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A conical intersection is a singular point in nuclear coordinate space. As a result of this singularity the
parameters used to search for energy-minimized conical intersections, energy gradients, energy difference
gradients, and coupling vectors vary irregularly along the search path. This irregular variation precludes the
efficient use of extrapolation procedures to speed convergence. This impediment may be overcome by the
use of extrapolatable functions, that is, functions that vary smoothly along the search path. From a topographical
perspective this approach amounts to walking along a path parallel to the ridge of conical intersections. In
this work an algorithm based on these functions is introduced and its performance discussed.

I. Introduction

In the past decade conical intersections of two states of the
same symmetry have emerged as fundamental to the description
of electronically nonadiabatic processes.1-3 Algorithms have
been developed, exploiting the power of analytic gradient
techniques,4,5 to locate these points.6-9 Points of conical
intersection are not isolated but are continuously connected
forming seams.10 The seams areNint-2-dimensional subspaces
in the Nint-dimensional space of internal nuclear coordinates.
For general polyatomic moleculesNint - 2 is a large number
and it is desirable to determine sections of these seams for which
the energy has been minimized. Although it is relatively
straightforward to locate points of conical intersection, energy
optimization is more costly to achieve. We attribute this
difficulty to the erratic behavior of the algorithmic parameters
along the search path, which precludes extrapolation. This erratic
behavior might seem intrinsic to the problem because it is a
consequence of the singular character of the conical intersection,
the object of the search. Fortunately, this need not be the case.
We have recently introduced extrapolatable functions,11 a set
of functions that are well-behaved along the search path. In this
work we report a simple, no-additional cost, algorithm based
on these functions and Hessian updating12 and show that it can
significantly improve convergence to an energy-minimized point
of conical intersection.

In section II the basic search algorithm and the idea of
extrapolatable functions is reviewed. In section III an algorithm
based on these functions is described. The algorithm achieves
quasi-second-order convergence without the need to precompute
the relevant Hessians in their entirety using divided difference
techniques. This will make efficient convergence possible in
larger molecules. The performance of the algorithm is illustrated
using numerical examples. Section IV summarizes and con-
cludes.

II. Extrapolatable Functions and Conical Intersection:

In this section an algorithm for locating energy-minimized
conical intersections is presented so that we may describe the
incorporation of extrapolatable functions, functions that vary
smoothly along a search path, into that algorithm.

A. Search Algorithm. Let Q denote theNint internal nuclear
coordinates. We seek a point of conical intersection of states I
and J in the subspace of nuclear coordinate space defined by

Ncon equations

A point of conical intersection satisfies

together with the requirement

whereHCSF is the electronic Hamiltonian in the configuration
state function13 (ψ) basis and thecI satisfy the configuration
interaction problem

Finally, as explained in refs 3 and 11, the “f” superscript
indicates that cJ(Q) is held fixed when coordinate derivatives
are taken.

The desired point,Qx,IJ, is to be the lowest energy point of
conical intersection in the subspace defined in eq 1a.Qx,IJ is an
extremum of the LagrangianLIJ,

whereLIJ is constructed from P(Q) (described below) and the
constraints equations, eqs 1a-1c

With the Lagrange multipliersλ, ú, and Q as independent
variables, eq 3, using eq 4, becomes

where

Kj(Q) ) 0 j ) 1, ...,Ncon (1a)

C1(Q) ≡ ∆EJI(Q) ) EJ(Q) - EI(Q) ) 0 (1b)

C2(Q) ) cI(Q)f†
HCSF(Q)cJ(Q)f ) 0 (1c)

[HCSF(Q) - IEI(Q)]cI(Q) ) 0 (2)

∂

∂êk
LIJ(Qx,IJ) ) 0 for ê ) Q, λ, ú (3)

LIJ(Q,λú) ) P(Q) + ∑
i)1

2

λiC
i(Q) + ∑

i)1

Ncon

úiK
i(Q) (4)

∇LIJ(Q) ≡ ∇P(Q) + λ1g
IJ(Q) + λ2h

IJ(Q) +

∑
R)1

Ncon

úRkR(Q) ) 0 (5a)

∆EJI(Q) ) 0 and C2(Q) ) 0 (5b,c)

Ki(Q) ) 0 (5d)
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the approximation in eq 6b improves as the seam is approached,
and for later use

Here hIJ is approximately parallel to the derivative coupling
vector,14 and 2gIJ is the gradient of the energy difference. These
vectors define the branching15 or g-h16 space, the space in
which the conical topography is evidenced. The orthogonal
complement of the branching space is the seam space. Equation
5a has the usual interpretation17 of a constrained equilibrium.
The “real force”∇P, does not vanish but is instead balanced
by the “pseudoforces” due to the constraints, 2gIJ, hIJ, andk i. It
is the Lagrange multipliers that prescribe the proper balance
between the real and pseudoforces.

