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The static and dynamic aspects of (E× e)-Jahn-Teller (JT) interactions in the electronic ground state (X˜ 2E′)
of the cyclopropane radical cation are investigated with the aid of an ab initio based quantum dynamical
approach. The valence photoelectron spectrum of cyclopropane pertinent to an ionization to the X˜ 2E′ electronic
manifold of its radical cation is calculated and compared with the most recent experimental recording of
Holland and co-workers using He I and synchrotron radiation as excitation sources [J. Electron Spectrosc.
Relat. Phenom.2002, 57, 125]. A model diabatic Hamiltonian up to a quadratic vibronic coupling scheme
and ab initio calculated coupling parameters are employed in the quantum dynamical simulations. Despite
some minor details, the theoretical results are in good accord with the observed bimodal shape of the
photoelectron band. The observed splitting of the maxima of∼0.78 eV in the bimodal profile compares well
with our theoretical value of∼0.76 eV. A strong first-order JT activity of the degenerate vibrational modes
is discovered, which results in the distinct twin structure of the photoelectron band, indicating transitions to
both the sheets of the so-called Mexican hat potential energy surface of the X˜ 2E′ electronic ground state of
the radical cation. Two Condon active (A′1) and three JT active (E′) vibrational modes are found to contribute
mostly to the nuclear dynamics in this electronic manifold. The low-energy progression in the photoelectron
band is found to be mainly caused by the degenerate CH2 wagging and ring deformation modes. While the
linear vibronic coupling scheme overestimates the observed spacing in the low-energy progressions, it leads
to a very good agreement with the overall shape of the observed band. The effect of quadratic coupling terms
of the Hamiltonian on this low-energy progression is also discussed.

I. Introduction

The Jahn-Teller (JT) effect1sthat a nonlinear molecule in
an orbitally degenerate state spontaneously distorts to a con-
figuration of reduced symmetrysis one of the most fascinating
phenomena in chemistry. Since the classical work of Longuet-
Higgins2 on the JT effect in a doubly degenerate (E) electronic
state caused by the degenerate (e) vibrational modes [the (E×
e)-JT effect], much effort has been devoted to elucidate its
nature and importance in a wide variety of systems including
transition metal complexes,3 solid-state physics and chemistry,4-6

organic hydrocarbons, radicals and ions,7-11 and fullerenes.12

The advent of high-resolution spectroscopic measurement
techniques have further motivated the invention of benchmark
theoretical models13 to better understand the static and dynamical
aspects of multimode JT interactions in many other polyatomic
molecular systems [see, for example, the review articles on the
subject in refs 7 and 14 and the references therein].

A particularly important consequence of JT interactions is
the occurrence ofconical intersections7,15,16 of electronic
potential energy surfaces (PESs). In this situation the nuclear
motion ceases to be confined to a single PES. In more general

terms, a nonadiabatic situation is reached and the well-known
adiabatic or Born-Oppenheimer approximation breaks down.
Typically, the (E× e)-JT conical intersection (which is the
main subject of this paper) exhibits a Mexican hat type of
topography in the linear coupling limitsthe lower potential
surface comprising three equivalent minima and three equivalent
saddle points linking pairs of minima and the upper one
resembles a conical shape with its vertex touching the lower
one at the point of 3-fold-symmetry.17 Especially, near conical
intersections the nonadiabatic coupling terms are of singular
strength. In the case of multimode conical intersections this often
leads to a highly diffuse spectral envelopesthe vibrational levels
of the upper surface are completely dissolved in the quasi-
continuum of vibrational levels of the lower surface.7 In a time-
dependent picture this generally yields a femtosecond non-
radiative decay of the upper electronic state.7,13b,d,e,18

In the present work we focus on the photoionization of
cyclopropane (CP) to the electronic ground state of the cyclo-
propane radical cation (CP+). The photoelectron spectrum of
CP in a wide electron binding energy range has been recorded
by various experimental groups using Ne I, He I, He II, and
synchrotron radiation as excitation sources.19-27 Among these,
the recent 21.22 eV recording of Holland and co-workers27 using
synchrotron and He I radiation seems to be better resolved. The
photoelectron band recorded by these authors in the 9-20 eV
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electron binding energy range revealed ionization from five outer
valence orbitals of CP. The equilibrium geometry of CP in its
electronic ground state belongs to theD3h symmetry point group.
Using theD3h symmetry, the ground-state molecular orbital
sequence of CP can be written as28-32,34

The experimental photoelectron spectrum of CP19-27 exhibits
a twin band centered around∼11 eV, a broad band at∼13.2
eV, and two strongly overlapping bands at∼15.7 and∼16.5
eV. These peaks are attributed to the ionization of an electron
from the 3e′, 1e′′, 3a′1, and 1a2′′ molecular orbitals, respec-
tively. The peak due to the ionization from the 3e′ molecular
orbital is of special interest and is examined herein. This
ionization forms CP+ in its electronic ground state of2E′
symmetry. The resulting photoelectron band exhibits a strong
first-order splitting indicated by the large separation between
the maxima of the twin band. The observed energy difference
of ∼0.78 eV27 between the maxima is explained as being due
to JT distortion from the equilibrium geometry of CP.

Theoretical studies were carried out to understand the
structural changes of CP resulting from the photoionization
process.28-32 Previous theoretical results agree that the first
vertical ionization of CP occurs from a degenerate pair of in-
plane e′ orbitals. The photoelectron spectrum was compared with
the vertical ionization energies calculated using Koopman’s
theorem33 and also by considering electron reorganization and
correlation effects using a many-body Green’s functions
method.30,34 The theoretical value of the vertical ionization
potential of∼10.7 eV obtained by von Niessen, Cederbaum,
and Kraemer34 using the Green’s function method is in very
good agreement with the experimental value of∼10.6 eV.
Bouma et al.32 reported a value of∼10.3 eV for the same
quantity. Energy minimization studies have revealed that the
photoionization from the E′ orbital of CP leads to species of
C2V symmetry; one is characterized by two long C-C bonds
and one short C-C bond and the another one by two short and
one long C-C bonds. The former corresponds to the2B2 and
the latter to the2A1 component. With use of a MINDO/2
method, the JT stabilization energies of these two structures
relative to a hypotheticalD3h cationic species were reported to
be ∼9.5 and∼9.2 kcal mol-1, respectively.28 JT splittings of
∼1.55 and∼1.63 eV have been calculated for these two
structures applying Koopman’s theorem, which are twice as
large as the experimentally observed splitting of∼0.8 eV.20

CP is a nonlinear molecule and its 21 vibrational modes
belong to the following symmetry species in theD3h symmetry
point group:

The symmetric direct product of either E′ or E′′ representation
yields

This indicates that within the isolated E′/E′′ electronic
manifold only the single-prime vibrational modes play an
important role in the nuclear dynamics. The totally symmetric
vibrational modes of A′1 symmetry cannot lift the degeneracy
of the E electronic manifold but can display Condon activity in
the photoelectron band. On the other hand, the vibrational modes
of E′ symmetry can lift the degeneracy of the E electronic
manifold and can participate in the (E× e)-JT activity.

