.té‘;r" v f; %;Han'g';,mx.;
path even as the conical intersection seam is approached. AS &omeau, D. C.: Gdanitz, R.; Dachsel, H.; Erhard, C.; Emzerhof, NchHo
result, a simple updating procedure was shown to be effective P.; Irle, S.; Kedziora, G.; Kovar, T.; Parasuk, V.; Pepper, M.; Scharf, P.;
in improving the performance of this algorithm, opening the Schiffer, H.; Schindler, M.; Sctier, M.; Zhao, J.-G. COLUMBUS, An ab

- . f initio Electronic Structure Program, 5.9 ed., 2003.
way for the use of more sophisticated extrapolation techniques. (10) von Neumann, J.: Wigner, Bhys. 7.1929 30, 467.
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