The solution to eqs 5a-5d is obtained by iteratively solving
the system of Newton-Raphson equations

until Qx,IJ is found such that NRN(Qx,IJ) ) ||∇LIJ, ∆EIJ, 0, K ||
∼ 0.

B. Rotational Invariance and Its Consequences.For any
point Q on the seam, the degenerate wave functions for states
I and J are defined only up to a rotation among themselves by
θ. As a result18 gIJ andhIJ are defined up to a rotation by 2θ.
ThegIJ andhIJ for the rotated states,gIJ,(θ) andhIJ,(θ), are related
to the original or nascentgIJ,(0) ) gIJ andhIJ,(0) ) hIJ by

Note that in general||gIJ,(θ)|| * ||gIJ|| and ||hIJ,(θ)|| * ||hIJ||
becausegIJ and hIJ are not normalized. The flexibility in the
definition of these vectors has several consequences. The values
of the Lagrange multipliers are not unique. Ifθ in eq 8 is
increased byθ0 then λj (j ) 1, 2) must then be modified to
preserve eq 5a.

More significant in the present context is the ability to choose
hIJ andgIJ orthogonal.18 In particular,gIJ,(θ) ≡ gjIJ andhIJ,(θ) ≡
hhIJ will be orthogonal for

ThehhIJ andgjIJ obtained from eq 9 are unique up to transpositions
and sign changes18 and all thehIJ,(θ) andgIJ,(θ) associated with
a particular point of conical intersection yield the single
orthogonal pairhhIJ andgjIJ. Thus to eachQx,IJ there is associated
a unique pairhhIJ andgjIJ, a consequence of which is illustrated
in Figure 1.gIJ is shown at two points,Q(i) andQ(i+1) on the
search path near but not on the seam.gIJ(Q(i)) and gIJ(Q(i+1))
differ markedly becauseQ(i) and Q(i+1), whose separation is
small, fall on opposite sides of the cone so that the gradients
point in opposite directions. This is a consequence of the square

root singularity in the energy (see below). Thus thegIJ(Q)
behave erratically along the path. However, because distinctly
different gIJ andhIJ yield the samegjIJ, hhIJ (it is not surprising
and it is shown by example in ref 1),gjIJ andhhIJ are similar at
Q(i) andQ(i+1); that is, they are slowly varying functions of the
search path.

C. Choice of P. In the past, because algorithms seek an
energy-minimized conical intersection, we have usedP ) EI

(or EJ) in LIJ.19 However, as in the case ofgIJ, these∇EM behave
erratically when the search path is near the seam, again as a
consequence of the square root singularity in the energy. On
the other hand the trace of the energies,ET ) (EI + EJ)/2 with
∇ET ) sIJ does not involve the square root singularity (it is
invariant under a unitary transformation of states I and J) and,
as was shown by example in ref 1, is an extrapolatable
function.11 Note that althoughP ) ET will not produce the same
search path asP ) EI, the end result will be the same because
on the seam of conical intersection ifEI is an extremum so is
EJ.

III. Locating Energy-Minimized Sections of a Conical
Intersection Seam

The material in the previous section, which was the subject
of ref 1, provides the foundation for developing improved
implementations of the Newton-Raphson equations for locating
energy-minimized conical intersections. Note that all quantities
in eq 7 are exactly and efficiently evaluated using analytic
gradient techniques4,5 with the exception of the term∇∇LIJ. It
is the approximation of this term that is the central issue in this
work. In the past we have usedP(Q) ) EI(Q) and approximated
∇∇LIJ using divided differences of∇LIJ, which is evaluated
analytically. To avoid problems related to the erratic behavior
of quantites in eq 7a, the divided differences were constructed
at a “safe distance” from the conical intersection. The use of
divided differences of∇LIJ to evaluate∇∇LIJ becomes prob-
lematical as the number of internal coordinates grows. The
construction of∇∇ LIJ using data obtained at a safe distance
from the conical intersection can also be limiting. Here we
develop an approach using extrapolatable functions that avoids
these limitations.