Although there were some activities on the theoretical
side28-32,34to elucidate various stationary points on the potential
energy surfaces of CP+ and the vertical ionization energies as
stated above, a rigorous dynamical study to unravel the
vibrational structure of the photoelectron band is still missing.
In the present article we set out to study the static and dynamic
aspects of the JT coupling effects in the X˜ 2E′ electronic manifold
of CP+. In this endeavor we devise a vibronic coupling scheme
with the aid of an ab initio based quantum dynamical method.
In our approach we first consider a linear vibronic coupling
scheme and calculate the photoelectron band of the X˜ 2E′
electronic manifold of CP+. Despite some minor discrepancies
in the detailed structure of the low-energy progression, the
overall shape of the theoretical band obtained with this approach
agrees very well with the experimental results. The bimodal
shape of the photoelectron band is shown to be caused by the
strong first-order JT coupling of the degenerate CH2 wagging
and ring deformation modes. We then extend this model by
including the quadratic coupling terms in the Hamiltonian. The
spectrum calculated with this latter approach has a similar
overall shape to that obtained with the linear coupling approach.
However, the low-energy progressions develop substructures
and become somewhat irregular with the inclusion of the
quadratic JT coupling terms.

The rest of the paper is organized in the following way. In
section II we describe the vibronic coupling Hamiltonian and
the computational details of the photoelectron spectrum. In
section III ab initio calculations of the optimized geometry,
harmonic vibrational frequencies, normal coordinates of CP, and
the parameters of the Hamiltonian are discussed. In section IV
the adiabatic potential energy surfaces of CP+, their fit to the
vibronic Hamiltonian of section II, and the static aspects of the
problem are discussed. In this section we also show the
theoretically calculated photoelectron band of the X˜ 2E′ electronic
manifold of CP+ using a linear and a quadratic coupling scheme
and compare it with the experimental result. Finally, summariz-
ing remarks are presented in section V.

II. Theoretical Methods

A. The Vibronic Hamiltonian. The photoionization process
of CP is described by a Franck-Condon (FC) transition from
its electronic ground state to the X˜ 2E′ electronic manifold of
CP+. Ionization of an electron from the 3e′ valence molecular
orbital of CP generates CP+ in its X̃2E′ ground electronic state.
A distortion along any of the E′ vibrational modes splits the
electronic degeneracy of CP+.

To monitor the nuclear motion in this degenerate electronic
manifold, we construct a model vibronic Hamiltonian7 in the
dimensionless normal coordinates pertinent to theD3h symmetry
point group of the ground electronic state of CP. The vibrational
motion in this initial electronic state is treated as harmonic. We
resort to a diabatic35 electronic representation in which the
diverging kinetic coupling terms of the adiabatic electronic
representation change into smooth potential couplings. Rather
than constructing it explicity by solving the differential equation
for the adiabatic-to-diabatic mixing angle,36 we assume it to be
given by the electronic wave functions of theD3h reference
geometry. In such a representation the elements of the vibronic
Hamiltonian are smooth functions of the nuclear coordinates
and the Condon approximation holds well in the photoionization
process.37 In what follows, we defineQi as the dimensionless
normal coordinate (a more explicit definition follows in the next
section) of CP associated with the vibrational modeνi. The
vibrational modesi ) 1-3 are of A′1 symmetry (Condon

(1a′1)
2(1e′)4(2a′1)

2(2e′)4(1a2′′)
2(3a′1)

2(1e′′)4(3e′)4

Γvib ) 3A′1 + A′2 + 4E′ + A′′1 + 2A′′2 + 3E′′

(E′)2 ) (E′′)2 ) A′1 + E′
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active) andi ) 4-7 are of E′ symmetry (JT active). The nature
of these modes is described in section IV. The diabatic vibronic
Hamiltonian for the ionization of an electron from the 3e′ orbital
of CP can be expressed as

Here,H0 ) uN + V0, with

is the Hamiltonian matrix associated with the electronic
ground state of CP and is defined in terms of unperturbed
harmonic oscillators with frequenciesωi. 1 is a (2 × 2) unit
matrix. ∆H describes the change in electronic energy upon
ionization. This is a nondiagonal (2× 2) matrix and its elements
represent the interacting (component) diabatic electronic states
of CP+ which are expanded in a Taylor series up to second
order (neglecting the terms due to double-prime vibrational
modes) about the referenceD3h equilibrium geometry of CP in
conjunction with the elementary symmetry selection rules7,37

(cf. section I). Various contributions to∆H are described in
the following way

with

1. Linear Coupling.Coupling by the symmetric (A′1) modes

Coupling by the JT (E′) modes,

2. Quadratic Coupling.Coupling by the symmetric (A′1)
modes,

Coupling by the JT (E′) modes,

3. Bilinear Coupling.Coupling by the E′-E′ and A′1-E′
modes,

The parameters in the above equations have the following
identities. The vertical ionization energy of the X˜ 2E′ electronic
state of CP+ is defined asEE′

0 . The linear intrastate coupling
constants for the totally symmetric vibrational modes are given
by κi, whereasλi denote the linear JT coupling constants for
the degenerate vibrational modes. The quantityγi represents
the diagonal second-order coupling parameter for the modei
and ηi represents the quadratic JT coupling parameter. The
bilinear JT coupling (E′-E′) parameters are given byγ′ij, η′ij,
and η′′ij and the symmetric-JT (A′1-E′) coupling parameters
are given byγij ′′. The x and y components of the degenerate
vibrational modesν4-ν7 are denoted byQxi and Qyi, respec-
tively. It can be seen that in the absence of the bilinear coupling
terms (eq 10) the (E× e)-Hamiltonian matrix (eqs 5-9)
acquires a very simple structure, and the totally symmetric
modes are separable from the JT modes. Therefore, they can
be treated separately in the nuclear dynamical simulation.