A. Incorporating Extrapolatable Functions. Our approxi-
mation for∇∇LIJ is based on the following analysis of eq 7.
Equations 7b and 7c are

Equation 7b′ is just the first-order expansion of the energy

Figure 1. Schematic representation of slowly varyinggjIJ and hh IJ,
denoted g and h, and an erratically varying gradient,∇EI or gIJ, denoted
by f for two points on the search path.

∆EIJ(Q) + 2gIJ(Q)‚δQ ) 0 (7b′)

hIJ‚δQ ) 0 (7c′)

k i(Q) ) ∇Ki(Q) (6a)

hkl(Q) ) ck†
(Qx,IJ)(∇H(Q))cl(Qx,IJ) ≈ ck†

(Q)f(∇H(Q))cl(Q)f

(6b)

2gIJ ) hII - hJJ (6c)

2sIJ ) hII + hJJ (6d)

(gIJ,(θ)

hIJ,(θ) )) (cos 2θ sin 2θ
- sin 2θ cos 2θ )(gIJ

hIJ) (8)

tan 4θ ) 2hIJ‚gIJ

(hIJ‚hIJ) - (gIJ‚gIJ)
(9)
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difference using nondegenerate perturbation theory. It requires
δQ to move along,gIJ, the energy difference gradient, the tuning
coordinate,2 to recover the degeneracy. AsδQ approaches the
seam, nondegenerate perturbation theory becomes untenable.
One manisfestation of this is a nonnegligible (first-order)
contribution to ∆EIJ from hIJ‚δQ. See below. Equation 7c′
preventsδQ, when it is not parallel togIJ, from picking up a
first-order contribution to∆EIJ.11 As a result of the inclusion of
both eqs 7b and 7c the path generated by the iterative solution
to eq 7 first reaches a partially energy optimized region of the
seam (see section IIIB) and then ultimately achieves full energy
minimization.

We can exploit this observation as follows. For a pointQx

on the seam, that is∆EIJ ) 0, but with eq 7a not satisfied, eqs
7b and 7c become

which when multiplied by the matrix in eq 8 gives

which is a specific case of the general observation thatδQ must
be perpendicular to the currentg-h plane. Whereas a specific
gIJ is required to satisfy eq 7b′ away from the seam,on the
seam anygIJ,(θ), hIJ,(θ) pair will suffice.This result can be used
to facilitate energy minimization, which is the provence of eq
7a

Equation 7a is the most challenging of the components of eq 7
to solve owing to the presense of the second derivative terms
∇sIJ, ∇gIJ, and∇hIJ. Although any approximation that ultimately
yields ∇LIJ ) 0 is satisfactory, the more accurately∇∇LIJ is
approximated the more rapidly the iterative procedure will
converge. The erratic behavior ofgIJ, hIJ (andhJJ, hII but NOT
sIJ) makesgIJ ill-suited for extrapolation or divided difference
computation.

When Q is close to a seam point, there is a unique ray
(directionλh) in the g-h plane for which the computed energy
difference gradient,∇(∆EIJ)(Q)/2, and coupling vectorhIJ are
to a good approximationgIJ,(λh) andhIJ,(λh). This intuitive result
follows from the degenerate perturbation theory expression for
the energies in the vicinity of a conical intersection

whereE+ ) EJ andE- ) EI. Consequently (see Figure 2) for
λh given by11

the energy difference gradient atQ is gIJ,(λh), that is

Further by constructionδQ is orthogonal tohhIJ,(λ)

as required. Note that because these vectors are not normalized
gjIJ,(λh) need not be, and in general is not, perpendicular tohhIJ,(λh).

In ref 1 it was shown numerically thatgjIJ, hhIJ are well-behaved
along the search path. Thus the use ofgjIJ andhhIJ transfers the
erratic behavior fromgIJ and hIJ to λh. To use this result near
the seam, the pointQ should be rotated from its nascent,
random, position nearQx,IJ to a preassigned position in theg-h
plane in each iteration. This amounts to searching (or walking)
along a path parallel to the conical intersection seam, as
suggested in the title of this work. To perform this rotation,
explicitly second derivative information is required or the wave
functions need be determined at the rotated point. These options
are costly. However, ifgjIJ andhhIJ are introduced only after the
search producesQ a pointon the seam, the rotation in coordinate
space can be replaced by a rotation of the degenerate electronic
statesscompare eqs 8 and 12b and see ref 11. In this way, the
rotation is actually avoided, because bothET and theg-h plane
(eq 10b) are invariant to this rotation.

The preceding analysis demonstrates the promised result:
usingET rather thanEI in the Lagrangian in eq 4, and replacing
gIJ, hIJ by gjIJ, hhIJ once∆EIJ is sufficiently small, yield a conical
intersection search algorithm that is expressed in terms of
extrapolatable functions. In this work we illustrate the improved
performance that is possible with this approach using a simple
updating procedure to approximate the three second derivative
matrices in eq 7a.

B. Numerical Implementation: The Updating Scheme.
The three second derivatives in∇∇LIJ, ∇∇ET ) ∇sIJ, ∇gIJ, and
∇hIJ are approximated using a simple updating procedure.12 This
approach costs no more than approximating∇∇LIJ by a unit
matrix and hence is suitable whenNint is not small. It will also
serve to illustrate the potential power of the using an extrapo-
latable function approach.

For a functiong(Q) ) ∇Φ(Q), that is, forg the gradient of
Φ

so that

whereH is the Hessian forΦ. Equation 13b permits informa-
tion obtained from the gradients at successive iterations (i and
i + 1 below) to be incorporated intoH, as follows

so that

Figure 2. Schematic representation of quantities in eq 11, withgjIJ

denoted g,hh IJ denoted h,gjIJ,(λ) denoted gλ, andhh IJ,(λ) denoted hλ.

(gIJ(Q)‚δQ

hIJ(Q)‚δQ )) (00) (10a)

(gIJ,(θ)(Q)‚δQ

hIJ,(θ)(Q)‚δQ )) (00) (10b)

-∇LIJ ) [∇sIJ(Q) + λ1∇gIJ(Q) + λ2∇hIJ(Q) +

∑
R)1

Ncon

úR∇kR(Q)]‚δQ (7a′)

E((Q) ) sIJ(Q)x,IJ ( |(gjIJ(Qx,IJ)‚δQ)2 + (hhIJ(Qx,IJ)‚δQ)2|1/2

(11)

gjIJ‚δQ ) qj cosλh hhIJ‚δQ ) qj sin λh (12a)

∇(∆EIJ)(Q)/2 ) ∇(∆E-+)(Q)/2 )

cosλhgjIJ + sin λhhhIJ ≡ gjIJ,(λh) (12b)

hIJ,(λh)‚δQ ) (-gjIJ sin λh + hhIJ cosλh)‚δQ ) [gjIJ(hhIJ‚δQ) +
hhIJ(gjIJ‚δQ))qj]‚δQ (12c)

g(Q+δQ) ) g(Q) + ∇g(Q)‚δQ (13a)

g(Q+δQ) - g(Q) ≡ δg(Q) ) ∇∇Φ(Q)‚δQ≡H δQ (13b)

H (i+1)δQ ) (H (i) + ∆H )δQ ) δg(Q) (14a)
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Therefore

where

A detailed discussion of this approach can be found in ref 12.
In this work we will denote by M the update approach used

to approximate∇∇ LIJ, with M ) I denoting no updating, that
is ∇∇LIJ ) Ι , and M) Uab indicating∇ sIJ is updated at each
iteration and∇gIJ and∇hIJ are updated and included in∇∇LIJ

provided∆EIJ < a × 10-b. In this schemeH o ) I . No attempt
was made to use conjugate gradient techniques12 normally in-
cluded in updating, as that would require repeated determination
of the electronic wave functions, the most time-consuming part
of a step in the iterative procedure. Uab uses only information
normally computed at each step in the iterative procedure. It
therefore costs no more (per iteration) than M) I.

C. The 1,22A States of NH3. The utility of this approach
was assessed using the 11A-21A conical intersections of NH3.
These conical intersections, which are relevant to the recent
vibrationally mediated photodissociation in Crim’s laboratory,20

have also been determined at the state-averaged multiconfigu-
rational self-consistent field level.21,22 In this work two wave
functions are used, a first-order configuration interaction (FOCI)
wave function [approximately 350 000 configuration state
functions (CSFs)] and a second-order configuration interaction
(SOCI) wave function [approximately 8 million CSFs] each
based on an 8 electron-8 orbital active space using standard
cc-tzp bases with diffuse functions on nitrogen. All numerical
calculations were performed with a prerelease version of the
COLUMBUS9 suite of electronic structure codes.