B. Photoelectron Spectrum.The photoelectron spectrum for
a transition to the X˜ 2E′ electronic manifold of CP is described
by Fermi’s Golden rule. The photoelectron intensity is given
by

where|Ψ0〉 is the initial vibrational and electronic ground state
of CP with energyE0. |Ψv〉 is the final X̃2E′ vibronic state of
CP+ and Ev is the corresponding vibronic energy.T̂ is the
transition operator that describes the interaction of the valence
3e′ electron of CP with the external radiation with energyE. In
the present study, the initial and the final states can be expressed
as follows:

where |Φ〉 and |ø〉 represent the diabatic electronic and
vibrational part of the wave function, respectively. The super-
scripts 0 andEx/Ey refer to the1A′1 electronic ground state of
CP andx/y components of the X˜ 2E′ electronic state of CP+,
respectively. Using eqs 12 and 13, the excitation function of
eq 11 can be rewritten as

∆H bl )

(1
2
(∑i,j)4,i*j

7 γ′ij(QxiQxj + QyiQyj)
1
2∑i,j)4,i*j

7 η′′ij(QyiQxj + QyjQxi)

+ η′ij(QxiQxj - QyiQyj)) + 1
2∑i)1

3 ∑j)4
7 γ′′ijQiQyj

+ 1
2∑i)1

3 ∑j)4
7 γ′′ijQiQxj

1
2∑i,j)4,i*j

7 η′′ij(QyiQxj + QyjQxi)
1
2
(∑i,j)4 i+j

7 γ′ij(QxiQxj + QyiQyj)

+ 1
2∑i)1

3 ∑j)4
7 γ′′ijQiQyj -η′ij(QxiQxj - QyiQyj))

- 1
2∑i)1

3 ∑j)4
7 γ′′ijQiQxj

)
(10)

P(E) ) ∑
V

|〈ΨV |T̂|Ψ0〉|2 δ(E - EV + E0) (11)

|Ψ0〉 ) |Φ0〉|ø0
0〉 (12)

|Ψv〉 ) |ΦEx〉|øv
Ex〉 + |ΦEy〉|øv

Ey〉 (13)

P(E) ) ∑
V

|τEx〈øv
Ex|ø0

0〉 + τEy〈øv
Ey|ø0

0〉|2δ(E - Ev + E0) (14)

H ) H01 + ∆H (1)

uN ) -
1

2
∑
i)1

3

ωi ( ∂
2

∂Qi
2) -

1

2
∑
i)4

7

ωi [ ∂
2

∂Qxi
2

+
∂

2

∂Qyi
2] (2)

V0 )
1

2
∑
i)1

3

ωiQi
2 +

1

2
∑
i)4

7

ωi(Qxi
2 + Qyi

2) (3)

∆H ) ∆H 0 + ∆H ls + ∆H lJT + ∆H qs + ∆H qJT + ∆H bl

(4)

∆H 0 ) (EE′
0 0

0 EE′
0 ) (5)

∆H ls ) (∑i)1
3

κiQi 0

0 ∑i)1
3

κiQi
) (6)

∆H lJT ) (∑i)4
7 λiQxi ∑i)4

7 λiQyi

∑i)4
7 λiQyi -∑i)4

7 λiQxi
) (7)

∆H qs ) (12∑i)1
3 γiQi

2 0

0
1
2∑i)1

3 γiQi
2) (8)

∆H qJT)

( 1
2∑i)4

7 (γi(Qxi
2 + Qyi

2) + ηi(Qxi
2 - Qyi

2)) -∑i)4
7 ηiQxiQyi

-∑i)4
7 ηiQxiQyi

1
2∑i)4

7 (γi(Qxi
2 + Qyi

2) - ηi(Qxi
2- Qyi

2)) )
(9)
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where

denote the generalized oscillator strengths of the final X˜ 2E′
electronic manifold of CP+. In rewriting eq 14, the matrix
elements of the transition operator are considered to be weakly
varying functions of nuclear coordinates and are treated as
constants, in accordance with the applicability of the generalized
Condon approximation in the diabatic electronic basis.37 To
calculate the photoelectron spectrum, we solve the eigenvalue
equation

numerically, by representing the vibronic HamiltonianH in a
direct product basis of harmonic oscillator eigenstates ofH0.
In this basis|øv

m〉 takes the following form:7

Herem is the electronic state index,nl is the quantum number
associated with thelth vibrational mode, andk is the total
number of such modes. The summation runs over all possible
combinations of quantum numbers associated with each mode.
For each vibrational mode the oscillator basis is suitably
truncated in the numerical calculations. The maximum level of
excitation for each mode can be approximately estimated from
its excitation strength. This number is further confirmed from
the convergence behavior of the spectral envelope. The Hamil-
tonian matrix expressed in a direct product Harmonic oscillator
basis is highly sparse. We tri-diagonalize this sparse Hamiltonian
matrix by the Lanczos algorithm39 prior to diagonalization. The
diagonal elements of the resulting eigenvalue matrix give the
position of the vibronic lines and the relative intensities are
obtained from the squared first components of the Lanczos
eigenvectors.38,40

III. Ab Initio Calculations

A. Optimized Geometry, Harmonic Vibrational Frequen-
cies, and Normal Coordinates of Cyclopropane in the
Ground Electronic State. The geometry optimization and the
calculation of harmonic vibrational frequencies of cyclopropane
in its ground electronic state (1A′1) are carried out at the
Møller-Plesset perturbation theory (MP2) level employing the
correlationsconsistent polarized valence triplesú (cc-pVTZ)
Gaussian basis set of Dunning.41 The electronic structure
calculations were performed using the Gaussian program
package.44 The optimized geometry parameters of CP in its
(1A′1) electronic state are documented in Table 1 along with the
available experimental results.45 It can be seen from Table 1
that MP2 equilibrium geometry parameters correspond well with
the corresponding experimental values, except the∠H-C-H
angle, which is∼2° smaller than the experimental value. The

MP2/cc-pVTZ value of the vertical ionization energyEE′
0 is

10.8008 eV.
The ab initio force constant matrix for the ground electronic

state of CP is obtained with the cc-pVTZ basis set at the MP2
level. On diagonalization of this force constant matrix, the
harmonic vibrational frequencies (ωi) are obtained. The present
theoretical vibrational frequencies along with the experimental
ones are collected in the last two columns of Table 2. The
apparent deviations between the two can be attributed to the
fact that the experimental results represent the fundamental
vibrational frequencies.