Figure 3a reportsE11A(M), E21A(M), and ∆E11A,21A(M) and
Figure 3b reports NRN(M) along a search path with one R(NH)
constrained to 2.0a0 and the remaining coordinates optimized
using method M) I or Uab. Here the FOCI wave functions
were used. The∆E11A, 21A(I) show that M) I quickly locates
points on the seam. However, the NRN(I) shows that the M)
I method is too slowly convergent to be of practical value. From
E11A(U00) it is seen that M) U00 recovers most of energy
lowering missed by M) I. Note that M) I reaches the seam
earlier in the iterative sequence than Uab; see∆E11A, 21A. This
indicates that improving∇sIJ produces a better balance between
energy lowering and energy difference reduction. The sequence
of results for (a, b) ) (5, 5), (1, 5), and (5, 6) is particularly
encouraging. Each (a, b) ) (5, 5), (1, 5), and (5, 6) deviates
from the (0, 0) result at successive higher values of iteration
index and each produces more converged results, that is, smaller
values of NRN(M) and of∆E11A,21A(M) [for (1, 5) and (5, 6)].
In particular NRN(U00)> NRM(U55)> NRM(U15)∼ NRM-
(U56) and although∆E11A,21A(U00) is slightly less than∆E11A,21A-
(U55), ∆E11A,21A(U00) > ∆E11A,21A(U15) ∼ ∆E11A,21A(U56).

The second example, which uses the SOCI treatment and M
) U16, focuses on the switch to the orthogonal representation
when∆EIJ is small. Figure 4a reports∆E11A,21A and NRN. This
figure evinces the good convergence obtained in the previous
example with NRN< 2 × 10-5 after 13 iterations. The vertical
double headed arrow indicates that at iteration 7,∆E11A,21A <
10-6, at which time use of the orthogonal representation begins.

The affect of this change is seen in Figure 4b, which reports
gIJ

2, hIJ
2 (the second component of the indicated vectors, which

is representative), the associated Lagrange multipliersλ1, λ2,
and for comparison, sIJ

2. Here and below I) 11A, J ) 21A.
Prior to iteration 7, gIJ2, hIJ

2 show considerable variation,
reflecting, at least for the iterations with∆E11A,21A small, the
erratic behavior ofgIJ andhIJ. This behavior abruptly changes
at iteration 7, wheregIJ f gjIJ and hIJ f hhIJ and so become
slowly varying functions of the iteration index. Note thatsIJ is
slowly varying throughout. These results support the viability
of the proposed numerical approach.

Though far from a conclusive demonstration of the efficacy
of this approach, the results are quite encouraging. Performance
can be expected to improve even further when more sophisti-
cated extrapolation techniques are used.

IV. Summary and Conclusions

The search path to an energy-minimized point of conical
intersection involves quantities that behave erratically as the
conical intersection is approached. This erratic behavior, which
is a consequence of the proximity to the conical intersection,
precludes the routine use of extrapolation techniques that can

Figure 3. Plot of (a)EI(M), EJ(M), and∆EIJ(M) and (b) NRN(M) for
M ) I, Uab. Here M) I implies ∇∇L set to I and Uab implies∇∇L
approximated by∇sIJ, which in turn is approximated by updating, with
∇gjIJ and∇hh IJ included and updated provided∆EJI < a × 10-b.

∆H δQ ) δg(Q) - H (i)δQ t δgp(Q)

and

δQ†∆H δQ ) δQ†δgp(Q) (14b)

H (i+1) ) (H (i) + ∆H ) ) H (i) + eδgpδgp†
(14c)

e ) 1/[δQ†δgp(Q)] (14d)
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Figure 4. Plot of (a)∆EIJ(M) and NRN(M) and (b) sIJ2, gIJ
2, hIJ

2, with superscript suppressedλ1, andλ2 for M ) U16.
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greatly reduce the time to solution of the iterative procedure.
Because the erratic behavior is associated with the conical
intersection itself, this behavior might appear to be intrinsic to
this type of search. However, this is not the case. Here we have
used extrapolatable functions11 to reformulate our two-state
energy-minimized conical intersection search procedure to
employ functions that are smoothly varying along the search
path even as the conical intersection seam is approached. As a
result, a simple updating procedure was shown to be effective
in improving the performance of this algorithm, opening the
way for the use of more sophisticated extrapolation techniques.
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