Along with the harmonic vibrational frequencies the trans-
formation matrix from the symmetry coordinates to the mass-
weighted normal coordinates is obtained. The dimensionless
normal coordinates (Qi) are then obtained by multiplying the
latter with xωi.

B. Coupling Parameters of the Hamiltonian.The coupling
parameters of the Hamiltonian (eqs 6-10) represent the
derivatives of the adiabatic potentials of CP+ of appropriate
order with respect to the dimensionless normal coordinates,
calculated at the equilibrium geometry of CP (Q)0).46 The
linear intrastate (κi) and the JT (λi) coupling parameters are
defined as follows,

whereVE denotes the adiabatic potential energy of the degener-
ate X̃2E′ electronic state of CP+. The quantity∆E is the (signed)
difference of the JT split potential energy surfaces of the X˜ 2E′
electronic state. The diagonal second-order coupling parameters
γi for both symmetric and degenerate vibrational modes are
obtained from the following expressions,

whereVhE is the mean of the JT split potential energy surfaces
of the X̃2E′ electronic state of CP+.

TABLE 1: Equilibrium Geometry of CP in Its Ground
Electronic State (1A′1) along with the Experimental Results of
ref 45

∠H-C-H
(deg)

∠C-C-C
(deg)

C-H
(Å)

C-C
(Å)

MP2/cc-pVTZ 115.08 60 1.078 1.503
expt45 117.08 59.98 1.074 1.499

τm ) 〈Φm|T̂|Φ0〉 (15)

H |Ψv〉 ) Ev|Ψv〉 (16)

|øv
m〉 ) ∑

n1,n2,...,nk

aV,n1,n2,...,nk

m |n1〉|n2〉...|nk〉 (17)

TABLE 2: Coupling Constants for the X̃2E′ Electronic
Manifold of the Cyclopropane Radical Cation (C3H6

+)
Derived from the OVGF Data and the Harmonic
Vibrational Frequencies of Cyclopropane in Its Electronic
Ground (X̃1A′1) Statea

modes
(symmetry)

κ or λ
X̃2E′

γ
X̃2E′

η
X̃2E′

ωi
MP2/cc-
pVTZ

ωi
expt47

ν1(A′1) -0.1091 -9.5098× 10-4 0.1531 0.1473
ν2(A′1) 0.2144 2.1751× 10-3 0.1902 0.1829
ν3(A′1) 0.0176 6.620× 10-4 0.3965 0.3744
ν4(E′1) 0.3201 1.4419× 10-3 -1.886× 10-3 0.1129 0.1074
ν5(E′1) 0.3701 5.784× 10-3 -3.7048× 10-3 0.1309 0.1270
ν6(E′1) 0.0692 -6.5864× 10-3 -1.824× 10-3 0.1841 0.1778
ν7(E′1) 0.0328 2.4408× 10-3 3.3461× 10-4 0.3954 0.3743

a All quantities are in eV if not otherwise stated. The experimental
results represent the fundamental vibrational frequencies.

κi ) (∂VE

∂Qi
)|

Q)0
, i ) 1-3 (18)

λi ) 1
2(∂∆VE

∂Qi
)|

Q)0
, i ) 4-7 (19)

γi ) (∂2VE

∂Qi
2)|

Q)0

, i ) 1-3 (20)

γi ) (∂2VhE

∂Qi
2)|

Q)0

, i ) 4-7 (21)
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The quadratic (ηi) coupling parameters are calculated from
the (signed) difference of the JT splitted potential energy
surfaces:

The bilinear E′-E′ and A′1-E′ coupling parameters are
evaluated in a similar way either from the mean or from the
(signed) difference of the JT splitted potential energy surfaces
by suitably displacing CP+ along two normal modes of vibration
simultaneously.

To estimate these coupling parameters, we performed direct
calculations of vertical ionization energies of CP by the outer-
valence Green’s function (OVGF) method42,43 employing the
cc-pVTZ basis set. The electronic structure calculations are
carried out as a function of the dimensionless normal mode
displacement (fromQ)0) coordinates and forQi (i ) 1-7) )
-1.5 (0.25) 1.5, using the Gaussian program package.44 The
vertical ionization energies thus obtained are equated with the
adiabatic potential energy difference of the X˜ 2E′ electronic state
of CP+ and X̃1A′1 electronic state of CP along the respective
normal modes of vibration. These energies are then fitted to
the adiabatic form of the diabatic Hamiltonian described in eqs
6-10 by a least-squares procedure and thereby the coupling
parameters are derived.

In Figure 1a-c the adiabatic potential energy values of X˜ 2E′
electronic state of CP+ measured relative to the X˜ 1A′1 elec-
tronic state of CP (these are the vertical ionization energy values

obtained from the OVGF calculations) along the dimensionless
normal coordinate of the tuning7 (A′1) vibrational modesν1, ν2,
and ν3 are plotted. The asterisks in each panel represent the
computed data and a quadratic (excluding the bilinear coupling)
fit to these data is shown by the solid line. The nature of each
of these vibrations is included in the respective panel by an
insert. The vibrational modesν1, ν2, and ν3 represent C-C
stretching, CH2 scissoring, and symmetric C-H stretching
motion, respectively.47 It can be seen that the degeneracy of
the X̃2E′ electronic state of CP+ is not lifted when displacing
along these vibrations. The linear (κi) and the second-order (γi)
coupling parameters for these modes resulting from the above
fits are included in Table 2.

The mean of the JT splitted potential energy surfaces when
distorting along thex component of the degenerate vibrational
modesν4, ν5, ν6, andν7 is plotted in Figure 2a-d, respectively,
as a function of their dimensionless normal coordinates. The
nature of these vibrations is also schematically shown in the
respective panel as an insert. They represent CH2 wagging, ring
deformation, CH2 scissoring, and asymmetric C-H stretching
motion, respectively, in that order.47 The computed points in
each panel are shown by the asterisks and a fit to these points
is shown by the solid line. It can be seen, from eqs 6-9 that,
in absence of the bilinear coupling, the above fits yield the
diagonal second-order coupling parameterγi for the ith vibra-
tional mode. The value of these parameters obtained from the
above fits are included in Table 2.

The linear and quadratic JT coupling parameters for the
degenerate vibrational modesν4-ν7 are evaluated by fitting the
(signed) difference of the JT split potential energy surfaces along
these modes. In Figure 3a-d this energy difference is plotted
along the dimensionless normal coordinates of thex component
of the respective mode. The asterisks in each panel denote the
computed energies and the solid line superimposed on them
represents the quadratic fit (excluding bilinear coupling terms).
The value of the linear (λi) and quadratic (ηi) JT parameters
thus obtained from the above fits are included in Table 2.

IV. Results and Discussion

A. Adiabatic Potential Energy Surfaces.On diagonalization
of the diabatic electronic Hamiltonian matrix of eqs 5-9, the
adiabatic potential energy surfaces are obtained.7 First, we
consider the electronic Hamiltonian matrix within the linear
vibronic coupling scheme only (i.e., excluding the contributions
from eqs 8-10). The adiabatic potential energy surfaces of this
linear vibronic Hamiltonian are given by its eigenvalues7

whereV- andV+ refer to the lower and upper adiabatic sheets
of the X̃2E′ electronic manifold of CP+, respectively. The
quantity V0(Q) is given by eq 3. The analytic form of the
argument of the square root in eq 23 represents a cusp in the
vicinity of the JT undistorted configuration atQ)0.

The topographical features of the (E× e)-JT Hamiltonian
are well-known in the literature.2,7,9-13,15-17 We only briefly
discuss them here with reference to cyclopropane. The cuts of
the adiabatic potential energy surfaces described by eq 23 along
the normal coordinates of the vibrational modesν1-ν7 are
shown in Figure 4a-c for the tuning (A′1) modes and in Figure
5a-d for the coupling (E′) modes. The three totally symmetric

Figure 1. Vertical ionization potential of CP pertinent to the first
photoelectron band, plotted along the dimensionless normal coordinates
of the symmetric vibrational modesν1 (panel a),ν2 (panel b), andν3

(panel c). The OVGF energy values are shown by the asterisks and a
quadratic fit to these points is shown by the solid lines. The linear and
the diagonal quadratic coupling parameters listed in Table 2 are obtained
from the above fits.

ηi ) 1
2(∂2∆E

∂Qi
2 )|

Q)0

, i ) 4-7 (22)

V-(Q) )

V0(Q) + EE′
0 + ∑

i)1

3

κiQi -x(∑
i)4

7

λiQxi)
2 + (∑

i)4

7

λiQyi)
2 (23)
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modesν1-ν3 cannot lift the degeneracy of the X˜ 2E′ electronic
state of CP+. However, depending on their coupling strength,
they can shift the potential energy minimum of the ionic state
considerably away from the equilibrium geometry of the neutral
and display tuning activities in the photoelectron spectrum.
These modes, in fact, tune the vertical ionization energies of
the ionic states. The modeν1 represents the C-C stretching
vibration. The potential energy of the X˜ 2E′ state as a function
of its normal coordinateQ1 is shown in Figure 4a. The excitation
strength, defined as (κ2/2ω2),7 of this mode is included in the
panel. Since it has small excitation strength, it shifts the potential
energy minimum of the X˜ 2E′ state of CP+ only slightly relative
to the ground state of CP atQ)0. The vibrational modeν2

represents the CH2 scissoring motion. The potential energy of
the X̃2E′ state of CP+ along the normal coordinateQ2 is shown
in Figure 4b. The excitation strength of this mode is about 2.5
times higher than that ofν1 and, as a result, it shifts the potential

minimum of the ionic state to a larger value ofQ2. The
vibrational modeν3 represents the symmetric C-H stretching
motion. It can be seen from Figure 4c that this mode has
extremely small coupling strength (∼0.0009) and the potential
minimum of the X̃2E′ state of CP+ essentially remains at the
ground-state equilibrium position when distorting along this
vibrational mode. One may practically disregard this high-
frequency mode in the dynamical simulations.

The potential energy surfaces of the X˜ 2E′ manifold of CP+

along the normal coordinate of thex component of the
degenerate vibrational modesν4-ν7 are shown in Figure 5a-
d. The degeneracy of the X˜ 2E′ electronic manifold is destroyed
when distorting along these vibrational modes. The extent of
splitting of the degeneracy depends on their coupling strength,
given in each panel. It can be seen that the vibrational modes
ν4 (CH2 wagging) andν5 (ring deformation) have large first-
order coupling (cf. Table 2) and cause considerable splitting of

Figure 2. Mean potential energy of the JT split adiabatic sheets of the X˜ 2E′ electronic manifold of CP+ plotted along the dimensionless normal
coordinates of thex components of the degenerate vibrational modesν4, ν5, ν6, andν7 in panels a, b, c, and d, respectively. The OVGF data are
shown by the asterisks and a parabolic fit to these data is shown by the solid lines. The diagonal quadratic coupling constants for the JT modes
listed in Table 2 are derived from the above fits.

Figure 3. Potential energy difference of the JT split adiabatic sheets of the X˜ 2E′ electronic manifold of CP+ plotted along the dimensionless
normal coordinates of thex components of the degenerate vibrational modesν4, ν5, ν6, andν7 in panels a, b, c, and d, respectively. The OVGF data
are shown by the asterisks and a quadratic fit to these data is shown by the solid line. The linear and the quadratic JT coupling parameters listed
in Table 2 are derived from the above fits.
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the degeneracy. These two modes are expected to be signifi-
cantly excited in the photoelectron transition. On the other hand,
the weak splitting of the degeneracy caused by the vibrational
modesν6 (CH2 scissoring) andν7 (asymmetric C-H stretching)
may not have any significant impact on the photoelectron
transition.

The two sheets of the X˜ 2E′ electronic manifold remain
degenerate (eq 23) in absence of any JT distortion, that is,
Qi (i ) 4-7) ) 0. These two sheets form conical intersections
and the minimum of this intersection seam occurs atQi

0 (i )
1-3) ) -κi/ωi, in the space of A′1 vibrational modes with an
energy7

This global minimum onV- at theD3h equilibrium geometry
becomes a cusp when distorted along any of the two components
of the degenerate vibrational modes. The minimum ofV+
remains at the minimum of the seam of conical intersections
and new minima appear onV- at Qi

0 (i ) 1-3) ) -κi/ωi and
Qpi

0 (p ) x/y, i ) 4-7) ) (λpi/ωpi with an energy

In multidimensional space this results in a Mexican hat
topography of the JT split potential energy surfaces. The JT

stabilization energy amounts to

Considering the data collected in Table 2, one can see that
the V min

(c) ) 10.6408 eV, occurs atQ1
0 ) 0.7126, Q2

0 )
-1.1272, andQ3

0 ) -0.444. The new minima onV -
0 (eq 25)

for the JT distorted geometry occurs atQ4x
0 ) 2.8351,Q5x

0 )
2.827,Q6x

0 ) 0.3759, andQ7x
0 ) 0.0829 with an energyV-

0 )
9.6495 eV. The JT stabilization energy amounts to∼0.9913
eV.

The above stationary points of the potential energy surfaces
are further modified when the quadratic coupling terms in the
Hamiltonian (eqs 8 and 9) are considered. In absence of any
bilinear coupling (eqs 5-9) the adiabatic potential energy
surfaces (eq 23) are modified as

In the space of A′1 vibrational modes the minimum of the
seam of conical intersections now occurs atQi

0(i ) 1-3) )
-κi/(ωi + γi), and the energy at the minimum is given by

Along the degenerate modes, two solutions,Qxi ) -λi/(ωi

+ γi ( ηi) (i ) 4-7), are obtained with energies

and

whereV-
0 andV-

sp refer to the energy of the minimum and the
saddle point, respectively, for the signs of the coupling constants
as given in Table 2. With the data listed in Table 2 one obtains
Vmin

(c) ) 10.6419 eV atQ1
0 ) 0.7171,Q2

0 ) -1.1145, andQ3
0 )

-0.0443. The new minima onV- for the JT distorted geom-
etry occur atQ4x

0 ) 2.7541,Q5x
0 ) 2.6363,Q6x

0 ) 0.3859, and
Q7x

0 ) 0.0825, with energyV-
0 ) 9.6563 eV. The saddle point

occurs atQ4x
sp ) -2.8464,Q5x

sp ) -2.7831,Q6x
sp ) -0.3939,

and Q7x
sp ) -0.0824, with energyV-

sp ) 9.6985 eV. The JT
stabilization energy amounts to∼0.9856 eV. A comparison with
the linear coupling results (discussed above) reveals that when
the quadratic couplings are considered, bothVmin

(c) andV-
0 shift

to slightly higher energy values. The shift in the value ofV-
0 is

Figure 4. Adiabatic potential energy of the X˜ 2E′ electronic manifold
of CP+ as a function of the dimensionless normal coordinates of the
symmetric (A′1) vibrational modesν1 (panel a),ν2 (panel b), andν3

(panel c). The potential energy surfaces are obtained with the linear
vibronic coupling scheme. The number in the parentheses indicate the
excitation strength,κ2/2ω2, of the respective mode. The equilibrium
geometry of CP in its electronic ground state (1A′1) corresponds to
Q)0.
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relatively greater than that inVmin
(c) . As a result, the JT

stabilization energy also decreases.
B. Photoelectron Spectrum.In this section we report on

the photoelectron band of the X˜ 2E′ electronic manifold of CP+,
calculated by employing the Hamiltonian of eqs 5-9 and the
parameters of Table 2. The theoretical results are compared with
the earlier20-23 and most recent experimental results.27 The
experimental photoelectron band revealed a characteristic
bimodal structure indicating a strong first-order JT splitting in
the X̃2E′ electronic manifold of CP+. The energetic separation
between the two maxima in the bimodal profile is reported to
be ∼0.78 eV,27 which amounts to this JT splitting. A fairly
resolved vibrational progression is observed in the low-energy
wing of the bimodal spectral envelope, which becomes ex-
tremely diffuse with increasing energy. An average spacing of
60 meV is reported for the resolved structure at low energies,
which is mainly attributed to the progression of the degenerate
vibrational modeν4.27

We in the following discuss this X˜ 2E′ photoelectron band
calculated with the linear as well as the quadratic vibronic
coupling scheme as illustrated above. We again note that in the
absence of the bilinear coupling terms, the Hamiltonian is
decoupled in terms of the symmetric (A′1) and degenerate (E′)
vibrational modes. We utilize this property of the Hamiltonian
in our numerical calculations and calculate two partial spectra
by considering the totally symmetric and degenerate vibrational
modes separately in the nuclear dynamics. Finally, these two
partial spectra are convoluted to generate the complete spectrum.
This substantially reduces the effective dimensionality of the
secular matrix in each calculation. Furthermore, we did not
consider the degenerate vibrational modeν7 in the dynamics,
as it has very low coupling strength and causes only negligible
splitting in the X̃2E′ electronic manifold (cf. Figure 5d).

In Figure 6a the spectrum obtained with three totally
symmetric modesν1, ν2, and ν3 within the linear vibronic
coupling scheme is shown. The spectral intensity in arbitrary
units is plotted as a function of the energy of the final vibronic
state E. For the symmetric modes all nuclear motions decouple
and the spectrum is obtained by convoluting the spectra of the
individual one-dimensional oscillators. Each of the latter spectra
can be expressed analytically and follow a Poisson distribution
of intensity.7 The resulting stick spectrum thus obtained is again
convoluted with a Lorentzian function with a full-width at the

half-maximum (fwhm) of 10 meV to calculate the spectral
envelope. The spectrum reveals a dominant excitation ofν1 and
ν2 modes, the first two peaks from the 0-0 line. These peaks
are∼153 and∼190 meV spaced in energy, corresponding to
the frequency ofν1 andν2 modes, respectively, in the cationic
ground state. The next three peaks correspond to the excitation
2ν1, ν1 + ν2, and 2ν2, respectively. The remaining high-energy
peaks correspond to the excitation of higher quanta ofν1 and

Figure 5. Same as in Figure 4, plotted as a function of thex component of the dimensionless normal coordinates of the degenerate (E′) vibrational
modes: (a)ν4x, (b) ν5x, (c) ν6x, and (d)ν7x.

Figure 6. Photoelectron band of the X˜ 2E′ electronic manifold of CP+

computed with three totally symmetric modes (ν1-ν3) and three
degenerate (ν4-ν6) modes alone, within the linear vibronic coupling
scheme, is shown in panels (a) and (b), respectively. Each theoretical
stick spectrum is convoluted with the Lorentzian function of 10 meV
fwhm to calculate the spectral envelope.
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ν2 and to combination modes. The excitation of theν3 vibrational
mode is negligibly small (the intensity is 103 times less than
the 0-0 line) and is not visible in the spectrum. The peaks in
the spectrum are weighted by the coupling strength,κ2/2ω2

(Poisson parameter), of the respective vibrational mode, which
yields the intensity of the fundamental relative to the 0-0 line.

In Figure 6b the spectrum obtained with the degenerate
vibrational modesν4, ν5, andν6 and a linear vibronic coupling
scheme is shown. The stick spectrum is calculated with 40, 40,
and 8 harmonic oscillator basis functions along each component
of these degenerate modes. The calculations are carried out in
a complex basis representation using complex coordinates for
the degenerate vibrational modes to take advantage of the 3-fold
symmetry of the system.7 This leads to a secular matrix of
dimension 33,359,445, which is diagonalized using 15,000
Lanczos iteration steps. The resulting stick spectrum is convo-
luted with a Lorentzian function of 10 meV fwhm to calculate
the spectral envelope.

The convergence of the stick spectrum is explicitly checked
with respect to the size of the basis set as well as the number
of Lanczos iteration steps. A careful inspection of the spectral
intensity and the coupling strengths of the vibrational modes
ν4, ν5, andν6 reveal dominant excitations ofν4 andν5 modes
in the spectrum. Line spacings of∼114,∼134, and∼184 meV
corresponding to the excitation ofν4, ν5, and ν6 vibrational
modes can be observed from the spectrum. The latter is very
weakly excited, which is also indicated by its extremely small
coupling strength. The clumping of spectral lines under each
peak and a huge line density is indicative of strong coupling
JT effects due to the vibrational modesν4 andν5. This increases
the line density in the spectrum, and for energies below∼11
eV leads to a long series of resonances corresponding to
vibrational motion on the lower JT sheetV-. For energies above
∼11 eV alsoV+ plays a role. The strong nonadiabatic effects,
however, mix the discrete vibrational levels ofV+ with the
quasi-continuum levels ofV-, and therefore, the nuclei undergo
simultaneous transitions to both sheets of the JT split PES. The
occurrence of higher energy maxima in the spectral envelope
is thus explained to be due to the metastable resonances of the
upper potential well. The latter is very narrow and extremely
anharmonic and as a result its lowest levels are widely spaced
in energy. These are showing up in the spectral envelope of
Figure 6b in the energy range above 11 eV: between∼11 and
11.5 eV the resonance corresponds to the ground vibrational
level of V+ while around 11.8 eV another structure becomes
visible which represents the first excited vibrational level of
V+. The broadening mechanisms are just the strong nonadiabatic
coupling effects characteristic for Jahn-Teller intersections.16

These are referred to as Slonczewski resonances and the
existence of these resonances was demonstrated in several model
(E × e)-JT problems.9,48,49

The complete photoelectron band of the electronic ground
state of CP+ obtained with the linear vibronic coupling scheme
is shown in Figure 7b along with the experimental result of
Holland and co-workers in Figure 7a. The theoretical stick
spectrum in Figure 7b is obtained by convoluting the two partial
stick spectra in Figure 6a,b. Because of this convolution, the
progression of the symmetric mode spectrum is represented on
each JT line of Figure 6b. The resulting convoluted stick
spectrum is then convoluted again with a Lorentzian function
of 10 meV fwhm to generate the spectral envelope shown in
Figure 7b. A comparison of this theoretical envelope with the
experimental one in Figure 7a reveals a very good overall
agreement between the two. The overall width of the theoretical

spectrum is in good accord with the experimental one. The
splitting between the two maxima of the theoretical spectrum
of ∼0.76 eV compares well with its experimental value of∼0.78
eV. The progression in the low-energy wing of the envelope is
mainly formed by the JT activeν4 and ν5 vibrational modes.
The spacing between the successive peaks in the theoretical
envelope is∼40 meV higher than its experimentally reported
average value of∼60 meV. We, however, note that the
experimental band is smoothed and it is not clear at this point
if the line spacings are affected in this smoothening procedure.
In fact, the structure present in the second maximum of the
theoretical envelope is not seen in the experimental result. Apart
from these discrepancies, the regularity in the low-energy
progression is nicely reproduced by the theoretical result. When
compared with the pure JT spectrum of Figure 6b, it can be
seen that the symmetric vibrational modes cause additional
broadening of the spectral envelope and some of the low-energy
structures are quenched.

We now discuss the effect of second-order coupling on the
above theoretical spectra. In Figure 8 we show the two partial
spectra obtained with the symmetric (panel a) and JT active
(panel b) vibrational modes. The complete spectrum obtained
by convoluting these two partial spectra is shown in Figure 8c.
The size of the vibrational basis, number of Lanczos iterations,
and the convolution width of the Lorentzian are the same as
those described for the spectra shown in Figures 6a, 6b, and
7b. A close look at the quadratic symmetric mode spectrum in
Figure 8a reveals essentially no difference with that obtained

Figure 7. Comparison of the experimental (ref 27) and final theoretical
(of the linear vibronic coupling model) results for the X˜ 2E′ photoelectron
band of CP+. The theoretical stick spectrum is obtained by convoluting
the two partial spectra of Figure 7a,b. The resulting complete stick
spectrum is again convoluted with a Lorentzian of 10 meV fwhm to
calculate the spectral envelope. The theoretical spectrum is shifted by
0.062 eV to the higher energy along the abscissa to reproduce the
adiabatic ionization position of the band at its experimental value.
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with the linear coupling scheme (cf. Figure 6a). The peaks are
∼152 and∼192 meV spaced in energy corresponding to the
frequencies ofν1 and ν2 vibrational modes modified by the
respective second-order coupling terms (cf. Table 2).

The quadratic JT mode spectrum in Figure 8b, on the other
hand, differs considerably from the linear one (cf. Figure 6b).
Each peak of the linear spectrum is further split in the quadratic
coupling scheme. Because of the increase of the line density,
the quadratic JT spectrum is somewhat more diffuse. The
apparent regularity in the low-energy progression is lost in the
quadratic JT spectrum. The higher energy maxima appearing
at 11.3 and 11.8 eV in Figure 8b, however, survive in the
quadratic model. As discussed in relation to Figure 6b, these
represent the first and second Slonczewski resonances. The
above symmetric and the JT mode spectra are convoluted and
the resulting composite spectrum is shown in Figure 8c. The
overall appearance of the composite spectrum looks similar to
the one obtained with the linear vibronic coupling scheme (cf.
Figure 7b). In both cases, in particular, the second Slonczewski
resonance at 11.8 eV is blurred by the convolution (cf. Figure
7b with 6b and Figure 8c with 8b) while the first one at 11.3
eV becomes broadened but still dominates the high-energy
spectral profile. Thus, the first PE band of cyclopropane
represents a prominent example of such a resonance in an actual
molecular JT spectrum.

However, a more detailed analysis of the spectrum in Figure
8c reveals a dramatic effect of the quadratic JT coupling
parameters on the vibronic fine structure of the photoelectron
band. To reveal this more clearly, we present in Figure 9 an
enlarged view of the low-energy part of Figure 8c (in panel b)
along with the experimental data (in panel a). A comparison of
the two results indicates that the quadratic JT coupling does
account for a lower value (<100 meV) of the average spacing
of this low-energy progression. An average spacing of the order
of ∼ 60 meV can be estimated from the quadratic vibronic
coupling result. However, the apparent irregularity in the
vibronic structure of the quadratic coupling results when
compared to the linear coupling and the experimental results
are not clear at the moment. It is also not clear if the
smoothening procedure applied to the experimental results
causes any reduction of the irregularity. It is to be noted that
the apparent regularity of the experimental result may also be
due to the usual poor energy resolution of the photoelectron
spectrometer. More work to unravel this issue considering
intermode coupling terms and also the possible effects due to
the double-prime vibrational modes and the effect of the next
excited electronic states is presently underway.

V. Summary and Outlook

We have presented a detailed theoretical account of the static
and dynamic aspects of the (E× e)-JT interactions in the
degenerate X˜ 2E′ electronic ground state of CP+. The vibronic
structure of this electronic state is calculated with the aid of an
ab initio based quantum dynamical approach and compared with
the lowest photoelectron band of CP recorded most recently by
Holland and co-workers using He I and synchrotron radiation
as excitation sources.

In our theoretical approach we employed a model diabatic
Hamiltonian within linear and quadratic vibronic coupling
schemes. The equilibrium geometry of CP in its ground
electronic state is optimized at the MP2 level of theory and the
harmonic force field and the dimensionless normal coordinates
are calculated. The equilibrium geometry parameters and the
harmonic vibrational frequencies thus obtained are in close
agreement with the experimental findings. The vertical ionization

Figure 8. Photoelectron band of the X˜ 2E′ electronic manifold of CP+

calculated with the quadratic coupling scheme (see text for details).
The intensity (in arbitrary units) is plotted as a function of the energy
of the final vibronic states. The spectrum calculated with the symmetric
(ν1-ν3) modes and the JT (ν4-ν7) modes alone is shown in panels (a)
and (b), respectively. These two partial spectra of panels (a) and (b)
are convoluted to generate the complete spectrum of panel (c). The
theoretical stick spectrum of each panel is convoluted with the
Lorentzian function of 10 meV fwhm to generate the corresponding
spectral envelope. To have a clearer representation, the stick spectra
in panels (b) and (c) are magnified by a factor of 3.

Figure 9. Low-energy wing of the X˜ 2E′ photoelectron band of CP+.
The experimental result of Holland and co-workers27 is shown in panel
(a). The theoretical result of Figure 8c is reproduced in panel (b) to
clearly reveal the impact of quadratic coupling terms on the low-energy
progression in the band.
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energies of CP+ are calculated as a function of the normal mode
displacements from the equilibrium geometry by the outer
valence Green’s function method. These energies are equated
with the adiabatic potential energies of the X˜ 2E′ electronic state
of CP+ and fitted analytically to the adiabatic form of the model
diabatic Hamiltonian (eqs 5-9) to derive the relevant coupling
parameters.

The experimentally recorded lowest photoelectron band of
CP revealed a twin structure with a resolved regular progression
in the low-energy wing of the first maximum and a highly
diffuse structure of the second maximum. The separation
between the two maxima of this twin band is reported to be
∼0.78 eV. An average spacing of peaks in the low-energy wing
of ∼60 meV, attributed mainly to the CH2 wagging mode, was
also reported. In our theoretical approach we systematically
examined the vibronic structure of this twin band. The coupling
parameters of the relevant vibrational modes revealed that
the symmetric vibrational modesν1 (C-C stretching) and
ν2 (CH2 scissoring) and the JT active vibrational modesν4

(CH2 wagging),ν5 (ring deformation), andν6 (CH2 scissoring)
are only excited in the photoelectron transition. Out of the
above three JT active modes only two,ν4 andν5, lead to strong
first-order coupling and form progressions in the photoelectron
band.

We considered these vibrational modes in the nuclear
dynamical simulations. This makes the dynamical problem an
eight-dimensional one involving two electronic states. Because
of the nature of the (E× e)-JT Hamiltonian (eqs 5-9), in the
absence of any bilinear coupling terms, the symmetric and the
JT modes are separately treated in the nuclear dynamics. We
first analyzed the underlying vibronic structure of the twin band
employing a linear vibronic coupling scheme. The results thus
obtained are in very good overall agreement with the experi-
mental data, indicating strong coupling JT effects of theν4 and
ν5 vibrational modes which lead to the appearance of two distinct
maxima in the photoelectron band. The overall width of the
twin band and the separation between the two maxima of∼0.76
eV are reproduced nicely by the linear coupling scheme. Apart
from these, the higher order JT resonances of the upper adiabatic
cone are also resolved in the present study. With regard to the
finer details, the average spacing in the low-energy progression
of the photoelectron band estimated from the theoretical
results is∼40 meV higher than the experimentally reported
value. Furthermore, the theoretical band for the second maxi-
mum of the bimodal profile is less diffuse than the experimental
one.

To account for this discrepancy, we extended the vibronic
coupling model by including the quadratic coupling terms.
The results obtained from this approach qualitatively remain
similar to the linear coupling results. Quantitatively, each peak
in the low-energy wing is further splitted and the apparent
regularity of the progression is lost. The average spacing
between the peaks may be considered to be further reduced to
∼60 meV.

The above minor discrepancies between theory and experi-
ment are to be attributed to the uncertainties in the estimate of
the coupling parameters of the Hamiltonian, neglect of any
bilinear coupling terms, and the possible role of double-prime
vibrational modes, the energy resolution, and to the finite
background that is latent in the experimental spectrum. We also
note that the experimental spectrum is smooth and it is not clear
if some discrepancies arise from this procedure. Apart from the
above issues, the pseudo-Jahn-Teller (PJT) coupling to the next
higher Ã2E′′ electronic state through the A′, A′′2 and E′′ vibrational

modes may also have an influence on the fine structure of the
twin band. We, however, note that the PJT coupling is less likely
to alter the structure of the low-energy progression. An analysis
of the effects of bilinear coupling terms and the PJT coupling
to the Ã2E′′ electronic state on the X˜ 2E′ photoelectron band is
currently underway and is the subject of a forthcoming publica-
tion.
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Köppel, H.; Haller, E.; Cederbaum, L. S.; Domcke, W.Mol. Phys.1980,
41, 669.

2E′ Electronic Ground State of Cyclopropane Cation J. Phys. Chem. A, Vol. 108, No. 12, 20042267


